
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

AIAA 97-1872Optimal and robust approaches forlinear and nonlinear regulationproblems in 
uid mechanicsThomas R. Bewley & Parviz MoinCenter for Turbulence ResearchStanford, California 94305-3030andRoger TemamThe Institute for Scienti�c Computing andApplied Mathematics, Indiana UniversityBloomington, Indiana 47405-5701
28th AIAA Fluid Dynamics Conference4th AIAA Shear Flow Control ConferenceJune 29 - July 2, 1997Snowmass Village, COFor permission to copy or republish, contact the American Institute of Aeronautics and Astronautics1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344



Optimal and robust approaches for linear and nonlinearregulation problems in 
uid mechanicsThomas R. Bewley and Parviz MoinCenter for Turbulence Research, Stanford University, Stanford, California 94305-3030andRoger TemamThe Institute for Scienti�c Computing and Applied Mathematics,Indiana University, Bloomington, IN 47405-5701, andLaboratoire d'Analyse Num�erique, Universit�e de Paris-Sud, 91405 Orsay, FRANCEAbstractRecent work by the authors in the application of opti-mal control theory to turbulence have been quite suc-cessful when full state information is provided to thecontrol algorithm. However, this approach has not yetbeen successful for the development of algorithms whichdepend on wall information only. For this reason, robustcontrol theory, which is currently well developed onlyfor linear problems, is now examined as a technique bywhich e�ective control algorithms based on limited noisyobservations might be developed for turbulent 
ows andother nonlinear phenomena subjected to external distur-bances.1 IntroductionIn its essence, robust control theory boils down simplyto Murphy's Law (Bloch 1982) taken seriously:If a worst-case system disturbance can dis-rupt a controlled closed-loop system, it will !When designing a robust controller, therefore, one mustplan on a �nite component of the worst-case disturbanceaggravating the system, and design a controller which issuited to handle even this extreme situation. A con-troller which is designed to work even in the presence ofthe Murphy's Law Worst Case Disturbance (MLWCD)will also be robust to a wide class of other possible dis-turbances which, by de�nition, are not as bad as theMLWCD. Thus, the serious issue of �nding a robust sta-bilizing controller is intimately coupled with the equallyserious issue of �nding the MLWCD.A framework for applying optimal (x2) and ro-bust (x3) control theories to linear problems (such asearly stages of transition, see Bewley, Liu, & Agar-wal 1997) is �rst reviewed in a style fairly con-sistent with standard control theory. Several goodtexts are available covering linear control theory, in-cluding Doyle et al. (1989), Green & Limebeer (1995),

Lewis (1995), Zhou, Doyle, & Glover (1996), and Sko-gestad & Postlethwaite (1996). The presentation hereis made strictly in the time domain to facilitate exten-sion of these \standard" linear approaches to nonlinearproblems, in which frequency domain techniques are oflimited usefulness. A framework for applying optimalcontrol theory to nonlinear problems (such as turbu-lence, see Abergel & Temam 1990 and Bewley, Moin,& Temam 1997) is then reviewed (x4) in a similar no-tation. Finally, a straightforward connection is madesuch that the concepts of robust control theory may beextended to nonlinear problems in a consistent manner(x5). The resulting development is straightforward anddoes not assume the reader is accustomed to the lan-guage of control theory, rather, only to the precepts ofMurphy's Law.2 Optimal linear regulation2.1 State equationConsider a state vector u which is a function of somefeedback control vector � such that it obeys the linearevolution equation_u = Au+B2 � (1a)with given initial conditionsu = u(0) at t = 0: (1b)The matrices A and B2 may be functions of time but donot themselves depend on the state u or the control �.In 
uid mechanics, such a system may be determined bydiscretization of a set of PDE's representing a linearizedequation of motion for the 
ow, and thus the system maybe expected to be of very high dimension.2.2 Cost functionThe object of applying control in the present problem isto \regulate", or drive to zero, some measure of the statewithout applying excessive amounts of control.Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.1American Institute of Aeronautics and Astronautics



Mathematically, this objective is expressed as theminimization of a cost function which balances a measureof the state u with a measure of the control � applied.We will use the norm symbol to denote these measures,to be de�ned appropriately for speci�c problems:J2 � 12T Z T0 �jjujj2 + `2 jj�jj2� dt:Note that the two terms are weighted together with apositive factor `2 which accounts for the \price" of thecontrol. This factor is large if applying the control is \ex-pensive", which emphasizes the importance of the latterterm in this equation and results in the minimum con-trol e�ort necessary to stabilize the system, and small ifapplying the control is \cheap", which results in a largercontrol e�ort and thus faster regulation of the nominal,undisturbed plant. The expression is averaged over someoptimization interval under consideration [0; T ]. In ma-trix form, J2 is expressed asJ2 = 12T Z T0 �u� C�1 C1 u+ `2�� �� dtwith C1 de�ned appropriately based on the de�nition ofjjujj and the star (�) denoting the conjugate transpose.By appropriate scaling of the vector � and the matrixB2, the norm of the control jj�jj is taken simply as theEuclidian norm without loss of generality.A technique to design a feedback control relationshipof the form � = K2 u which minimizes the cost functionJ2 is now brie
y outlined. The problem of designingcontrollers based on state estimates when the full statevector u is not available for feedback is closely related tothe problem of designing the full-information controlleritself. The discussion presented here will thus focus juston the problem of control and not on the dual problemof state estimation.2.3 Adjoint equationDe�ne an adjoint state (as yet, arbitrarily) by the rela-tion � _� = A� �+ C�1 C1 u (2a)with initial conditions� = 0 at t = T: (2b)Note that the \initial" conditions (2b) are de�ned att = T , so to determine the adjoint on the interval [0; T ),the evolution equation (2a) must be marched backwardsfrom T ! 0. Note also that the term C�1 C1 u chosento drive this equation is closely related to a quantity ofinterest in the cost function.

2.4 Gradient of cost with respect to controlIt is easy to show that the gradient of the cost functionJ2 with respect to the control � is a simple function ofthe appropriately-de�ned adjoint state given in (2):DJ2D� = B�2 �+ `2�: (3)2.5 Solution of control problemBy (3), the most suitable control which results inDJ2D� = 0 (minimum)as a function of the adjoint state is given simply by� = � 1̀2B�2 � (4)Combining the state equation (1a), the adjoint equation(2a), and the control given by (4) into a combined matrixform gives _�u�� = " A � 1̀2 B2B�2�C�1 C1 �A� # �u�� (5)The large matrix on the RHS is referred to as the Hamil-tonian matrix. Now prescribe a general relationship be-tween any state vector u = u(t) and the correspondingadjoint � = �(t) such that� = X2u; (6)where X2 = X2(t). Inserting this expression into (5) toeliminate � and combining the top and bottom rows toeliminate _u leads to the expression�� _X2 = A�X2 +X2A�X2 1̀2 B2B�2 X2 + C�1 C1�uAs this expression is valid for any state vector u, wearrive at a time dependent Riccati equation for X2(t):� _X2 = A�X2 +X2A�X2 1̀2 B2B�2 X2 + C�1 C1 (7a)with initial conditions, due to (2b) and (6), given byX2 = 0 at t = T: (7b)Combining (4) and (6), the optimal control � as a func-tion of the state u is given by the state feedback rela-tionship � = K2 u where K2 = � 1̀2 B�2 X2 (8)whereX2(t) is the solution of the time dependent Riccatiequation (7) and thus K2 = K2(t).2American Institute of Aeronautics and Astronautics



2.6 In�nite time horizon for time invariant problemsIf the matrices A, B2, and C1 are time invariant, thenin the limit of large optimization intervals T ! 1 thematrix X2(t) de�ned by (7) approaches a steady statevalue in the march from the initial conditions de�ned att = T back towards t = 0. This steady state value maybe found by setting _X2 = 0 in (7a), which leads to0 = A�X2 +X2A�X2 1̀2 B2B�2 X2 + C�1 C1 (9)The optimum feedback relationship given by (8) inthis limit is thus time invariant and a function of thesolution to (9), referred to as an algebraic Riccati equa-tion. Solution methods for equations of this type arewell developed (Laub 1991).2.7 Simple interpretation of the adjoint �eldIn the preceding discussion, the determination of opti-mal feedback control relationship � = K2 u in (8) wasclosely linked to the de�nition of an adjoint � in (2).However, the de�nition of � was made arbitrarily in (2),and subsequently justi�ed only mathematically in (3) asbeing that �eld which is required to express the gradientof the cost function with respect to the control DJ2=D�in a simple manner.In the case that the control � enters the state equa-tion (1) through the identity matrix, B2 = I , a simpleinterpretation of the adjoint is now clear. In this case,the expression for the gradient (3) reduces toDJ2D� = �+ `2�: (10)Thus, the gradient consists of two terms. The secondterm on the RHS of (10) simply accounts for the termin the cost function J2 which measures the magnitudeof the control; in the absence of the other term in thecost function, this term would drive the control to zerowhen J2 is minimized.The �rst term on the RHS of (10) accounts for theterm in the cost function J2 which measures the state uitself. Thus, one interpretation of the adjoint � is simplythat: The adjoint, when properly de�ned, is a mea-sure of the sensitivity of the term of the costfunction which measures the state to addi-tional RHS forcing of the state equation.Note that there are exactly as many components of theadjoint � as there are components of the state equation(1a)|this is not by accident.

3 Robust linear regulation3.1 State equationConsider the linear state equation (1) with additionalforcing due to an external disturbance �_u = Au+B1 �+B2� (11a)with given initial conditionsu = u(0) at t = 0: (11b)The matrix B1 may be a function of time but does notitself depend on the state u or the control �.3.2 Cost functionThe object of applying control in the robust problem isidentical to the optimal problem, except we now playthe \devil's advocate" and seek to �nd the best con-trol in the presence of a \small" component of exactlythat disturbance � which is maximally aggravating tothe control objective, the aforementioned MLWCD. Torepresent this concept mathematically, we append to thecost function J2 discussed in x2.2 a term which accountsfor the magnitude of the disturbance used to aggravatethe systemJ1 � 12T Z T0 �jjujj2 + `2 jj�jj2 � 
2 jj�jj2� dt:Note that the sign of the term which is used to accountfor the disturbance is opposite to the sign used to ac-count for the control; this is because we minimize withrespect the control � while simultaneously we maximizewith respect to the disturbance �. The term involv-ing �
2 jj�jj2 limits the magnitude of the disturbance inthe maximization with respect to � as the term involv-ing `2 jj�jj2 limits the magnitude of the control in theminimization with respect to �. In matrix form, J1 isexpressed asJ1 = 12T Z T0 �u� C�1 C1 u+ `2�� �� 
2�� �� dtBy appropriate scaling of the vector � and the matrixB1, the norm of the disturbance jj�jj is taken simply asthe Euclidian norm without loss of generality.
3American Institute of Aeronautics and Astronautics



A technique to design a feedback control relationshipof the form � = K1 u which minimizes the cost functionJ1 in the presence of a small component of the worstexternal disturbance � forcing the state equation (11) isnow brie
y outlined. By designing a feedback controlrule e�ective for a state disturbed in this manner, thecontrol rule which is found is e�ective in the presence ofsmall disturbances of any type, and can be designed withnearly the same nominal performance (i.e. performanceon the undisturbed system) as the optimal controller dis-cussed in x2. 3.3 Adjoint equationDe�ne an adjoint state as for the optimal control caseby the relation � _� = A� �+ C�1 C1 u (12a)with initial conditions� = 0 at t = T: (12b)3.4 Gradients of cost w.r.t. control and disturbanceIn a manner identical to the derivation leading to (3), thegradient of the cost function J1 with respect to the con-trol � and the disturbance � in this problem are simplefunctions of the adjoint state de�ned by (12):DJ1D� = B�2 �+ `2 � and DJ1D� = B�1 �� 
2 �: (13)3.5 Solution of control problemBy (13), the most suitable control and the MLWCDwhich result inDJ1D� = 0 (minimum) and DJ1D� = 0 (maximum)are given simply by� = � 1̀2 B�2 � and � = 1
2 B�1 �: (14)Combining the state equation (11a) and the adjointequation (12a) with the control and disturbance givenby (14) into a combined matrix form gives_�u�� = 24 A 1
2 B1B�1 � 1̀2 B2 B�2�C1 C�1 �A� 35�u�� (15)Now prescribe a general relationship between any statevector u and the corresponding adjoint � such that� = X1u (16)

Inserting this expression into (15) to eliminate � andcombining the top and bottom rows to eliminate _u leadsto the expressionh� _X1 =A�X1 +X1A+X1 � 1
2 B1B�1 � 1̀2 B2B�2� X1 + C�1 C1iuAs this expression is valid for any state vector u, wearrive at a time dependent Riccati equation for X1(t):� _X1 =A�X1 +X1A+X1 � 1
2 B1B�1 � 1̀2 B2B�2� X1 + C�1 C1(17a)with initial conditions, due to (12b) and (16), given byX1 = 0 at t = T: (17b)Combining (14) and (16), a robust control � which ise�ective even in the presence of a small component ofthe worst case disturbanceMLWCD: � = (1=
2)B�1 X1 uis given by the state feedback relationship� = K1 u where K1 = � 1̀2 B�2 X1 (18)where X1 is the solution of the time dependent Riccatiequation (17) and thus K1 = K1(t).3.6 In�nite time horizon for time invariant problemsIf the matrices A, B1, B2, and C1 are time invariant,then in the limit that the optimization interval T ! 1the matrix X1(t) de�ned above approaches a steadystate value in the march from the initial conditions de-�ned at t = T back towards t = 0, and is given by thesolution to0 =A�X1 +X1A+X1 � 1
2 B1B�1 � 1̀2 B2B�2� X1 + C�1 C1 (19)The robust feedback relationship given by (18) in thislimit is thus time invariant and a function of the solutionto the algebraic Riccati equation (19).
4American Institute of Aeronautics and Astronautics



4 Optimal nonlinear regulation4.1 State equationConsider a state vector u which is a function of somefeedback control vector � such that it obeys the nonlin-ear evolution equation_u = A(u) + B2(�) (20a)with given initial conditionsu = u(0) at t = 0: (20b)The nonlinear functions A(u) and B2(�) may themselvesbe functions of time.4.2 Cost functionThe object of applying control in the present case is iden-tical to the optimal linear regulation problem describedin x2.2. It is expressed as the minimization ofJ2 � 12T Z T0 �u� C�1 C1 u+ `2�� �� dt (21)A technique to determine the control � on the in-terval (0; T ] which (locally) minimizes the cost functionJ2 for the nonlinear state equation (20) is now brie
youtlined. 4.3 Perturbation equationConsider the linear problem of a small perturbation(�0;u0) to some reference solution (�;u) of the systemgiven by (20). It is easily shown that such a perturba-tion must obey a linear evolution equation of the form_u0 = Au0 +B2�0 (22a)with initial conditionsu0 = 0 at t = 0: (22b)The matrices A and B2 are functions of time and dependexplicitly on the reference condition (�;u).4.4 Adjoint equationDe�ne an adjoint state based on the A matrix of theperturbation problem (22) such that� _� = A� �+ C�1 C1 u (23a)

with initial conditions� = 0 at t = T: (23b)4.5 Gradient of cost with respect to controlAs in the linear case, the gradient of the cost functionJ2 with respect to the control � is a simple function ofthe adjoint state de�ned by (23):DJ2D� = B�2 �+ `2�: (24)4.6 Solution of control problemThe most suitable control on (0; T ] which results inDJ2D� = 0 (minimum) (25)may not, strictly speaking, be found simply by settingthe gradient DJ2=D� in (24) equal to zero, as this gra-dient information is accurate only in a small neighbor-hood of the reference solution upon which the matricesA and B2 were based.1 Instead, a more stable iterativeapproach is used based on the gradient vector:�k = �k�1 � �DJ2D� ; (26)where k indicates the iteration index and � is a (pos-itive) descent parameter to be chosen. The condition(25) is approached iteratively according to the followingprocedure:1. Initialize control � on (0; T ] to � = 0.2. Determine state u on (0; T ] from state equation(20).3. Determine adjoint � on [0; T ) from adjoint equa-tion (23).4. Determine local expression for gradient DJ2=D�from (24).5. Test various di�erent values for the scalar � in (26),computing the resulting state u from (20) and theresulting cost J2 from (21), and determine via aline minimization algorithm that value of � whichresults in the smallest J2.6. Update control � on (0; T ] via (26) using best valueof � determined in step 5.7. Repeat from step 6 until convergence.1One may propose a Newton-Raphson technique to determine the control, setting the local expression for DJ2=D� in (24) equalto zero to determine a new control, determining a new reference state from (20), solving the new adjoint problem to determine a newvalue for � by again setting DJ2=D� in (24) equal to zero, and iterating until convergence. However, there is no way to insure thatthe initial guess for � is su�ciently close to a minimum to guarantee convergence of this approach. Iterative approaches are essential toguaranteeing convergence to a solution of the nonlinear problem. Note also that the solution found is not necessarily the global solution.5American Institute of Aeronautics and Astronautics



5 Robust nonlinear regulation5.1 State equationConsider the nonlinear state equation (20) with addi-tional forcing due to an external disturbance �_u = A(u) + B1(�) + B2(�) (27a)with given initial conditionsu = u(0) at t = 0: (27b)The nonlinear function B1(�) may itself be a function oftime. 5.2 Cost functionThe object of applying control in the present case is iden-tical to the robust linear regulation problem describedin x3.2. Mathematically, it is expressed as the minimiza-tion of a cost function J1 with respect to the control� while simultaneously maximizing J1 with respect tothe disturbance �, whereJ1 � 12T Z T0 �u� C�1 C1 u+ `2�� �� 
2�� �� dtA technique to determine the control � on the in-terval (0; T ] which (locally) minimizes the cost functionJ1 in the presence of a small component of the worstexternal disturbance � forcing the state equation (27) isnow brie
y outlined.5.3 Perturbation equationConsider the linear problem of a small perturbation(�0; �0;u0) to some reference solution (�; �;u) of the sys-tem given by (27). It is easily shown that such a per-turbation must obey a linear evolution equation of theform _u0 = Au0 +B1 �0 +B2�0 (28a)with initial conditionsu0 = 0 at t = 0: (28b)The matrices A, B1, and B2 are functions of time anddepend explicitly on the reference condition (�; �;u).5.4 Adjoint equationDe�ne an adjoint state based on the A matrix of theperturbation problem (28) such that� _� = A� �+ C�1 C1 u (29a)

with initial conditions� = 0 at t = T: (29b)5.5 Gradients of cost w.r.t. control and disturbanceAs in the linear case, the gradients of the cost functionJ1 with respect to the control � and the disturbance �are simple functions of the adjoint state de�ned by (29):DJ1D� = B�2 �+ `2 � and DJ1D� = B�1 �� 
2 �: (30)5.6 Solution of control problemThe most suitable control and the MLWCD which resultinDJ1D� = 0 (minimum) and DJ1D� = 0 (maximum)may not, strictly speaking, be found simply by settingthe gradients DJ1=D� and DJ1=D� in (30) equal tozero, as this gradient information is accurate only in asmall neighborhood of the reference solution upon whichthe matrices A, B1, and B2 were based. Instead, an it-erative approach is used based on the gradient vectors:�k = �k�1 � �DJ1D� and �k = �k�1 + �DJ1D� (31)where k indicates the iteration index. The iteration pro-cedure followed is analogous to that described in x4.6;in the present case, a value of � is chosen to reduce J1while simultaneously a value of � is chosen to increaseJ1, and the solution marched towards values of � and� which meet the min/max criteria sought.5.7 Approximate solution for very large systemsThe min/max problem described by (31) is infeasiblewhen the state equation (27) is a model of turbulentchannel 
ow, as the state u upon which the disturbanceacts in this case, and therefore any general representa-tion of the disturbance � itself, has a very large dimen-sion (O(107) at Re� = 180). Thus, instead of forcingthe state equation with a disturbance � determined bythe iterative approach given in (31), which is guaranteedto be stable but would present excessive computationalstorage requirements, we settle on a simpler, though pos-sibly unstable, approach for the determination of �.2
2Note that we still determine the control � via the stable iterative approach given in (31).6American Institute of Aeronautics and Astronautics



The disturbance �k is chosen in this approach by set-ting DJ1=D� in (30) directly equal to zero. Note that,taking the matrix B1 as simply the identity matrix, thedisturbance determined in this fashion is proportional tothe adjoint �eld itself�k = 1
2 �k�1 (32)For su�ciently large 
 (i.e., su�ciently small distur-bance �), this should be an accurate approximation ofthe global maximum DJ1=D� = 0, and thus shouldresult in an accurate approximation of the \worst case"disturbance. For smaller values of 
 (i.e., for larger dis-turbance �), this approach is not guaranteed to be sta-ble. Trial and error will indicate for what values of 
this approach converges.6 ConclusionsOptimal and robust control theory for discrete linear sys-tems were �rst brie
y reviewed from �rst principles. It isshown that, in the in�nite time horizon limit with time-invariant system matrices, a closed form solution to thelinear control problems may be found in terms of thesolution to a Riccati equation.

Optimal control theory for discrete nonlinear systemwas then brie
y reviewed in a similar notation. It isshown that there are many close connections to the linearproblem. However, a closed form solution is not avail-able, and an iterative search for the solution is required.A gradient approach, such as a simple gradient or (bet-ter) a conjugate gradient approach, to the �nite-timeinterval optimization problem is recommended to guar-antee a stable search for the optimal controls.A new technique for robust control theory for dis-crete nonlinear systems is then identi�ed by extrapo-lation. Such a technique seeks the best control and,simultaneously, the Murphy's Law Worst Case Distur-bance (MLWCD). Such a technique holds promise forthe determination of e�ective control algorithms for tur-bulent 
ows and other nonlinear phenomena subjectedto external disturbances with control algorithms basedon limited noisy observations alone.AcknowledgmentsThe authors gratefully acknowledge the funding pro-vided by the AFOSR Grant No. F49620-93-1-0078 andthe computer time provided by NASA-Ames ResearchCenter in support of this project.REFERENCESAbergel, F. & Temam, R. 1990 On some control problems in 
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