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ABSTRACT

A new method based on control theory for op-
timizing feedback control rules with the objective
of reducing drag in wall-bounded turbulent flows
is presented. Both linear and nonlinear control
rules (of the type commonly used in neural net-
works) are considered. These control rules re-
late wall measurements of skin friction and pres-
sure to the control, which is applied as a contin-
uous distribution of wall-normal boundary veloc-
ity with zero net transpiration. Though the opti-
mization technique itself requires complete infor-
mation about the flow, and thus can only be per-
formed computationally, it is intended that the
resulting optimized rules be scaled appropriately
and used in physical boundary layer control im-
plementations.

Using optimal control theory, the sensitivity of
some representative cost functional to small mod-
ifications in the coefficients of a feedback control
rule are found via the solution of an adjoint prob-
lem. With this sensitivity field, the coefficients
are iteratively updated with a gradient algorithm
until the cost functional is minimized. Given that
this optimization is performed in a representa-
tive situation, the coefficients then may be fixed
and the control rule effectively used in other flows
with similar configurations, requiring only infor-
mation about the flow which can be obtained with
flush-mounted sensors on the wall.

1. Background

Optimal control theory applied to turbulence
provides a rigorous framework to determine the
gradient of a cost functional (which represents a
physical problem of interest) with respect to small
modifications of the control forcing (Abergel and
Temam, 1990). With such information, combined
with a gradient algorithm to update the control,

very effective control distributions may be deter-
mined. For example, recent numerical simula-
tions of this approach in a low Reynolds number
turbulent channel flow obtained a 50% drag re-
duction and an order of magnitude turbulent ki-
netic energy reduction with small levels of bound-
ary velocity control (Moin and Bewley, 1995). Im-
portant drawbacks of this approach, however, are
1) it requires complete information about the tur-
bulent fluctuations in the near-wall region, and 2)
it is extremely computationally expensive. Thus,
it is impossible to apply the optimal control ap-
proach directly in an experimental setting.

In order to arrive at a practical scheme, a method
was sought to optimize control rules which 1) re-
quire only flow information obtainable with wall-
mounted sensors, and 2) are computationally in-
expensive enough to apply in real time. Possible
approaches for this purpose can be divided into
two broad categories: state trajectory approaches,
which attempt to drive some description of the
turbulent state (or a portion thereof) in a desired
manner, and direct approaches, which bypass any
description of the turbulent state per se, but sim-
ply seek a control rule which achieves a desired
effect, such as the reduction of drag.

As an example of one state trajectory approach,
an adaptive inverse technique has been applied to
a low Reynolds number turbulent channel flow,
providing approximately 18% drag reduction (Kim,
1996). This approach first develops an approxi-
mate “inverse” model between measurable flow
quantities (as input) and the control forcing (as
output) with an adaptive technique. Each iter-
ation of the adaptation consists of three steps:
1) computing the error of the model output with
respect to the desired model output (the actual
control forcing used), 2) determining the influ-
ence of the weights in the model on this error,
then 3) updating all the weights in the model a



small amount in a manner that reduces the er-
ror. In neural networks, this is commonly referred
to as “back-propagation” of the error. Once this
approximate inverse model between the flow mea-
surements and the control converges, the inverse
model is used to compute a control which will

drive the flow measurements to some desired state.

In the case of Kim (1996), the desired state is
chosen to be a state with reduced spanwise drag
fluctuations.

Drawbacks of the adaptive inverse approach are
1) an ad hoc desired state must be chosen, 2) a
random “dither” signal needs to be applied to the
control in order for the inverse model to have “suf-
ficiently exciting” data from which to learn, which
reduces the performance of the controller, and 3)
it is possible that even at statistical steady state,
due to the nonlinear nature of the Navier-Stokes
equation, the weights in the inverse model may
need to continually adapt in order to represent
a temporally evolving relationship between the
flow measurements and the control. Thus, if the
training of the inverse model does not converge
fast enough, it will not have time to keep up with
the temporal evolution of the flow (for instance,
the movement of the near-wall turbulent coher-
ent structures), and may not develop an accurate
model between flow measurements and the con-
trol which produces them.

Other state trajectory approaches attempt to
control a more complete description of the turbu-
lence using a low-dimensional (10-20 mode) rep-
resentation of the near-wall coherent structures
(Coller et al., 1994). In this approach, the orbit
of the near wall structures in this representation is
partially stabilized, resulting in a reduced “burst-
ing” frequency and, presumably, reduced drag.
Coller et al.(1994) showed that the frequency of
bursting events could be reduced in their model
equations, but did not demonstrate how effective
such an approach would be at reducing drag when
applied to a fully turbulent flow.

Drawbacks of this low-dimensional representa-
tion approach include 1) an accurate estimation
of the state in this representation needs to be
made from the measurements at the wall, and
2) a desired ad hoc state trajectory must be cho-
sen, which can only be selected well if one has
a detailed understanding of the cause/effect rela-
tionship of the drag-producing phenomena in the
near-wall region, which is still under debate.

Direct approaches may be proposed which by-
pass estimation and control of the state trajectory
altogether. In such approaches, one simply rep-
resents the control objective mathematically as a
cost functional, then attempts to find a control
rule which minimizes this functional.

The simplest direct approach is an adaptive

“reinforcement learning” approach. In such an
approach, the weights of a control rule are ini-
tialized randomly and the control rule applied
to the flow. Every time a “good” result is seen
(for example, the drag is reduced), the weights
contributing most to the control at that instant
are increased, and every time a “bad” result is
seen, the corresponding responsible weights are
decreased.

The main drawback of this approach, however,
is that this reward/punish training algorithm is
not very reliable, especially for complicated non-
linear systems, and thus the scheme may not con-
verge at all.

Thus, we arrive at the motivation for the cur-
rent work, in which we derive a rigorous algorithm
to efficiently optimize a direct control scheme,
with the goal in mind simply of reducing some
integral measure of the control objective without
the prescription of a desired state trajectory. This
approach, based on computation of the gradient
of a cost functional with respect to modification
of the weights in the control rule, will be outlined
in the following sections. Numerical simulations
that implement the technique described here are
currently underway.

2. Problem statement

Our goal is to determine a control rule which
takes as input the measurable flow quantities on
the wall (localized measurements of streamwise
drag, spanwise drag, and pressure) and produces
as output a control ® (the normal component of
velocity on the wall) which effectively controls the
flow system. The flow system we consider is fully
developed turbulent channel flow with periodic
boundary conditions in the streamwise and span-

wise directions; however, the control obtained should

apply well to turbulent boundary layers as well
due to the similar near-wall behaviors of these
flows.

The flow is governed by the incompressible Navier-

Stokes equations, which may be written in sym-
bolic form as:

N(U) =0, (1a)

(interior operators such as A(U) are written out

in full in the Appendix) with control ® on the

wall-normal component of velocity at the walls
w; =n;® on walls, (1b)

where we will take

A
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and with fully developed turbulent channel flow
initial conditions

u; = u;(0) at t =0, (1e)

where n; is a unit normal on each wall facing into
the flow, A is the number of “nodes” in the “hid-
den layer” of the network, and g(£,) is an “acti-
vation function” (linear or nonlinear) which will
be prescribed. Control rules of the form shown
above, used commonly in neural networks, have
seen a broad range of application and are capa-
ble of representing very general nonlinear rela-
tionships (Hertz et al., 1991). The task at hand
is simply to optimize the weighting functions
and the discrete weights By and W), such that ®
effectively controls the flow system.

Note that the w,) are convolution functions,
where the convolution is defined such that, for
example,

wyy * ,uali = / wi(T) ,uali("r —7) dS.
on  Jaq on
By optimizing the convolution functions wx(Z),
we take into account “nearby” flow measurements
(in the direction %) from a specific actuator loca-
tion (). In fact, the extent to which these con-
volution functions are nonzero when converged
will indicate how far in each direction from a
specific actuator flow measurements are relevant
when computing an effective control.

Note that the weighting functions w) and the
discrete weights By and W, are prescribed at
the outset to be invariant in time. Though the
method used requires that the weights be opti-
mized by considering finite time horizon [0, T,
we seek to approximate the steady-state weights
at the “infinite time horizon” in which turbu-
lent fluctuations near the wall are countered by a
fixed control rule at the wall in an efficient drag-
reducing manner.

As ¢(£,) may be nonlinear, Einstein notation
may not be used for the index A, as an extra
term involving &) arises in the differentiation of
g(&x). Thus, for clarity, Greek subscripts will be
summed only if explicitly stated, and products
involving the same Greek subscript more than
twice, such as equation (3), are not necessarily

typos.

3. Control networks

We now consider two specific control networks.
The first is a simple one-layer linear network, as
shown in figure la. In terms of equation (1b),
we will restrict the network to a single node A =
1, the weight W, will remain fixed at W; = 1,
and the activation function will be a simple linear

relationship ¢(&;) = & . The weights w,; and By
will be optimized with a systematic procedure.

The second network to be considered, which
is similar to that commonly used in neural net-
works, is a two-layer nonlinear form, as shown in
figure 1b. In terms of equation (1b), the num-
ber of nodes in the hidden layer A will remain
(for now) unspecified, the activation function at
the first node A = 1 will again be g(&;) = &, and
the activation functions at the other hidden nodes
A > 1 will be sigmoid saturation functions given
by ¢g(£x) = tanh(£y), as illustrated in figure 2.
The weights wyy, By, and W, will be optimized
with a systematic procedure.

In the case of the linear network of figure 1a,
the weights may all be initialized to zero and up-
dated iteratively with a gradient algorithm. In
the case of the nonlinear network of figure 2b, the
weights wyy, By, and W, must not all be initial-
ized with the same values, for if they are, the rela-
tionship “learned” by each node will be identical.
In this case, then, all weights are randomly ini-
tialized such that the initial inputs to the hidden
nodes are O(1) quantities. With such a scheme,
the different nodes will converge to various differ-
ent important features of a nonlinear relationship
between the flow measurements and an effective
control strategy. Assuming convergence of this
network for a sufficiently large number of nodes
A, performance should be superior to that of the
linear network.

Output = Control Velocity

on on 1
Input = Flow M easurements BiasTerm

Figure la. Single layer linear network. The flow
measurements which we take as inputs are local-
ized measurements on the wall of the streamwise
drag, the pressure, and the spanwise drag. A



bias term is also included as an input clamped to
unity. The flow measurements are convolved with
the weighting functions w,y, summed, and added
to the bias weight B; to determine the control
®. The input flow measurements are field vari-
ables and are indicated with heavy arrows—the
corresponding weights are convolution functions
(in the continuous case) or two dimensional ar-
rays containing a stencil of weights (in the dis-
crete case).

Output = Control Velocity

Input = Flow M easurements BiasTerm
Figure 1b. Two layer nonlinear network. The
output of several simple networks A similar to the
one depicted in figure la are used as the argu-
ments £, to activation functions ¢g at the hidden
nodes. The output of all of the hidden nodes g(&y)
are then weighted with the W, and summed to
produce the control ®.
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Figure 2. The sigmoid saturation function g(&)
and its derivative.

4. Cost functional

The objective of applying the control in this
problem is to reduce the drag without using ex-
cessive amounts of control forcing. Additionally,
we will constrain the control rule so that it ap-
plies approximately zero net transpiration, as mo-
tivated both by physical flow control devices and
the current simulations which require a control
with zero net mass flux.

Mathematically, a cost functional for this prob-
lem may thus be expressed as

1 T Juyq r .
7 = — + —®2 ) dtdS
1 (Tm _.
— — 2 dt
b GEa
where
o = l dds.

The term involving ;1 duy /On is the average drag.
The term involving ®2 is an expression of the
magnitude of the control. These two terms are
weighted together with a factor ¢, which repre-
sents the price of the control. This quantity is
small if the control is “cheap”, and large if apply-
ing the control is “expensive”. The term involv-
ing ® is the mean value of the control—a large
value for m will be prescribed to result in small
amounts of net transpiration. (Note that, in prac-
tice, the net transpiration is set exactly to zero at
each time step).

Thus, minimization of J corresponds to reduc-
ing drag while maintaining a small amount of con-
trol forcing and a (very) small net transpiration.

5. Gradient of cost functional

We now develop a technique to compute the
gradient of the cost functional 7 with respect to
the weighting functions w. Similar techniques can
be used to express the gradients of 7 with respect
to the discrete weights B and W, as discussed in
Bewley (1996).

Differential field
Consider first the Fréchet differential of the flow
U with respect to w, which is defined such that

v = 1 lim UQw + ew, B,W)—U(w,B,W)

A e—0 €
A

3 .
1 2U(w,B, W) .

=— ——————u dS
A /aﬂ ZZ Dw e A

k=1 =1

where @ is an arbitrary “update direction” to the
weighting function w. This update direction will
remain undetermined and will later be isolated
and removed from the equation for the differential
of the cost functional.



The differential field U* is governed by the
Fréchet differential of (1) with respect to w, which
may be written:

AUY =0, (3a)
with boundary conditions

ud =n;®v

1

on walls, (3b)

where
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S, w S, W
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on on
. aul . . 8u3
T+ Win ¥ l—— + Wax ¥ P+ W3) * jh—,
on on
and with initial conditions
) =0 at ¢t =0. (3¢)
The Fréchet differential of the cost functional
J with respect to w is:
s 1 lim J(w+ e, B,W) —

4/-1 e—0 €

J(w, B, W)

1 ' & 9T (w. B,W)
=4 Z Z ¥w,€>\ ds (4)
SO0

Fwt Dw e

1 T aaw .
= — L+ ([ B+ mD)H
AT ,/BQ /0 {'H on + ( m )

It is seen that the differential of the cost func-
tional 7 is a function of the differential of the
flow U™. The linear dependence of U™ on @ may,
in theory, be found directly from (3). However, in
practice, this is not a tractable approach due to
the excessively large dimension of the problem un-
der consideration. Thus, we seek a simpler way to
express the above equation in a way that we may
determine the gradient 2.7 (w, B, W)/ Zw,x. Tt
is for this reason that we now propose the defini-
tion of an adjoint field.

Adjoint field

As shown in the Appendix, an adjoint operator
A* may be defined by the identity

CAUY U >=< U AU > +b*. (5

In order to express the differential of the cost
functional (4) in a usable form, we now define
an adjoint state by the system of equations

AU =0, (6a)

dtdS

with boundary conditions on the walls

A
B=1+ Y (AWrg'(6)) * s

A

iy = —ny Z (il Wi g'(ff)\)) * Wo (6b)

A=1

A

{3 = Z (i) W g'(fA)) * W3,

A=1

where

fE —2piliguy — /1322
h=—f4+(®4+md
() = b(—2),
and with initial conditions
;=0 at t=1T. (6¢)

Gradient

Using the identity (5) and the definition of the
adjoint in (6), we can algebraically manipulate
equation (4) to the form

1 2J(w,B,W) .
Z/BQZZITWM(JS
1 3. A
= YN G,y tierds,

where G, _, is some function of the solution to the
adjoint problem (6). As w is arbitrary, we may

then identify the expression for Gy, , as 27 (w, B, W)/ Zw,.

It is straightforward to show (Bewley, 1996) that
the resulting expression for the gradient is

2J(w,B,W) 1 T . Jty
2 T/o (hwkg(fx)) *pug dt

27 (w, B,W)
Dwan

Ve, " i T N
2J(w. B, W) = l/ (h Wi g'(fx)) *H%dt
T Jo

1 r 7 117 ! ~
- T./o (hmg (gk)) % pdt

Dwsy on
aJ(w,B,W)
B St hw dtd
9B, =17 /dﬂ/ Wi g'(€x)dtdS
aJ(w.B,W)
—_— - = h )dtdS.
Wy AT /m / 19(8)



6. Gradient update to the weights

With the gradients computed using the adjoint
field, a control rule may be optimized using a gra-
dient algorithm, such as the simple gradient algo-
rithm

2J(w, B, W)

Wr) = W)\ — &
G
leK)\

OJ (w,B, W)

By=B\-a
A A —Q 9B,

oJ (w, B, W)
oWy

or a conjugate gradient algorithm, which shows
better convergence properties for many problems
of this type (Bewley, 1996). The descent param-
eter  may be adjusted at each iteration to be
that value which minimizes 7 in the direction of
the gradient. After several iterations, this scheme
should converge to some local minimum of 7 with
respect to the weights—note that global conver-
gence can not be assured due to the possibility
of multiple minima points of J(w, B, W) in this
nonlinear problem.

Wiy=Wy—-a«a

7. Discussion

A new technique for optimizing feedback con-
trol rules for turbulent flows has been proposed.
This technique is based solely on the equations
governing the flow and a mathematical statement
of the control objective, thus bypassing the ad hoc
identification of a desired state trajectory often
used to determine feedback control rules. Also,
the training is based on an adjoint (“sensitivity”)
field, which determines the gradient of the cost
with respect to small modifications of the weights
in a rigorous manner. Thus, convergence can be
expected to be much better than for an reinforce-
ment learning approach with an adaptive algo-
rithm.

A straightforward extension of the present ap-
proach is to take into account past measurements
in the control rule. Past measurements, which
may easily be stored in an experimental imple-
mentation, may give additional information about
the convection velocity of flow structures which
cannot be determined from instantaneous mea-
surements alone. It is also possible that such in-
formation can be determined by recurrent net-
works, in which the inputs of the control network
include the outputs of the network from the pre-
vious time step.

Drawbacks of the present method include 1) an
accurate mathematical model of the flow equa-
tions and boundary conditions are needed for the
training, and 2) the training algorithm is quite

complex, requiring simulation on a supercomputer.

However, this method should provide insight into

effective new control rules which one could not
think of otherwise, and which can be further mod-
ified to fit practical problems. In addition, they
may be used to guide the development of experi-
mental configurations, revealing the necessary lo-
cations of sensors with respect to the actuators in
order to obtain information relevant to effective
control strategies.
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APPENDIX A. Differential operators

The fields referred to in this work are the flow
field U, the differential field I/, and the adjoint
field U, each of which is composed of three veloc-
ity components and a pressure component

U= ( ) [ — (7"?’(?71:1‘2:1‘37*)

pw(m1 y L2, X3, t)
The Navier-Stokes operator is given by

ui (1, o, 23, 1)
P(-"ﬁ s L2, T3, t)

ET — (ﬂgn(mltiv27m37t>
p

N“’(,’}j‘17,7,'2,m3:t)

).
).

du; ou; ?u; 1 9p 1
- tujs— vt -6l
o ot Ox; dx;  pdx;  p
N({U) = oo
gu;
al‘]‘

The Fréchet differential of the (non-linear) Navier-
Stokes operator is given by

dar  owr . ou v 19pv

. R T I T T BT
AUT = 1 9t
e

which is linear in the differential field U™, but is
a function of the solution U of the Navier-Stokes
problem, so that A = A(U). Define an inner
product over the domain in space-time under con-
sideration such that

T
<U"U>= / / U . Udtdv,
e Jo
and consider the identity
AU U>=<U" AU > +b.
Integration by parts may be used to move all dif-
ferential operations from U* on the left hand side

of the equation to U on the right hand side, re-
sulting in an expression for the adjoint operator

O, ou; O, O, 19p

.A*(:’T— _W_uj(({)m]' +(3T,) _Vdrj ;(3?“,
10,
- pOu;

where A* = A*(U), and an expression for b, which
contains all the boundary terms:

T
b:/ /—n]' [ﬂi(’UJ ’L.L?}+ui’L.L;-ﬂ)
9Q Jo
i — U + -

al.l;” W~ W~
—1/( Y o, p(p Uy — uj p)}dtds

—-— Uu
8417]-
— [ v adv
t=T Q

+ / W i, dV
Q

Simplification of the identity (5) by interior equa-
tions, boundary conditions, and initial conditions
on U, U¥, and U can provide an expression which
recasts jw from a function of U* to a more man-
ageable function of the solution to an adjoint prob-
lem for U, as discussed in the text.

~ : W

017;) 1

t=0

APPENDIX B. Useful convolution identities

The convolution a * b is defined:
axb= /n(?) b(x — 7)dS

Note that, for infinite limits or periodic a and
b, axb = b+*a. Also note that convolution is
distributive over addition, so (a+b)*c = axc+bxc.

. With this definition, we may derive two useful
identities:

where b(z)

b(—ax),

_Where é(x) = ef—x).

Further, with @ denoting the Fourier transform
of a, note that convolution in real space corre-
sponds to simple multiplication in Fourier space

~

axb=ab

and that the Fourier transform of ¢ is the complex
conjugate of the Fourier transform of ¢

DO
)



APPENDIX C. Algebra to determine 2.7 (w, B. W)/ %w

Notice that, using (3b), we may write equation (4) as

/ ZZ@JU)BW)des_—/ / [
aQ D aQ

r=1 A=

+(l®+md) qu (€x)-
A=1 (9)
dt ds.

auy auy duq dus
(u’l)\*ﬂa -I-u’M*p +w$>\*/l0—+wl>\*#0 -I-u’M*p-l-ug;)\*/la )

Using the adjoint field described by (6), we will algebraically manipulate the RHS of (9) to the form

A

3 7
Z 2 gj;f s = /HQ Z Z Gy tisr S, (10)

k=1 \=1 k=1 =1

where CNJwM is some function to the solution of the adjoint problem. As @ is arbitrary, we may then
identify the expression for é“,m as 27 (w, B,W)/Dw.

We begin by noting that equation (5) may be simplified using (1), (3), and (6). Multiplying by p and
applying the definition for f, equation (5) becomes

0= / / ( U; + pY¥iia ng — fu;”nz> dtds. (11a)
o9

Inserting (3b), this becomes

T A - an A A - an .
ouY ~ ouY ou¥
./aﬂ /0 [— It % i; +pYigng — f Z Wi g'(f;)(w])\ % /,/,% + wax x P 4 way * /1%)] dtdS

ou ou
/an/ fZ”ACJ EA)(LUD\*/!O—+ll’z>\*p+ll’3>\*,u0—)d1‘d5

A=1
(11b)

Applying the identity (7) to the LHS and the identity (8) to the RHS yields:

1
/dﬂ/ [_II—U +p" Uznz_r“%;(flhg(éx))*mm

wA

A
Z (}‘U,\q Q)) % Wign — Z (}‘U,\q N ) *1D3A] dt dS (11¢)

Oy ; Dty
(W +ainy (f W i+ iy (fWa g/ B ads.
/ag/ Z{uu AQ(EA))*//a ’lle(f )\g(f)\)> P un<f AQ(EA))*//@ ]

Rearranging and noting that 94y /dxe = 0,

/89/ |: LL1 le + Z (fnr)\q (EA)) * wlk} +p* {— Uy Ny + Z (f Wiyg' (‘f)\)) * us»\}

A=1
A

+ iy + Z (fm g'(@\)) + mﬂw dtdS (11d)

Tl

dt dS.

/dﬂ/ Z lll’u ALY (EA)) *’U(?)— + w“(ﬂhq (EA)) * P+ LUs)\(f Wiyg' (EA)) *ﬂ%—

With the adjoint boundary conditions defined as in (6b) and applying the identity (7), this may be
written

A Y

/89/ { 8u1 [tI>+m<I> ZU)\C] EA)(H’A*,uaO—-I-u’)\*p -I-u’>\>(</180—)] dtdS (11e)

A=1
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The identity given in (11e) may now be used to rewrite the differential of the cost functional (9) as a
function of the solution to an adjoint problem

1 ' & 27w, B, 27w, B.W) .
— Wen dS = —
A /mz_: D0 A /HQ / [

A
. ; i ) : . S . . O
Z {— wu(f W g'(f;)) * /1% - ww\(f W g’(b\)) * P — W3y (f Wi g'(b\)) * /,I,%} (12a)
A=1
A Oy du
(£<I> + m(I> )\ZIU A EA)(LUl)\ * /10— + Wy kP + Wy *,u%)] dt dS.

Applying the identity (8), this may be written

3 A T A
1 2T (w,B, W) .
- T T b dS = —
A Z Z Dwen W dS = AT /;Q / |:

k=1 =1
i f I : PRy U 2o o
wl’\( al (EA)) ot “’M( — Wi .‘]'(f,\)) * P+ U’;M( — Wi !]'(f,\)) o+
” di on (120)
i (L8 +m@)Wag'(€)) x5 + o (@ +m B)Wa g (60)) + 5+
Ws ((£ d+m @)W’)\ g'(‘f)\)) * 'ua(’)— dtds.
Finally, noting the definition of 7 and defining
I R ' Oty
f/o (hHAQ(EAD */’I'Edf k=1
- 1 T, ) )
Gu,, = T/o (h Wi g'(fx)) x pdt k=2 (13)
1 T 7 4 ', a/a:j ~
T/O (h Wig (E)\)) */la—n dt k=3,

we observe that equation (12b) takes the form of equation (10) and thus, since & is arbitrary,
2J(w, B, W)
»@wnk

Il

G, s (14)



