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1. Introduction
1.1. Background

One of the primary reasons that Large Eddy Simulation (LES) is not yet practical for
many flows of engineering interest is the high resolution required in turbulent boundary
layers. The only way to simulate many flows is to completely bypass the simulation of
the near-wall turbulence and to model its effects on the flow away from the wall. If the
near-wall flow is not computed then the no-slip boundary condition does not apply and
the wall stresses are required to close the usual finite difference approximations to the
viscous terms.

The simplest wall stress models correlate the wall stresses to the tangential velocities
at the first off-wall grid points. More complex models for the wall stresses rely on the
integration of boundary layer equations on an auxiliary mesh embedded near the wall.
See Cabot & Moin (2000) for a recent review of wall stress models. These models perform
adequately at low to moderate Reynolds numbers in simple flows, but they fail to produce
good results at higher Reynolds numbers even in simple channel flow (Nicoud et al.
(2000)). The current generation of wall stress models attempts to reproduce the physics
of the wall stresses averaged over the filter width of the outer LES computation. However,
none of these models can compensate for the numerical and subgrid-scale (SGS) modeling
errors that are intrinsic to an LES computation which necessarily relies on a low-order
numerical scheme and an exceedingly coarse near-wall mesh.

To find wall models, in the form of approximate boundary conditions, that can com-
pensate for the errors intrinsic to under-resolved LES, we use techniques from optimal
control theory. In our approach, a sub-optimal control strategy is used in which the ob-
jective is to force the outer LES towards a desired solution by using the approximate
boundary conditions as control. In previous work (Nicoud et al. (2000)), this approach
was tested by using wall stress boundary conditions as control to force the mean velocity
of a coarse-grid LES of channel flow at high Reynolds number towards a logarithmic
velocity profile. It was found that the resulting wall stress boundary conditions yielded
much better results, in terms of the mean velocity profile, than existing wall stress models
at high Reynolds numbers. Furthermore, it was found that the resulting wall stresses were
well correlated with the local velocity field and that the dynamically relevant portion of
the wall stresses could be predicted by a relatively simple linear model.
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Furthermore, it was found that the wall stresses generated by the sub-optimal control
strategy, while improving the prediction of the mean velocity profile considerably, did not
improve the prediction of the velocity fluctuations. This may have been due to the inad-
equacy of the dynamic Smagorinsky sub-grid scale model in the anisotropic logarithmic
region of the channel flow, but it could also have been that wall stress boundary condi-
tions alone cannot fully compensate for the errors in the vicinity of the computational
boundary. Generally, any improvements in the prediction of the outer flow were limited
primarily to a region extending only a few grid cells from the wall.

When wall stress boundary conditions are used to model the influence of the near-wall
region on the outer flow, it is usually assumed that the wall-normal velocity is identically
zero at the boundary. However, since the no-slip boundary condition cannot be applied
without adequate near-wall resolution, perhaps it does not make sense to insist that
the velocity normal to the boundary is zero. After all, a wall model should capture the
effects of the near-wall turbulence on the outer flow, including such hallmarks of near-wall
turbulence as ejections and sweeps. In any case, the combination of non-zero boundary-
normal velocity with wall stresses should allow the approximate boundary condition
wall model to influence more of the computational domain than wall stress boundary
conditions alone since the boundary-normal velocity effects the entire flow directly via
the continuity equation.

It is the objective of the current work to test the effect of including a transpiration
velocity approximate boundary condition (net transpiration will be zero) in addition to
the wall stress boundary conditions in the sub-optimal control framework first explored in
Nicoud et al. (2000). The sub-optimal control framework, including transpiration velocity,
was first presented in Nicoud & Baggett (1999), but it is presented again here in a slightly
more general form. We also discuss whether or not simple, algebraic models derived from
the sub-optimally controlled simulations are likely to be successful.

2. Sub-optimal control framework
2.1. Channel flow

We consider the LES of incompressible, turbulent channel flow on a uniform mesh with
32 volumes in the streamwise and spanwise directions and 33 volumes in the wall-normal
direction. A staggered grid system is used with second order finite differences for the spa-
tial derivatives and a third-order Runga-Kutta discretization for the time advancement.
Periodic boundary conditions are imposed in the two directions x; and x3 (or x and
z) parallel to the walls. The SGS model is the Smagorinsky model with the coefficient
determined by the plane-averaged dynamic procedure of Germano et al. (1991). Unless
otherwise stated, all quantities are nondimensionalized by the friction velocity, u,, and
channel half-height, h. The channel walls are at y = £1. The skin friction Reynolds num-
ber is defined as Re; = u,;h/v. When the mean flow is statistically converged the mean
streamwise pressure gradient is equal to the wall stress, that is, —0P/0z = (r,) = 1.
All of the simulations in this work were performed at Re, = 4000 in a computational
domain with dimensions 27h x 2h x 2wh/3 in the streamwise (z; or z), wall-normal (z2
or y), and spanwise (x3 or z) directions, respectively.
The governing equations are:
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The pressure, P, contains a mean forcing component such that (—0P/dx) = 1. Note
that no specific notation is used to describe spatial filtering associated with the LES
formulation, rather each variable, herein, should be understood as the filtered counterpart
of the actual variable (e.g. u; = ;).

Since the no-slip boundary condition does not apply on the coarse mesh used here,
the boundary conditions that are supplied are the wall stresses 719 and 73} as well as
the normal velocity at the wall, v,,. The boundary conditions, specified in terms of the
control parameter, phi, which is defined below, on (2.1) are:

Ou  Ov, 1
5—yn + % = Z(lsu

on = 0 (2.2)
ow  Ov, 1

Byn " 0z va"
where the subscript n stands for the outward normal to the wall and v,, is the wall value of
the total dynamic viscosity v+, (in this work v,, = v). The control parameter ¢ is defined
as ¢ = ((lsu;(lsv;(lsw) = (Tl%;vw;T:;‘L%) at y = +1 and ¢ = (¢u7¢v7¢w) = _(Tl%;vwaTé%) at
y=—1.

2.2. Objective function

In the sub-optimal control approach, the boundary conditions (specified by the control
parameter ¢) are used as control to minimize an objective function at each time step. The
goal being to provide numerical boundary conditions to the flow solver so that the overall
solution is consistent with what is expected in a channel flow. The objective function is
specified as follows:

Z Jmean,i(u; ¢) +erm5z (u; 9) +Z~7penaltyz(¢) (2.3)

i=1,3 i=1

The objective function consists of the three components. Jmean measures the distance
from the plane-averaged LES solution to a desired reference velocity profile. The second
component, Jrms measures the distance from the plane-averaged velocity fluctuation
intensities to desired target profiles. Finally, the third component, jpenalty penalizes
the use of large controls ¢. The component objective functions are defined below.

For the mean streamwise velocity the target or reference profile is taken as a logarithmic

velocity profile throughout the channel: u ref = =k 'lnyt + C. The spanwise velocity
reference profile is simply u, .o = 0. The dlfference between the reference velocity profile
and the plane-averaged LES solution is a function of the wall-normal coordinate, y, and
can be expressed as

0u; (v) =7 // zref ) dx dz (1=1,3) (2.4)

where A is the channel area in the homogeneous plane. Note that any reference profile
suitable for a parallel flow could have been used. Notably, a more realistic shape could
have been used near the channel center. However, the logarithmic profile is well suited
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for the near-wall region since we are using a coarse mesh and the Reynolds number,
Re, = 4000, is sufficiently high so that the first grid point lies in the logarithmic region
(y™ ~ 121). The mean component of the objective function is then:

+1
Jmean,i(u; ¢) = o du: (y)* dy, (i=1,3) (2.5)
-1
Note that there is no need to specify a target profile for the plane-averaged wall-normal
velocity since that will be identically zero at each time step provided there is no net
transpiration velocity through the boundaries.

The velocity fluctuation intensities are targeted through the Jrms component of the
objective function. The plane-averaged, mean square velocity fluctuations are compared
at each time step to the mean square velocity fluctuations, (u; ref)2’ from the LES of
Kravchenko, Moin & Moser (1996) which was performed at the same Reynolds number,
Re, = 4000, using a zonally defined mesh to resolve the near-wall region. The distance
between the plane-averaged mean square velocity fluctuations and their reference profiles
can be measured as

6mw=%//«w—WW—%g0MM, (i=1,2,3), (2.6)

i

where (u;) denotes the average over the homogeneous directions of the velocity component
u;. The velocity fluctuation intensity component of the objective function is then
+1
Jrms,i(u; ) = B; 1 Su(y)*dy  (i=1,2,3) (2.7)
Finally, to prevent numerical instabilities it is necessary to regularize the control, that
is, the approximate boundary conditions, by including a penalty component in the overall
objective function:

’Yi 2 )\ 4 .
J. (@ :—/ ¢u,dmdz—|——/ 0iz @y, dr dz 1=1,2,3). 2.8
penalty, (¢) A TR A i1 2 ( ) (2.8)

The first term in the penalty component attempts to prevent the mean square norm of the
control parameter from becoming too large. In the case of transpiration velocity control,
however, it was found that it is necessary to prevent the transpiration velocity from
becoming too large at any single point, hence the second term in the penalty component
(2.8) was added.

Note that each component of the objective function includes a scalar parameter: «;,
Bi, Vi, or A. These scalars allow the relative importance of the various objectives to be
changed in the overall objective.

2.3. Adjoint problem

The gradient of the objective function J with respect to the control parameter ¢ is
estimated by using the Fréchet differential (Vainberg (1964)) defined for any functional
F as:

D—¢¢ = Eij)% € ) (29)

where ¢ is an arbitrary direction. From (2.3) the gradient J is:

DJ - S,

i=1,3




Sub-optimal control based wall models for LES 5

+25@/// AC Ly (2.10)
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where U; denotes the Fréchet derivative of u;t. The gradient of J cannot be calculated
directly from (2.10) since the derivatives Uf; are unknown.

To calculate an approximation to the gradient of J we start by assuming that the
equation of state, (2.1), is discretized in time by a semi-implicit discretization:

OP  Oum; O Oui  Ou; \ 1"
n+1 vy = J = n
-%At[axz+ oz, axj<u“%w)<axj+-&m)>] RHS

(2.11)
a n+1

—At
63:]

=0

with the boundary conditions (2.2). The terms which depend only on the variables at
the previous time step n are gathered in the generic notation RHS™ and disappear in the
analytical development.

We now formulate an adjoint problem to find the gradient (2.10). The first step is to
take the derivative of (2.11) with respect to the control ¢:

vt [ 2 s 2, B0 (1 (B, )] g

8 J 6 i 8;vj 8;vj 8;vj &m
(2.12)
A
Ox;
with boundary conditions:
u v, 1
OYn Ot vy "
Vn = ng (213)
ow oV, 1 -
S+ St = .

Oy, 0z v

The righthand side term in (2.12) is now zero since the flow field at time step n does
not depend on the control ¢ for the current time step. Therefore, the superscript 'n + 1’
has been dropped for clarity. Note also in (2.12) that the Fréchet derivative of the eddy
viscosity was assumed to be zero, that is, Dv;/D¢ = 0. The latter approximation can
be justified for short time intervals; see Collis & Chang (1999). Moreover, this system of
equations is linear in the variables i/; and P, where P is the Fréchet derivative of the
pressure. Therefore it can be written in the form:

A© =0, (2.14)

1 Technically, the second term in  (2.10) should include the integral
O (wi—(uq))
ffn2lﬁ(ui — (U;))dx dydz, but we make the approximation that (U;) = 0

since |(U;)| < |U;| in general.
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where A is the linear operator acting on the vector ® = (U;, P)”. The linear system
(2.14) with unknown boundary conditions (2.13) cannot be solved directly, instead, an
adjoint operator, A*, is formulated by considering the equation

(A0, T) = (0, A*¥) + BT, (2.15)

where (-,-) stands for the inner product defined as the integral over the flow domain of
the dot product of the two vectors and ¥ is the adjoint state vector ¥ = (n;, 7)”. Finding
the adjoint operator, A4*, and the boundary terms, BT, is a straightforward exercise in
integrating by parts. The adjoint operator acting on the adjoint state vector, that is,
A*W is defined by the equations:

o Du; oni 0 Ons 4 O
m+At[a£ +ma—2‘i—um§j T Ox; [(V+Vt) (3;7:‘ * BZZ))]

A" = N (2.16)
8z,—
and the boundary terms are:
BT = At / / (Press + Conv + Visc) dx dz (2.17)
y==%1

with

Press = Pnap — Vipm
Conv = n;U;vy, (2.18)

. _ ) BZ/{@ 8Vn ) 8m 8n2n
Visc = —vy [m <8yn + 83%) U; <8yn + z; )} .

(From (2.14), the relation (2.15) defining the adjoint operator reduces to
(A0, ©) = —BT. (2.19)

2.4. Gradient estimate

We now have the liberty to choose boundary conditions and right-hand side terms for the
adjoint problem such that the relation (2.19) can be utilized to calculate the gradient of
J. By comparing equations (2.10), (2.17), (2.18) and (2.19), it appears that a judicious
choice for the definition of the adjoint problem is:

04151& + ﬂlfsu’ (U - <u>)

*y z ﬂ25v’ (U - <U>)
AW =T 060+ Bbur (w — (w)) (2.20)
0

with boundary conditions at the wall:

0
MUn + Vwa—:;’:l =
Nop =0 (2.21)
0
N3Up + Vwﬂ =0
Yn

In doing so, (2.19) can be re-written as:

DIs_ j PRI I S
D¢¢_ At//y::l:l [n1¢u+<7r 2Vwayn>¢v+n3¢w] drdz



Sub-optimal control based wall models for LES 7

3
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Since (2.22) is valid for all directions ¢, the gradient of 7 may be extracted:

DT 2n

Doy = Atm,w + ) 1

Dj 8n2n 2’72 4A 3

29— At 1y — 20 22 A 2.22
D7 273

D—¢3 — At773,w + A ¢37

where the subscript w stands for the values at the wall. A control procedure using a
simple steepest descent algorithm at each time step may now be proposed such that:

nt+1,k+1 _ ntlk DJ(¢n+1’k)
¢ =9 W h (2.23)

where the parameter p can be varied to change the rate of convergence and the extra
superscript k refers to the subiterations in the descent algorithm. Note that the adjoint
operator depends on the state vector (u;, P)?" at time n + 1 so that the state equation
and the adjoint problem must be solved simultaneously to obtain the sub-optimal ap-
proximate boundary conditions. The adjoint problem (2.20) with boundary conditions
(2.21) is discretized and solved using the same numerics as the flow solver. Note that the
resulting gradient of the objective function is an approximation since the spatial terms
in (2.11) are assumed to be continuous, the gradient of the eddy viscosity, Dy /D¢, is
assumed to be zero, and we have omitted a term in (2.10). An exact adjoint problem
could be formulated from the fully discretized equations of state, but this is considerably
more difficult than the current approach. More details about the algorithm used to solve
the adjoint problem may be found in Nicoud et al. (2000).

3. Results
3.1. Objective function for mean flow only

The first test is to see if the addition of the transpiration velocity control to the wall
stress controls results in an improvement of the prediction of the mean velocity profile. In
the following, the reference mean velocity profile is taken as u;ef =2411lnyT +5.2. This
version of the logarithmic law was suggested by P. Bradshaw (private communication)
for high Reynolds number flows. To test the influence of transpiration velocity only on
the mean velocity profile, the constants 3; in the objective function, (2.3), are set to
zero so that only the desired mean velocity profile is targeted. For this simulation the
parameters in the objective function (2.3) were: a1 = a3 = 1,81 = 2 = 5 = 0,11 =
v3 = 107,75 = 0.02, and A = 0. The relaxation parameter in the steepest descent
algorithm was pu = 103,

Figure 1 shows that, indeed, the addition of the transpiration control improves the
mean velocity profile slightly over the case when only wall stress controls are considered.
Also shown in Figure 1 is the mean velocity profile obtained by using the simple wall
stress model of Piomelli et al. (1989) that correlates the the streamwise wall stress to
the streamwise velocity at a point away from the wall and slightly downstream. The
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FIGURE 1. Mean velocity profiles with objective to control mean flow only. ( ): control
includes wall stresses and transpiration; (———- ): control includes wall stresses only; (—-— ):
no control, uses wall stress model of Piomelli et al. (1989); (-------- ): logarithmic reference profile,
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FIGURE 2. Velocity fluctuation intensities with objective to control mean flow only. ( ):
control includes wall stresses and transpiration; (---- ): control includes wall stresses only;
(- ): reference profiles of Kravchenko, Moin & Moser (1996).

latter model yields results that are typical of most current wall stress models for this
flow configuration.

The improvement in the mean velocity profile is encouraging. However, Figure 2 shows
the root mean square (rms) velocity fluctuations for the sub-optimal wall stress boundary
conditions with and without the addition of transpiration velocity control. The rms ve-
locity fluctuations actually increase with the addition of transpiration which is certainly
in the wrong direction since the fluctuation intensities are already over-predicted.
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FIGURE 3. Velocity fluctuation intensities with objective to control mean flow and rms velocities.
): control includes wall stresses and transpiration; (———- ): control includes wall stresses
only; (- ): reference profiles of Kravchenko, Moin & Moser (1996).

3.2. Objective function including mean flow and rms velocities

In Nicoud et al. (2000), it was shown that sub-optimal wall stress boundary conditions
alone had little effect on the velocity fluctuation intensities even when the objective func-
tion included a component that targeted the fluctuations. The addition of a transpiration
velocity control improves matters to some extent. For this simulation the parameters
in the objective function (2.3) were: @y = a3 = 1,8, = B = 3 = 3 x 1074,y =
5x107%, v = 1073, v3 = 4 x 1075 and XA = 5 x 1073, The relaxation parameter in the
steepest descent algorithm was p = 500 for ¢, and 10° for ¢,, and ¢,,.

Figure 3 shows the rms velocities when the rms component is included in the objective
function. As illustrated in Figure 3, the prediction of the rms velocities improves when the
transpiration velocity control is added, however the streamwise rms velocity is still over-
predicted near the wall. Not shown for this simulation is the mean velocity profile, which
in this case, is not as good as the mean velocity profile that is achieved in the previous
section when only the mean velocity profile is targeted by the controls. If shown, it would
lie between the two mean velocity profiles in Figure 1 corresponding to wall stress only
control and wall stress plus transpiration velocity control. Furthermore, the region in
which the improved predictions occur is limited to approximately the first three grid
cells adjacent to the wall.

The results of this simulation show that the prediction of velocity fluctuation inten-
sities can be improved by the addition of a wall-normal velocity approximate boundary
condition. But, the fact that the mean velocity profile is not as well predicted when the
velocity fluctuations are targeted through the objective function, suggests that the ob-
jectives of getting the correct mean velocity profile and the correct rms velocities may
be competing objectives.

3.3. Vaulidating the gradient of the objective function

The fact that there was not more improvement in the prediction of the objective profiles
with the addition of the transpiration velocity control might suggest that the approximate
gradient of the objective function is inaccurate. To validate the gradient computation,
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finite difference approximations to the gradient were calculated. This is relatively simple
to do. Given a control vector ¢ and a velocity field u, choose a small value of ¢ and
perturb the control vector at one point by the amount e (e.g. add € to 714 at one point
on the lower wall) to obtain a new control vector ¢ + e&. Now advance the velocity field
one time step and explicitly calculate the value of the objective function (2.3), that is,
calculate J (¢ + e®). The approximate gradient in the direction ¢ is then:

DJ .  J(p+ed)—T(9)

By comparing the approximation (3.1) to a centered difference approximation, it was
found that € = 1072 produces good approximations to the gradient. By successively
perturbing the control vector ¢ at every point it is possible to approximate the entire
gradient DJ/D¢. This finite difference gradient approximation can then be compared
to the gradient approximated by the adjoint problem described above.

In the case when only wall stress boundary condition controls are used (as in Nicoud
et al. (2000)), it was found that the correlation between the two gradient approximations
was generally in excess of 90%. When the transpiration velocity control is considered
in addition to the wall stress controls, as in the present work, it was found that the
correlation between the two gradient approximations was generally in excess of 80%, but
in some cases was lower. Thus we are led to believe that the adjoint problem defined above
may be yielding satisfactory approximations to the gradient of the objective function, but
further work is necessary to determine if the gradient approximation can be improved.

3.4. Is there a simple, linear, general model?

In Nicoud et al. (2000) the data from the sub-optimally controlled simulation at Re, =
4000 in which the wall stresses were used as control was used to derive a simple, linear
model to predict the wall stresses from the local velocity field. In short, linear regression
was used to find the localized convolution coefficients for the velocity field that best
predicted the wall stresses in a least squares sense. This procedure yielded a wall stress
model that was inexpensive to compute and accurately reproduced the results of the sub-
optimally controlled simulation. Furthermore, this same linear model was able to yield
similarly good predictions of the mean velocity profile, for Reynolds numbers ranging
from Re, = 180 to Re, = 20000 when the same grid was used as for the sub-optimally
controlled simulation. Even when the grid was refined, by the same amount in each
direction so that the aspect ratio of the grid remained unchanged, the same linear model
continued to produce good results. Further details about the derivation of this wall model
can be found in Nicoud et al. (2000).

Unfortunately, as we show here, this simple linear model derived in is not going to be
a panacea. Figure 4 shows the mean velocity profiles for several channel flow LES’s at
Re; = 4000 all using the same number of grid points as the simulations discussed above
and using the simple linear wall stress model derived in Nicoud et al. (2000). In each case
some reasonable modification has been made. For instance, a fully conservative fourth
order finite difference scheme was used and as shown in the figure, the mean-velocity is
under-predicted. To test the effects of the numerics on the efficacy of the wall model, two
different things were tried: stretching the grid in the wall-normal direction, and modifying
the dynamic procedure as suggested by Cabot & Moin (2000). As Figure 4 shows, the
simple linear wall stress model performs worse in every one of these cases than in the
original simulation for which it was designed.
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FIGURE 4. Mean velocity profiles using fixed, simple linear model for the wall stresses derived
in Nicoud et al. (2000). (------- ): logarithmic reference profile, u:ef =241lny" +5.2; ( ):
model reproduces mean profile when used in same setting that it was derived; (--—- ): same
model with fourth-order finite differences; (—-— ): same model with modified dynamic proce-

dure as in Cabot & Moin (2000); (-- o -~ ): same model with stretched wall-normal grid

4. Discussion

It was expected that the addition of the transpiration velocity control would allow
the wall model to influence a larger fraction of the flow domain than when using wall
stress controls alone. This expectation is is due to two suppositions: 1. a transpiration
velocity boundary condition directly effects the entire low domain through the continuity
equation, and 2. the transpiration velocity control should enhance the level resolved
turbulence in the near-wall cells leading to less reliance on the inaccurate Smagorinsky
SGS model. However, the addition of the transpiration velocity control, while improving
matters, does not completely fix everything.

It seems unlikely that approximate boundary condition wall models can do much bet-
ter than those produced by these sub-optimally controlled simulations (of course, there
is still some room to improve the simulations in this work by finding better gradient ap-
proximations and exploring other combinations of parameters). There are other culprits
at work here, however, for instance the Smagorinsky SGS model is known to be unable
to correctly predict the subgrid scale stresses in the logarithmic region at this coarse
resolution (Baggett, Jiménez & Kravchenko (1997)). Further efforts to solve the problem
of approximate boundary conditions for LES need to be made in tandem with improving
the subgrid scale in the anisotropic logarithmic region. The only alternative being to
start the LES computation at some plane parallel to the wall beyond which the LES can
be trusted. In that case, the boundary conditions for all the velocity components need
to be supplied in the interior of the turbulent flow and that problem has been shown to
be extremely difficult; see Cabot & Moin (2000) for a review of some of these attempts
at finding “off-wall” boundary conditions.

The simple, linear, wall stress model derived in Nicoud et al. (2000) was shown to
not be robust to changes in the numerical scheme and/or the SGS model. It therefore
seems unlikely that any single, explicitly defined simple model is unlikely to work in the
variety of flows necessary to make it useful as a predictive tool for LES. Perhaps a more
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promising direction is to employ some kind of online optimization or control to force
the LES solution near the computational boundaries to match an adaptively computed
RANS solution. To this end, B. Mohammadi has proposed a new generalized objective
function that would allow the use of more general non-parallel reference velocity profiles
by targeting the tangential velocities:

+1 .
Jmean,i(u; ¢) = /71 (6114: (y)? +5t(y)) dy, (4.1)
with
Ou, (y) = %//(ut — Uy ref) dr dz (4.2)
and
50) = [ [ 1= el oz (43)

where u; = @ - is the tangential (to the wall) velocity component. Preliminary computa-
tions of the gradient of this objective function, by finite difference approximations, show
that the gradients of this new objective function are very different than those of (2.3).
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