
ASME Fluids Engineering Conference (July 11, 1996)Forum on Control of Transitional and Turbulent FlowsA METHOD FOR OPTIMIZING FEEDBACK CONTROL RULESFOR WALL-BOUNDED TURBULENT FLOWS BASED ON CONTROL THEORYThomas Bewley and Parviz MoinDepartment of Mechanical EngineeringStanford UniversityStanford, CaliforniaRoger TemamThe Institute for Scienti�c Computing and Applied MathematicsIndiana UniversityBloomington, IndianaABSTRACTA new method based on control theory for op-timizing feedback control rules with the objectiveof reducing drag in wall-bounded turbulent 
owsis presented. Both linear and nonlinear controlrules (of the type commonly used in neural net-works) are considered. These control rules re-late wall measurements of skin friction and pres-sure to the control, which is applied as a contin-uous distribution of wall-normal boundary veloc-ity with zero net transpiration. Though the opti-mization technique itself requires complete infor-mation about the 
ow, and thus can only be per-formed computationally, it is intended that theresulting optimized rules be scaled appropriatelyand used in physical boundary layer control im-plementations.Using optimal control theory, the sensitivity ofsome representative cost functional to small mod-i�cations in the coe�cients of a feedback controlrule are found via the solution of an adjoint prob-lem. With this sensitivity �eld, the coe�cientsare iteratively updated with a gradient algorithmuntil the cost functional is minimized. Given thatthis optimization is performed in a representa-tive situation, the coe�cients then may be �xedand the control rule e�ectively used in other 
owswith similar con�gurations, requiring only infor-mation about the 
ow which can be obtained with
ush-mounted sensors on the wall.1. BackgroundOptimal control theory applied to turbulenceprovides a rigorous framework to determine thegradient of a cost functional (which represents aphysical problem of interest) with respect to smallmodi�cations of the control forcing (Abergel andTemam, 1990). With such information, combinedwith a gradient algorithm to update the control,

very e�ective control distributions may be deter-mined. For example, recent numerical simula-tions of this approach in a low Reynolds numberturbulent channel 
ow obtained a 50% drag re-duction and an order of magnitude turbulent ki-netic energy reduction with small levels of bound-ary velocity control (Moin and Bewley, 1995). Im-portant drawbacks of this approach, however, are1) it requires complete information about the tur-bulent 
uctuations in the near-wall region, and 2)it is extremely computationally expensive. Thus,it is impossible to apply the optimal control ap-proach directly in an experimental setting.In order to arrive at a practical scheme, a methodwas sought to optimize control rules which 1) re-quire only 
ow information obtainable with wall-mounted sensors, and 2) are computationally in-expensive enough to apply in real time. Possibleapproaches for this purpose can be divided intotwo broad categories: state trajectory approaches,which attempt to drive some description of theturbulent state (or a portion thereof) in a desiredmanner, and direct approaches, which bypass anydescription of the turbulent state per se, but sim-ply seek a control rule which achieves a desirede�ect, such as the reduction of drag.As an example of one state trajectory approach,an adaptive inverse technique has been applied toa low Reynolds number turbulent channel 
ow,providing approximately 18% drag reduction (Kim,1996). This approach �rst develops an approxi-mate \inverse" model between measurable 
owquantities (as input) and the control forcing (asoutput) with an adaptive technique. Each iter-ation of the adaptation consists of three steps:1) computing the error of the model output withrespect to the desired model output (the actualcontrol forcing used), 2) determining the in
u-ence of the weights in the model on this error,then 3) updating all the weights in the model a



small amount in a manner that reduces the er-ror. In neural networks, this is commonly referredto as \back-propagation" of the error. Once thisapproximate inverse model between the 
ow mea-surements and the control converges, the inversemodel is used to compute a control which willdrive the 
owmeasurements to some desired state.In the case of Kim (1996), the desired state ischosen to be a state with reduced spanwise drag
uctuations.Drawbacks of the adaptive inverse approach are1) an ad hoc desired state must be chosen, 2) arandom \dither" signal needs to be applied to thecontrol in order for the inverse model to have \suf-�ciently exciting" data from which to learn, whichreduces the performance of the controller, and 3)it is possible that even at statistical steady state,due to the nonlinear nature of the Navier-Stokesequation, the weights in the inverse model mayneed to continually adapt in order to representa temporally evolving relationship between the
ow measurements and the control. Thus, if thetraining of the inverse model does not convergefast enough, it will not have time to keep up withthe temporal evolution of the 
ow (for instance,the movement of the near-wall turbulent coher-ent structures), and may not develop an accuratemodel between 
ow measurements and the con-trol which produces them.Other state trajectory approaches attempt tocontrol a more complete description of the turbu-lence using a low-dimensional (10-20 mode) rep-resentation of the near-wall coherent structures(Coller et al., 1994). In this approach, the orbitof the near wall structures in this representation ispartially stabilized, resulting in a reduced \burst-ing" frequency and, presumably, reduced drag.Coller et al.(1994) showed that the frequency ofbursting events could be reduced in their modelequations, but did not demonstrate how e�ectivesuch an approach would be at reducing drag whenapplied to a fully turbulent 
ow.Drawbacks of this low-dimensional representa-tion approach include 1) an accurate estimationof the state in this representation needs to bemade from the measurements at the wall, and2) a desired ad hoc state trajectory must be cho-sen, which can only be selected well if one hasa detailed understanding of the cause/e�ect rela-tionship of the drag-producing phenomena in thenear-wall region, which is still under debate.Direct approaches may be proposed which by-pass estimation and control of the state trajectoryaltogether. In such approaches, one simply rep-resents the control objective mathematically as acost functional, then attempts to �nd a controlrule which minimizes this functional.The simplest direct approach is an adaptive

\reinforcement learning" approach. In such anapproach, the weights of a control rule are ini-tialized randomly and the control rule appliedto the 
ow. Every time a \good" result is seen(for example, the drag is reduced), the weightscontributing most to the control at that instantare increased, and every time a \bad" result isseen, the corresponding responsible weights aredecreased.The main drawback of this approach, however,is that this reward/punish training algorithm isnot very reliable, especially for complicated non-linear systems, and thus the scheme may not con-verge at all.Thus, we arrive at the motivation for the cur-rent work, in which we derive a rigorous algorithmto e�ciently optimize a direct control scheme,with the goal in mind simply of reducing someintegral measure of the control objective withoutthe prescription of a desired state trajectory. Thisapproach, based on computation of the gradientof a cost functional with respect to modi�cationof the weights in the control rule, will be outlinedin the following sections. Numerical simulationsthat implement the technique described here arecurrently underway.2. Problem statementOur goal is to determine a control rule whichtakes as input the measurable 
ow quantities onthe wall (localized measurements of streamwisedrag, spanwise drag, and pressure) and producesas output a control � (the normal component ofvelocity on the wall) which e�ectively controls the
ow system. The 
ow system we consider is fullydeveloped turbulent channel 
ow with periodicboundary conditions in the streamwise and span-wise directions; however, the control obtained shouldapply well to turbulent boundary layers as welldue to the similar near-wall behaviors of these
ows.The 
ow is governed by the incompressible Navier-Stokes equations, which may be written in sym-bolic form as: N (U) = 0; (1a)(interior operators such as N (U) are written outin full in the Appendix) with control � on thewall-normal component of velocity at the wallsui = ni� on walls; (1b)where we will take� = �X�=1W� g(��);�� = w1� � �@u1@n +w2� � p+w3� � �@u3@n +B�;



and with fully developed turbulent channel 
owinitial conditionsui = ui(0) at t = 0; (1c)where ni is a unit normal on each wall facing intothe 
ow, � is the number of \nodes" in the \hid-den layer" of the network, and g(��) is an \acti-vation function" (linear or nonlinear) which willbe prescribed. Control rules of the form shownabove, used commonly in neural networks, haveseen a broad range of application and are capa-ble of representing very general nonlinear rela-tionships (Hertz et al., 1991). The task at handis simply to optimize the weighting functions w��and the discrete weights B� and W� such that �e�ectively controls the 
ow system.Note that the w�� are convolution functions,where the convolution is de�ned such that, forexample,w1� � �@u1@n = Z@
 w1�(�x) �@u1@n (x� �x) d �S:By optimizing the convolution functions w��(�x),we take into account \nearby" 
ow measurements(in the direction �x) from a speci�c actuator loca-tion (x). In fact, the extent to which these con-volution functions are nonzero when convergedwill indicate how far in each direction from aspeci�c actuator 
ow measurements are relevantwhen computing an e�ective control.Note that the weighting functions w�� and thediscrete weights B� and W� are prescribed atthe outset to be invariant in time. Though themethod used requires that the weights be opti-mized by considering �nite time horizon [0; T ],we seek to approximate the steady-state weightsat the \in�nite time horizon" in which turbu-lent 
uctuations near the wall are countered by a�xed control rule at the wall in an e�cient drag-reducing manner.As g(��) may be nonlinear, Einstein notationmay not be used for the index �, as an extraterm involving �� arises in the di�erentiation ofg(��). Thus, for clarity, Greek subscripts will besummed only if explicitly stated, and productsinvolving the same Greek subscript more thantwice, such as equation (3), are not necessarilytypos.3. Control networksWe now consider two speci�c control networks.The �rst is a simple one-layer linear network, asshown in �gure 1a. In terms of equation (1b),we will restrict the network to a single node � =1, the weight W1 will remain �xed at W1 = 1,and the activation function will be a simple linear

relationship g(�1) = �1. The weights w�1 and B1will be optimized with a systematic procedure.
The second network to be considered, whichis similar to that commonly used in neural net-works, is a two-layer nonlinear form, as shown in�gure 1b. In terms of equation (1b), the num-ber of nodes in the hidden layer � will remain(for now) unspeci�ed, the activation function atthe �rst node � = 1 will again be g(�1) = �1, andthe activation functions at the other hidden nodes� > 1 will be sigmoid saturation functions givenby g(��) = tanh(��), as illustrated in �gure 2.The weights w��, B�, and W� will be optimizedwith a systematic procedure.
In the case of the linear network of �gure 1a,the weights may all be initialized to zero and up-dated iteratively with a gradient algorithm. Inthe case of the nonlinear network of �gure 2b, theweights w��, B�, and W� must not all be initial-ized with the same values, for if they are, the rela-tionship \learned" by each node will be identical.In this case, then, all weights are randomly ini-tialized such that the initial inputs to the hiddennodes are O(1) quantities. With such a scheme,the di�erent nodes will converge to various di�er-ent important features of a nonlinear relationshipbetween the 
ow measurements and an e�ectivecontrol strategy. Assuming convergence of thisnetwork for a su�ciently large number of nodes�, performance should be superior to that of thelinear network.
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Figure 1a. Single layer linear network. The 
owmeasurements which we take as inputs are local-ized measurements on the wall of the streamwisedrag, the pressure, and the spanwise drag. A



bias term is also included as an input clamped tounity. The 
ow measurements are convolved withthe weighting functions w�1, summed, and addedto the bias weight B1 to determine the control�. The input 
ow measurements are �eld vari-ables and are indicated with heavy arrows|thecorresponding weights are convolution functions(in the continuous case) or two dimensional ar-rays containing a stencil of weights (in the dis-crete case).
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Figure 1b. Two layer nonlinear network. Theoutput of several simple networks � similar to theone depicted in �gure 1a are used as the argu-ments �� to activation functions g at the hiddennodes. The output of all of the hidden nodes g(��)are then weighted with the W� and summed toproduce the control �.
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Figure 2. The sigmoid saturation function g(�)and its derivative.

4. Cost functionalThe objective of applying the control in thisproblem is to reduce the drag without using ex-cessive amounts of control forcing. Additionally,we will constrain the control rule so that it ap-plies approximately zero net transpiration, as mo-tivated both by physical 
ow control devices andthe current simulations which require a controlwith zero net mass 
ux.Mathematically, a cost functional for this prob-lem may thus be expressed asJ = 1AT Z@
 Z T0 �� @u1@n + 2̀ �2� dt dS+ 1T Z T0 m2 ��2 dt; (2)where �� = 1A Z@
 � dS:The term involving �@u1=@n is the average drag.The term involving �2 is an expression of themagnitude of the control. These two terms areweighted together with a factor `, which repre-sents the price of the control. This quantity issmall if the control is \cheap", and large if apply-ing the control is \expensive". The term involv-ing �� is the mean value of the control|a largevalue for m will be prescribed to result in smallamounts of net transpiration. (Note that, in prac-tice, the net transpiration is set exactly to zero ateach time step).Thus, minimization of J corresponds to reduc-ing drag while maintaining a small amount of con-trol forcing and a (very) small net transpiration.5. Gradient of cost functionalWe now develop a technique to compute thegradient of the cost functional J with respect tothe weighting functions w. Similar techniques canbe used to express the gradients of J with respectto the discrete weights B and W , as discussed inBewley (1996). Di�erential �eldConsider �rst the Fr�echet di�erential of the 
owU with respect to w, which is de�ned such that_Uw � 1A lim�!0 U(w + � _w;B;W )� U(w;B;W )�= 1A Z@
 3X�=1 �X�=1 DU(w;B;W )Dw�� _w�� dSwhere _w is an arbitrary \update direction" to theweighting function w. This update direction willremain undetermined and will later be isolatedand removed from the equation for the di�erentialof the cost functional.



The di�erential �eld _Uw is governed by theFr�echet di�erential of (1) with respect to w, whichmay be written:A _Uw = 0; (3a)with boundary conditions_uwi = ni _�w on walls; (3b)where_�w = �X�=1W� g0(��) _�w�_�w� = w1� � �@ _uw1@n +w2� � _pw +w3� � �@ _uw3@n+ _w1� � �@u1@n + _w2� � p+ _w3� � �@u3@n ;and with initial conditions_uwi = 0 at t = 0: (3c)The Fr�echet di�erential of the cost functionalJ with respect to w is:_J w � 1A lim�!0 J (w + � _w;B;W )� J (w;B;W )�= 1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS (4)= 1AT Z@
 Z T0 "� @ _uw1@n + �`�+m ��� _�w# dt dSIt is seen that the di�erential of the cost func-tional _J w is a function of the di�erential of the
ow _Uw. The linear dependence of _Uw on _w may,in theory, be found directly from (3). However, inpractice, this is not a tractable approach due tothe excessively large dimension of the problem un-der consideration. Thus, we seek a simpler way toexpress the above equation in a way that we maydetermine the gradient DJ (w;B;W )=Dw��. Itis for this reason that we now propose the de�ni-tion of an adjoint �eld.Adjoint �eldAs shown in the Appendix, an adjoint operatorA� may be de�ned by the identity< A _Uw; ~U >=< _Uw;A� ~U > + bw: (5)In order to express the di�erential of the costfunctional (4) in a usable form, we now de�nean adjoint state by the system of equationsA� ~U = 0; (6a)with boundary conditions on the walls~u1 = 1+ �X�=1�~hW� g0(��)� � �w1�~u2 = �n2 �X�=1�~hW� g0(��)� � �w2� (6b)

~u3 = �X�=1�~hW� g0(��)� � �w3�;where ~f � ~p� 2 � ~u2 u2 � �@~u2@x2~h � � ~f + `�+m ���b(x) � b(�x);and with initial conditions~ui = 0 at t = T: (6c)GradientUsing the identity (5) and the de�nition of theadjoint in (6), we can algebraically manipulateequation (4) to the form1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS= 1A Z@
 3X�=1 �X�=1 ~Gw�� _w�� dS;where ~Gw�� is some function of the solution to theadjoint problem (6). As _w is arbitrary, we maythen identify the expression for ~Gw�� asDJ (w;B;W )=Dw��.It is straightforward to show (Bewley, 1996) thatthe resulting expression for the gradient isDJ (w;B;W )Dw1� = 1T Z T0 �~hW� g0(��)� � �@�u1@n dtDJ (w;B;W )Dw2� = 1T Z T0 �~hW� g0(��)� � �p dtDJ (w;B;W )Dw3� = 1T Z T0 �~hW� g0(��)� � �@�u3@n dt@J (w;B;W )@B� = 1AT Z@
 Z T0 ~hW� g0(��) dt dS@J (w;B;W )@W� = 1AT Z@
 Z T0 ~h g(��) dt dS:



6. Gradient update to the weightsWith the gradients computed using the adjoint�eld, a control rule may be optimized using a gra-dient algorithm, such as the simple gradient algo-rithm w�� = w�� � � DJ (w;B;W )Dw��B� = B� � � @J (w;B;W )@B�W� =W� � � @J (w;B;W )@W� ;or a conjugate gradient algorithm, which showsbetter convergence properties for many problemsof this type (Bewley, 1996). The descent param-eter � may be adjusted at each iteration to bethat value which minimizes J in the direction ofthe gradient. After several iterations, this schemeshould converge to some local minimum of J withrespect to the weights|note that global conver-gence can not be assured due to the possibilityof multiple minima points of J (w;B;W ) in thisnonlinear problem.7. DiscussionA new technique for optimizing feedback con-trol rules for turbulent 
ows has been proposed.This technique is based solely on the equationsgoverning the 
ow and a mathematical statementof the control objective, thus bypassing the ad hocidenti�cation of a desired state trajectory oftenused to determine feedback control rules. Also,the training is based on an adjoint (\sensitivity")�eld, which determines the gradient of the costwith respect to small modi�cations of the weightsin a rigorous manner. Thus, convergence can beexpected to be much better than for an reinforce-ment learning approach with an adaptive algo-rithm.A straightforward extension of the present ap-proach is to take into account past measurementsin the control rule. Past measurements, whichmay easily be stored in an experimental imple-mentation, may give additional information aboutthe convection velocity of 
ow structures whichcannot be determined from instantaneous mea-surements alone. It is also possible that such in-formation can be determined by recurrent net-works, in which the inputs of the control networkinclude the outputs of the network from the pre-vious time step.Drawbacks of the present method include 1) anaccurate mathematical model of the 
ow equa-tions and boundary conditions are needed for thetraining, and 2) the training algorithm is quitecomplex, requiring simulation on a supercomputer.However, this method should provide insight into

e�ective new control rules which one could notthink of otherwise, and which can be further mod-i�ed to �t practical problems. In addition, theymay be used to guide the development of experi-mental con�gurations, revealing the necessary lo-cations of sensors with respect to the actuators inorder to obtain information relevant to e�ectivecontrol strategies.ACKNOWLEDGEMENTSThe authors are grateful for helpful discussionswith Prof. Ron Blackwelder, Prof. William C.Reynolds, and Miss Sharon Liu. The �nancialsupport of AFOSR Grant No. F49620-93-1-0078is also gratefully acknowledged.REFERENCESAbergel, F. & Temam, R. 1990 On some con-trol problems in 
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APPENDIX A. Di�erential operatorsThe �elds referred to in this work are the 
ow�eld U , the di�erential �eld _Uw, and the adjoint�eld ~U , each of which is composed of three veloc-ity components and a pressure componentU = �ui(x1; x2; x3; t)p(x1; x2; x3; t) � ; _Uw = � _uwi (x1; x2; x3; t)_pw(x1; x2; x3; t)� ;~U = � ~uwi (x1; x2; x3; t)~pw(x1; x2; x3; t)� :The Navier-Stokes operator is given byN (U) = 0BB@ @ui@t + uj @ui@xj � � @2ui@x2j + 1� @p@xi + 1� �1i Px@uj@xj 1CCA :The Fr�echet di�erential of the (non-linear) Navier-Stokes operator is given byA _Uw = 0BB@ @ _uwi@t + uj @ _uwi@xj + _uwj @ui@xj � � @2 _uwi@x2j + 1� @ _pw@xi�1� @ _uwj@xj 1CCA ;which is linear in the di�erential �eld _Uw, but isa function of the solution U of the Navier-Stokesproblem, so that A = A(U). De�ne an innerproduct over the domain in space-time under con-sideration such that< _Uw; ~U >= Z
 Z T0 _Uw � ~U dt dV;and consider the identity< A _Uw; ~U >=< _Uw;A� ~U > + b:Integration by parts may be used to move all dif-ferential operations from _Uw on the left hand sideof the equation to ~U on the right hand side, re-sulting in an expression for the adjoint operatorA� ~U = 0BB@�@~ui@t � uj�@~ui@xj + @~uj@xi �� � @2~ui@x2j + 1� @~p@xi�1� @~uj@xj 1CCA ;whereA� = A�(U), and an expression for b, whichcontains all the boundary terms:b =Z@
 Z T0 �nj h~ui�uj _uwi + ui _uwj �� ��@ _uwi@xj ~ui � _uwi @~ui@xj �+ 1�� _pw ~uj � _uwj ~p�i dt dS+ Z
 _uwi ~ui dV ���t=T � Z
 _uwi ~ui dV ���t=0:Simpli�cation of the identity (5) by interior equa-tions, boundary conditions, and initial conditionson U , _Uw, and ~U can provide an expression whichrecasts _J w from a function of _Uw to a more man-ageable function of the solution to an adjoint prob-lem for ~U , as discussed in the text.

APPENDIX B. Useful convolution identitiesThe convolution a � b is de�ned:a � b = Z a(�x) b(x� �x) d �SNote that, for in�nite limits or periodic a andb, a � b = b � a. Also note that convolution isdistributive over addition, so (a+b)�c = a�c+b�c.With this de�nition, we may derive two usefulidentities:Z a (b � c) dS = Z a(x)Z b(�x) c(x� �x) d �S dS= Z a(x)Z b(x� �x) c(�x) d �S dS= Z c(x)Z a(�x) b(�x� x) d �S dS= Z c (a � �b) dS; (7)where �b(x) � b(�x), andZ a (b � c) dS = Z a(x)Z b(�x) c(x� �x) d �S dS= Z b(x)Z a(�x) c(�x� x) d �S dS= Z b (a � �c) dS; (8)where �c(x) � c(�x).Further, with ba denoting the Fourier transformof a, note that convolution in real space corre-sponds to simple multiplication in Fourier spaceda � b = ba bband that the Fourier transform of �c is the complexconjugate of the Fourier transform of cb�c = bc �:



APPENDIX C. Algebra to determine DJ (w;B;W )=Dw��Notice that, using (3b), we may write equation (4) as1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS = 1AT Z@
 Z T0 "� @ _uw1@n + �`�+m ��� �X�=1W� g0(��)��w1� � �@ _uw1@n +w2� � _pw +w3� � �@ _uw3@n + _w1� � �@u1@n + _w2� � p+ _w3� � �@u3@n �# dt dS: (9)Using the adjoint �eld described by (6), we will algebraically manipulate the RHS of (9) to the form1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS = 1A Z@
 3X�=1 �X�=1 ~Gw�� _w�� dS; (10)where ~Gw�� is some function to the solution of the adjoint problem. As _w is arbitrary, we may thenidentify the expression for ~Gw�� as DJ (w;B;W )=Dw��.We begin by noting that equation (5) may be simpli�ed using (1), (3), and (6). Multiplying by � andapplying the de�nition for ~f , equation (5) becomes0 = Z@
 Z T0 ��� @ _uwi@n ~ui + _pw ~u2 n2 � ~f _uw2 n2� dt dS: (11a)Inserting (3b), this becomesZ@
 Z T0 "� � @ _uwi@n ~ui + _pw ~u2 n2 � ~f �X�=1W� g0(��)�w1� � �@ _uw1@n +w2� � _pw +w3� � �@ _uw3@n �#dt dS= Z@
 Z T0 ~f �X�=1W� g0(��)� _w1� � �@u1@n + _w2� � p+ _w3� � �@u3@n �dt dS: (11b)Applying the identity (7) to the LHS and the identity (8) to the RHS yields:Z@
 Z T0 "� � @ _uwi@n ~ui + _pw ~u2 n2 � �@ _uw1@n �X�=1� ~f W� g0(��)� � �w1�� _pw �X�=1� ~f W� g0(��)� � �w2� � �@ _uw3@n �X�=1� ~f W� g0(��)� � �w3�# dt dS (11c)= Z@
 Z T0 �X�=1" _w1�� ~f W� g0(��)� � �@�u1@n + _w2�� ~f W� g0(��)� � �p+ _w3�� ~f W� g0(��)� � �@�u3@n # dt dS:Rearranging and noting that @ _uw2 =@x2 = 0,Z@
 Z T0 "�@ _uw1@n h~u1 + �X�=1� ~f W� g0(��)� � �w1�i+ _pwh� ~u2 n2 + �X�=1� ~f W� g0(��)� � �w2�i+ �@ _uw3@n h~u3 + �X�=1� ~f W� g0(��)� � �w3�i# dt dS (11d)= �Z@
 Z T0 �X�=1" _w1�� ~f W� g0(��)� � �@�u1@n + _w2�� ~f W� g0(��)� � �p+ _w3�� ~f W� g0(��)� � �@�u3@n # dt dS:With the adjoint boundary conditions de�ned as in (6b) and applying the identity (7), this may bewrittenZ@
 Z T0 "�@ _uw1@n + �`�+m ��� �X�=1W� g0(��)�w1� � �@ _uw1@n +w2� � _pw +w3� � �@ _uw3@n �# dt dS (11e)= �Z@
 Z T0 �X�=1" _w1�� ~f W� g0(��)� � �@�u1@n + _w2�� ~f W� g0(��)� � �p+ _w3�� ~f W� g0(��)� � �@�u3@n # dt dS:



The identity given in (11e) may now be used to rewrite the di�erential of the cost functional (9) as afunction of the solution to an adjoint problem1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS = 1AT Z@
 Z T0 "�X�=1 h� _w1�� ~f W� g0(��)� � �@�u1@n � _w2�� ~f W� g0(��)� � �p� _w3�� ~f W� g0(��)� � �@�u3@n i+ �`�+m ��� �X�=1W� g0(��)� _w1� � �@u1@n + _w2� � p+ _w3� � �@u3@n �# dt dS: (12a)
Applying the identity (8), this may be written1A Z@
 3X�=1 �X�=1 DJ (w;B;W )Dw�� _w�� dS = 1AT Z@
 Z T0 �X�=1"_w1��� ~f W� g0(��)� � �@�u1@n + _w2��� ~f W� g0(��)� � �p+ _w3��� ~f W� g0(��)� � �@�u3@n +_w1���`�+m ���W� g0(��)� � �@�u1@n + _w2���`�+m ���W� g0(��)� � �p+_w3���`�+m ���W� g0(��)� � �@�u3@n # dt dS: (12b)
Finally, noting the de�nition of ~h and de�ning~Gw�� � 8>>>>>>>>><>>>>>>>>>: 1T Z T0 �~hW� g0(��)� � �@�u1@n dt � = 11T Z T0 �~hW� g0(��)� � �p dt � = 21T Z T0 �~hW� g0(��)� � �@�u3@n dt � = 3, (13)we observe that equation (12b) takes the form of equation (10) and thus, since _w is arbitrary,DJ (w;B;W )Dw�� = ~Gw��: (14)


