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Abstract

Recent work by the authors in the application of opti-
mal control theory to turbulence have been quite suc-
cessful when full state information is provided to the
control algorithm. However, this approach has not yet
been successful for the development of algorithms which
depend on wall information only. For this reason, robust
control theory, which is currently well developed only
for linear problems, is now examined as a technique by
which effective control algorithms based on limited noisy
observations might be developed for turbulent flows and
other nonlinear phenomena subjected to external distur-
bances.

1 Introduction

In its essence, robust control theory boils down simply
to Murphy’s Law (Bloch 1982) taken seriously:

If a worst-case system disturbance can dis-
rupt a controlled closed-loop system, it will!

When designing a robust controller, therefore, one must
plan on a finite component of the worst-case disturbance
aggravating the system, and design a controller which is
suited to handle even this extreme situation. A con-
troller which is designed to work even in the presence of
the Murphy’s Law Worst Case Disturbance (MLWCD)
will also be robust to a wide class of other possible dis-
turbances which, by definition, are not as bad as the
MLWCD. Thus, the serious issue of finding a robust sta-
bilizing controller is intimately coupled with the equally
serious issue of finding the MLWCD.

A framework for applying optimal (§2) and ro-
bust (§3) control theories to linear problems (such as
early stages of transition, see Bewley, Liu, & Agar-
wal 1997) is first reviewed in a style fairly con-
sistent with standard control theory. Several good
texts are available covering linear control theory, in-

cluding Doyle et al. (1989), Green & Limebeer (1995)
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Lewis (1995), Zhou, Doyle, & Glover (1996), and Sko-
gestad & Postlethwaite (1996). The presentation here
is made strictly in the time domain to facilitate exten-
sion of these “standard” linear approaches to nonlinear
problems, in which frequency domain techniques are of
limited usefulness. A framework for applying optimal
control theory to nonlinear problems (such as turbu-
lence, see Abergel & Temam 1990 and Bewley, Moin,
& Temam 1997) is then reviewed (§4) in a similar no-
tation. Finally, a straightforward connection is made
such that the concepts of robust control theory may be
extended to nonlinear problems in a consistent manner
(85). The resulting development is straightforward and
does not assume the reader is accustomed to the lan-
guage of control theory, rather, only to the precepts of
Murphy’s Law.

2 Optimal linear regulation

2.1 State equation

Consider a state vector u which is a function of some
feedback control vector ® such that it obeys the linear
evolution equation

|[a=Au+ B, 9]

(1a)

with given initial conditions

u = u(0) at t = 0. (1b)

The matrices A and By may be functions of time but do
not themselves depend on the state u or the control ®.
In fluid mechanics, such a system may be determined by
discretization of a set of PDE’s representing a linearized
equation of motion for the flow, and thus the system may
be expected to be of very high dimension.

2.2 Cost function

The object of applying control in the present problem is
to “regulate”, or drive to zero, some measure of the state
without applying excessive amounts of control.
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Mathematically, this objective is expressed as the
minimization of a cost function which balances a measure
of the state u with a measure of the control ® applied.
We will use the norm symbol to denote these measures,
to be defined appropriately for specific problems:

1 T

JzEﬁ |

([lal + 2 [|@]]%) dt.

Note that the two terms are weighted together with a
positive factor £2 which accounts for the “price” of the
control. This factor is large if applying the control is “ex-
pensive”, which emphasizes the importance of the latter
term in this equation and results in the minimum con-
trol effort necessary to stabilize the system, and small if
applying the control is “cheap”, which results in a larger
control effort and thus faster regulation of the nominal,
undisturbed plant. The expression is averaged over some
optimization interval under consideration [0,T]. In ma-
trix form, /5 is expressed as

1 T

P =397 |,

(0w Cf Cru+* @* @) dt

with Cy defined appropriately based on the definition of
|lu|| and the star (*) denoting the conjugate transpose.
By appropriate scaling of the vector ® and the matrix
Bs, the norm of the control ||®]| is taken simply as the
Euclidian norm without loss of generality.

A technique to design a feedback control relationship
of the form ® = K5 u which minimizes the cost function
J> is now briefly outlined. The problem of designing
controllers based on state estimates when the full state
vector u is not available for feedback is closely related to
the problem of designing the full-information controller
itself. The discussion presented here will thus focus just
on the problem of control and not on the dual problem
of state estimation.

2.3 Adjoint equation

Define an adjoint state (as yet, arbitrarily) by the rela-
tion

“A=A*A+C;Ciu (2a)
with initial conditions

A=0 att =T. (2b)

Note that the “initial” conditions (2b) are defined at
t =T, so to determine the adjoint on the interval [0,T),
the evolution equation (2a) must be marched backwards
from T' — 0. Note also that the term C} Cju chosen
to drive this equation is closely related to a quantity of
interest in the cost function.

2.4 Gradient of cost with respect to control

It is easy to show that the gradient of the cost function
Jo with respect to the control @ is a simple function of
the appropriately-defined adjoint state given in (2):

9\72 _ * 2
5% = B3 A+ (2. (3)
2.5  Solution of control problem

By (3), the most suitable control which results in

DT>

9% = 0 (minimum)
as a function of the adjoint state is given simply by
]‘ *
d = 78—232 A (4)

Combining the state equation (1a), the adjoint equation
(2a), and the control given by (4) into a combined matrix
form gives

g

The large matrix on the RHS is referred to as the Hamil-
tonian matrix. Now prescribe a general relationship be-
tween any state vector u = u(¢) and the corresponding
adjoint A = A(t) such that

. 1 .
|:ll:| — A 7Z—2 B2 B2
Al |—crey T —an

A= XQU, (6)

where Xy = X,(¢). Inserting this expression into (5) to
eliminate A and combining the top and bottom rows to
eliminate u leads to the expression

1
e
As this expression is valid for any state vector u, we
arrive at a time dependent Riccati equation for X»(t):

(7X2:A*X2+X2A7X2 B2B;X2+Cik01)ll

. 1
*Xz:A*X2+X2A*X2Z—2B2B;X2+Cfcl (73)

with initial conditions, due to (2b) and (6), given by

X, =0 at t =T, (7b)

Combining (4) and (6), the optimal control ¢ as a func-
tion of the state u is given by the state feedback rela-
tionship

1

‘b:KQll £2

where Ky =

BiX,|  (8)

where X, (t) is the solution of the time dependent Riccati
equation (7) and thus Ko = Ks(t).
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2.6 Infinite time horizon for time invariant problems

If the matrices A, By, and C; are time invariant, then
in the limit of large optimization intervals T" — oo the
matrix Xo(t) defined by (7) approaches a steady state
value in the march from the initial conditions defined at
t = T back towards ¢t = 0. This steady state value may
be found by setting X5 = 0 in (7a), which leads to

1
0=A"Xo+ Xy A— Xy — By B} Xo + CF Cy

E 9)

The optimum feedback relationship given by (8) in
this limit is thus time invariant and a function of the
solution to (9), referred to as an algebraic Riccati equa-
tion. Solution methods for equations of this type are
well developed (Laub 1991).

2.7 Simple interpretation of the adjoint field

In the preceding discussion, the determination of opti-
mal feedback control relationship ® = Kou in (8) was
closely linked to the definition of an adjoint A in (2).
However, the definition of A was made arbitrarily in (2),
and subsequently justified only mathematically in (3) as
being that field which is required to express the gradient
of the cost function with respect to the control 2.7,/ 2®
in a simple manner.

In the case that the control ® enters the state equa-
tion (1) through the identity matrix, By = I, a simple
interpretation of the adjoint is now clear. In this case,
the expression for the gradient (3) reduces to

DT>

U N+ 2.
96 T

(10)
Thus, the gradient consists of two terms. The second
term on the RHS of (10) simply accounts for the term
in the cost function J> which measures the magnitude
of the control; in the absence of the other term in the
cost function, this term would drive the control to zero
when 75 is minimized.

The first term on the RHS of (10) accounts for the
term in the cost function J5 which measures the state u
itself. Thus, one interpretation of the adjoint A is simply
that:

The adjoint, when properly defined, is a mea-
sure of the sensitivity of the term of the cost
function which measures the state to addi-
tional RHS forcing of the state equation.

Note that there are exactly as many components of the
adjoint A as there are components of the state equation
(1a)—this is not by accident.

3

3 Robust linear regulation

3.1 State equation

Consider the linear state equation (1) with additional
forcing due to an external disturbance x

[0=Au+Bix+5 9| (11a)
with given initial conditions
u = u(0) at t = 0. (11b)

The matrix B; may be a function of time but does not
itself depend on the state u or the control ®.

3.2 Cost function

The object of applying control in the robust problem is
identical to the optimal problem, except we now play
the “devil’s advocate” and seek to find the best con-
trol in the presence of a “small” component of exactly
that disturbance x which is maximally aggravating to
the control objective, the aforementioned MLWCD. To
represent this concept mathematically, we append to the
cost function /5 discussed in §2.2 a term which accounts
for the magnitude of the disturbance used to aggravate
the system

1

jooEﬁ

T
[P+ =2 ) .
Note that the sign of the term which is used to account
for the disturbance is opposite to the sign used to ac-
count for the control; this is because we minimize with
respect the control ® while simultaneously we mazimize
with respect to the disturbance x. The term involv-
ing —7? [|x||* limits the magnitude of the disturbance in
the maximization with respect to x as the term involv-
ing ¢2||®|? limits the magnitude of the control in the
minimization with respect to ®. In matrix form, J. is
expressed as

1

Joo = o7

T
/ (u*CfClu+€2<I>*<I>772x*x) dt
Jo

By appropriate scaling of the vector x and the matrix
By, the norm of the disturbance ||x/|| is taken simply as
the Euclidian norm without loss of generality.
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A technique to design a feedback control relationship
of the form ® = K., u which minimizes the cost function
Jso in the presence of a small component of the worst
external disturbance x forcing the state equation (11) is
now briefly outlined. By designing a feedback control
rule effective for a state disturbed in this manner, the
control rule which is found is effective in the presence of
small disturbances of any type, and can be designed with
nearly the same nominal performance (i.e. performance
on the undisturbed system) as the optimal controller dis-
cussed in §2.

3.8 Adjoint equation

Define an adjoint state as for the optimal control case
by the relation

“A=A*A+CiCiu (12a)
with initial conditions
A=0 att=1T. (12b)

3.4 Gradients of cost w.r.t. control and disturbance

In a manner identical to the derivation leading to (3), the
gradient of the cost function J., with respect to the con-
trol @ and the disturbance x in this problem are simple
functions of the adjoint state defined by (12):

7N/ 2Jx

% =B}A+0*® and

=BrA—+x. (13)
3.5 Solution of control problem

By (13), the most suitable control and the MLWCD
which result in

% =0 (minimum) and 99—"7;0 =0 (maximum)
are given simply by
1, 1,
(D:fﬁBQA and X:?B1 A (14)

Combining the state equation (1la) and the adjoint
equation (12a) with the control and disturbance given
by (14) into a combined matrix form gives

[

[Rexe:

1 L1
S BB -5

—A*

B BS-I [u
A

Lm

Now prescribe a general relationship between any state
vector u and the corresponding adjoint A such that

A=Xou (16)

4

Inserting this expression into (15) to eliminate A and
combining the top and bottom rows to eliminate u leads
to the expression

X = A X + X A+

1 * 1 * *
Xoo (?BlBl - é—szBz> Xoo +Cl Cl u
As this expression is valid for any state vector u, we
arrive at a time dependent Riccati equation for X (t):

X =A* X+ X A+ (17a)

1 * 1 * *
Xoo <¥B1B1 - 6—23232> Xoo +CrCy
with initial conditions, due to (12b) and (16), given by

Xoo =0 att=T. (17b)

Combining (14) and (16), a robust control ® which is

effective even in the presence of a small component of
the worst case disturbance

MLWCD:

x = (1/7") Bf Xoo 1

is given by the state feedback relationship

1
®=Kou where  Koo=- 75 Bj Xoo (18)

where X, is the solution of the time dependent Riccati
equation (17) and thus Ko = Koo(?).

3.6 Infinite time horizon for time invariant problems

If the matrices A, By, By, and C; are time invariant,
then in the limit that the optimization interval T' — oo
the matrix X (t) defined above approaches a steady
state value in the march from the initial conditions de-
fined at ¢t = T back towards ¢ = 0, and is given by the
solution to

0=A"Xoo + X A+
1

]‘ * * *
Xoo <? By B} — 75 Bs BQ> X +C7C1] (19)

The robust feedback relationship given by (18) in this
limit is thus time invariant and a function of the solution
to the algebraic Riccati equation (19).
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4 Optimal nonlinear regulation

4.1 State equation

Consider a state vector u which is a function of some
feedback control vector ® such that it obeys the nonlin-
ear evolution equation

i1 = A(u) + B (@) | (20a)
with given initial conditions
u = u(0) at t =0. (20b)

The nonlinear functions A(u) and B, (®) may themselves
be functions of time.

4.2 Cost function

The object of applying control in the present case is iden-
tical to the optimal linear regulation problem described
in §2.2. It is expressed as the minimization of

1 T

‘72Eﬁ.0

(u* Cy Cru+ ¢ @* @) dt

(21)

A technique to determine the control ® on the in-
terval (0,7 which (locally) minimizes the cost function
J> for the nonlinear state equation (20) is now briefly
outlined.

4.8 Perturbation equation

Consider the linear problem of a small perturbation
(®',u’) to some reference solution (®,u) of the system
given by (20). It is easily shown that such a perturba-
tion must obey a linear evolution equation of the form

|’ = Au' + B, &' (22a)
with initial conditions
u =0 at t = 0. (22b)

The matrices A and B are functions of time and depend
explicitly on the reference condition (®,u).
4.4 Adjoint equation

Define an adjoint state based on the A matrix of the
perturbation problem (22) such that

“A=A*A+C;Ciu (23a)

with initial conditions

A=0 att=T. (23b)

4.5 Gradient of cost with respect to control

As in the linear case, the gradient of the cost function
Jo with respect to the control @ is a simple function of
the adjoint state defined by (23):

2.

2 * 2
—— = B. P. 24
2% SA+L (24)

4.6 Solution of control problem

The most suitable control on (0,7 which results in

DT>
2

may not, strictly speaking, be found simply by setting
the gradient 272/ 2® in (24) equal to zero, as this gra-
dient information is accurate only in a small neighbor-
hood of the reference solution upon which the matrices
A and B, were based.! Instead, a more stable iterative
approach is used based on the gradient vector:

DT>
29’
where k indicates the iteration index and « is a (pos-
itive) descent parameter to be chosen. The condition
(25) is approached iteratively according to the following
procedure:

=0 (minimum) (25)

o =oF ! —q (26)

1. Initialize control ® on (0,7] to ® = 0.

2. Determine state u on (0,7] from state equation
(20).

3. Determine adjoint A on [0,7") from adjoint equa-
tion (23).

4. Determine local expression for gradient 97>/ 2®
from (24).

5. Test various different values for the scalar a in (26),
computing the resulting state u from (20) and the
resulting cost Jo from (21), and determine via a
line minimization algorithm that value of a which
results in the smallest /5.

6. Update control ® on (0, T] via (26) using best value
of a determined in step 5.

7. Repeat from step 6 until convergence.

1One may propose a Newton-Raphson technique to determine the control, setting the local expression for 27>/2® in (24) equal
to zero to determine a new control, determining a new reference state from (20), solving the new adjoint problem to determine a new
value for ® by again setting 27>/%2® in (24) equal to zero, and iterating until convergence. However, there is no way to insure that
the initial guess for & is sufficiently close to a minimum to guarantee convergence of this approach. Iterative approaches are essential to
guaranteeing convergence to a solution of the nonlinear problem. Note also that the solution found is not necessarily the global solution.
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5 Robust nonlinear regulation

5.1 State equation

Consider the nonlinear state equation (20) with addi-
tional forcing due to an external disturbance x

i = A(u) + Bi(x) + Bo(@) | (27a)
with given initial conditions
u = u(0) at t =0. (27D)

The nonlinear function By (x) may itself be a function of
time.

5.2  Cost function

The object of applying control in the present case is iden-
tical to the robust linear regulation problem described
in §3.2. Mathematically, it is expressed as the minimiza-
tion of a cost function J,, with respect to the control
® while simultaneously maximizing 7, with respect to
the disturbance x, where

1

joozﬁ

T
/ (0 Cy Cru+ 0" ® —4*x* x) dt
0

A technique to determine the control ® on the in-
terval (0,7 which (locally) minimizes the cost function
Jso in the presence of a small component of the worst
external disturbance x forcing the state equation (27) is
now briefly outlined.

5.8 Perturbation equation

Consider the linear problem of a small perturbation
(@', x',u’) to some reference solution (®, x, u) of the sys-
tem given by (27). It is easily shown that such a per-
turbation must obey a linear evolution equation of the
form

| = Au'+ B,y + By @ (28a)
with initial conditions
u =0 at t = 0. (28b)

The matrices A, By, and By are functions of time and
depend explicitly on the reference condition (®, x,u).
5.4 Adjoint equation

Define an adjoint state based on the A matrix of the
perturbation problem (28) such that

“A=A*A+C;Ciu (29a)

with initial conditions

A=0 at t =T, (29D)

5.5 Gradients of cost w.r.t. control and disturbance

As in the linear case, the gradients of the cost function
Jso with respect to the control ® and the disturbance x
are simple functions of the adjoint state defined by (29):

2T 2Jx

5% =B;A+0*® and

=BiX—~*x. (30)

5.6 Solution of control problem

The most suitable control and the MLWCD which result
in

2Jx
7%

7N/
DX

=0 (minimum) and =0 (maximum)

may not, strictly speaking, be found simply by setting
the gradients 2 Jo/2® and 2T~/ Zx in (30) equal to
zero, as this gradient information is accurate only in a
small neighborhood of the reference solution upon which
the matrices A, By, and B were based. Instead, an it-
erative approach is used based on the gradient vectors:

(Dk — @k*l o aggéoo and Xk: — kal +599‘-7X00 (31)
where k indicates the iteration index. The iteration pro-
cedure followed is analogous to that described in §4.6;
in the present case, a value of «a is chosen to reduce J
while simultaneously a value of 3 is chosen to increase
Jso, and the solution marched towards values of ® and
x which meet the min/max criteria sought.

5.7 Approzimate solution for very large systems

The min/max problem described by (31) is infeasible
when the state equation (27) is a model of turbulent
channel flow, as the state u upon which the disturbance
acts in this case, and therefore any general representa-
tion of the disturbance y itself, has a very large dimen-
sion (O(107) at Re, = 180). Thus, instead of forcing
the state equation with a disturbance x determined by
the iterative approach given in (31), which is guaranteed
to be stable but would present excessive computational
storage requirements, we settle on a simpler, though pos-
sibly unstable, approach for the determination of .2

2Note that we still determine the control ® via the stable iterative approach given in (31).

6
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The disturbance x* is chosen in this approach by set-
ting 2J/%2x in (30) directly equal to zero. Note that,
taking the matrix B; as simply the identity matrix, the
disturbance determined in this fashion is proportional to
the adjoint field itself

1

X' = ?

For sufficiently large v (i.e., sufficiently small distur-

bance x), this should be an accurate approximation of

the global maximum 2J./%x = 0, and thus should

result in an accurate approximation of the “worst case”

disturbance. For smaller values of v (i.e., for larger dis-

turbance x), this approach is not guaranteed to be sta-

ble. Trial and error will indicate for what values of ~
this approach converges.

PLE (32)

6 Conclusions

Optimal and robust control theory for discrete linear sys-
tems were first briefly reviewed from first principles. It is
shown that, in the infinite time horizon limit with time-
invariant system matrices, a closed form solution to the
linear control problems may be found in terms of the
solution to a Riccati equation.

Optimal control theory for discrete nonlinear system
was then briefly reviewed in a similar notation. It is
shown that there are many close connections to the linear
problem. However, a closed form solution is mot avail-
able, and an iterative search for the solution is required.
A gradient approach, such as a simple gradient or (bet-
ter) a conjugate gradient approach, to the finite-time
interval optimization problem is recommended to guar-
antee a stable search for the optimal controls.

A new technique for robust control theory for dis-
crete nonlinear systems is then identified by extrapo-
lation. Such a technique seeks the best control and,
simultaneously, the Murphy’s Law Worst Case Distur-
bance (MLWCD). Such a technique holds promise for
the determination of effective control algorithms for tur-
bulent flows and other nonlinear phenomena subjected
to external disturbances with control algorithms based
on limited noisy observations alone.
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