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Optimal feedback control of turbulent channel flow
By Thomas Bewley, Haecheon Choi, Roger Temam!, AND Parviz Moin

Feedback control equations have been developed and tested for computing wall-
normal control velocities to control turbulent flow in a channel with the objective of
reducing drag. The technique used is the minimization of a “cost functional” which
is constructed to represent some balance of the drag integrated over the wall and
the net control effort. A distribution of wall velocities is found which minimizes this
cost functional some time shortly in the future based on current observations of the
flow near the wall, Preliminary direct numerical simulations of the scheme applied
to turbulent channel flow indicates it provides approximately 17% drag reduction.
The mechanism apparent when the scheme is applied to a simplified flow situation
is also discussed.

1. Motivation and objectives

It is the goal of this project to study methods to counteract near-wall vortical
structures in turbulent boundary layer flow using an active control system in an
effort to reduce drag. From this study, we hope to better understand the physics of
drag producing events and the sensitivity of boundary layer flow to control. As a
more far-reaching goal, we would like to better understand how to develop control
equations for general flow control problems, utilizing the equations governing finid
flow to achieve performance that is in some sense optimal for a given situation,

With a well-chosen scheme using wall control only, it has been shown that a
turbulent flow may be smoothed out in a near-wall region, and the drag may be
substantially reduced. This scheme applies small amounts of wall-normal blowing
and suction through the computational equivalent of holes drilled in the wall. Pre-
vious ad hoc schemes by Choi et al. (1992) have reduced the drag by as much as
20% by countering the vertical velocity slightly above the wall with an equal but
opposite control velocity at the wall. The objective of this work is to derive more
effective schemes by applying optimal control theory, utilizing the equations of mo-
tion of the fluid to reveal the dominant physics of the control problem and the most
efficient distribution of the control energy. This work is an outgrowth of the work
done by Choi et al. (1993), where optimal control theory was applied to the stochas-
tic Burgers equation. Here, we apply the theory to the Navier-Stokes equations,
which necessitates a more involved treatment of the equations and more extensive
computer resources, The scheme discussed in this report depends on measurements
of flow velocities above the wall — this is not feasible in a practical implementa-
tion. The scheme will later be reduced to a more practical one involving only flow
quantities which are most easily measured in an experimental rig.
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The model problem we study in this work is the turbulent flow inside a small
segment of a fully developed turbulent channel (i.e. flow between two parallel walls,
far from the inlet), This flow is governed by the same vortical structures as turbulent
boundary layer flow in the near-wall region.

Thus, the problem under consideration is a turbulent channel flow with no-slip
walls and wall-normal control velocities ¢. Control will be applied to this low in
order to decrease the drag integrated over the walls at the expense of some measure
of the net control effort. A feedback control algorithin has been developed which
minimizes a “cost functional” constructed to represent this balance of the drag and
the control effort. This method is introduced in Section 2. The control equations
have been coded and tested in a direct numerical simulation of turbulent channel
flow. Section 3 discusses preliminary results of these calculations.

2. Formulation

2.1 State equation (Navier-Stokes equation)

As described above, the problem under consideration is a constant-flux turbulent
channel flow with no-slip walls and wall-normal control velocities ¢. This problem
is governed by the unsteady, incompressible Navier-Stokes equation, the continuity
equation, and a constant flux iniegral constraint equation inside the domain 2 and
appropriate boundary conditions on the walls w (periodic conditions are implied on
the remainder of the boundary of the domain T'):
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where ©; is the streamwise direction, 22 is the wall-normal direction, z3 is the
spanwise direction, u; are the corresponding velocities, and p is the pressure. The
constants in the problem are C' (a measure of the flux in the channel) and Re (the
Reynolds number).

2.2 Optimel control of state equation

The goal of controlling the channel flow is to minimize the drag on a section of
wall with area A over a period of time T using the least amount of control effort
possible. The relevant quantities of interest are thus the time averaged drag
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(where n is a unit vector in the inward wall normal direction) and a term represent-
ing the expense of the control. The latter term may be taken to be the integral of
the magnitude of the power input, which may be written

T
Ey =?4““1“T“/; f[v|¢(p+p¢2/2)|dw1dm3dt, | (4a)

In addition, depending on the physical mechanism used to provide the control veloc-
ities, the rate of change of the control hardware settings might be another important
expense (for instance, representing the expense involve in changing the settings of
control valves in the system):

=g [

A physically appropriate cost functional for this problem, then, balances the expense
of the input versus the drag:

j(¢) =0FE +6E, + D, (5)

s .
5? dzy dxj dt. (45)

where £; and £; are appropriate weighting factors. We could proceed from this
point to attempt to construct a control procedure designed to minimize this cost
functional. A mathematically more simple cost functional for the purpose of control
theory (for reasons which will become evident as the control equations are derived)
is quadratic in ¢. Physically, this represents the integral of the magnitude of the
kinetic energy per unit mass input to the system, and may be written

" F4 1 T 2 1 T 6u1

It will be seen later that, in most problems that we consider, the expense terms are
much less significant than the drag terms (in other words, the control is relatively
cheap). The use of other expense terms does not cause much additional complexity
or insight into the method.

The optimal control procedure considered, then, involves reducing the cost func-
tional (6) for some period of time T. This method is described in Abergel and
Temam (1990) in a related situation and is also discussed in Lions (1969). How-
ever, this is a prohibitively expensive procedure for present computational resources
because it involves storage and manipulation of several three-dimensional fields over
the entire time period under consideration. The complexity of such an algorithm is
discussed further in Choi et al. (1993).

We therefore resort to a suboptimal control procedure (Choi et al. 1993). In this
method, the state equation is discretized in time, then a control procedure is applied
to reduce an instantaneous version of the cost functional (6)
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at each time step.

By applying the control at each time step, the algorithm gives the control which
minimizes the cost functional over some short time interval. Note, however, that
this method does not look ahead to anticipate further development of the flow, and
thus the solution by this method does not necessarily correspond to the solution by
the optimal control method. Thus, posing the problem in this suboptimal form is
another level of approximation to the physical problem of interest.

The differences in complexity between the optimal and suboptimal schemes de-
scribed above may be realized by drawing an analogy to a computer algorithm to
play chess. A suboptimal chess program looks ahead one step to determine the
move that leaves as good a position on the board as possible. Similarly, a subop-
timal turbulence control scheme looks ahead one time step to determine the set
of control velocities that leaves as good (i.e. low) a value of the cost functional as
possible at the next time step. An optimal chess program, on the other hand, in-
vestigates all possible developments of the game a certain number of steps into the
future (knowing how the other player may respond), and then moves in the direction
that leads to the best final position on the board. Similarly, an optimal turbulence
control scheme investigates all possible developments of the flow a certain amount
of time into the future (knowing approximately how the flow will respond), and
then applies the set of control velocities that leads to the best (i.e, lowest) time-
averaged cost functional. Such a method requires significantly more resources than
the suboptimal method.

2.8 Time discretization of state equation

The suboptimal control procedure introduced above is now applied to the state
equation (1), To do this, we discretize (1) in time, then apply a feedback control
algorithm to modify the flow at the next time step. A consistent approach is to
use a second order Crank-Nicolson method (implicit) on all terms. The momentum
equation (1a) thus takes the form:
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where a superscript » indicates the value at time step n.

(8)

It is now useful to put the time discretized form of the entire state equation
governing the flow in the domain into the form

K4+ RV =, (9a)

where K® contains all the terms which in some way depend on the state variables
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from the current time step, and R®~! contains the remaining terms:
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In the above equation, 8 = At/2Re, f; = At/2, dP/dz; is the mean pressure

gradient in the ; direction {adjusted at each time step to provide constant mass

flux), and p' accounts for the pressure variations within the domain (periodic in 2,

and z3). Note that {1b) and (1¢) have been multiplied by constants to obtain (9).
Associated with this problem are the boundary conditions B:

Bi=u;=0 : .
Bz=u2:¢ (10)
B3 =u3=0.

The “flow problem”, which will hereafter be denoted &, is taken to refer to the
differential equation (9) together with the boundary conditions (10},

2.4 Suboptimal control of state equation
In this section and the next, we develop a method to solve for the gradient of
the cost functional J and with this a control procedure based on this gradient

information to minimize 7 at each time step,
Consider the Fréchet differential (Vainberg, 1964) of the cost functional 7 in (7):

DI 5 tim J(¢+e¢3)—J(¢)
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The gradient of the functional 7 with respect to the control distribution ¢ may be
extracted from this equation by expressing the last term on the RHS in terms of an

(11)
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inner product on ¢. It is for this reason that we now formulate what we shall call
the “differential problem”.
Define © using a Fréchet differential such that
_ DU LU ~U
d) e—b(}
where ¢ is some arbitrary or “test” distribution of control velocities. Thus, O
is a differential state representing the sensitivity of the state U™ to control for a
particular control distribution ¢" applied over the time duration (#*1,t"]. The
differential © is decomposed into components in a fashion similar to the state U(¢):

U;‘(wl,ﬂ.‘z,ﬂfg) 6;‘(331,3,‘2,3,‘3)
U(¢) = | P'(z1,22,23) |, 0= play,zg,23) |.
dP/dz, A

The equations governing the differential state ©" follow directly by taking the
Fréchet differential of the state equation (9) and its boundary conditions (10). Note
that the term R™™? in (9) does not depend on #" and thus makes no contribution.
The contribution from the term K" is linear and may be written

ATO" =10, (13¢)
where
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The boundary conditions B, from (10), are
B1 = 61 B 0
By=6,=¢ (14)
33 = 93 =0.

The “differential problem”, which will hereafter be denoted &/, is taken to refer to
the differential equation (13) together with the boundary conditions (14),
Consider again the Fréchet differential of the cost functional 7 in (11):

DJ ¢) f/¢¢d“d13+A// --mdnd'ts (15)

The gradient of the functional 7 with respect to the control distribution ¢ may be
extracted from this equation by expressing the integral of 86,/0n in terms of an
inner product on ¢. This may be done by solving the differential problem &, as is
done below.
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2.5 Solution of differential problem o by adjoint method

An “adjoint problem” is now formulated which may be used to bypass direct
solution of the differential problem & itself.
Define an adjoint operator A* using the equation

<AV >=<0,A' >+ b, (16)

where A (which depends on U) is defined in equation (18b), the boundary conditions
on © are given in equation (14), and an adjoint state ¥ has been defined in a fashion

similar to U and ©:
1,b;'(331,$2,$3)
¥ =\ w(zi,ze,23) |.
K

The adjoint operator is formed by moving all of the derivatives in the inner product
(the integral over the volume of the product of the two terms, denoted < - v >)
from the differential © to the adjoint ¥. It is a straightforward exercise to wrxte
out the volume integrals corresponding to the LHS of (16) and then to rearrange
this expression into the form of integrals corresponding to the RHS of (16) using
integration by parts. From this is deduced A* and the condition at the boundary
resulting from the wall terms, which are all placed into the expression for b:

b=<AB,¥> -~ <0,A"F >, (17)

Through equation (13a), the first term on the RHS of equation (17) is zero. If we
form a similar homogeneous adjoint differential equation for the adjoint ¥

A*T =0, (18)

with boundary conditions as yet undetermined, then equation (17) reduces to

b=0. (19)
Using the method described‘a,bove, it is easy to show that
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(Note by comparison of {20) with (13b) that the operator A is not self-adjoint due
to the effect of the convective terms of the momentum equation.) These adjoint
equations may be exploxted to solve the differential problem 7.

We now formulate an “adjoint problem”, which will hereafter be denoted &/,
defining an adjoint state ¥ with the homogeneous differential equation (18} and
with accompanying boundary conditions B* as yet undefined. Note by the above
discussion that one of the by-products of the formulation of this problem is the
relation at the boundary given by (21). We are now at liberty to choose boundary
conditions for the adjoint problem such that this relation is useful — it is exactly
for this reason that the formulation of an adjoint problem is considered. With this
in mind, we may choose the boundary conditions B* as

=1 =1
B} =t =0 (22)
m¢3m0

Using these boundary conditions and the continuity equation for the adjoint velocity,
equation (21} reduces to

j] %%1- dry dog = —Tlgf &Revrdml dzy. (23)

To compute the RHS, we must solve the adjoint problem @/*. This is done numeri-
cally and must be repeated at each time step as A* changes as the flow U develops
with time.

The differential of the cost functional (11) may be rewritten using (23) as

DJ(¢)¢_ A/f¢¢dx1dm3 "Re f]vrqﬁda,ldma, (24)

where 7 is the adjoint pressure on the wall, Flnally, the desired gradient of the cost
functional J may be extracted (Vainberg, 1964):

‘Dj(fﬁ) e nz Re
D¢ = Vi . (25)

A feedback control procedure using a simple gradient algorithm at each time step
may now be proposed such that

DJ(¢™*)
> PR
where superscript n indicates the time step as before and superscript b indicates
an iteration step at that particular time step. This algorithm attempts to update
¢ in the direction opposite to the local direction of increase of J. For fixed n as
k — oo with sufficiently small yu, this gradient algorithm should converge to some
local minimum of [J over the control space ¢ if the approximation of DJ /D¢ is
sufficiently accurate. Note, however, that as the time step n advances, 7 will not
necessarily decrease (Choi et al. 1993).

¢n,k+1 - ¢n.k I (26)
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3. Accomplishments and future work

3.1 Elementary drag reducing mechanisms

Choi et al. (1992) found that by applying a control velocity equal and opposite to
the vertical velocity at y = 10, a drag reduction of nearly 20% could be achieved.
Vertical transport of streamwise momentum in the near-wall region (primarily due
to longitudinal vorticity) produces “sweep” events and thus local regions of very
high drag. Applying a countering control velocity tends to reduce this effect. A
related mechanism described by Lumley (1993) further explains these results; con-
trol applied to reduce the spinning of the near-wall vortices reduces their energy,
stabilizing them in space and thereby reducing the “bursting” frequency, which also
tends to reduce the drag,.

In the tansverse plane, countering the vertical velocity above the wall corresponds
to a control which de-spins the near-wall vortices, as shown in Figure 1. This process
leads to the removal of fluctuations in the near-wall region, which diminishes the
mixing capability of the turbulence and therefore reduces drag. This type of control
corresponds to blowing where the drag is high, which decreases the high velocity
gradients at the wall and thus smooths out the flow in the near-wall region, as
shown in Figure 2.

Vortex

,/%,/////////////////// /e
z

suction blowing

FIGURE 1. Stabilization mechanism in cross flow plane. The effect of the control
velocities shown is to de-spin the near-wall vortex, reducing momentum transport

near the wall.

s L.

suction blowing

FiGure 2. High drag is decreased by blowing at the expense of suction in the
regions of low drag, resulting in a net smoothing of the near-wall velocity profiles.




12 T. Bewley, H. Choi, R. Temam, & P. Moin

Figure 3 shows the application of the suboptimal control scheme to a simple flow
configuration of longitudinal vortices embedded in an initially parabolic flow. A
cross flow plane is shown. In regions below downward moving fluid (sweep events)
the streamwise (into the page) drag is higher and blowing is applied. In regions
below upward moving fluid (ejection events), the streamwise drag is lower and
suction is applied. The overall control distribution from the suboptimal scheme is
in a sense that acts to de-spin the near-wall vorticity, and thus acts in accordance
with mechanisms described above.

i
T

=01

Control velocities

RN
il ]ll]

FicURE 3.  Optimal control scheme applied to longitudinal vortices. Interior
vectors are cross flow velocities and contours are of streamwise velocity, indicating
a sweep event between two near-wall vortices and ejection events outside of them.
Control velocities shown on the wall (not to scale) indicates blowing at the sweep
event and suction at the ejection events.

The adjoint analysis utilizes all the information present in the near-wall region to
extract the sensitivity of the instantaneous drag to the variation of the control. This
scheme may be reduced to an approximate one relying only on wall information by
approximating the near-wall velocities using a Taylor’s series extrapolation of the
velocity gradients at the wall. The correlation between the full adjoint analysis and
approximations of the adjoint problem using only information available at the wall
is still being investigated; preliminary results indicate that the performance is not
severely degraded by this approximation.
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3.2 Suboptimel control of turbulent channel flow

The scheme introduced in Section 2 was tested by applying it to a direct numerical
simulation of turbulent channel flow, A 17% drag reduction was seen as compared
to a flow with no control. Resulis are plotted in Figure 4. This calculation was
done in a flow with Re, = 100 based on the friction velocity and the channel half
width using a 32x65x32 grid and the spectral method of Kim ef l. 1987. Although
these results should be considered preliminary, they are quite promising.

140
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FIGURE 4. Performance of suboptimal scheme compared to no control and the
scheme of Choi et el (1992). Parameters for suboptimal scheme are u = 0.01,
¢=10, Tt = 1. Legend: suboptimal scheme, - ¢ == —v|ytzyg, ==
no control.

3.8 Future work

At present, the drag reduction obtained using a suboptimal control scheme is
still slightly less than the drag reduction obtained using the ad hoe scheme of Choi
et al, (1992), as shown in Figure 4. It is hoped that by further variation of the
parameters and careful study of the numerical issues of the adjoint problem, the
result using the suboptimal formulation may be significantly improved. We expect
that, using the suboptimal method, a significant improvement is possible over all
ad hoc schemes, as the suboptimal scheme uses the entire flow information in the
near-wall region and is rigorously based. Also, work is currently in progress with
Dr. Chris Hill to reduce the suboptimal control scheme to one which depends on
wall information only. Preliminary results of this work are also quite promising —
a discussion of this project is included in the next report in this volume.
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