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Sub-optimal control based wall models for LES |

including transpiration velocity

By J. S. Baggett y, F. Nicoud z, B. Mohammadi {, T. Bewley k J. Gullbrand

yy, and O. Bottela zz

1. Introduction

1.1. Background

One of the primary reasons that Large Eddy Simulation (LES) is not yet practical for

many 
ows of engineering interest is the high resolution required in turbulent boundary

layers. The only way to simulate many 
ows is to completely bypass the simulation of

the near-wall turbulence and to model its e�ects on the 
ow away from the wall. If the

near-wall 
ow is not computed then the no-slip boundary condition does not apply and

the wall stresses are required to close the usual �nite di�erence approximations to the

viscous terms.

The simplest wall stress models correlate the wall stresses to the tangential velocities

at the �rst o�-wall grid points. More complex models for the wall stresses rely on the

integration of boundary layer equations on an auxiliary mesh embedded near the wall.

See Cabot & Moin (2000) for a recent review of wall stress models. These models perform

adequately at low to moderate Reynolds numbers in simple 
ows, but they fail to produce

good results at higher Reynolds numbers even in simple channel 
ow (Nicoud et al.

(2000)). The current generation of wall stress models attempts to reproduce the physics

of the wall stresses averaged over the �lter width of the outer LES computation. However,

none of these models can compensate for the numerical and subgrid-scale (SGS) modeling

errors that are intrinsic to an LES computation which necessarily relies on a low-order

numerical scheme and an exceedingly coarse near-wall mesh.

To �nd wall models, in the form of approximate boundary conditions, that can com-

pensate for the errors intrinsic to under-resolved LES, we use techniques from optimal

control theory. In our approach, a sub-optimal control strategy is used in which the ob-

jective is to force the outer LES towards a desired solution by using the approximate

boundary conditions as control. In previous work (Nicoud et al. (2000)), this approach

was tested by using wall stress boundary conditions as control to force the mean velocity

of a coarse-grid LES of channel 
ow at high Reynolds number towards a logarithmic

velocity pro�le. It was found that the resulting wall stress boundary conditions yielded

much better results, in terms of the mean velocity pro�le, than existing wall stress models

at high Reynolds numbers. Furthermore, it was found that the resulting wall stresses were

well correlated with the local velocity �eld and that the dynamically relevant portion of

the wall stresses could be predicted by a relatively simple linear model.
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Furthermore, it was found that the wall stresses generated by the sub-optimal control

strategy, while improving the prediction of the mean velocity pro�le considerably, did not

improve the prediction of the velocity 
uctuations. This may have been due to the inad-

equacy of the dynamic Smagorinsky sub-grid scale model in the anisotropic logarithmic

region of the channel 
ow, but it could also have been that wall stress boundary condi-

tions alone cannot fully compensate for the errors in the vicinity of the computational

boundary. Generally, any improvements in the prediction of the outer 
ow were limited

primarily to a region extending only a few grid cells from the wall.

When wall stress boundary conditions are used to model the in
uence of the near-wall

region on the outer 
ow, it is usually assumed that the wall-normal velocity is identically

zero at the boundary. However, since the no-slip boundary condition cannot be applied

without adequate near-wall resolution, perhaps it does not make sense to insist that

the velocity normal to the boundary is zero. After all, a wall model should capture the

e�ects of the near-wall turbulence on the outer 
ow, including such hallmarks of near-wall

turbulence as ejections and sweeps. In any case, the combination of non-zero boundary-

normal velocity with wall stresses should allow the approximate boundary condition

wall model to in
uence more of the computational domain than wall stress boundary

conditions alone since the boundary-normal velocity e�ects the entire 
ow directly via

the continuity equation.

It is the objective of the current work to test the e�ect of including a transpiration

velocity approximate boundary condition (net transpiration will be zero) in addition to

the wall stress boundary conditions in the sub-optimal control framework �rst explored in

Nicoud et al. (2000). The sub-optimal control framework, including transpiration velocity,

was �rst presented in Nicoud & Baggett (1999), but it is presented again here in a slightly

more general form. We also discuss whether or not simple, algebraic models derived from

the sub-optimally controlled simulations are likely to be successful.

2. Sub-optimal control framework

2.1. Channel 
ow

We consider the LES of incompressible, turbulent channel 
ow on a uniform mesh with

32 volumes in the streamwise and spanwise directions and 33 volumes in the wall-normal

direction. A staggered grid system is used with second order �nite di�erences for the spa-

tial derivatives and a third-order Runga-Kutta discretization for the time advancement.

Periodic boundary conditions are imposed in the two directions x

1

and x

3

(or x and

z) parallel to the walls. The SGS model is the Smagorinsky model with the coe�cient

determined by the plane-averaged dynamic procedure of Germano et al. (1991). Unless

otherwise stated, all quantities are nondimensionalized by the friction velocity, u

�

, and

channel half-height, h. The channel walls are at y = �1: The skin friction Reynolds num-

ber is de�ned as Re

�

= u

�

h=�: When the mean 
ow is statistically converged the mean

streamwise pressure gradient is equal to the wall stress, that is, �@P=@x = h�

w

i = 1:

All of the simulations in this work were performed at Re

�

= 4000 in a computational

domain with dimensions 2�h� 2h� 2�h=3 in the streamwise (x

1

or x), wall-normal (x

2

or y), and spanwise (x

3

or z) directions, respectively.

The governing equations are:
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(2.1)

@u

j

@x

j

= 0

The pressure, P , contains a mean forcing component such that h�@P=@xi = 1: Note

that no speci�c notation is used to describe spatial �ltering associated with the LES

formulation, rather each variable, herein, should be understood as the �ltered counterpart

of the actual variable (e.g. u

i

� �u

i

).

Since the no-slip boundary condition does not apply on the coarse mesh used here,

the boundary conditions that are supplied are the wall stresses �

w

12

and �

w

32

as well as

the normal velocity at the wall, v

w

. The boundary conditions, speci�ed in terms of the

control parameter, phi, which is de�ned below, on (2.1) are:
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(2.2)
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where the subscript n stands for the outward normal to the wall and �

w

is the wall value of

the total dynamic viscosity �+�

t

(in this work �

w

� �). The control parameter � is de�ned

as � = (�

u

; �

v

; �

w

) = (�

w

12

; v

w

; �

w

32

) at y = +1 and � = (�

u

; �

v

; �

w

) = �(�

w

12

; v

w

; �

w

32

) at

y = �1:

2.2. Objective function

In the sub-optimal control approach, the boundary conditions (speci�ed by the control

parameter �) are used as control to minimize an objective function at each time step. The

goal being to provide numerical boundary conditions to the 
ow solver so that the overall

solution is consistent with what is expected in a channel 
ow. The objective function is

speci�ed as follows:

J (u;�) =

X

i=1;3

J

mean;i

(u;�) +

3

X

i=1

J

rms;i

(u;�) +

3

X

i=1

J

penalty;i

(�): (2.3)

The objective function consists of the three components. J

mean

measures the distance

from the plane-averaged LES solution to a desired reference velocity pro�le. The second

component, J

rms

measures the distance from the plane-averaged velocity 
uctuation

intensities to desired target pro�les. Finally, the third component, J

penalty

penalizes

the use of large controls �. The component objective functions are de�ned below.

For the mean streamwise velocity the target or reference pro�le is taken as a logarithmic

velocity pro�le throughout the channel: u

+

1;ref

= �

�1

ln y

+

+ C. The spanwise velocity

reference pro�le is simply u

3;ref

� 0. The di�erence between the reference velocity pro�le

and the plane-averaged LES solution is a function of the wall-normal coordinate, y; and

can be expressed as

�

u

i

(y) =

1

A

Z Z

(u

i

� u

i;ref

) dx dz (i = 1; 3) (2.4)

where A is the channel area in the homogeneous plane. Note that any reference pro�le

suitable for a parallel 
ow could have been used. Notably, a more realistic shape could

have been used near the channel center. However, the logarithmic pro�le is well suited
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for the near-wall region since we are using a coarse mesh and the Reynolds number,

Re

�

= 4000; is su�ciently high so that the �rst grid point lies in the logarithmic region

(y

+

� 121). The mean component of the objective function is then:

J

mean;i

(u;�) = �

i

Z

+1

�1

�

u

i

(y)

2

dy; (i = 1; 3) (2.5)

Note that there is no need to specify a target pro�le for the plane-averaged wall-normal

velocity since that will be identically zero at each time step provided there is no net

transpiration velocity through the boundaries.

The velocity 
uctuation intensities are targeted through the J

rms

component of the

objective function. The plane-averaged, mean square velocity 
uctuations are compared

at each time step to the mean square velocity 
uctuations, (u

0

i;ref

)

2

; from the LES of

Kravchenko, Moin & Moser (1996) which was performed at the same Reynolds number,

Re

�

= 4000; using a zonally de�ned mesh to resolve the near-wall region. The distance

between the plane-averaged mean square velocity 
uctuations and their reference pro�les

can be measured as

�

u

0

i

(y) =

1

A

Z Z

�

(u

i

� hu

i

i)

2

� u

02

i;ref

�

dx dz; (i = 1; 2; 3); (2.6)

where hu

i

i denotes the average over the homogeneous directions of the velocity component

u

i

. The velocity 
uctuation intensity component of the objective function is then

J

rms;i

(u;�) = �

i

Z

+1

�1

�

u

0

i

(y)

2

dy (i = 1; 2; 3) (2.7)

Finally, to prevent numerical instabilities it is necessary to regularize the control, that

is, the approximate boundary conditions, by including a penalty component in the overall

objective function:

J

penalty;i

(�) =




i

A

Z

y=�1

�

2

u

i

dx dz +

�

A

Z

y=�1

�

i2

�

4

u

2

dx dz (i = 1; 2; 3): (2.8)

The �rst term in the penalty component attempts to prevent the mean square norm of the

control parameter from becoming too large. In the case of transpiration velocity control,

however, it was found that it is necessary to prevent the transpiration velocity from

becoming too large at any single point, hence the second term in the penalty component

(2.8) was added.

Note that each component of the objective function includes a scalar parameter: �

i

,

�

i

, 


i

, or �. These scalars allow the relative importance of the various objectives to be

changed in the overall objective.

2.3. Adjoint problem

The gradient of the objective function J with respect to the control parameter � is

estimated by using the Fr�echet di�erential (Vainberg (1964)) de�ned for any functional

F as:

DF

D�

~

� = lim

�!0

F (�+ �

~

�)� F (

~

�)

�

; (2.9)

where

~

� is an arbitrary direction. From (2.3) the gradient J is:
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A

U

i

dx dy dz (2.10)
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where U

i

denotes the Fr�echet derivative of u

i

y. The gradient of J cannot be calculated

directly from (2.10) since the derivatives U

i

are unknown.

To calculate an approximation to the gradient of J we start by assuming that the

equation of state, (2.1), is discretized in time by a semi-implicit discretization:
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with the boundary conditions (2.2). The terms which depend only on the variables at

the previous time step n are gathered in the generic notation RHS

n

and disappear in the

analytical development.

We now formulate an adjoint problem to �nd the gradient (2.10). The �rst step is to

take the derivative of (2.11) with respect to the control �:
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:

The righthand side term in (2.12) is now zero since the 
ow �eld at time step n does

not depend on the control � for the current time step. Therefore, the superscript 'n+1'

has been dropped for clarity. Note also in (2.12) that the Fr�echet derivative of the eddy

viscosity was assumed to be zero, that is, D�

t

=D� = 0. The latter approximation can

be justi�ed for short time intervals; see Collis & Chang (1999). Moreover, this system of

equations is linear in the variables U

i

and P ; where P is the Fr�echet derivative of the

pressure. Therefore it can be written in the form:

A� = 0; (2.14)

y Technically, the second term in (2.10) should include the integral

R R R




2

�

u

0

i

(u

i

�hu

i

i)

A

(U

i

� hU

i

i) dxdy dz, but we make the approximation that hU

i

i � 0

since jhU

i

ij � jU

i

j in general.
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where A is the linear operator acting on the vector � = (U

i

;P)

T

. The linear system

(2.14) with unknown boundary conditions (2.13) cannot be solved directly, instead, an

adjoint operator, A

�

; is formulated by considering the equation

hA�;	i = h�;A

�

	i+BT; (2.15)

where h�; �i stands for the inner product de�ned as the integral over the 
ow domain of

the dot product of the two vectors and 	 is the adjoint state vector 	 = (�

i

; �)

T

: Finding

the adjoint operator, A

�

, and the boundary terms, BT, is a straightforward exercise in

integrating by parts. The adjoint operator acting on the adjoint state vector, that is,

A

�

	 is de�ned by the equations:

A

�
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8

<
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�
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��i
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j

@x

j

(2.16)

and the boundary terms are:

BT = �t

Z Z

y=�1

(Press + Conv + Visc) dx dz (2.17)

with

Press = P�

2n

� V

n

�

Conv = �

i

U

i

v

n

(2.18)

Visc = ��

w

�

�

i

�
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i
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n

+

@V

n

@x

i

�

� U

i

�

@�

i

@y

n

+

@�

2n

@x

i

��

:

>From (2.14), the relation (2.15) de�ning the adjoint operator reduces to

hA

�

	;�i = �BT: (2.19)

2.4. Gradient estimate

We now have the liberty to choose boundary conditions and right-hand side terms for the

adjoint problem such that the relation (2.19) can be utilized to calculate the gradient of

J . By comparing equations (2.10), (2.17), (2.18) and (2.19), it appears that a judicious

choice for the de�nition of the adjoint problem is:
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(2.20)

with boundary conditions at the wall:
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�
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In doing so, (2.19) can be re-written as:
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3
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~

�
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i
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Since (2.22) is valid for all directions

~

�, the gradient of J may be extracted:

DJ

D�

1

= �t�

1;w

+
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1
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2

(2.22)

DJ

D�

3

= �t�

3;w

+

2


3

A

�

3

;

where the subscript w stands for the values at the wall. A control procedure using a

simple steepest descent algorithm at each time step may now be proposed such that:

�

n+1;k+1

= �

n+1;k

� �

DJ (�

n+1;k

)

D�

(2.23)

where the parameter � can be varied to change the rate of convergence and the extra

superscript k refers to the subiterations in the descent algorithm. Note that the adjoint

operator depends on the state vector (u

i

; P )

T

at time n + 1 so that the state equation

and the adjoint problem must be solved simultaneously to obtain the sub-optimal ap-

proximate boundary conditions. The adjoint problem (2.20) with boundary conditions

(2.21) is discretized and solved using the same numerics as the 
ow solver. Note that the

resulting gradient of the objective function is an approximation since the spatial terms

in (2.11) are assumed to be continuous, the gradient of the eddy viscosity, D�

t

=D�; is

assumed to be zero, and we have omitted a term in (2.10). An exact adjoint problem

could be formulated from the fully discretized equations of state, but this is considerably

more di�cult than the current approach. More details about the algorithm used to solve

the adjoint problem may be found in Nicoud et al. (2000).

3. Results

3.1. Objective function for mean 
ow only

The �rst test is to see if the addition of the transpiration velocity control to the wall

stress controls results in an improvement of the prediction of the mean velocity pro�le. In

the following, the reference mean velocity pro�le is taken as u

+

ref

= 2:41 ln y

+

+5:2: This

version of the logarithmic law was suggested by P. Bradshaw (private communication)

for high Reynolds number 
ows. To test the in
uence of transpiration velocity only on

the mean velocity pro�le, the constants �

i

in the objective function, (2.3), are set to

zero so that only the desired mean velocity pro�le is targeted. For this simulation the

parameters in the objective function (2.3) were: �

1

= �

3

= 1; �

1

= �

2

= �

3

= 0; 


1

=




3

= 10

�4

; 


2

= 0:02; and � = 0: The relaxation parameter in the steepest descent

algorithm was � = 10

3

:

Figure 1 shows that, indeed, the addition of the transpiration control improves the

mean velocity pro�le slightly over the case when only wall stress controls are considered.

Also shown in Figure 1 is the mean velocity pro�le obtained by using the simple wall

stress model of Piomelli et al. (1989) that correlates the the streamwise wall stress to

the streamwise velocity at a point away from the wall and slightly downstream. The
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Figure 1. Mean velocity pro�les with objective to control mean 
ow only. ( ): control

includes wall stresses and transpiration; ( ): control includes wall stresses only; ( ):

no control, uses wall stress model of Piomelli et al. (1989); ( ): logarithmic reference pro�le,

u

+

ref

= 2:41 ln y

+

+ 5:2
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Figure 2. Velocity 
uctuation intensities with objective to control mean 
ow only. ( ):

control includes wall stresses and transpiration; ( ): control includes wall stresses only;

( ): reference pro�les of Kravchenko, Moin & Moser (1996).

latter model yields results that are typical of most current wall stress models for this


ow con�guration.

The improvement in the mean velocity pro�le is encouraging. However, Figure 2 shows

the root mean square (rms) velocity 
uctuations for the sub-optimal wall stress boundary

conditions with and without the addition of transpiration velocity control. The rms ve-

locity 
uctuations actually increase with the addition of transpiration which is certainly

in the wrong direction since the 
uctuation intensities are already over-predicted.
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Figure 3. Velocity 
uctuation intensities with objective to control mean 
ow and rms velocities.

( ): control includes wall stresses and transpiration; ( ): control includes wall stresses

only; ( ): reference pro�les of Kravchenko, Moin & Moser (1996).

3.2. Objective function including mean 
ow and rms velocities

In Nicoud et al. (2000), it was shown that sub-optimal wall stress boundary conditions

alone had little e�ect on the velocity 
uctuation intensities even when the objective func-

tion included a component that targeted the 
uctuations. The addition of a transpiration

velocity control improves matters to some extent. For this simulation the parameters

in the objective function (2.3) were: �

1

= �

3

= 1; �

1

= �

2

= �

3

= 3 � 10

�4

; 


1

=

5 � 10

�5

; 


2

= 10

�3

; 


3

= 4� 10

�6

and � = 5� 10

�3

: The relaxation parameter in the

steepest descent algorithm was � = 500 for �

u

2

and 10

5

for �

u

1

and �

u

3

.

Figure 3 shows the rms velocities when the rms component is included in the objective

function. As illustrated in Figure 3, the prediction of the rms velocities improves when the

transpiration velocity control is added, however the streamwise rms velocity is still over-

predicted near the wall. Not shown for this simulation is the mean velocity pro�le, which

in this case, is not as good as the mean velocity pro�le that is achieved in the previous

section when only the mean velocity pro�le is targeted by the controls. If shown, it would

lie between the two mean velocity pro�les in Figure 1 corresponding to wall stress only

control and wall stress plus transpiration velocity control. Furthermore, the region in

which the improved predictions occur is limited to approximately the �rst three grid

cells adjacent to the wall.

The results of this simulation show that the prediction of velocity 
uctuation inten-

sities can be improved by the addition of a wall-normal velocity approximate boundary

condition. But, the fact that the mean velocity pro�le is not as well predicted when the

velocity 
uctuations are targeted through the objective function, suggests that the ob-

jectives of getting the correct mean velocity pro�le and the correct rms velocities may

be competing objectives.

3.3. Validating the gradient of the objective function

The fact that there was not more improvement in the prediction of the objective pro�les

with the addition of the transpiration velocity control might suggest that the approximate

gradient of the objective function is inaccurate. To validate the gradient computation,
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�nite di�erence approximations to the gradient were calculated. This is relatively simple

to do. Given a control vector � and a velocity �eld u; choose a small value of � and

perturb the control vector at one point by the amount � (e.g. add � to �

w

12

at one point

on the lower wall) to obtain a new control vector �+ �

~

�. Now advance the velocity �eld

one time step and explicitly calculate the value of the objective function (2.3), that is,

calculate J (�+ �

~

�). The approximate gradient in the direction

~

� is then:

DJ

D�

~

� �

J (�+ �

~

�)�J (�)

�

(3.1)

By comparing the approximation (3.1) to a centered di�erence approximation, it was

found that � = 10

�3

produces good approximations to the gradient. By successively

perturbing the control vector � at every point it is possible to approximate the entire

gradient DJ =D�: This �nite di�erence gradient approximation can then be compared

to the gradient approximated by the adjoint problem described above.

In the case when only wall stress boundary condition controls are used (as in Nicoud

et al. (2000)), it was found that the correlation between the two gradient approximations

was generally in excess of 90%. When the transpiration velocity control is considered

in addition to the wall stress controls, as in the present work, it was found that the

correlation between the two gradient approximations was generally in excess of 80%, but

in some cases was lower. Thus we are led to believe that the adjoint problem de�ned above

may be yielding satisfactory approximations to the gradient of the objective function, but

further work is necessary to determine if the gradient approximation can be improved.

3.4. Is there a simple, linear, general model?

In Nicoud et al. (2000) the data from the sub-optimally controlled simulation at Re

�

=

4000 in which the wall stresses were used as control was used to derive a simple, linear

model to predict the wall stresses from the local velocity �eld. In short, linear regression

was used to �nd the localized convolution coe�cients for the velocity �eld that best

predicted the wall stresses in a least squares sense. This procedure yielded a wall stress

model that was inexpensive to compute and accurately reproduced the results of the sub-

optimally controlled simulation. Furthermore, this same linear model was able to yield

similarly good predictions of the mean velocity pro�le, for Reynolds numbers ranging

from Re

�

= 180 to Re

�

= 20000 when the same grid was used as for the sub-optimally

controlled simulation. Even when the grid was re�ned, by the same amount in each

direction so that the aspect ratio of the grid remained unchanged, the same linear model

continued to produce good results. Further details about the derivation of this wall model

can be found in Nicoud et al. (2000).

Unfortunately, as we show here, this simple linear model derived in is not going to be

a panacea. Figure 4 shows the mean velocity pro�les for several channel 
ow LES's at

Re

�

= 4000 all using the same number of grid points as the simulations discussed above

and using the simple linear wall stress model derived in Nicoud et al. (2000). In each case

some reasonable modi�cation has been made. For instance, a fully conservative fourth

order �nite di�erence scheme was used and as shown in the �gure, the mean-velocity is

under-predicted. To test the e�ects of the numerics on the e�cacy of the wall model, two

di�erent things were tried: stretching the grid in the wall-normal direction, and modifying

the dynamic procedure as suggested by Cabot & Moin (2000). As Figure 4 shows, the

simple linear wall stress model performs worse in every one of these cases than in the

original simulation for which it was designed.
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Figure 4. Mean velocity pro�les using �xed, simple linear model for the wall stresses derived

in Nicoud et al. (2000). ( ): logarithmic reference pro�le, u

+

ref

= 2:41 ln y

+

+5:2; ( ):

model reproduces mean pro�le when used in same setting that it was derived; ( ): same

model with fourth-order �nite di�erences; ( ): same model with modi�ed dynamic proce-

dure as in Cabot & Moin (2000); ( o ): same model with stretched wall-normal grid

4. Discussion

It was expected that the addition of the transpiration velocity control would allow

the wall model to in
uence a larger fraction of the 
ow domain than when using wall

stress controls alone. This expectation is is due to two suppositions: 1. a transpiration

velocity boundary condition directly e�ects the entire 
ow domain through the continuity

equation, and 2. the transpiration velocity control should enhance the level resolved

turbulence in the near-wall cells leading to less reliance on the inaccurate Smagorinsky

SGS model. However, the addition of the transpiration velocity control, while improving

matters, does not completely �x everything.

It seems unlikely that approximate boundary condition wall models can do much bet-

ter than those produced by these sub-optimally controlled simulations (of course, there

is still some room to improve the simulations in this work by �nding better gradient ap-

proximations and exploring other combinations of parameters). There are other culprits

at work here, however, for instance the Smagorinsky SGS model is known to be unable

to correctly predict the subgrid scale stresses in the logarithmic region at this coarse

resolution (Baggett, Jim�enez & Kravchenko (1997)). Further e�orts to solve the problem

of approximate boundary conditions for LES need to be made in tandem with improving

the subgrid scale in the anisotropic logarithmic region. The only alternative being to

start the LES computation at some plane parallel to the wall beyond which the LES can

be trusted. In that case, the boundary conditions for all the velocity components need

to be supplied in the interior of the turbulent 
ow and that problem has been shown to

be extremely di�cult; see Cabot & Moin (2000) for a review of some of these attempts

at �nding \o�-wall" boundary conditions.

The simple, linear, wall stress model derived in Nicoud et al. (2000) was shown to

not be robust to changes in the numerical scheme and/or the SGS model. It therefore

seems unlikely that any single, explicitly de�ned simple model is unlikely to work in the

variety of 
ows necessary to make it useful as a predictive tool for LES. Perhaps a more
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promising direction is to employ some kind of online optimization or control to force

the LES solution near the computational boundaries to match an adaptively computed

RANS solution. To this end, B. Mohammadi has proposed a new generalized objective

function that would allow the use of more general non-parallel reference velocity pro�les

by targeting the tangential velocities:

J

mean;i

(u;�) =

Z

+1

�1

�

�

u

t

(y)

2

+ �

t

(y)

�

dy; (4.1)

with

�

u

t

(y) =

1

A

Z Z

(u

t

� u

t;ref

) dx dz (4.2)

and

�

t

(y) =

1

A

Z Z

jj

~

t�

~

t

ref

jj dx dz (4.3)

where u

t

= ~u �

~

t is the tangential (to the wall) velocity component. Preliminary computa-

tions of the gradient of this objective function, by �nite di�erence approximations, show

that the gradients of this new objective function are very di�erent than those of (2.3).
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