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Preface

The field ofn-dimensional sphere packings is elegant and mature in its mathematical development and cha-
racterization. However, it is still relatively limited in its practical applications, especially forn > 3. The
present text intends to open up two broad new areas for profitable application of this powerful body of mathe-
matical literature in science and engineering. Towards this end, Part I reviews the essential results available
in this field (reconciling the theoretical literature for dense and rare sphere packings, which are today largely
disjoint), catalogs the key properties of the principle dense and rare sphere packings and corresponding nets
available up ton = 24 (including hundreds of values not previously known), andextends the study of regular
rare sphere packings and nets ton > 3 dimensions (an area which up to now has been largely unexplored).

Part II then builds from the presentation in Part I to developthree new algorithms (LABDOGS,αDOGS,
and latticeMADS) for performing efficient derivative-freeoptimization in non-differentiable problems with
expensive function evaluations, leveraging the lattices derivd from dense sphere packings as an alternati-
ve to Cartesian grids to coordinate the search. We pay particular attention to the improved uniformity and
nearest-neighbor configuration of the lattices used over their Cartesian alternatives, and the improvements in
efficiency of optimization algorithms coordinated by such lattices that follow as a direct consequence.

Finally, Part III builds from the presentation in Part I to develop new interconnect strategies for switchless
multiprocessor computer systems, leveraging the nets derived from rare sphere packings as alternatives to
Cartesian grids to establish structured, fast, and inexpensive interconnects. We pay particular attention to the
improved coordination sequences facilitated by such nets over their Cartesian alternatives, and the improve-
ments in the rate of spread of information across the computer system that follow as a direct consequence.

In the applications discussed in Parts II and III, Cartesiangrids are used as the default choice today in
almost all related realizations. A primary goal of this textis to subvert this dominant Cartesian paradigm and
to establish, via the examples we have chosen to highlight, that significant performance gains may be realized
in practical engineering applications by leveragingn-dimensional sphere packings appropriately.

A gentle introduction to sphere packing theory

An n-dimensional infinitesphere packingis simply an array of nodal points inRn obtained via the packing
of identicaln-dimensional spheres. Bypacking, we mean an equilibrium configuration of spheres, each with
at least 2 nearest neighbors, against which a repellant force is applied. Many packings investigated in the
literature arestablepackings, meaning that there is a restoring force associated with any small movement
of any node of the packing; this requires each sphere in the (n-dimensional) packing to have at leastn+ 1
neighbors. Unstable packings with lower nearest-neighborcounts are also of interest. By replacing each
sphere in ann-dimensional packing with a nodal point (representing, e.g., a computer), and connecting those
nodal points which are nearest neighbors, anet(a.k.a.interconnector contact graph) is formed1.

1As mentioned in the second-to-last paragraph of §2.3, it is natural with certain sphere packings (for example,D∗
n, Ar

n, and the
packings associated with theT90

n andT60
n nets) to define nets which arenot contact graphs of the corresponding sphere packings by

connecting non-nearest-neighbor points.
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n packing name ∆ Θ G τ td10

A2 triangular 0.9069 1.2092 0.08019 6 331

2 Z2 square 0.7854 1.5708 0.08333 4 221

A+
2 honeycomb 0.6046 2.4184 0.09623 3 166

E8 Gosset 0.2537 4.059 0.07168 240 1,006,201,681

8

Z8 Cartesian 0.01585 64.94 0.08333 16 1,256,465

V90
8 5.590e-4 49.89 0.09206 4 37,009

(unstable)
Y90

8 2.327e-4 87.31 0.09266 3 2290

Λ24 Leech 0.001930 7.904 0.06577 196560 > 1015

24
Z24 Cartesian 1.150e-10 4,200,263 0.08333 48 24,680,949,041

Table P.1. Characteristics of selected lattice and uninodal nonlattice packings and nets. Note thatn = 24 is a
natural stopping point in this study. It is special because it is the only integern > 1 that satisfies the equation
12 + 22 + . . .+ n2 = m2 wherem is itself an integer; as a consequence, a particularly uniform lattice with a
large number of symmetries is available in this dimension.

An n-dimensional reallattice (a.k.a.lattice packing) is a sphere packing which is shift invariant (that is,
which looks identical upon shifting any nodal point to the origin); this shift invariance generally makes lattice
packings simpler to describe and enumerate than their nonlattice alternatives. Note that there are many regu-
lar2 sphere packings which arenot shift invariant [the nonlattice packings corresponding tothe honeycomb
net in 2D and the diamond and quartz nets in 3D are some well-known examples]. We will focus our attention
in this text on those packings and nets which are at leastuninodal(that is, which look identical upon shifting
any nodal point to the origin and rotating and reflecting appropriately). Fordensesphere packings, from a
practical perspective, lattice packings are essentially3 as good a choice as their more cumbersome nonlattice
alternatives forn≤ 24 in terms of the four metrics defined below (that is, for maximizing packing density and
kissing number and minimizing covering thickness and quantization error). However, the bestrare sphere
packings (with small kissing number) are all nonlattice packings.

As illustrated in Table P.1 and Figure P.1, we may introduce the subject ofn-dimensional sphere packings
by focusing our attention first on then = 2 case: specifically, on thetriangular4 lattice (A2), the square
lattice (Z2), and thehoneycombnonlattice packing (A+

2 ). The characteristics of such sphere packings may be
quantified by the following measures:

• Thepacking radius(a.k.a.error-correction radius) of a packing,ρ, is the maximal radius of the spheres in
a set of identical nonoverlapping spheres centered at each nodal point.
• The packing densityof a packing,∆, is the fraction of the volume of the domain included within aset
of identical non-overlapping spheres of radiusρ centered at each nodal point on the packing. Packings that
maximize this metric are referred to asclose-packed.

• The covering radiusof a packing,R, is the maximum distance between any point in the domain and its
nearest nodal point on the packing. Thedeep holesof a packing are those points which are at a distanceR
from all of their nearest neighbors. Typical vectors from a nodal point to the nearest deep holes in a lattice

2The regularity of a nonlattice packing is quantified precisely in §4.1.
3For n = 10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denotedP10c, P11a, P13a, B ∗18, B

∗
20, A

∗
22) that are 8.3%, 9.6%,

9.6%, 4.0%, 5.2%, and 15.2% denser then the corresponding best known lattice packings (Conway & Sloane 1998, p. xix); to put this
into perspective, the density ofΛ22 is over 106 timesthe density ofZ22.

4Note that many in this field refer to theA2 lattice (Figure P.1a,b) as “hexagonal”. We prefer the unambiguous name “triangular” to
avoid confusion with the honeycomb nonlattice packing (Figure P.1e,f).

vi



DRAFT
(a) (b)

(c) (d)

(e) (f)

Figure P.1: The triangular lattice (a,b), the square lattice (c,d), and the honeycomb nonlattice packing (e,f).
Indicated in the left three subfigures is thepackingwith spheres of radiusρ, the correspondingnetor contact
graph(solid lines), a typicalVoronöı cell (dashed line), and thekissing number(that is, the spheres that contact
a given sphere). Indicated in the right three subfigures is the coveringwith spheres of radiusR. Looking at
their respective packing densities∆ in Table P.1, as compared with the square lattice, the triangular lattice is
said to bedense, and the honeycomb nonlattice packing is said to berare.

packing are often denoted[1], [2], etc.
• Thecovering thicknessof a packing,Θ, is the number of spheres of radiusR centered at each nodal point
containing an arbitrary point in the domain, averaged over the domain.

• TheVoronöı cell of a nodal point in a packing,Ω(Pi), consists of all points in the domain that are at least as
close to the nodal pointPi as they are to any other nodal pointPj .
• Themean squared quantization error per dimensionof a lattice or uninodal nonlattice packing,G, is the
average mean square distance of any point in the domain to itsnearest nodal point, normalized byn times the
appropriate power of the volume,V, of the Voronoı̈ cell. Shifting the origin to be at the centroid of a Voronoı̈
cell Ω(Pi), it is given by

G =
S

nV
n+2

n

where S=
Z

Ω(Pi)
|x|2dx, V =

Z

Ω(Pi)
dx. (1)
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• The kissing number(a.k.a.error coefficient) of a lattice or uninodal nonlattice packing,τ, is the number
of nearest neighbors to any given nodal point in the packing.That is, it is the number of spheres of radiusρ
centered at the nodal points of the packing that touch, or “kiss”, the sphere of radiusρ at the origin.
• The coordination numberof a net (derived from a sphere packing, as discussed previously) is the first
number of the net’scoordination sequence, the k’th element of which is given bytdk − tdk−1, wheretdk,
which quantifies the net’slocal topological density, is the total number of nodes reached viak hops or less
from the origin in the net5.

Certain applications, such as those explored in Part II, require dense lattices. There are two key drawbacks
with Cartesian approaches for such applications. First, thediscretization of space is significantly less uniform
when using the Cartesian grid as opposed to the available alternatives, as measured by the packing density∆,
the covering thicknessΘ, and the mean-squared quantization error per dimension,G (see Table P.1). Second,
theconfiguration of nearest-neighbor gridpoints is significantly more limitedwhen using the Cartesian grid,
as measured by the kissing numberτ, which is an indicator of the degree of flexibility availablewhen selecting
from nearest-neighbor points. As seen by comparing then = 2, n = 8, andn = 24 cases in Table P.1, these
drawbacks become increasingly substantial as the dimension n is increased; by the dimensionn = 24, the
Cartesian grid has

• a factor of 0.001930/1.1501e−10≈ 17,000,000 worse (lower) packing density,
• a factor of 4,200,263/7.9035≈ 530,000 worse (higher) covering thickness,
• a factor of 0.08333/0.0658≈ 1.27 worse (higher) mean-squared quantization error, and
• a factor of 196560/48≈ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus, the selection of the Cartesian grid, by default, for applica-
tions requiring dense (that is, uniform) lattices withn > 3 is simply untenable.

Other applications, such as those explored in Part III, require regular nets which, with low coordination
number, connect to a large number of nodes with each successive hop from the origin, as quantified by the
net’s coordination sequence. As mentioned previously, a useful measure of a net’s topological density is given,
e.g., bytd10, which is the number of distinct nodes within 10 hops of the origin. Note that the coordination
number of then-dimensional Cartesian grid is 2n; the coordination number of the alternativen-dimensional
constructions introduced in §4 are as small as 3 or 4, while the topological density increases rapidly asn is
increased (compare, e.g., the values oftd10 for A+

2 andZ2, with τ = 3 andτ = 4 respectively, to those forY90
8

andV
90
8 in Table P.1); it is thus seen that, for applications requiring graphs with low coordination number and

high topological density, the selection of the Cartesian grid, by default, is also untenable.
We are thus motivated to make the fundamental results of bothdense and raren-dimensional sphere

packing theory more broadly accessible to the science and engineering community, and to illustrate how this
powerful body of theory may be put to use in important new applications of practical relevance. Towards
this end, Part I succinctly reviews and extends several significant results in this mature and sophisticated
field, inter-relating the literature on dense and rare packings, which is today largely disjoint. These results are
leveraged heavily in the applications described in Parts IIand III. We note that, beyond providing an up-to-
date and synthetic review of this otherwise difficult subject in a (hopefully) accessible language, a significant
number of new computations, constructions, algorithms, metrics, and codes are also reported in Part I [the
reader is referred specifically to §3, §4.4.1through §4.4.7, §4.5, and §6.1.5].

5In most cases, the natural net to form from a sphere packing isthe contact graph; in such cases, the kissing number,τ, and the
coordination number are equal. As mentioned previously, itis natural with certain sphere packings to define nets which are not contact
graphs by connecting non-nearest-neighbor points; in suchcases, the kissing number (a property of the sphere packing)and the coordi-
nation number (as defined here, a property of a correspondingnet) are, in general,not equal. We find this clear semantical distinction to
be useful to prevent confusion between these two distinct concepts; note that some authors (e.g., Conway & Sloane 1998) do not make
this distinction.
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Chapter 1

Historical retrospective

Contents
1.1 Finite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Infinite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The mathematical characterization of sphere packings has along and rich history. Some recent articles
and popular books recount this history in detail, includingZong (1999), Szpiro (2003), Hales (2006), and Aste
& Weaire (2008). The purpose of the present Part I is not to repeat these historical retrospectives, which these
sources do quite adequately, but to characterize, catalog,and extend the infinite packings available today to
facilitate their practical application in new fields. Nonetheless, we would remiss if we didn’t at least provide
a brief historical context to this field, which we attempt in this short chapter.

1.1 Finite packings

Mystic marbles. We begin by defining, form≥ 1, a notation to build from:

T0,m , 1, T1,m ,
m

∑
k=1

T0,k = m (the positive integers).

In the sixth century BC, Pythagoras and his secret society ofnumerologists, the Pythagoreans, discovered
geometrically (see Figure1.1, and pp. 43-50 of Heath 1931) the formula for the number of marbles placed in
a (2D) triangle (that is, the “triangular numbers”):

T2,m ,
m

∑
k=1

T1,k = m(m+1)/2.

Stacked spheres. The earliest known mathematical work to discuss the (3D) stacking of objects is a Sanskrit
documentThe Aryabhatiya of Aryabhata(499 AD; see Clark 1930, p. 37), which states:

“In the case of anupaciti [lit., ‘pile’] which has ... the product of three terms, having the number of terms
for the first term and one as the common difference, divided bysix, is thecitighana[lit., ‘cubic contents of
the pile’]. Or, the cube of the number of terms plus one, minusthe cube root of this cube, divided by six.”
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Figure 1.1: (left) Ten marbles placed in a triangle [referred to by the Pythagoreans as aτετρακτυ′ ς, and
upon which they placed a particular mystic significance], and (right) the Pythagoreans’ placement of two
triangular groups of marbles into an “oblong”m× (m+1) rectangle, from which the formula forT2,m follows
immediately.

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of objects (“cubic con-
tents”) in a (3D) triangular-based pyramid (“pile”) withm objects on each edge:

T3,m =
m(m+1)(m+2)

3!
=

(m+1)3− (m+1)

6
;

note also thatT3,m , ∑m
k=1T2,k.

Thomas Harriot was apparently the first to frame the problem of sphere packing mathematically in modern
times (see, e.g., the biography of Harriot by Rukeyser 1972). At the request of Sir Walter Raleigh, for whom
Harriot served, among other capacities, as an instructor ofastronomical navigational and on various problems
related to gunnery, Harriot (on December 12, 1591) computed, but did not publish, the number of cannonballs
in a pile with a triangular, square [m×m], and rectangular [m× (m+1), a.k.a. “oblong”] base, as illustrated
in Figure1.2, obtainingT3,m, Sm, andRm respectively, where

Sm =
m

∑
k=1

k2 =
m(m+1)(2m+1)

6
, Rm =

m

∑
k=1

k(k+1) = Sm+T2,m =
m(m+1)(2m+4)

6
.

In 1614, Harriot wroteDe Numeris Triangularibus Et inde De Progressionibus Artithmeticis: Magisteria
magna(On triangular numbers and thence on arithmetic progressions: the great doctrine)1. Looking closely
at the triangular table of binomial coefficients2 on pp. 1-3 (folios 108-110) of this remarkable document, it
is seen that Harriot understood thegeometricrelationship between the positive integersT1,m, the “triangular
numbers”T2,m [that is, the number of spheres in a (2D) triangle withmspheres on each edge], the “pyramidal
numbers”T3,m [that is, the number of spheres in a (3D) trianglar-based pyramid withmspheres on each edge],
and the next logical steps in this arithmetic progression, given by:

T4,m ,
m

∑
k=1

T3,k =
m(m+1)(m+2)(m+3)

4!
, T5,m ,

m

∑
k=1

T4,k =
m(m+1)(m+2)(m+3)(m+4)

5!
,

etc. In particular, Harriot noticed that the(n+ 1)’th element of the(n+ m)’th row of this triangular table
is Tn,m. Accordingly, we may think ofTn,m as the number of spheres in an “n-dimensional pyramid” withm
spheres on each edge, withTn,2 representingn+1 spheres configured at the corners of a regularn-dimensional
simplex. It is thus natural to credit Harriot (1614) with thefirst important steps towards the discovery of
laminated lattices, discussed further in §2.4and §2.6.

1Harriot (1614) passed through several hands before finally being published in 2009, almost 4 centuries later.
2This famous triangular table of binomial coefficients is incorrectly attributed by many in the west to Blaise Pascal (b. 1623), though

it dates back to several earlier sources, the earliest beingPingala’s Sanskrit workChandas Shastra, written in the fifth century BC.
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Figure 1.2: Pyramidal stacks of spheres with triangular, square, and “oblong” (rectangular) bases. All three
stacks are subsets of the face-centered cubic lattice, discussed further in §2.3.

Harriot also introduced the packing problem to Johannes Kepler, ultimately leading Kepler (1611), in
another remarkable documentStrena seu de nive sexangula(The six-cornered snowflake), which also hypo-
thesized about a related atomistic physical basis for hexagonal symmetry in crystal structures of water, to
conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no other arrangement can
more spheres be packed into the same container.”

Kepler’s conjecture is patently false if considered in a finite container of a specified shape. For instance, a
2d×2d×2d cubic container can fit 8 spheres of diameterd if arranged in Cartesian configuration, but can
only fit 5 spheres if arranged in a “close-packed” configuration3. It is presumed that Kepler in fact recognized
this, and thus Kepler’s conjecture is commonly understood as a conjecture regarding the densest packing
possible in the limit that the size of the container is taken to infinity (for further discusssion, see §1.2).

Permuted planets. Note in Figure1.2 that any sphere (referred to as a “sun”) on the interior of thepiles has
12 nearest neighbors (referred to as its “planets”). Considering this sun and its 12 planets in isolation, there
is in fact adequate room to permute the planets to different positions while keeping them in contact with the
sun, something like a 12-cornered Rubik’s cube with spherical pieces (see Figure1.3). Due to the extra space
available in this configuration, it is unclear upon first inspection whether or not there is sufficient room to fit
a 13’th planet in to touch the sun while keeping all of the other 12 planets in contact with it. In 1694, Isaac
Newton conjectured this could not be done, in a famous disagreement with David Gregory, who thought it
could. Newton turned out to be right, with a complete proof first given in Schütte & van der Waerden (1953),
and a substantially simplified proof given in Leech (1956).

Cartoned cans. Moving from 16th-century stacks of cannonballs to 21st-century commerce, the question
of dense finite packings of circles and spheres finds practical relevance in a variety of packaging problems.
For example, to form a rectangular cardboard carton for 12 fl oz soda cans, 164 cm2 of cardboard per can is
needed if 18 cans are placed in a cartesian configuration with3 rows of 6 cans per row, whereas 3.3% less
cardboard per can is needed if 18 cans are placed in a triangular configuration (within a rectangular box) with
5 rows of{4,3,4,3,4} cans per row. If an eye-catching (stackable, strong, “green”...) hexagonal cardboard
carton for the soda cans is used, with 19 cans (described in marketing terms as “18 plus 1 free”) again placed
in a triangular configuration, 17.7% less cardboard per can is required.

Catastrophic sausages. Two new questions arise when one “shrink-wraps” a number (m) of n-dimensional
spheres (resulting in a convex, fitted container), namely: what configuration of the spheres minimizes the sur-
face area of the resulting container, and what configurationminimizes the volume of the resulting container?

3For larger containers, the arrangements which pack in the greatest number of spheres (or other objects) must in general be found
numerically (see Gensane 2004, Schürmann 2006, and Friedman 2009).
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⇒ ⇒

Figure 1.3: Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and planetary permutations. Con-
figuration (a) is 13 of the spheres taken from the second, third, and fourth layers of the stack in the orientation
shown in Figure1.2b, whereas configuration (c) is 13 of the spheres taken from the third, fourth, and fifth
layers of the stack in the orientation shown in Figure1.2a [extended by one additional layer]. In both configu-
rations, the 12 “planets” (positioned around the central “sun”) are centered at the vertices of a cuboctahedron.
The planets can be permuted by “pinching” together two of thefour planets on the corners of each square
face, in an alternating fashion, to form a symmetric icosahedral configuration with significant space between
each pair of planets [configuration (b)], then “pushing” apart pairs of planets in an analogous fashion to form
a different cuboctahedron. Alternatively, starting from configuration (b), identifying any pair of opposite pla-
nets as “poles”, and slightly shifting the five planets in each of the “tropics” as close as possible to their
nearest respective poles, the resulting northern and southern groupings of planets can be rotated in relation to
each other along the equator. Repeated application of thesetwo fundamental motions can be used to permute
the planets arbitrarily.

Both questions remain open, and are reviewed in Zong (1999).Regarding the minimim surface area question,
it was conjectured by Croft, Falconer, & Guy (1991) that the minimum surface area, forn ≥ 2 and large
m, is achieved with a roughly spherical arrangement. In contrast, regarding the minimim volume question,
it was conjectured by L. Fejes Tóth (1975) that the minimum volume, forn ≥ 5 and anym, is achieved by
placing the spheres in a line, leading to a shrink-wrapped container in the shape of a “sausage”. Forn = 3, it
has been shown that a roughly spherical arrangement minimizes the volume form= 56, m= 59 to 62, and
m≥ 65, and it is conjectured that a sausage configuration minimizes the volume for all otherm (see Gandini
& Willis 1992); for n = 4, there appears to be a similar “catastrophe” in the volume-minimizing solution,
from a sausage configuration to a roughly spherical configuration, asm is increased beyond a critical value
(Willis 1983 conjectures this critical value to bem≈ 75000, whereas Gandini & Zucco 1992 conjectures it
to bem= 375769).

Concealed origins. Finally, L. Fejes Tóth (1959) presents a curious set of questions that arise when consi-
dering the blocking of light with a finite number of opaque unit spheres packed around the origin. The first
such question, known as Hornich’s Problem, seeks the smallest number of opaque unit spheres that comple-
tely conceal light rays emanating from a point source at the center of a transparent unit sphere at the origin.
A related question, known as L. Fejes Tóth’s Problem, seeksthe smallest number of opaque spheres that
completely conceal light rays emanating from the surface ofa unit sphere at the origin (e.g., in Figure1.3,
adding additional outer planets to completely conceal the view of the sun from all angles). In 2D, the (trivial)
answer to both problems is 6, via the triangular packing indicated in Figure P.1a. In higher dimensions, both
questions remain open, and the answer differs depending on whether or not the sphere centers are restricted to
the nodal points of a lattice. For the L. Fejes Tóth’s Problem, for n≥ 3, the answer is unbounded if restricted
to lattice points, and bounded if not. For Hornich’s Problem, the answer is bounded in both cases, with the
number of spheres,h, required in the 3D case, when not restricted to lattice points, being somewhere in the
range 30≤ h≤ 42. Zong (1999) derives several of the known bounds available in both problems.
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Figure 1.4: (a) A regular truncated octahedron, used to tileR
3 in Kelvin’s conjecture; (b) an irregular tetra-

kaidecahedron and dodecahedron, used to tileR3 in the Weaire-Phelan structure.

1.2 Infinite packings

In the last 300 years,manydifferent constructions of infinite lattice and nonlatticepackings have been propo-
sed in each dimension. These packings each have different packing density, covering thickness, mean-squared
quantization error, and kissing number, and their corresponding nets each have different topological density;
knowledge of these properties is essential when selecting apacking or net for any given application. We have
thus attempted to catalog these constructions and their properties thoroughly in this review (see §3).

In the characterization of density, amongst alllattice packings of a given dimension, theA2, A3, D4, D5,
E6, E7, E8, andΛ24 constructions given in §2 have been proven to be of maximum density, in Lagrange (1773)
for n = 2, Gauss (1831) forn = 3, Korkine & Zolotareff (1873, 1877) forn = 4 and 5, Blichfeldt (1935) for
n = 6 through 8, and Cohn & Kumar (2009) forn = 24. There are no such proofs of optimality for other
values ofn, though the latticesΛn andKn introduced in §2.6are likely candidates in the range 9≤ n≤ 23.

Remarkably, if one considers both latticeandnonlattice packings, proof of which packing is of maximum
density in a given dimension is still open forn> 3. It was established in Thue (1892) thatA2 has the maximum
density amongst all lattice and nonlattice packings forn = 2. Considerable attention has been focused over
the centuries on the corresponding question forA3 in dimensionn = 3, that is, on Kepler’s conjecture (posed
in 1611) in the limit that the container size is taken to infinity. Indeed, David Hilbert, in his celebrated list
of 23 significant open problems in mathematics in 1900, included a generalization of Kepler’s conjecture as
part of his 18th problem (see, e.g., Milnor 1976).

Note that it is not at all obvious that an infinite packing as regular asA3 would necessarily be the packing
that maximizes density. Indeed, as mentioned in footnote3 on pagevi, nonlattice packings are known in
dimensionsn= 10, 11, 13, 18, 20, and 22 that are each slightly denser than the densest known lattice packings
in these dimensions.

In three dimensions, physiologist Stephen Hales (1727), inhis groundbreaking workVegetable Staticks,
reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot,. . . by the great incumbent of weight, pressed
into the interstices of the Pease, which they adequately filled up, being therefore formed into pretty regular
dodecahedrons.”

This report implied that many of the dilated peas in this experiment had 12 nearest neighbors and/or pen-
tagonal faces. However, the “pretty regular” qualificationleft a certain ambiguity, and this experiment left
mathematicians puzzled, as it is patently impossible to tile R3 with regular dodecahedra. Kelvin (1887) for-
malized the question inherent in Hales’ dilated pea experiment by asking howR3 could be divided into
regions of equal volume while minimizing the partitional area. He conjectured the answer to be a regular
tiling of R3 with truncated octahedra, which are in fact the Voronoı̈ cells of theA∗

3 lattice (see §4.4.3). [No-
te that the Voronoı̈ cell of theA3 lattice is the (face-transitive)rhombicdodecahedron, which is dual to the
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cuboctahedron illustrated in Figures1.3a,c and tilesR3 with slightly greater partitional area than does the
tiling with truncated octahedra.] Kelvin’s conjecture stood for over 100 years, until Weaire & Phelan (1994)
discovered a tiling ofR3 based on irregular tetrakaidecahedra (with 2 hexagonal faces and 12 pentagonal
faces) and irregular dodecahedra (with 12 pentagonal faces); this tiling has 0.3% less partitional area than the
much more regular tiling with truncated octahedra considered by Kelvin (see Figure1.4). In hindsight, it is
quite possible that Hales might have in fact stumbled upon the Weaire-Phelan structure in his cooking pot (in
1727!) and, seeing all of those pentagonal faces and 12-sided (as well as 14-sided) dilated peas, asserted that
what he was looking at was a culinary approximation to a tiling of R3 with regular dodecahedra, even though
such a tiling is impossible.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (norelation to Stephen) announced a long-
sought-after proof, in a remarkably difficult analysis making extensive use of computer calculations. This
proof was spread over a sequence of papers published in the years that followed (see Hales 2005). An exten-
sive discussion of this proof, which is still under mathematical scrutiny, is given in Szpiro (2003). Inspiration
for this proof was based, in part, on a strategy to prove Kepler’s conjecture proposed by L. Fejes Tóth (1953),
the first step of which is a quantitative version of the Newton-Gregory problem discussed in §1.1.
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Dense lattice packings forn≤ 24
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There are many dense lattices more complex than the Cartesian lattice that offer superior uniformity
and nearest-neighbor configuration, as quantified by the standard metrics introduced in the Preface (namely,
packing density, covering thickness, mean-square quantization error, and kissing number). This section pro-
vides an overview of many of these lattices; the definitive comprehensive reference for this subject is Conway
& Sloane (1998), to which the reader is referred for much moredetailed discussion and further references on
many of the topics discussed in this chapter. The subject of coding theory, reviewed in §5, is closely related to
the subject of such dense lattice packings (see also §6). As mentioned in the Preface, the practical applications
explored in Part II of this text leverage these constructions heavily.

2.1 Lattice terminology

The notationLn
∼= Mn means that the latticesLn andMn areequivalent(when appropriately rotated and scaled)

at the specified dimensionn. Also note that the four most basic families of lattices introduced in this chapter,
denotedZn, An, Dn, andEn, are often referred to asroot latticesdue to their relation to the root systems of
Lie algebra.

There are three primary methods1 to define any givenn-dimensional real lattice:

1A convenient alternative method for building a cloud of lattice points near the origin is based on the stencil of nearest-neighbor
points to the origin in the lattice, repeatedly shifting this stencil to each of the lattice points near the origin determined thus far in order
to create additional lattice points in the cloud. Unfortunately, this simple alternative method does not work for all lattices, such asD∗

n
andAr

n (see §2.3and2.4).
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• As anexplicit descriptionof the points included in the lattice.
• As aninteger linear combination(that is, a linear combination with integer coefficients) ofa set ofn basis

vectorsbi defined inRn+m for m≥ 0; for convenience, we arrange these basis vectors as the columns2 of
a basis matrix3 B.

• As aunion of cosets, or sets of nodal points, which themselves may or may not be lattices.

The standard forms of these definitions, as used throughout this chapter, make it straightforward to generalize
application codes that can build easily upon any of the lattices so described.

Any real (or complex) latticeLn has associated with it adual lattice L∗n defined such that

L∗
n =

{
x ∈ R

n (or C
n) : x · ū ∈ Z for all u ∈ Ln

}
, (2.1)

whereZ denotes the set of all integers, dot denotes the usual scalarproduct, and overbar denotes the usual
complex conjugate. IfB is a square basis matrix forLn, thenB−T is a square basis matrix forL∗

n.
Unless specified otherwise, the word lattice in this paper implies a real lattice, defined inRn. However,

note that it is straightforward to extend this work to complex lattices, defined inCn. To accomplish this
extension, it is necessary to extend the concept of the integers, which are used to construct a lattice via the
“integer” linear combination of the basis vectors in a basismatrix B, as described above. There are two
primary such extensions:

• TheGaussian integers, defined asG = {a+bi : a,b∈ Z} where i=
√
−1, which lie on a square array in

the complex planeC.
• TheEisenstein integers, defined asE = {a+bω : a,b∈ Z} whereω = (−1+ i

√
3)/2 [note thatω3 = 1],

which lie on a triangular array in the complex planeC.

We may thus define three types of lattices from a basis matrixB:

• a real lattice, defined as a linear combination of the columnsof B with integers as weights;
• a (complex)G lattice, defined as a linear combination of the columns ofB with Gaussian integers as

weights; and
• a (complex)E lattice, defined as a linear combination of the columns ofB with Eisenstein integers as

weights.

The specialn-dimensional real,G , andE lattices formed by takingB= In×n are denotedZn, Z[i]n, andZ[ω]n

respectively. Note also that, for any complex lattice with elements̃z∈ C
n, there is a corresponding real lattice

with elements̃x ∈ R2n such that

x̃ =
(
ℜ{z̃1} ℑ{z̃1} . . . ℜ{z̃n} ℑ{z̃n}

)T
. (2.2)

The present sequence of papers focuses on the practical use of real lattice and nonlattice packings withn> 3.
Thus, in the present Part I, we only make brief use of complex lattices to simplify certain constructions.

2.2 The Cartesian latticeZn

TheCartesian lattice, Zn, is definedZn =
{
(x1, . . . ,xn) : xi ∈ Z

}
, and is constructed via integer linear com-

bination of the columns of the basis matrixB = In×n. The Cartesian lattice is self dual [(Zn)∗ ∼= Z
n].

2In the literature on this subject, it is more common to use agenerator matrix Mto describe the construction of lattices. The basis
matrix conventionB used here is related simply to the corresponding generator matrix such thatB = MT ; we find the basis matrix
convention to be more natural in terms of its linear algebraic interpretation.

3Note that integer linear combinations of the columns of mostmatrices donot produce lattices (as defined in the second paragraph
of the “gentle introduction” of the Preface). The matrices listed in §2 as basis matrices are special in this regard. Note also that basis
matrices are not at all unique, but the lattices constructedfrom alternative forms of them are equivalent; the forms of the basis matrices
listed in §2 were selected based on their simplicity.
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2.3 The checkerboard latticeDn and its dual D∗
n

Thecheckerboard lattice, Dn, is ann-dimensional extension of the 3-dimensionalface-centered cubic(FCC,
a.k.a.cubic close packed) lattice. It is defined

Dn =
{
(x1, . . . ,xn) ∈ Zn : x1 + . . .+xn = even

}
, (2.3a)

and may be constructed via integer linear combination of thecolumns of then×n basis matrix

BDn =




−1 1 0
−1 −1 1

. . .
. . .

−1 1
0 −1




. (2.3b)

The dual of the checkerboard lattice, denotedD∗
n and reasonably identified as theoffset Cartesian lattice,

is ann-dimensional extension of the 3-dimensionalbody-centered cubic(BCC) lattice. It may be written as

D∗
n = Dn∪ ([1]+Dn)∪ ([2]+Dn)∪ ([3]+Dn) ∼= Zn∪ ([1]+Zn), (2.4a)

where thecoset representatives[1], [2], and[3] are defined in this case such that

[1] =




1/2
...

1/2
1/2


 , [2] =




0
...
0
1


 , [3] =




1/2
...

1/2
−1/2


 .

TheD∗
n lattice may also be constructed via integer linear combination of the columns of then×n basis matrix

BD∗
n
=




1 0 0.5
1 0.5

. . .
...

1 0.5
0 0.5




. (2.4b)

It is important to recognize that, forn≥ 5, the contact graph of theD∗
n lattice is simply two disjoint nets

given by the contact graphs of theZn and shiftedZn sets of lattice points upon whichD∗
n may be built [see

(2.4a)]. Thus, as suggested by Conway & Sloane (1997), we introduce, forn≥ 4, ageneralized netformed by
connecting each node of the unshiftedZ

n set to the 2n nearest nodes on the shiftedZ
n set, and each node on

the shiftedZn set to the 2n nearest nodes on the unshiftedZn set. The resulting net, of coordination number
2n, is uninodal, but isnota contact graph of the corresponding sphere packing.

2.3.1 The offset checkerboard packingD+
n

The packingD+
n , reasonably identified as theoffset checkerboard packing, is ann-dimensional extension of

the 3-dimensionaldiamondpacking, and is defined simply as

D+
n = Dn∪ ([1]+Dn); (2.5)

note thatD+
n is a lattice packing only for evenn, and thatD+

3 is thediamond packing(for further discussion,
see §4.4.1).



DRAFT
12 CHAPTER 2. DENSE LATTICE PACKINGS FORN ≤ 24

−2

0

2

−6

−4

−2

0

2

4

6

−3

−2

−1

0

1

2

3

Figure 2.1: A cloud of points on theA2 lattice, defined on a plane inR3. Note that the normal vectornA2 =(
1 1 1

)T
points directly out of the page in this view.

2.4 The zero-sum latticeAn and its dual A∗
n

Thezero-sum lattice, An, may be thought of as ann-dimensional extension of the 2-dimensionaltriangular
lattice; in 3 dimensions,A3 ∼= D3. It is defined

An =
{
(x0, . . . ,xn) ∈ Zn+1 : x0 + . . .+xn = 0

}
, (2.6a)

and may be constructed via integer linear combination of thecolumns of the(n+1)×n basis matrix

BAn =




−1 0
1 −1

. . .
. . .

1 −1
0 1




, with nAn =




1
1
...
1
1




. (2.6b)

Notice thatAn is constructed here vian basis vectors inn+ 1 dimensions. The resulting lattice lies in an
n-dimensional subspace inRn+1; this subspace is normal to the vectornAn. An illustrative example isA2, the
triangular 2D lattice, which may conveniently be constructed on a plane inR3 (see Figure2.1).

Note that, starting from a (2D) triangular configuration of oranges or cannonballs (see Figure P.1a), one
can stack additional layers of oranges in a trangular configuration on top, appropriately offset from the base
layer, to build up the (3D) FCC configuration mentioned previously (see Figure1.2a). This idea is referred to
aslamination, and will be extended further in §2.6when considering theΛn andKn families of lattices.

Also note that, in the special case ofn = 2, theA2 lattice may also be written as

A2 ∼= R2∪ (a+R2), where a =

(
1/2√
3/2

)
(2.6c)

andR2 is the rectangular grid(not a lattice, nor even a nonlattice packing) obtained by stretching theZ2

lattice in the second element by a factor of
√

3.
The dual of the zero-sum lattice, denotedA∗

n, may be written as

A∗
n =

n
[

s=0

([s]+An), (2.7a)
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where then+ 1 coset representatives[s], for s = 0, . . . ,n, are defined such that thek’th component of the
vector[s] is

[s]k =

{
s

n+1 k≤ n+1−s,
s−n−1

n+1 otherwise.
(2.7b)

The A∗
n lattice may be constructed via integer linear combination of the columns of the(n+ 1)× n basis

matrix

BA∗
n
=




1 1 · · · 1 −n
n+1

−1 0 1
n+1

−1 1
n+1

. . .
...

−1 1
n+1

0 1
n+1




, with nA∗
n
= nAn. (2.7c)

2.4.1 The glued zero-sum latticesAr
n

A related family of lattice packings, developed in §12 of Coxeter (1951) and reasonably identified as the
glued zero-sum lattices Ar

n, is a family of lattices somewhere betweenAn andA∗
n [as given in (2.7a)] defined

via the union ofr translates ofAn for n≥ 5:

Ar
n = An∪ ([s]+An)∪ ([2s]+An)∪ ...∪ ([(r −1)s]+An), where r ·s= n+1, (2.8)

where the components of the “glue” vectors[s] are specified in (2.7b), and wherer ands are integer divisors
of (n+1) with 1 < s< n+1 and 1< r < n+1, excluding the case{r = 2,s= 3} for n = 5. The latticesA5

9,
A4

11, A7
13, A5

14, A8
15, A9

17, A10
19, A7

20, andA11
21 are found to have especially good covering thickness, with the last

four currently the thinnest coverings available in their respective dimensions (see Baranovskii 1994, Anzin
2002, and Sikirić, Schürmann, & Vallentin 2008). Note also thatA2

7
∼= E7, A4

7
∼= E∗

7, andA3
8
∼= E8, each of

which is discussed further below.
Note finally that the contact graphs of some of theAr

n lattices, such asA5
9 andA4

11, are disjoint nets given
by the contact graphs of theAn and shiftedAn sets of lattice points upon which these glued zero-sum lattices
are built [see (2.8)]. Thus, as in the case ofD∗

n for n> 4 as discussed in §2.3, ageneralized netmay be formed
by connecting each node of the unshiftedAn set to the nearest nodes on the shiftedAn set. Again, the resulting
net is uninodal, but is not a contact graph of the corresponding sphere packing.

2.5 TheE8 (Gosset),E7, & E6 lattices and their duals

TheGosset lattice E8 ∼= E∗
8, which has a (remarkable) kissing number ofτ = 240, may be defined simply as

E8 = D+
8 , (2.9a)

and may be constructed via integer linear combination of thecolumns of the 8×8 basis matrix
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BE8 =




2 −1 0 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
0 −1/2




. (2.9b)

The latticeE7 is defined by restrictingE8, as constructed above, to a 7-dimensional subspace,

E7 = {(x1, . . . ,x8) ∈ E8 : x1 + . . .+x8 = 0}, (2.10a)

and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE7 =




−1 0 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
0 −1/2




, with nE7 =




1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2




. (2.10b)

The dual of theE7 lattice may be written as

E∗
7 = E7∪ ([1]+E7), where [1] =




1/4
...

1/4
−3/4
−3/4




, (2.11a)

and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE∗
7
=




−1 0 −3/4
1 −1 −3/4

1 −1 1/4
1 −1 1/4

1 −1 1/4
1 −1 1/4

1 1/4
0 1/4




, with nE∗
7
= nE7. (2.11b)

The latticeE6 is defined by further restrictingE7, as defined in (2.10), to a 6-dimensional subspace,

E6 = {(x1, . . . ,x8) ∈ E7 : x1 +x8 = 0}, (2.12a)

and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix
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BE6 =




0 1/2
−1 1/2
1 −1 1/2

1 −1 1/2
1 −1 −1/2

1 −1 −1/2
1 −1/2

0 −1/2




, with NE =




1 1/2
0 1/2
0 1/2
0 1/2
0 1/2
0 1/2
0 1/2
1 1/2




=




| |
nE6 nE7

| |


 . (2.12b)

The dual of theE6 lattice may be written as

E∗
6 = E6∪ ([1]+E6)∪ ([2]+E6), where [1] =




0
−2/3
−2/3
1/4
...

1/4
0




, [2] = −[1], (2.13a)

and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix

BE∗
6
=




0 0 1/2
−1 2/3 1/2
1 −1 2/3 1/2

1 −1 −1/3 1/2
1 −1 −1/3 −1/2

1 −1/3 −1/2
−1/3 −1/2

0 0 −1/2




, with NE∗ = NE. (2.13b)

2.6 The laminated latticesΛn and the closely-relatedKn lattices

The lattices in theΛn andKn families can be built up one dimension, or “laminate”, at a time, starting from
the integer lattice (Z ∼= Λ1 ∼= K1), to triangular (A2 ∼= Λ2 ∼= K2), to FCC (A3 ∼= D3 ∼= Λ3 ∼= K3), all the way
up (one layer at a time) to the remarkable Leech lattice (Λ24 ∼= K24). Both families of lattices may in fact be
extended (but not uniquely) to at leastn = 48.

The Leech lattice,Λ24, is the unique lattice inn = 24 dimensions with a (remarkable) kissing number of
τ = 196,560. It may be constructed via integer linear combination ofthe columns of the 24×24 basis matrix
BΛ24, which is depicted below in the celebrated Miracle Octad Generator (MOG) coordinates (see Curtis 1976
and Conway & Sloane 1998). Further, as in theE8 → E7 → E6 progression described in §2.5, theΛn lattices
for n = 23,22, . . . ,1 may all be constructed by restricting theΛ24 lattice to smaller and smaller subspaces via
the normal vectors assembled in the matrixNΛ depicted below4.

4There are, of course,manyequivalent constructions ofΛ1 throughΛ23 via restriction ofΛ24, and the available literature on the
subject considers these symmetries at length. The convenient form of NΛ depicted here was deduced, with some effort, from Figure 6.2
of Conway & Sloane (1998).
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BΛ24 =
1√
8




8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 −3

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 2 2 2 1

4 2 2 2 1

4 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 2 2 2 2 1

4 2 2 2 2 1

4 2 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

2 2 2 1

2 1

2 1

1




NΛ =




1

1

1 1

1 1 1

1

1 −1

1 −1

1

1

1 −1

1 −1

1

1 1

1 1

1

1 1

1

1 1

1 1

1 1

1

1 −1

1 −1

1




=
(
nΛ0 . . . nΛ23

)
.
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Thus, theΛ23 lattice is obtained from the points of theΛ24 lattice in R24 (which themselves are ge-
nerated via integer linear combination of the columns ofBΛ24) which lie in the 23-dimensional subspace
orthogonal tonΛ23. Similarly, theΛ22 lattice is obtained from the points of theΛ24 lattice which lie in
the 22-dimensional subspace orthogonal to bothnΛ23 andnΛ22, etc. Noting the block diagonal structure of
NΛ, it follows thatΛn may be constructed using the basis matrix, denotedBΛn, given by then×n subma-
trix in the upper-left corner ofBΛ24 for anyn ∈ N1 = {21,20,16,9,8,5,4}. For the remaining dimensions,
n∈ N2 = {19,18,17,15,14,13,12,11,10,7,6,3,2,1}, Λn may be constructed via the appropriate restriction
of the lattice generated by the next larger basis matrix in the setN1; for example,Λ14 may be constructed in
R16 via restriction of the lattice generated by the basis matrixBΛ16 to the subspace normal to the vectors (in
R16) given by the first 16 elements ofnΛ15 andnΛ14.

A similar sequence of lattices, denotedKn, may be constructed via restriction of the Leech lattice (gene-
rated viaBΛ24) in a similar fashion (for details, see Figure 6.3 of Conway &Sloane 1998). Lattices from the
Λn and/orKn families have the maximal packing densities and kissing numbers amongst all lattices for the
entire range considered here, 1≤ n ≤ 24. Note that theΛn andKn families are not equivalent in the range
7 ≤ n≤ 17, with Λn being superior toKn by all four metrics introduced in the Preface at most values of n
in this range, except for the narrow range 11≤ n ≤ 13, where in factKn has a slight advantage. Note also
that there is some flexibility in the definition of the lattices Λ11, Λ12, andΛ13; the branch of theΛn family
considered here is that which maximizes the kissing numberτ in this range ofn, and thus the corresponding
lattices are denotedΛmax

11 , Λmax
12 , andΛmax

13 . Note thatK12 is referred to as the Coxeter-Todd lattice andΛ16 is
referred to as the Barnes-Wall lattice.

2.7 Numerically-generated lattices with thin coverings for n = 6 to 15

Recall from §2.1 that ann-dimensional real lattice may be defined as an integer linearcombination of a set
of n basis vectorsbi defined inRn+m for m≥ 0; that is, any lattice point may be written as

x = y1b1 +y2b2 + . . .+ynbn = By,

where the elements{y1, . . . ,yn} of the vectory are taken as integers. The square of the distance of any
lattice point from the origin is thus given byf (y) = yTAy, whereA , BTB is known as theGram matrix
associated with the lattice in question, and the functionf (y) is referred to as the correspondingquadratic
form [note that each term off (y) is quadratic in the elements ofy]. All of the lattices studied thus far, when
scaled appropriately, are characterized by Gram matrices with integer elements, and thus their corresponding
quadratic formsf (y) have integer coefficients (and are thus referred to asintegral quadratic forms).

There is particular mathematical interest in discovering (or generating numerically) both lattice and non-
lattice packings which minimize covering thickness and/orpacking density. The numerical approach to this
problem studied in Schürmann & Vallentin (2006) and Sikirić, Schürmann, & Vallentin (2008) has generated
new lattices in dimensionsn = 6 to 15 with the thinnest covering thicknesses known amongstall lattices5.
The lattice so generated in dimension 7 happens to correspond to an integral quadratic form, but the others,
apparently, do not.

5Gram matricesA corresponding to these 10 lattices (denotedLc1
6 , Lc

7, Lc
8, . . . ,Lc

15) are available at
http://fma2.math.uni-magdeburg.de/∼latgeo/covering table.html

(nonunique) basis matricesB corresponding to each of these lattices may be generated simply by taking the Cholesky decomposition of
the corresponding Gram matrix, asA = BTB.

http://fma2.math.uni-magdeburg.de/~latgeo/covering_table.html
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Chapter 3

Characteristics of exemplary lattice and
nonlattice packings and nets

For all of the dense lattices described in §2, as well as for all of the rare packings and nets described in
§4, Tables 3.1-3.2 list the known values of the packing density∆, the covering thicknessΘ, and the mean
squared quantization error per dimension,G. Table 3.1 also lists the coordination sequence throughk = 10
of the corresponding net, as well as its local topological density td10. If this net is a contact graph, the
coordination number (that is, the first element of the coordination sequence) is equal to the kissing number
of the corresponding packing; if this net isnota contact graph, it is marked with aG, and the kissing number
τ of the corresponding sphere packing is listed in parentheses.

The other information appearing in Table 3.1 is described further in §4. Note that Table 3.1 alone has 8
columns and over 100 rows, with those results which we believe to be new denoted in italics. The original
source of each of the several hundred existing results reported can not feasibly be spelled out here. Suffice it to
say that the vast majority of those existing results relatedto lattices are discussed in Conway & Sloane (1998)
and in the On-Line Encyclopedia of Integer Sequences1, where a large number of the original references
are listed in detail. The vast majority of those existing results related to 3D nets (see §4), including clear
drawings of eachas well as detailed lists of original references, are given in the Reticular Chemistry Structure
Resource2; for further discussion of this database and others, see O’Keeffe et al. (2008), Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that there are hundreds of new results reported in Tables 3.1
and 3.2, as denoted in italics; most of these are the result ofpainstaking numerical simulation, some of which
tooks weeks of CPU time (on a quad-core 3GHz Intel Xeon server) to complete.

Note finally that there are a variety of (lattice-specific) ways to quantize to the nearest lattice point; for an
introduction, see §6.

1Available on the web athttp://www.research.att.com/∼njas/sequences/.
2Available on the web at, e.g.,http://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced by any of the lowercase boldface

three-letter identifiers given in Table 3.1 and §4.

http://www.research.att.com/~njas/sequences/
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/fcu
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n packing net ∆ Θ G coordination sequence(throughk = 10) td10
point symbol
vertex symbol

1 Z,Λ1 integer 1 1 0.083333 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 21 ∗

A2,A∗
2,Λ2 triangular 0.90690 1.2092 0.080188 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 331 36.46.53

Z2,D2,D∗
2,D

+
2 square 0.78540 1.5708 0.083333 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 221 4.4.4.4.∗ .∗

2
A+

2 ,TA∗
2 honeycomb 0.60460 2.4184 0.09623 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 166 6.6.6

Â+
2 ,TÂ

∗
2

augmented
honeycomb

0.39067 5.832 0.1652 3, 4, 6, 8, 12, 14, 15, 18, 21, 22 124 3.12.12

D3,A3,Λ3 fcu 0.74048 2.0944 0.078745 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002 3871 324.436.56

hcp 0.74048 2.0944 0.078745 12, 44, 96, 170, 264, 380, 516, 674, 852, 1052 4061 324.433.59

D∗
3,A

∗
3 bcu 0.68017 1.4635 0.078543 8, 26, 56, 98, 152, 218, 296, 386, 488, 602 2331 424.64

Z3 pcu 0.52360 2.7207 0.083333 6, 18, 38, 66, 102, 146, 198, 258, 326, 402 1561 412.63

qtz, V60
3 0.39270 2.0405 0.08534 4, 12, 30, 52, 80, 116, 156, 204, 258, 318 1231 6.6.62.62.87.87

A+
3 ,D+

3 dia, V90
3 0.34009 2.7207 0.09114 4, 12, 24, 42, 64, 92, 124, 162, 204, 252 981 62.62.62.62.62.62

lon 0.34009 3.3068 0.09139 4, 12, 25, 44, 67, 96, 130, 170, 214, 264 1027 62.62.62.62.62.62

TA∗
3 sod 0.2777 8.781 0.1092 4, 10, 20, 34, 52, 74, 100, 130, 164, 202 791 4.4.6.6.6.6

3 Â+
3 dia-a 0.12354 9.1723 0.1511 4, 6, 12, 18, 36, 48, 60, 78, 108, 126 497 3.122.3.122.3.122

TÂ
∗
3 sod-a 0.1033 28.26 0.1943 4, 6, 12, 17, 28, 38, 52, 64, 84, 104 410 3.8.3.12.3.12

qzd, T60
3 0.6046 2.1549 0.08151 G: 4, 12, 36, 72, 122, 188, 264, 354, 456, 570(τ = 8) 2079 72.∗ .73.73.73.73

cds, T90
3 0.52360 2.7207 0.08333 G: 4, 12, 30, 58, 94, 138, 190, 250, 318, 394(τ = 6) 1489 6.6.6.6.62.∗

nbo, S3 0.39270 3.1416 0.08602 4, 12, 28, 50, 76, 110, 148, 194, 244, 302 1169 62.62.62.62.82.82

(unstable)
bto (α = 60◦), 0.2687 3.0042 0.09129

3, 6, 12, 24, 43, 64, 91, 124, 160, 202 730 10.102.102
Y60

3 (α ≈ 70.5◦) 0.2551 2.7251 0.09217

ths (α = 60◦), 0.2327 4.3099 0.09706
3, 6, 12, 24, 38, 56, 77, 102, 129, 160 608 102.104.104

Y90
3 (α ≈ 70.5◦) 0.2207 3.518 0.09817

srs 0.1851 3.4281 0.1072 3, 6, 12, 24, 35, 48, 69, 86, 108, 138 530 105.105.105

srs-a 0.0555 9.739 0.1882 3, 4, 6, 8, 12, 16, 24, 32, 48, 54 208 3.205.205

Table 3.1a. (Continued on next page.)

http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/hcp
http://rcsr.anu.edu.au/nets/bcu
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/dia-a
http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/srs-a
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1

D4,D∗
4,Λ4 0.61685 2.4674 0.076603

24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080 48,841 396.4168.512

G: 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8080(τ = 24) 24,641 4112.68

A4 0.55173 3.1780 0.078020 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750 35,751 360.4120.510

A∗
4 0.44138 1.7655 0.077559 10, 50, 150, 340, 650, 1110, 1750, 2600, 3690, 5050 15,401 440.65

Z4,D+
4 0.30843 4.9348 0.08333 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720 8361 424.64

4 A+
4 0.17655 6.3558 0.08827 5, 20, 50, 110, 200, 340, 525, 780, 1095, 1500 4626 610

TA∗
4 0.10593 42.4 0.1221 5, 15, 35, 70, 125, 205, 315, 460, 645, 875 2751 45.65

Â+
4 0.03354 23.82 0.1398 5, 8, 20, 32, 80, 116, 170, 236, 380, 482 1530 36.124

T90
4 0.3084 4.935 0.08333 G: 4, 12, 36, 92, 200,384, 664, 1056, 1576, 2240(τ = 8) 6265 83.83.83.83.84.∗

S4 0.1542 3.855 0.08692 4, 12, 36, 84, 172, 292, 468, 692, 988, 1348 4097 82.82.85.85.85.85
(unstable)

V90
4 0.1187 5.814 0.09333 4, 12, 36, 74, 136, 228, 352, 518, 732, 994 3087 86.86.87.87.87.87

Y
90
4 0.06793 6.458 0.09736 3, 6, 12, 24, 48, 90, 146, 230, 336, 478 1374 122.122.122

D5,Λ5 0.46526 4.5977 0.075786 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 182002 463,715 3240.4520.520

A5 0.37988 5.9218 0.077647 30, 240, 1010, 2970, 7002, 14240, 26070, 44130, 70310, 106752 272,755 3120.4300.515

D∗
5 0.32899 2.4982 0.075625 G: 32, 242, 992, 2882, 6752, 13682, 24992, 42242, 67232, 102002 (τ = 10) 261,051 4480.616

D+
5 0.28736 5.2638 0.07784 16, 120, 480, 1410, 3296, 6712, 12256, 20770, 33056, 50232 128,349 480.640

A∗
5 0.25543 2.1243 0.076922 12, 72, 272, 762, 1752, 3512, 6372, 10722, 17012, 25752 66,241 460.66

Z5 0.16449 9.1955 0.083333 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002 36,365 440.65

A+
5 0.08514 8.8223 0.08646 6, 30, 90, 240, 510, 1010, 1770, 2970, 4626, 7002 18,255 615

5 TA∗
5 0.035174 254.9 0.1349 6, 21, 56, 126, 252, 461, 786, 1266, 1946, 2877 7798 49.66

Â+
5 0.008055 35.81 0.1313 6, 10, 30, 50, 150, 230, 390, 570, 1050, 1420 3907 310.125

T90
5 0.16449 9.1955 0.08333 G: 4, 12, 36, 100, 258, 610, ?(τ = 10) ? 82.82.82.82.106.∗

S5 0.05140 9.310 0.08666 4, 12, 36, 100, 244, 514, 980, 1682, 2724, 4162 10,459 8.8.8.8.82.82

V60
5 0.04786 8.4884 0.08753 4, 12, 36, 100, 248, 522, 988, 1724, 2800, 4324 10,759 8.8.8.8.82.82

(unstable) Y60
5 0.03516 254.8 0.1350 3, 6, 12, 24, 48, 90, 168, 312, 556, 914 2134 122.122.122

T60
5 0.02478 6.2578 0.09038 G: 4, 12, 36, 100, 268, ?(τ = 14) ? 82.82.82.82.1110.∗

V
90
5 0.02478 6.016 0.09037 4, 12, 36, 100, 220, 428, 752, 1254, 1944, 2924 7675 8.8.8.8.82.82

Y90
5 0.01858 11.19 0.09605 3, 6, 12, 24, 48, 90, 168, 312, 532, 872 2068 122.122.122

Table 3.1b. (Continued on next page.)
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n packing net ∆ Θ G coordination sequence(throughk = 10) td10

point symbol
vertex symbol

E6,Λ6 0.37295 7.0722 0.074347 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104 2,900,773 3720.41800.536

E∗
6 0.33151 2.6521 0.074244 54, 828, 5202, 20376, 60030, 146484, 312858, 605232, 1084806, 1830060 4,065,931 3270.41134.527

D6 0.32298 8.7205 0.075591 60, 792, 4724, 18096, 52716, 127816, 271908, 524640, 938652, 1581432 3,520,837 3480.41260.530

D+
6 0.27252 5.1677 0.07459 32, 332, 1824, 6776, 19488, 46980, 99680, 192112, 343584, 578876 1,289,685 4480.616

A6 0.24415 9.8401 0.077466 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626, 794598 1,775,005 3210.4630.521

D∗
6 0.16149 4.3603 0.075120 G: 64, 728, 4032, 14896, 42560, 102024, 215488, 413792, 737856, 1240120 (τ = 12) 244,069 41984.632

A∗
6 0.13453 2.5511 0.076490 14, 98, 462, 1596, 4410, 10374, 21658, 41272, 73206, 122570 275,661 484.67

Lc1
6 0.31853 2.4648 ? 32, ? ? ?

6
Z6 0.08075 17.441 0.08333 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728 134,245 460.66

A+
6 0.03844 19.681 0.08525 7, 42, 147, 462, 1127, 2562, 5047, 9492, 16317, 27174 62,378 621

TA∗
6 0.010459 1836.5 0.14712 7, 28, 84, 210, 462, 924, 1715, 2996, 4977, 7924 19,328 414.67

Â+
6 0.001774 99.91 0.1259 7, 12, 42, 72, 252, 402, 777, 1182, 2457, 3492 6,496 315.126

T
90
6 0.08075 17.441 0.08333 G: 4, 12, 36, 100, ?(τ = 12) ? ?

S6 0.01514 9.78 0.08601 4, 12, 36, 100, 276, 660, 1484, 2920, ? ? 8.8.8.8.82.82
(unstable)

V
90
6 9.740e-3 19.79 0.09322 4, 12, 36, 100, 276, 610, 1284, 2346, 4152, 6792 15,613 8.8.8.8.82.82

Y90
6 4.640e-3 24.15 0.09479 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

E7,Λ7 0.29530 13.810 0.073231 126, 2898, 25886, 133506, 490014, 1433810, 3573054, 7902594, 15942206, 29896146 59,400,241 32016.45796.563

D+
7 0.26170 4.7248 0.07273 64, 1092, 8064, 37842, 131328, 371940, 906816, 1976898, 3946048, 7344164 14,724,257 41792.6224

E∗
7 0.21578 4.1872 0.073116

˜
56, 938, 7688, 39746, 150248, 455114, 1171928, 2668610, 5521880, 10585514 20,601,723 41512.628

D7 0.20881 16.749 0.075686 84, 1498, 11620, 55650, 195972, 559258, 1371316, 2999682, 6003956, 11193882 22,392,919 3840.42604.542

A7 0.14765 18.899 0.077396 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2703512, 5025692 10,089,705 3336.41176.528

D∗
7 0.07382 4.5687 0.07493 G: 128, 2186, 16256, 75938, 263552, 745418, 1817216, 3959426, 7902848, 14704202(τ = 14) 29,487,171 48064.664

7
A∗

7 0.06542 3.0596 0.076187 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976, 428752 871,661 4112.68

Lc
7 0.11738 2.9000 ? ? ? ?

Z7 0.03691 33.498 0.083333 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762 433,905 484.67

A+
7 0.01636 30.163 0.08442 8, 56, 224, 812, 2240, 5768, 12656, 26474, 49952, 91112 189,303 628

TA∗
7 2.839e-3 ? ? 8, 36, 120, 330, 792, 1716, 3432, 6434, 11432, 19412 43,713 420.68

Â+
7 3.586e-4 137.9 0.1214 8, 14, 56, 98, 392, 644, 1400, 2198, 5096, 7532 17,439 321.127

Table 3.1c. (Continued on next page.)



DRAFT
C

H
A

P
T

E
R

3
.

C
H

A
R

A
C

T
E

R
IS

T
IC

S
O

F
L

A
T

T
IC

E
A

N
D

N
O

N
L

A
T

T
IC

E
P

A
C

K
ING

S
A

N
D

N
E

T
S

2
3

T60
7 0.05673 15.87 0.08076 G: 4, 12, 36, 100, 276, ?(τ = 20) ? ?

T90
7 0.03691 33.50 0.08333 G: 4, 12, 36, 100, 276, ?(τ = 14) ? ?

S7 4.035e-3 24.15 0.08525 4, 12, 36, 100, 276, ? ? ?

7 (unstable) V
60
7 3.730e-3 15.00 0.08702 4, 12, 36, 100, 276, ? ? ?

V90
7 2.424e-3 32.39 0.09267 4, 12, 36, 100, 276, 724, 1676, 3592, 7012, 12868 26,301 8.8.8.8.82.82

Y60
7 1.652e-3 18.95 0.08854 3, 6, 12, 24, 48, ? ? ?

Y90
7 1.074e-3 36.73 0.09365 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

E8,E∗
8 ,

D+
8 ,Λ8

0.25367 4.0587 0.071682 240, 9120, 121680, 864960, 4113840, 14905440, 44480400, 114879360,
265422960, 561403680

1,006,201,681 36720.421840.5120

D8 0.12683 32.470 0.075914 112, 2592, 25424, 149568, 629808, 2100832, 5910288, 14610560, 32641008,
67232416

123,302,609 31344.44816.556

A8 0.08456 32.993 0.077391 72, 1332, 11832, 66222, 271224, 889716, 2476296, 6077196, 13507416, 27717948 51,019,255 3504.42016.536

D∗
8 0.03171 8.1174 0.074735

G: 256, 6560, 65280, 384064, 1614080, 5374176, 15097600, 37281920, 83222784,
171312160 (τ = 16) 314,358,881 432512.6128

A∗
8 0.02969 3.6658 0.075972 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146, 1854882 3,317,445 4144.69

Lc
8 0.08253 3.1422 ? ? ? ?

8 Z8 0.01585 64.939 0.083333 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048 1,256,465 4112.68

A+
8 6.599e-3 65.99 0.0838 9, 72, 324, 1332, 4104, 11832, 28674, 66222, 136404, 271224 520,198 636

TA∗
8 7.128e-4 ? ? 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43749 92,368 427.69

Â+
8 6.759e-5 301.1 0.1178 9, 16, 72, 128, 576, 968, 2340, 3768, 9648, 14716 32,242 328.128

T
90
8 0.01585 64.94 0.08333 G: 4, 12, 36, 100, 276, 724, ?(τ = 16) ? ?

S8 9.903e-4 28.28 0.08452 4, 12, 36, 100, 276, 724, ? ? ?
(unstable)

V90
8 5.590e-4 49.89 0.09206 4, 12, 36, 100, 276, 724, 1908, 4390, 9876, 19682 37,009 8.8.8.8.82.82

Y90
8 2.327e-4 87.31 0.09266 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

Table 3.1d. (Continued from previous pages.) Characteristics of some exemplary lattice and uninodal nonlattice packings and nets through n= 8,
ordered from dense to rare in each section. Values in italicsare (as far as we know) new. At each n, bold double underlined values are proven to be
optimal (maximum or minimum) amongst allpackings, and bold single underlined values are proven to beoptimal amongst alllattices. Bold values
(without underlines) are thebestknown values amongst allpackings, and bold undertilded values are the best known values amongst alllattices.
The point symbol is provided for those nets withτ ≥ 5; the vertex symbol is provided for those nets withτ ≤ 4. Nets whose coordination sequences
are identified with aG are generalized nets, not contact graphs (see, e.g., the second-to-last paragraph of§2.3); in these cases, the kissing number
τ is indicated in parentheses after the coordination sequence. In all other cases, the first element of the coordination sequence is the kissing number
τ. Note also that theY90

n andY60
n nets are constructed withα = cos−1(1/n) for n≥ 3 (see§4.4.5); in addition, the barycentric constructions with

α = 60, corresponding tobto andths, are also listed for n= 3.

http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/ths
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n packing ∆ Θ G τ

Λ9 0.14577 9.0035 0.07206 272
˜

D+
9 0.14577 4.3331 0.07110 144

D∗
9 0.01288 8.6662 0.07469 18

9 A∗
9 0.01268 4.3889 0.07582 20

A5
9 0.08447 4.3402 0.07207 90

Lc
9 0.08149 4.2686 ? ?

Z9 0.006442 126.81 0.08333 18

Λ10 0.09202
˜

12.409 0.07150 336
˜

D+
10 0.07969 7.7825 0.07081 180

10 A∗
10 0.005128 5.2517 0.07570 22

Lc
10 0.02995 5.1545 ? ?

Z10 0.002490 249.04 0.08333 20

K11 0.06043
˜

? ? 432

Λmax
11 0.05888 24.781 0.07116 438

˜
D+

11 0.04163 8.4072 ? 220

11 A∗
11 0.001974 6.2813 0.07562 24

A4
11 0.04740 5.5983 0.07025 132

Lc
11 0.04124 5.5056 ? ?

Z11 9.200e-4 491.40 0.08333 22

K12,K∗
12 0.04945 17.783 0.07010 756

˜
Λmax

12 0.04173 30.419 0.07058 648

D+
12 0.02086 15.209 ? 264

12
A∗

12 7.271e-4 7.5101 0.07557 26

Lc
12 0.004306 7.4655 ? ?

Z12 3.260e-4 973.41 0.08333 24

K13 0.02921
˜

? ? 918
˜

Λmax
13 0.02846 60.455 0.07009 906

A∗
13 2.569e-4 8.9768 0.07553 28

13
A7

13 ? 7.8641 ? 368

Lc
13 0.002255 7.7621 ? ?

Z13 1.112e-4 1934.6 0.08333 26

Λ14 0.02162 98.876 0.06946 1422
˜

A∗
14 8.740e-5 10.727 0.07551 30

14 A5
14 ? 9.0066 ? ?

Lc
14 0.005221 8.8252 ? ?

Z14 3.658e-5 3855.6 0.08333 28

Λ15 0.01686 202.91 0.06892 2340

A∗
15 2.870e-5 12.817 0.07549 32

15 A8
15 ? 11.602 ? ?

Lc
15 6.206e-5 11.005 ? ?

Z15 1.164e-5 7703.1 0.08333 30

Table 3.2a. (Continued on next page.)
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n packing ∆ Θ G τ

Λ16,Λ∗
16 0.01471 96.500 0.06830 4320

16 A∗
16 9.116e-6 15.311 0.07549 34

Z16 3.591e-6 15,422 0.08333 32

Λ17 0.008811 197.72 0.06822 5346

A∗
17 2.807e-6 18.288 0.07549 36

17
A9

17 ? 12.357 ? ?

Z17 1.076e-6 30,936 0.08333 34

Λ18 0.005928
˜

301.19 0.06792 7398

18 A∗
18 8.396e-7 21.841 0.07550 38

Z18 3.134e-7 62,158 0.08333 36

Λ19 0.004121 607.62 0.06767 10668

A∗
19 2.443e-7 26.082 0.07552 40

19
A10

19 ? 21.229 ? ?

Z19 8.892e-8 125,077 0.08333 38

Λ20 0.003226
˜

889.86 0.06731 17400

A∗
20 6.924e-8 31.143 0.07553 42

20
A7

20 ? 20.367 ? ?

Z20 2.461e-8 252,020 0.08333 40

Λ21 0.002466 1839.5 0.06701 27720

A∗
21 1.914e-9 37.185 0.07555 44

21
A11

21 ? 27.773 ? ?

Z21 6.651e-9 508,417 0.08333 42

Λ22 0.002128
˜

≤ 3426.8 ? 49896

Λ∗
22 2.952e-4 ≤ 27.884 ? 1782

22
A∗

22 5.168e-10 44.395 0.07558 46

Z22 1.757e-9 1,026,792 0.08333 44

Λ23 0.001905 ≤ 7609.0 ? 93150

Λ∗
23 2.788e-4 ≤ 15.322 ? 4600

23
A∗

23 1.364e-10 53.000 0.07560 48

Z23 4.543e-10 2,075,774 0.08333 46

Λ24,Λ∗
24 0.001930 7.9035 0.06577 196560

24 A∗
24 3.523e-11 63.269 0.07563 50

Z24 1.150e-10 4,200,263 0.08333 48

Table 3.2b. (Continued from previous page.) Characteristics of some exemplary dense lattices for n= 9 to
24, with≤ denoting a bound, not an exact value; see Table 3.1 legend fordescription of notation. Note
that the covering radii ofΛ13 throughΛ15 andΛ17 throughΛ21 are, respectively,{

√
26,
√

80/3,
√

28} and
{
√

26,
√

80/3,
√

28,
√

28,
√

29} (this was verified numerically in the present work; lower bounds on these
values, which turn out to be sharp, are given in Conway & Sloane 1999).
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Chapter 4

Rare nonlattice packings & nets forn≤ 8
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We now turn our attention to the problem of infiniterare sphere packings, with packing densitylower
than that of the corresponding Cartesian packing, and the closely related problem of infinite nets. Forn = 2,
this problem is essentially trivial. Forn = 3, the richness of solutions to this problem is fascinating and,
due to the intense interest in crystallographic structureswith various desirable chemical properties, has been
exhaustively studied and catalogued. Forn> 3, relatively few regular constructions are known, and it appears
as if what academic interest there has been has not yet led to any applications of significance in science and
engineering; Part III of this text intends to change this, thus motivating the present chapter.

Interest inn-dimensional space groups and symmetries dates back to the nineteenth century, with the
work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Rodrigues, Möbius, Jordan, Sohncke, Fedorov,
Schönflies, Fricke, and Klein. Historical accounts of thisearly work, as well as several follow-on mathema-
tical developments related to space groups and symmetries,are available in Brown et al. (1978) and Schwar-
zenberger (1980). Much of the related work in the field of geometry was developed by Coxeter (1970, 1973,
1974, 1987, 1989). Despite this intense interest, there arevery few explicit constructions of regular rare sphe-
re packings forn> 3 available today, outside of very short treatments of the subject by O’Keeffe (1991b) and
Beukemann & Klee (1992), discussed below.

http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/qzd
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As mentioned in the abstract and explored in depth in Part III, certain emerging engineering applications
now motivate the further development and deployment of quasi-infinite n-dimensional nets, with a particular
focus on structured nets with low coordination number and high topological density. Such nets are well suited
for the rapid spread of information in switchless computational interconnect systems with a reduced number
of wires and, thus, reduced cost. In such systems, a logical network withn > 3 may easily be designed and
built1 and, as we will see, there are significant potential benefits for so doing. We are thus motivated to revisit
the problem of the design of structured nets with low coordination number. Note that none of the lattices
discussed in §2 have a coordination number lower than that of the corresponding Cartesian lattice,τ = 2n.
However, forn = 3, there is a wide range of stable and unstable nonlattice packings that lead to such nets; as
shown below, many of these packings and nets generalize naturally to higher dimensions.

4.1 Net terminology

The terminology used to discuss 3D nets, most of which generalizes readily to the discussion ofn-dimensional
nets, has been clarified significantly over the last decade, and is now quite precise.

Recall first the measures defined in the Preface, including the coordination number, the coordination
sequence, and ak-hop measure oflocal topological densitygiven by the cumulative sum of all nodes reached
within k hops from origin, denotedtdk (Tables 3.1 and 3.2 list this quantity fork = 10). O’Keeffe (1991a)
defines another, sometimes preferred (see, e.g., Grosse-Kunstleve et al. 1996) measure ofglobal topological
density, td = limk→∞ tdk/kn, which reveals the rate of growth oftdk with k in the limit of largek. [For a
uninodaln-dimensional net,td may be found by representing2 the coordination sequence as an(n− 1)’th-
order polynomial in the number of hopsk, then taking the leading coefficient of this polynomial and dividing
by n.] Despite some impressive efforts in representing coordination sequences with such polynomials (see,
e.g., Conway & Sloane 1997, and the references contained therein), the measuretd is currently unknown for
most of the nets discussed here. As a matter of computationaltractability, we thus resort in §3 to the tabulation
of the local topological density measure,td10, as this measure is much easier to compute.

Our attention in this text is focused almost exclusively onequilibrium packings(that is, on sphere packings
which, if unperturbed, can bear compressive loads applied at the edges of a packing that is built out to fill a
finite convex domain) and their correspondingequilibrium nets(which are constructed with tensile members
connecting nearest-neighbor nodes, and can bear tensile loads applied at the edges of a finite convex do-
main)3,4. Equilibrium packings fall into two catagories: stable (that is, sphere packings which, if perturbed,
oscillate about their equilibrium configurations, and return to these configurations if there is damping present)
and unstable (that is, sphere packings which depart from equilibrium if perturbed); we consider both.

After years of conflicting terminology in the literature on nets, the concepts ofcycles, rings, strong rings,
tilings, natural tilings, point symbols, andvertex symbolshave, in 3D, finally crystallized. The reader is re-
ferred to Blatov et al. (2009) and the references contained therein for description of this modern terminology,

1Recall, e.g., the “hypercube” computational interconnectsystem introduced several years ago; though designed with alogical net-
work with n> 3, the hypercube, like most computational interconnect strategies deployed today, is significantly hampered by its inherent
dependence on a Cartesian topology.

2Or by approximatingthis coordination sequence as an(n−1)’th-order polynomial for largek, if such a polynomial does not fit
exactly.

3A family of structures with both tensile and compressive members, known astensegrity, might be said to cover the gap between
purely compressive sphere packings and purely tensile nets. The mathematical characterization of tensegrity systemsin 3D is now
precise, due largely to the work of Skelton & de Oliveira (2009). An interesting extension of the present study would be togeneralize
such tensegrity systems ton > 3 dimensions.

4For the purpose of the applications studied in Parts II and III, we do not actually use the property of mechanical equilibrium of the
corresponding structure; this property may rather be considered as a convenient means to an end when designing a regularpacking or
net. Several nets discussed in the literature (see, e.g., Wells 1977, page 80) are not equilibrium sphere packings, and might be interesting
to consider further.
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as well as numerous cautions concerning the conflicting nomenclatures adopted elsewhere in the published
literature. In short:

• A cycleis a sequence of nodes in a net, connected by edges, such that the first and last nodes of the sequence
coincide, while none of the other nodes in the sequence appears more than once.

• A cycle sum, of cycles A and B, is the union of those edges in either A or B but not both.
• A ring is a cycle that is not the sum of two smaller cycles.
• A strong ringis a cycle that is not the sum of any number of smaller cycles.
• A tiling of R3 by a 3D net is simply the dissection of 3D space into volumes whose faces, which in general

may be curved (asminimal surfaces, like soap bubbles; see, e.g., Sadoc & Rivier 1999), are bounded by
cycles of the net. A 3D net generally admits many tilings.

• Thedual of a tiling is the unique new tiling obtained by placing a new vertex inside each original tile and
connecting the vertices of adjacent tiles (that is, with shared faces) in the original tiling with edges. If a
tiling and its dual are identical, the tiling is said to beself-dual. The dual of a dual is the original tiling.

• A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles such that the tiles have the
maximum combinatorial symmetry and all the faces of the tiles are strong rings. A 3D net often5 admits
a unique natural tiling. If a tiling and its dual are both natural, the pair is referred to asnatural duals. If a
natural tiling is self-dual, it is said to benaturally self-dual.

• The point symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that there area pairs of edges
touching the node at the origin with shortest cycles of length A, b pairs of edges touching the node at the
origin with shortest cycles of lengthB (with B > A), etc. Note that the sum of the superscripts in a point
symbol totalsτ(τ−1)/2.

• Thevertex symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that the first pair of edges touching
the node at the origin hasa shortest rings of lengthA, the second pair of edges touching the node at the
origin hasb shortest rings of lengthB, etc. If for any entry there is only 1 such shortest ring, the subscript
is suppressed; if for any entry there is no ring, a subscript∗ is used. The entries are sorted such that smaller
rings are listed first, and when two rings of the same size appear, the entry with the smaller subscript is
listed first. In the special case ofτ = 4, the six entries of the vertex symbol are listed as three pairs of
entries, with each pair of entries corresponding to opposite pairs of edges, and are otherwise again sorted
from smallest to largest. Note that the number of entries in avertex symbol isτ(τ−1)/2.

The concepts ofcycles, rings, strong rings, point symbols, andvertex symbolsextend immediately ton di-
mensions; for practical considerations (specifically, because the number of entries in a vertex symbol gets
unmanageable for largeτ), we list the point symbol in Table 3.1 whereverτ ≥ 5, and the vertex symbol where
τ ≤ 4. The extension of the tiling concept ton dimensions is more delicate, and is discussed further in §4.5.

Following Delgado-Friedrichs et al. (2003a,b), theregularity of a 3D net may now be characterized pre-
cisely. In short, consider a 3D net withp kinds of vertex andq kinds of edge and whose natural tiling is
characterized byr kinds of face ands kinds of tile. Delgado-Friedrichs & Huson (2000) introduced a clear
and self-consistent method for characterizing the regularity of such a net simply by forming the arraypqrs:
examining the 4-digit number so formed, referred to as thetransitivity of the net, the most “regular” 3D nets
are generally those with the smallest transitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and edges in its primitive
cell6; that is, upon deletion of any further edges in the primitivecell, the resulting net breaks into multiple
disconnected structures. Beukemann & Klee (1992) establish that there are only 15 such minimal nets in 3D.
Delgado-Friedrichs & O’Keeffe (2003) define a 3D net asbarycentricif every vertex is placed in the center
of gravity of its neighbors (to which it is connected by edges). Bonneau et al. (2004), in turn, establish that 7

5Unfortunately, not all 3D nets have natural tilings, and some have multiple natural tilings; §3 of Blatov et al. (2007) discusses this
issue further.

6A primitive cellof a net is the smallest fundamental volume (e.g., hypercube) that, when repeated as an infinite array in all directions
with zero spacing, generates the net.
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of the 15 such minimal nets in 3D havecollisions; that is, when arranged in barycentric fashion, the location
of two or more vertices coincide (and, thus, the net is in a sense degenerate). Of the 8 remaining minimal nets
without collision, five are uninodal.

4.2 2D nets

Consider first the development of uninodal 2D nets with low coordination number. Start from the triangular
(A∗

2
∼= A2) lattice (see Figure P.1a), the corresponding net of which is an array of hexagons, and perform a

red/black/blue coloring of the nodes such that no two nearest-neighbor nodes are the same color. If we retain
only the red and black nodes, we are left with thehoneycomb packing(see Figure P.1e), and the corresponding
net is an array of hexagons. The coordination number of this stable sphere packing isτ = 3, which is less
than that of the 2D square packing(τ = 4); this implies fewer wires in the corresponding computational
interconnect application. Unfortunately, the topological density of this net is quite poor, withtd10 = 166 (that
is, with information spreading from one node to only 165 others after a message progresses 10 hops in the
network application). We are thus motivated to explore other ways of constructing structured (that is, easy-
to-build and easy-to-navigate) nets with low coordinationnumber (that is, with low cost) but high topological
density (that is, with a fast spread of information).

Note that the honeycomb packing has a packing density which is less than that of the corresponding
triangular and square lattices discussed previously (see Table P.1). If minimization of packing density is the
goal7, then the honeycomb packing may beaugmentedby replacing every sphere with a set of three spheres
in contact, each such set forming an equilateral triangle which touches the neighbors in exactly the same
locations as the single sphere which it replaces in the original (unaugmented) packing (see, e.g., Heesch &
Laves 1933, Figure 13). The packing density of the resultingstableaugmented honeycombpacking is less
than 2/3 that of the original honeycomb packing (see Table 3.1), andis the rarest uninodal sphere packing
available in 2D.

4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We thus identify a List of Twelve highly “regular”
(as defined in §4.1, via their transitivity) uninodal 3D nets upon which we willfocus our attention and which,
following Delgado-Friedrichs et al. (2003a,b), we denote (listing from dense to rare):

1. fcu: face-centered cubic (FCC),
2. bcu: body-centered cubic (BCC),
3. pcu: cubic,
4. qtz: quartz,

5. nbo: NbO,
6. dia: diamond,
7. sod: sodalite,
8. qzd: quartz dual,

9. cds: CdSO4,
10. bto: B2O3,
11. ths: ThSi2,
12. srs: SrSi2.

See Table 3.1 for the common names, associated packings, andkey characteristics of each8. These twelve
nets have been studied thoroughly in the literature, including the landmark work of Wells (1977, 1979, 1983,
1984) and scores of important publications since, including Koch & Fischer (1995, 2006) and the numerous
references contained therein; space does not allow a comprehensive review of this broad body of literature
here, nor even a comprehensive analysis of these twelve well-studied nets. Suffice it to say here that included
in our List of Twelve are the 5regularnets (that is, of transitivity 1111),bcu, pcu, nbo, dia, andsrs, and the
1 quasiregularnet (of transitivity 1112),fcu, as well as 2 of the 14semiregularnets (of transitivity 11rs), qtz
andsod(both of which have transitivity 1121), as discussed in O’Keeffe et al. (2000) and Delgado-Friedrichs
et al. (2003a,b). Also included in this list are the 5 uninodal minimal nets without collision,pcu, dia, cds,

7Note that, forn > 3, the authors are actually unaware of any practical application, other than mathematical curiosity, for which
minimization of packing density is a significant goal.

8Again, clear drawings of each of these nets are available athttp://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced
by any of the lowercase boldface three-letter identifiers given here.

http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/bcu
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/bcu
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/fcu
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srs, andths, the first 4 of which are naturally self-dual, as discussed inBonneau et al. (2004, Table 1); note
thatcds is of transitivity 1221, andths is of transitivity 12119. The remaining 2 nets on our List of Twelve,
qzd (transitivity 1211; see Delgado-Friedrichs et al. 2003c) andbto (transitivity 1221; see Blatov 2007), are
included because of their close structural relationship tothe others, as discussed further in §4.4. We also note
that four on our List of Twelve,qtz, qzd, bto, andsrs, arechiral (that is, these nets twist in such a way that
the nets and their reflections are not superposable).

The 12 remaining semiregular nets (of transitivity 11rs) of Delgado-Friedrichs et al. (2003b, Table 1) are
the next natural candidates in this taxonomy (hxg, crs, reo, andrhr might be of particular interest), perhaps
followed by the 28 binodal edge-transitive nets (of transitivity 21rs) of Delgado-Friedrichs et al. (2006, Table
1) and the 3 binodal minimal nets without collision (of transitivity 2222, 2211, and 2321) of Bonneau et
al. (2004, Table 1) [see also Delgado-Friedrichs & O’Keeffe(2007)]. Note that just half of the List of Twelve
considered here (specifically, in order of frequency,dia, pcu, srs, ths, nbo, andcds) account for 66% of
the 774 uninodal metal-organic frameworks (MOFs) tabulated in the Cambridge Structural Database (CSD),
as reviewed by Ockwig et al. (2005), thus indicating the prevalence in nature of several of the structures
considered here.

The idea of augmentation, introduced in §4.2, extends directly to many 3D nets in order to reduce packing
density. For example, in the (stable) packings related to thedia andsodnets (discussed further in §4.4.1and
§4.4.3respectively), both of which have coordination number 4, wemay replace each sphere with a set of
four spheres in contact, each such set of spheres forming a tetrahedron, creating what is referred to as the
augmented diamond(dia-a) andaugmented sodalite(sod-a) nets. In the case of the augmentation of the
packing related to thedia net, each tetrahedral set touches the neighbors in exactly the same locations as the
single sphere which it replaces in the original (unaugmented) packing (see Heesch & Laves 1933, Figure 12).
In the case of the augmentation of the packing related to thesod net, as the angles between the 4 nearest
neighbors of any node are not uniform in thesod net, each tetrahedral set is slightly larger than the single
sphere which they replace in the original (unaugmented) packing, and the contact points are slightly shifted
(O’Keeffe 1991b); note that the packing associated with thesod-anet is the rarest uninodal stable 3D packing
currently known. On the other hand, in the augmentation of the (unstable) packing related to thesrsnet, which
has coordination number 3, we may replace each sphere with a set of three spheres in contact, each such set of
spheres, as in the augmentation of the honeycomb packing, forming an equilateral triangle and touching the
neighbors in exactly the same locations as the single spherewhich it replaces in the original (unaugmented)
packing (see Heesch & Laves 1933, Figure 10); note that the packing associated with the resultingsrs-anet
is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycomb,dia-a (transitivity 1222) todia, sod-a (transitivity
1332) tosod, andsrs-a (transitivity 1221) tosrs, it is seen that augmentation, while reducing the packing
density∆ (see Table 3.1), also significantly reduces both the topological density,td10, and the regularity of the
resulting net. Thus, the process of augmentation appears tobe of little interest for the purpose of developing
efficient computational interconnects. Note that Fischer (2005) and Dorozinski & Fischer (2006) show that
the process of augmentation can be repeated indefinitely in order to obtain (non-uninodal) sphere packings of
arbitrarily low packing density.

Finally, there are two other 3D nets which, though less regular than our List of Twelve, are worthy of “ho-
norable mention”:hexagonal close packing(hcp, transitivity 1232) andlonsdaleite(lon, transitivity 1222).
As hinted by their identical packing densities (see Table 3.1), hcp is closely related tofcu, andlon is closely
related todia; curiously, both have slightlyhighervalues oftd10 than do their more regular cousins. The re-
lations between these two pairs of packings is readily evident when they are considered as built up in layers,
as introduced in the second paragraph of §2.4and discussed further below.

TheA3 lattice (a.k.a. FCC, corresponding to thefcu net) may be built up as an alternating series of three
2D triangular (A2) layers, offset from each other in the formabcabc. . ., with the nodes in one layer over the

9As illustrated in Bonneau et al. (2004, Figure 3), a self-dual tiling of ths may in fact be constructed; this tiling has transitivity 1221.
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holes in the layer below;hcp is built up similarly, but with two alternating layers, offset from each other in
the formabab. . .

Similarly, the sphere packings corresponding to thedia andlon nets may be built up as alternating series
of approximately 2D honeycomb layers offset from each other. These honeycomb “layers” are in fact not
quite 2D; if the nodes in a single layer are marked with an alternate red/black coloring, the red nodes are
raised a bit and the black nodes lowered a bit. In both packings, the layers are offset from each other, with
the lowered nodes in one layer directly over the raised nodesin the other. In the packing corresponding to the
dia net, there are three such alternating layers stacked in the form abcabc. . .; in the packing corresponding
to thelon net, there are two such alternating layers stacked in the form abab. . .

4.4 Uninodal extension of some regular 3D nets to higher dimensions

The fcu net is based on theD3 ∼= A3 lattice, and thus may be extended ton dimensions in two obvious ways
(that is, viaAn or Dn). The bcu net is based on theD∗

3
∼= A∗

3 lattice, and thus may also be extended ton
dimensions in two obvious ways (viaA∗

n or D∗
n). Thepcu net is based on theZ3 lattice, and thus extends to

n dimension viaZn. This section explores how most of the other nets on the List of Twelve described above
extend naturally to higher dimensions.

It is important to recall that the nets in theD∗
n case forn > 4 turn out to be a bit peculiar, as discussed

further in §2.3; theT90
n andT60

n nets encountered in §4.4.7are similar.

4.4.1 Extendingdia: the A+
n and D+

n packings

Thedia net may be obtained from the well-knownD+
3 packing defined in (2.5) (see also Sloane 1987), and

thus extends naturally ton dimensions asD+
n . However, there is an alternative construction of thedia net,

described below and denotedA+
n , which is equivalent toD+

n for n= 3 but extends ton dimensions differently.
In fact, a third extension of thedia net ton dimensions, theV90

n construction, is introduced in §4.4.6. These
alternative extensions of thedia net ton dimensions, with low coordination number, are perhaps better suited
thanD+

n for many practical applications. We thus stress that names such as “n-dimensional diamond” are
parochial, as there are sometimes multiple “natural”n-dimensional extensions of a net related to a given
three-dimensional crystalline structure (e.g.,D+

n , A+
n , andV90

n ). For n-dimensional nets in general, we thus
strongly prefer names derived from a corresponding well-definedn-dimensional lattice or, when such a name
is not available, names evocative of theirn-dimensional construction; this preference is in sharp contrast with
the names suggested by O’Keeffe (1991b).

Recall the first paragraph of §4.2. Now start from a BCC (A∗
3
∼= D∗

3) lattice and perform a red/black/-
blue/yellow coloring of the points such that no two nearest-neighbor points are the same color. If we retain
only the red and black points, we are left with the diamond packing. The coordination number of this packing
is τ = 4, which is less than that of the 3D cubic packing (τ = 6), but also has a reduced topological density,
as quantified bytd10 (see Table 3.1). The diamond packing also has a packing density which is less than that
of the corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.7a)] that A∗
n may be defined as the union ofn+ 1 shiftedAn lattices, which is

analogous to the property [see (2.4a)] thatD∗
n may be defined as the union of 4 shiftedDn lattices. Recall from

(2.5) thatD+
n , which we referred to theoffset checkerboard packing, was defined as the union of just 2 shifted

Dn lattices, and generates the diamond packing in 3D (whereD3 ∼= A3). Motivated by the previous paragraph
and the first paragraph of §4.2, we are thus also keenly interested in the nonlattice packing considered in
Table 1 of O’Keeffe (1991b), denoted hereA+

n and referred to as theoffset zero-sum packing, and which is
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defined as the union of just 2 shiftedAn lattices [cf. (2.5), (2.7)]:

A+
n = An∪ ([1]+An), where [1]k =

{
1

n+1 k≤ n,
−n
n+1 k = n+1.

(4.1)

The coordination number of the regular uninodal nonlatticepackingA+
n is n+ 1, with thesen+ 1 nearest

neighbors forming a regularn-dimensionalsimplex[that is, a regularn-dimensional polytope withn+ 1
vertices—e.g., inn = 3 dimensions, a tetrahedron]. The generalization of the honeycomb and diamond
packings to higher dimensions given byA+

n is significant, as it illustrates how a highly regular stablepacking
with coordination number lower than that of the corresponding Cartesian lattice may be extended to dimensi-
onn > 3. Note also that the nonlattice packingsA+

n are distinct from the lattice packingsAr
n defined in (2.8),

which are generated in a similar manner.

4.4.2 AugmentingA+
n : the Â+

n packing

The third paragraph of §4.3 discusses the augmentation of theA+
3 packing, replacing each sphere with a

tetrahedral set of 4 smaller spheres. This idea extends immediately to the augmentation, inn dimensions, of
theA+

n packing discussed above, replacing each (n-dimensional) sphere with a regularn-dimensional simplex
of n+1 smaller spheres.

4.4.3 Extendingsod: the TA∗
n packing

The familiarsod net is formed by the edges of the Voronoı̈ tesselation of space formed by theA∗
3 (that is,

BCC) packing, with the nodes of the net located at theholesof the packing rather than at the centers of
the spheres of the packing. As noted by O’Keeffe (1991b), this construction extends immediately to then-
dimensional net formed by the Voronoı̈ tesselation of spacevia theA∗

n packing. Constructing theA∗
n packing

as defined in §2.4, the holes of this packing that are nearest to the origin (that is, in its Voronoı̈ tesselation,
the corners of the Voronoı̈ cell which contains the origin) are given by the(n+1)! permutations of the vector
(see Conway & Sloane, 1999, page 474):

1
2(n+1)

(
−n −n+2 −n+4 . . . n

)T
.

These nodal points [which, like the lattice points ofA∗
n itself, are defined in an(n+ 1)-dimensional space,

but all lie in then-dimensional subspace orthogonal to the vectornAn defined in (2.6b)] are equidistant from
theirn+1 nearest neighbors, and formpermutohedra(in 3D, truncated octahedra) which tilen-dimensional
space. Note that these nodal points themselves form a uninodal sphere packing with coordination number
τ = n+1; due to its relationship to thetesselationof space via the points of theA∗

n packing, we thus introduce
the notationTA∗

n for this packing.

4.4.4 Extendingnbo: the Sn construction

Thenbo net, a subset of thepcu net, has an obvious uninodal extension ton dimensions withτ = 4, which
may be visualized as the contact graph formed by repeating a unit hypercube pattern as an infinite array with
unit spacing (see Figure5.3), where each hypercube itself has two paths which “snake” along the edges from
the (0,0, · · · ,0,0) node to the(1,1, · · · ,1,1) node, one coordinate direction at a time; we thus suggest the
symbolSn to denote this construction. These two paths touch at the opposite corners of the unit hypercube:

path A : (0,0, · · · ,0,0), (0,0, · · · ,0,1), (0,0, · · · ,1,1), . . . , (0,1, · · · ,1,1), (1,1, · · · ,1,1), and

path B : (0,0, · · · ,0,0), (1,0, · · · ,0,0), (1,1, · · · ,0,0), . . . , (1,1, · · · ,1,0), (1,1, · · · ,1,1).
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Figure 4.1: Construction of three rare packings: (left) theY2 (honeycomb) net, (center) theY90
3 (ths) net, and

(right) theV
90
3 (dia) net. All three constructions build from left to right in theabove figures from a basic “Y”

or “V” stencil, and have obvious extensions to higher dimensions.

4.4.5 Extendingths and bto: the Y90
n and Y60

n constructions

The honeycomb packingA+
2 , of coordination numberτ = 3, contains a fundamentalY-shaped stencil. As

illustrated in Figure4.1a, starting with thisY stencil and adjoining translates of itself, tip to tip, builds up
the honeycomb packing in 2D. Extending this idea to 3D, as illustrated in Figure4.1b, we may “twist” theY
stencil by 90◦ at each level: starting with the basicY stencil in, say, thee1-e2 plane, we can shift to the right
(in e1) and adjoinY stencils twisted by 90◦ (that is, aligned in thee1-e3 plane), then shift to the right again
and adjoinY stencils twisted again (aligned in thee1-e2 plane), etc. This construction forms theths net in
3D, and extends immediately to dimensionn > 3; we thus denote this constructionY90

n .

Instead of twisting theY stencil by 90◦ at each step, we may instead twist it by 60◦. This forms thebto
net in 3D. As with thehcp versusfcu andlon versusdia nets in 3D, as described at the end of §4.3, there is
a bit of flexibility in terms of the ordering of the the successive twists forn > 3. A highly regular net for odd
n, which we denoteY60

n , is formed by pairing off the dimensions after the first and alternating the twists as
follows: starting with the basicY stencil in, say, thee1-e2 plane, we continue by adjoiningY stencils in the
e1-e4 plane, then in thee1-e6 plane, etc. We then adjoinY stencils in thee1-z60

23 plane, wherez60
23 is the vector

formed by rotating thee2 unit vector 60◦ in the direction towardse3; we continue by adjoiningY stencils in
thee1-z60

45 plane, then in thee1-z60
67 plane, etc. Next, we adjoinY stencils in thee1-z120

23 plane, wherez120
23 is the

vector formed by rotating thez60
23 vector 60◦ further in thee2-e3 plane; we continue by adjoiningY stencils

in thee1-z120
45 plane, then in thee1-z120

67 plane, etc., and repeat (that is, with stencils again aligned in thee1-e2

plane).

TheY90
n andY60

n constructions have a parameter, denotedα and defined as half of the angle between the
two top branches of theY stencil (thus,α → 0◦ closes down theY to anI, whereasα → 90◦ opens up the
Y to aT). The Voronoı̈ volume of theY90

n andY60
n constructions may be written as simple functions ofα as

follows:

VY90
n

(α) = fYn(α)VY90
n

(ᾱ)

V
Y60

n
(α) = fYn(α)V

Y60
n

(ᾱ)

}
with ᾱ = 45◦, fYn(α) = (2−

√
2)(1+cosα)(

√
2 sinα)n−1.

This relation is plotted in Figure4.2a. The characteristics ofY90
n andY60

n reported in Table 3.1 are compu-
ted for α = cos−1(1/n), as marked with circles in Figure4.2a, which maximizes the Voronoı̈ volume and,
thus, minimizes the packing density. An alternative natural choice isα = 60, which results in barycentric
constructions ofY90

n andY
60
n .
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Figure 4.2: Variation of the Voronoı̈ volume of the (left)Y90
n & Y60

n and (right)V90
n & V60

n packings as a
function ofα for n = 2 to n = 8.

4.4.6 Extendingdia and qtz: the V90
n and V60

n constructions

TheV90
n andV60

n constructions are defined in an identical manner as theirY90
n andY60

n counterparts, with aV
stencil replacing theY stencil (see, e.g., Figure4.1c), thus resulting in nets with coordination numberτ = 4
instead ofτ = 3. These constructions lead to thedia andqtz nets in 3D.

As with theY90
n andY60

n construction, theV90
n andV60

n constructions have a parameter, denotedα and
defined as half of the angle between the two top branches of theV stencil. The Voronoı̈ volume of theV90

n
andV60

n constructions may be written as simple functions ofα as follows:

VV90
n

(α) = fVn(α)VV90
n

(ᾱ)

VV60
n

(α) = fVn(α)VV60
n

(ᾱ)

}
with ᾱ = 45◦, fVn(α) = 2n/2 cosα(sinα)n−1.

This relation is plotted in Figure4.2b. The characteristics ofV90
n andV

60
n reported in Table 3.1 are computed

for α = cos−1(1/
√

n), as marked with circles in Figure4.2a, which maximize the Voronoı̈ volumes and, thus,
minimize the packing density. Note that theV90

n andV60
n constructions are barycentric for anyα in the range

0 < α < 90◦.

4.4.7 Extendingcdsand qzd: the T90
n and T60

n constructions

TheT
90
n andT

60
n constructions are defined in an analogous manner as theirY

90
n , V

90
n , Y

60
n , andV

60
n counter-

parts, and lead to thecdsandqzd nets in 3D. The only difference now is that, instead of adjoining two newY

or V symbols on the tips of eachY or V symbol in the previous layer, we now adjoin a single newT symbol
centered atop eachT symbol in the previous layer, appropriately twisted; theseconstructions thus result in
nets with coordination numberτ = 4. Note that the “horizontal” and “vertical” distances between nodes in
these constructions are equal, and that these constructions are parameter free and barycentric.

Note that thex1 direction is special in theY90
n , Y60

n , V90
n , V60

n , T90
n , andT60

n constructions. These con-
structions are configured in this way intentionally, in order to construct equilibrium packings; however, other
variations are certainly possible. Note also that theY

60
n , V

60
n , andT

60
n constructions involve pairing off the

dimensions after the first and rotating in each pair of dimensions 60◦ at a time, in the manner described in
§4.4.5. If we follow the same procedure but rotate 90◦ at a time, we recover nets equivalent to the correspon-
dingY90

n , V90
n , andT90

n nets, respectively, as defined previously.
Note also that theY90

n , V90
n , andT90

n constructions form square layers in thee2-e3 plane, thee4-e5 plane,
thee6-e7 plane, etc., whereas theY60

n , V
60
n , andT

60
n constructions form triangular layers in these planes. In
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the resultingY90
n , Y60

n , V90
n , andV60

n nets, there are, in fact, no edges of the net within these layers (that is,
all of the edges connect nodes in different layers). On the other hand, in the resultingT90

n andT60
n nets, each

node is connected via edges of the net to exactly two others (note:not four or six) within these layers. As
with the peculiarD∗

n net discussed previously, theT90
n andT

60
n constructions are, in fact,not contact graphs

of the corresponding sphere packings10; some bonds must be cut in the corresponding contact graphs (which,
in the case ofT90

n , is simplyZn) in order to form theT90
n andT60

n nets.

4.4.8 Other extensions

Sections4.4.1through4.4.7summarize several uninodal families ofn-dimensional extrapolations of some
common 3D nets; most of these (unless indicated otherwise, via references to existing literature) are new.
Note that O’Keeffe (1991b) mentions two other such extensions, one corresponding to thelon net and one
corresponding to thesod-a, the latter of which is currently the rarest uninodal stablepacking known forn> 3
(and which, consistent with the above developed naming conventions, we might suggest to identify asTÂ∗

n).
Beukemann & Klee (1992, page 50) mentions two extensions of their own (at least, ton = 4), both related to
thedia net. Judging from the vast assortment of distinct rare sphere packings and related nets available in 3D,
there are certainlymanymore uninodal extensions to higher dimensions of regular rare 3D packings that are
still awaiting discovery; we have focused our attention here on what appear to be several of the most regular.
The regularity ofn-dimensional nets forn > 3 is discussed further below.

4.5 Regularity and transitivity of n-dimensional nets forn > 3

As reviewed in §4.1, the regularity of a 3D net is defined based on its transitivity, which in turn is based on
the so-called natural tiling of the 3D net. The natural tilesof 3D nets have been thoroughly characterized
in the literature for all of the most regular 3D nets available. In §4.4, we described uninodal extensions of
several regular 3D nets to higher dimensions, and mentionedthat many more such uninodal nets withn > 3
most certainly exist. The natural question to ask, then, is how the concepts of regularity and transitivity can
be extended to higher dimensions, so that we may differentiate between these nets and identify those which
are the most regular.

This question is difficult to visualize in dimensions higherthan three, and requires a symbolic/numerical
description of the net to proceed. The net arising from theZ

n lattice forn = 4,5, . . ., which is naturally tiled
by n-dimensional hypercubes, is by far the easiest starting point. Denote first the symbols{v,w,x,y,z} as
variables that range from 0 to 1. The 3D unit cube, denoted{xyz}, has six faces,{xy0,xy1,x0z,x1z,0yz,1yz}.
Each face, in turn, has four edges; e.g.,{0yz} has edges{0y0,0y1,00z,01z}. Finally, each edge connects two
nodes; e.g.,{00z} connects nodes{000,001}. The 4D unit hypercube,{wxyz}, has eight 3-faces, which we
identify as{wxy0,wxy1,wx0z,wx1z,w0yz,w1yz,0xyz,1xyz}, each 3-face has six 2-faces, each 2-face has four
edges, and each edge connects two nodes. The 5D unit hypercube,{vwxyz}, has ten 4-faces, each 4-face has
eight 3-faces, each 3-face has six 2-faces, each 2-face has four edges, and each edge connects two nodes; etc.

In 3D, as reviewed in §4.1, the transitivity is based on the number of distinct nodes, edges, (2D) faces,
and (3D) tiles. By analogy, then, in 4D we may define the transitivity of a net based on the number of
distinct nodes, edges, 2-faces, 3-faces, and (4D) tiles in the natural tiling. Similarly, in 5D, we may define the
transitivity based on the number of distinct nodes, edges, 2-faces, 3-faces, 4-faces and (5D) tiles in the natural
tiling; etc. Via this definition, the net derived from theZ4 lattice has transitivity 11111, the net derived from
theZ

5 lattice has transitivity 111111, etc.

10Note that there is a lower-symmetry form ofcds in 3D with four nearest neighbors per node whose contact graph does generate the
cds net; see Delgado-Friedrichs (2005, Figure 1). Lower symmetry forms of otherT90

n andT60
n constructions, whose nets are contact

graphs, might also exist.

http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/cds
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For all of the other nets withn > 3 listed in Table 3.1, the computation of the transitivity remains an
important unsolved problem. Note that, in a tiling corresponding to a 3D net, the (2D) faces of the (3D) tiles
are, in general, minimal surfaces stretched over non-planar frames built from (1D) edges between several
nodal points defined in 3D. In a tiling corresponding to ann-dimensional net forn > 3, the 2-faces of the
tiles are, in general, minimal surfaces stretched over nonplanar frames between several nodes defined inn
dimensions. [Note that the computation of such minimal surfaces inn dimensions is straightforward using
standard level set methods; see, e.g., Cecil (2005).] Several of these nonplanar 2-faces combine to form the
boundaries of each 3-face, which itself is not confined to liewithin a 3D subspace of then-dimensional
domain. Several of these 3-faces then combine to form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilings isapparently a task that could be readily accom-
plished numerically, but is, in general, expected to be difficult to visualize.
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Chapter 5

Coding theory
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5.1 Introduction

Though the lattices that arise fromn-dimensional sphere packings have connections that permeate many
foundational concepts in number theory and pure geometry, the list of successful direct applications in science
and engineering ofn-dimensional sphere packings withn> 3 is currently surprisingly short1; this list includes

• the numerical evaluation of integrals (Sloan & Kachoyan 1987),
• the solution of the linear Diophantine inequalities that arise in integer linear programming (Schrijver 1986),
• the characterization of crystals with curious five-fold symmetries (Janssen 1986),
• attempts at unifying the 4 fundamental forces (in 10, 11, or 26 dimensions) via superstring theory (Kaku

1999), and
• the development of maximally effective numerical schemes to address an information-theoretic interfe-

rence suppression problem known as the Witsenhausen counterexample (Grover, Sahai, & Park 2010).

Far and away the most elegant and practical application ofn-dimensional sphere packings, however, is in
the framing and understanding oferror correcting codes(ECCs). The reader is referred to MacWilliams &
Sloane (1977), Thompson (1983), Pless (1998), Conway & Sloane (1998), and Morelos-Zaragoza (2006)
for some comprehensive reviews of this fascinating subject. A brief overview of this field is given here to
emphasize the existing practical relevance ofn-dimensional sphere packings withn > 3; we aim to augment
this list of practical applications significantly in Parts II and III of this text, based heavily on the various
aspects ofn-dimensional sphere packing theory reviewed and extended in Part I.

To proceed, defineFq [also denotedGF(q)] as the set of symbols in afinite field (a.k.a.Galois field)
of order q, whereq = pa with p prime, and defineFn

q as the set of all vectors of ordern with elements
selected fromFq. The cases of particular interest in this work are thebinary fieldF2 = {0,1}, the ternary
field F3 = {0,1,2}, and thequaternary field2 F4 = {0,1,ω, ω̄}, where, as in §2.1, ω = (−1+ i

√
3)/2 [note

thatω2 = ω̄, ω̄2 = ω, andω̄ ·ω = 1]. In a finite fieldFq, addition (+) and multiplication (·) are closed (that
is, they map to elements within the field) and satisfy the usual rules: they are associative, commutative, and
distributive, there is a 0 element such thata+0 = a, there is a 1 element such thata ·1 = a, for eacha there
is an element(−a) such thata+(−a) = 0, and for eacha 6= 0 there is an elementa−1 such thata ·a−1 = 1.
If q is itself prime (e.g., ifq = 2 or q = 3), then standard integer addition and multiplication modq forms a
finite field. If not (e.g., ifq = 4), a bit more care is required in order to obtain closure within the finite field
while respecting these necessary rules on addition and multiplication. For the cases considered in this section
(specifically,F2, F3, andF4), addition and multiplication onFq are thus defined as follows:

F2:
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

F3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

F4:

+ 0 1 ω ω̄
0 0 1 ω ω̄
1 1 0 ω̄ ω
ω ω ω̄ 0 1
ω̄ ω̄ ω 1 0

· 0 1 ω ω̄
0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω ω̄ 1
ω̄ 0 ω̄ 1 ω

A vector inFn
q is a vector of lengthn with each element inFq. TheHamming distancebetween two such

vectors is the number of elements that differ between them.

1Notably, Conway & Sloane (1998, page 12) state: “A related application that has not yet received much attention is the useof these
packings for solvingn-dimensionalsearchor approximationproblems”; this is exactly the problem focused on in our PartII.

2We limit our attention in the quaternary case to codes designed over the finite fieldF4; though there is some attention in the literature
to codes defined overZ4 [that is, over the integers mod 4], codes defined over finite fields turn out to be, in a sense, more natural.
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An [n,k]q (if d is specified,[n,k,d]q) q-ary linear3 code(LC) is defined via a set ofk < n independent
basis vectorsvi ∈ Fn

q. Theqk distinctcodewordswi ∈ Fn
q of the LC are given by allq-ary linear combinations

of the basis vectorsvi (that is, by all linear combinations with coefficients selected fromFq, with addition
and multiplication defined elementwise onFq). The basis vectorsvi are generally selected such theminimum
distance dof the LC (that is, the minimum Hamming distance between any two resulting codewords) is
maximized.

This work focuses on cases withq= 2 [termed alinear binary code(LBC)], q= 3 [termed alinear ternary
code(LTC)], andq= 4 [termed alinear quaternary code(LQC)]. In cases withq= 2, which are common, we
frequently write simply[n,k] or [n,k,d], dropping theq subscript. We denote byV[n,k]q (or V[n,k,d]q) then×k

basis matrixwith thek basis vectorsvi as columns, and byW[n,k]q (or W[n,k,d]q) then×qk codeword matrix

with theqk codewordswi as columns. Without loss of generality, we writeV[n,k]q and a companion(n−k)×n

parity-check matrix H[n,k]q in the standard (a.k.a.systematic) form4

H[n,k]q =
[
−P(n−k)×k I(n−k)×(n−k)

]
, V[n,k]q =

[
Ik×k

P(n−k)×k

]
, wi =

[
di

bi

]
. (5.1)

When written in systematic form, each of the data vectorswi block decomposes into itsk data symbols5 di

and itsr = n− k parity symbolsbi ; note thatr is sometimes called theredundancyof the code. Note also
thatH[n,k]qV[n,k]q = 0 (onFq)6, which establishes that the basis vectorsvi so constructed [and, thus, all of the
resulting codewordswi ] each satisfy theparity-check equations, H[n,k]qwi = 0 (onFq), as implied by the rows
of H[n,k]q and illustrated by the several examples given in systematicform in §5.2, §5.3, and §5.4. Note further
that, for LBCs and LQCs,P = −P.

The key to designing a “good”[n,k]q LC is to construct theparity submatrix P(n−k)×k in (5.1) in such a
way that the minimum distanced of the resulting code is maximized for given values ofn, k, andq. Indeed,
the problem of designing a good binary error correcting codeis essentially a finite sphere packing problem
onF2; thus the very close relationship between the design of error-correcting codes and the design of infinite
dense sphere packings inRn, as discussed in §2.

For q = pa with p prime, conjugationin Fq (that is, for a scalarv ∈ Fq) is defined such that ¯v = vp;
conjugation inFn

q (that is, for vectorsv ∈ Fn
q), as well as for matrices formed with a number of such vectors

as columns, is performed elementwise. Any[n,k]q linear codeC has associated with it an[n,n−k]q dual code
C⊥ defined [cf. (2.1)] such that

C⊥ =
{

w ∈ Fn
q : w · ū = 0 for all u ∈C

}
. (5.2)

The parity-check and codeword matrices ofC⊥ may be written in systematic form as

H⊥
[n,n−k]q

=
[
P̄T I(n−k)×(n−k)

]
, V⊥

[n,n−k]q
=

[
I(n−k)×(n−k)

−P̄T

]
. (5.3)

whereP̄ denotes conjugation inFq of each element of the parity submatrixP of the original[n,k]q linear code
C. Note thatP̄T is of orderk× (n− k), and, of course, thatH⊥

[n,n−k]q
V⊥

[n,n−k]q
= 0 (onFq). Note further that,

for LBCs and LTCs,u = ū andP = P̄.
3Nonlinearq-ary codes also appear in the literature, in which the valid codewords arenotsimply linear combinations of a set of basis

vectors and must be enumerated differently. Such codes, which are related to nonlattice packings, are in general more difficult to decode
than LCs, and are not considered further here.

4In the literature on this subject, it is more common to use a “generator matrix”G to describe the construction of linear codes. The
“basis matrix” conventionV used here is related simply to the corresponding generator matrix such thatV = GT ; we find the basis matrix
convention to be more natural in terms of its linear algebraic interpretation.

5The word “bit”, a portmanteau word for “binary digit”, is generally reserved for the case withq = 2; in the general case, we use the
word “symbol” in its place.

6The qualifiers “(onFq)” and “(modq)” are used, as appropriate, to remind the reader that multiplication and addition in the equation
indicated are performed elementwise on the finite fieldFq, as discussed above.
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Figure 5.1: Valid codewords of (left) the (SED)[3,2,2]2 LBC, and (right) its dual, the (perfect, SEC)[3,1,3]2
LBC. The blue sphere denotes the origin, andd specifies the number of edges between any two codewords.

Figure 5.2: Valid codewords of (left) the (SED)[3,2,2]3 LTC, and (right) its dual, the (SEC)[3,1,3]3 LTC.

A self-dualcodeC is a code for which the the transpose of the codeword matrixV results in a new matrix
H which is itself the parity-check matrix of a code which is equivalent toC, albeit not in systematic form.

Graphically, the codewords of an[n,k,d]2 LBC may be thought of as a carefully chosen subset of 2k of
the 2n corners on a singlen-dimensional unit hypercube, as illustrated forn = 3 in Figure5.1, whereas an
[n,k,d]3 LTC may be thought of as a subset of 3k of the 3n gridpoints in a cluster of 2n unit hypercubes in
n-dimensions, as illustrated forn = 3 in Figure5.2. For anyq, d quantifies the minimum number of symbols
which differ between any two codewords. It follows that:

• An LC with d = 2 issingle error detecting(SED) [see, e.g., Figures5.1a and5.2a]. In this case, the sum (on
Fq) of the symbols in each transmitted codeword is zero, so if itis assumed that at most one symbol error
occured and this sum is nonzero, then a symbol error in transmission occurred, whereas if it is zero, then
a symbol error did not occur. However, if a symbol error in transmission occured, the received (invalid)
message is generally equidistant from multiple codewords,so it is not possible to correct the symbol error.
Two or more symbol errors can cause the codeword to be misinterpreted.

• An LC with d = 3 is single error correcting(SEC) [see, e.g., Figures5.1b and5.2b]. In this case, if it is
again assumed that at most one symbol error in transmission occured, then if the received codeword is not
a codeword, there is only one codeword that is unit Hamming distance away, so the single symbol error
may in fact becorrected. Again, 2 or more symbol errors can cause the codeword to be misinterpreted.

• An LC with d = 4 issingle error correcting and double error detecting(SECDED). In this case, if a single
symbol error occurs, the received codeword will be unit Hamming distance away from a single codeword,
and thus single symbol errors can be corrected. On the other hand, if two symbol errors occur, the received
codeword is generally Hamming distance 2 away from multiplecodewords, so double symbol errors can
be detected butnotcorrected. Now, 3 or more symbol errors can cause the codewords to be misinterpreted.

• An LC with d = 5 is double error correcting(DEC), with 3 or more symbol errors causing misinterpreta-
tion.

• An LC with d = 6 isdouble error correcting and triple error detecting(DECTED), with 4 or more symbol
errors causing misinterpretation.

• An LC with d = 7 is triple error correcting(TEC), with 4 or more symbol errors causing misinterpretation.
• An LC with d = 8 is triple error correcting and quadruple error detecting(TECQED), with 5 or symbol
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Figure 5.3: The lattice corresponding to an[n,k,d] LBC is formed by repeating the unit hypercube pattern
given by the LBC (see, e.g., Figure5.1) as an infinite array with unit spacing. In the above example,we
illustrate this extension for (left) the face-centered cubic (FCC) lattice generated by the[3,2,2] LBC, D3 =
S4

i=1 (wi
[3,2,2] +2Z3), and (right) the body-centered cubic (BCC) lattice generated by the[3,1,3] LBC, D∗

3 =
S2

i=1 (wi
[3,1,3] +2Z3). The blue spheres, taken together, form aprimitive cellthat, repeated as an infinite array

with zerospacing, tile (that is, fill) the domain.

errors causing misinterpretation.
• An LC with d = 9 is quadruple error correcting(QEC), with 5 or more symbol errors causing misinter-

pretation.

The labels defined above are frequently used to quantify the error correction capability of an LC. Alternative-
ly, if error correction isnotattempted, then:

• An LC with d = 2 is single error detecting, with 2 or more symbol errors causing misinterpretation.
• An LC with d = 3 is double error detecting, with 3 or more symbol errors causing misinterpretation.
• An LC with d = 4 is triple error detecting, with 4 or more symbol errors causing misinterpretation.
• An LC with d = 5 is quadruple error detecting, with 5 or more symbol errors causing misinterpretation.

Error correcting algorithms are useful for a broad range of data transmission or data storage applications in
which it is difficult or impossible to request that a corrupted codeword be retransmitted; algorithms which
use such LCs for error detection only, on the other hand, may be used only when efficient handshaking is
incorporated in a manner which makes it easy to request and resend any messages that might be corrupted
during transmission.

An [n,k,d]q LC is perfect if, for some integert > 0, each possiblen-dimensionalq-ary codeword is
of Hamming distancet or less from a single codeword (that is, there are no “wasted”codewords that are
Hamming distancet +1 or more from the codewords, and thus may not be corrected under the assumption that
at mostt symbol errors have occured); note that a perfect code has oddd = 2t +1> 1. A remarkable proof by
Tietäväinen (1973), which was based on related work by VanLint, establishes that theonlynontrivial perfect
LCs are the[(qm−1)/(q−1),(qm−1)/(q−1)−m,3]q perfectq-ary Hamming codes and the[23,12,7]2 and
[11,6,5]3 binary and ternary Golay codes, described further in §5.2and §5.3.

An [n,k,d] LC is quasi-perfectif, for some integert > 1, each possiblen-dimensionalq-ary codeword is
either (a) of Hamming distancet−1 or less from a single codeword, and thus up tot−1 symbol errors may be
corrected, or (b) of Hamming distancet from at least one codeword, and thus codewords witht symbol errors
may be detected but not necessarily corrected (that is, there are no “wasted” codewords that are Hamming
distancet +1 or more from a codeword, and thus may not be reconciled underthe assumption that at mostt
symbol errors have occured); note that a quasi-perfect codehas evend = 2t > 2.
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Note finally, as illustrated forn = 3 in Figure5.3, that a real lattice corresponding to an[n,k,d]2 LBC
may often be constructed by forming a union of 2k cosets:

Construction A:
2k
[

i=1

(wi
[n,k,d]2

+2Z
n), (5.4a)

where thecoset representativesin this construction,wi
[n,k,d]2

for i = 1, . . . ,2k, are the codewords of the[n,k,d]2

LBC under consideration and(w + 2Zn) denotes aZn lattice scaled by a factor of 2 with all nodal points
shifted by the vectorw; thus, Construction A denotes the union of the nodal points in several such scaled and
shiftedZn lattices. An alternative real lattice may sometimes be constructed via:

Construction B:
2k
[

i=1

(wi
[n,k,d]2

+2J) where J =

{
x ∈ Z

n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ 2Z

}
, (5.4b)

where(2Z) denotes the even integers, and thus the last condition is sometimes written∑n
i=1xi = 0 (mod 2).

In an analogous fashion, a complex lattice corresponding toan [n,k,d]q LC may often be constructed by
forming a union ofqk shifted and scaledn-dimensionalE latticesZ[ω]n (see §2.1) such that

Construction Aπ
E

:
qk
[

i=1

(wi
[n,k,d]q

+ πZ[ω]n), (5.5a)

where, in the sequel, the multiplicative factorπ takes two possible values (2 andθ = ω− ω̄ = i
√

3) and the
coset representatives in this construction,wi

[n,k,d]q
for i = 1, . . . ,qk, are the codewords of the[n,k,d]q LC under

consideration. An alternative complex lattice may sometimes be constructed via:

Construction Bπ
E

:
qk
[

i=1

(wi
[n,k,d]q

+ πJ) where J =

{
x ∈ Z[ω]n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ πE

}
, (5.5b)

where(πE ) denotes the lattice of Eisenstein integers in the complex plane multiplied (that is, rotated and
scaled) by the (possibly complex) factorπ. Note the remarkable similarity in structure between the real
constructions in (5.4a)-(5.4b) and the complex constructions in (5.5a)-(5.5b). Note also that real lattices
corresponding to any of the complex lattices so constructedmay easily be generated via (2.2).

5.2 Exemplary linear binary codes (LBCs)

We now summarize some of the families of LBCs available, presenting each in systematic form (5.1).

5.2.1 Binary single parity-check codes

The simple7 [n,n−1,2] binary single parity-check codesare SED, and include[2,1,2] (self-dual),[3,2,2],
[4,3,2], [5,4,2], etc. Using such a code, for each(n−1) data bits to be transmitted, aparity bit is generated
such that the sum (mod 2) of the data bits plus the parity bit is0; when decoding, an error is flagged if this
sum (mod 2) is 1. The[3,2,2] code illustrated in Figure5.1a is given by

H[3,2,2] =
(
1 1 1

)
, V[3,2,2] =




1 0
0 1
1 1


 , W[3,2,2] =




0 1 0 1
0 0 1 1
0 1 1 0


 . (5.6)

7As mentioned previously, whenq = 2, we suppress theq subscript for notational clarity; we thus do this throughout §5.2.



DRAFT
5.2. EXEMPLARY LINEAR BINARY CODES (LBCS) 45

Other binary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 1’s).
As seen forn= 3 in Figure5.3a, via Construction A, the[n,n−1,2] binary single parity-check code generates
theDn lattice (see §2.3), which forn = 3 is FCC.

A single parity-check code (binary or otherwise), withd = 2, can detect but not correct an error in an
unknown position. However, it can correct anerasure; that is, the loss of data from a known position. A
common application of this capability is in a RAID 5 system, apopular configuration for a relatively small
Redundant Array of Independent Disks. In such a system, data is striped acrossn drives using a single parity
check code; if any single drive fails, it can be recovered simply by achieving parity with the other disks.

5.2.2 Binary repetition codes

The dual of the binary single parity-check codes are the simple [n,1,n] binary repetition codes, which include
[2,1,2] (SED, self-dual),[3,1,3] (SEC, perfect),[4,1,4] (SECDED),[5,1,5] (DEC), etc. This family of codes
just repeats any given data bitn times; when decoding, one simply needs to determine which ofthe two
codewords that the received code is nearest to. The[3,1,3] code illustrated in Figure5.1b is given by

H[3,1,3] =

(
1 1 0
1 0 1

)
, V[3,1,3] =




1
1
1


 , W[3,1,3] =




0 1
0 1
0 1


 . (5.7)

Other binary repetition codes have a partity submatrix of similar form (a column of 1’s). As seen forn = 3 in
Figure5.3b, via Construction A, the[n,1,n] binary repetition code generates theD∗

n lattice (see §2.3), which
for n = 3 is BCC. Via Construction B, on the other hand, the[8,1,8] binary repetition code generates the
E8 lattice (see §2.5). Note also that the[3,2,2] binary single parity-check code with each bit inV repeated
vertically m times leads to a[3m,2,2m] code, which may subsequently be rearranged into systematicform;
taking m = 4 and applying Construction B, the resulting[12,2,8] code, which is TECQED, generates the
Λmax

12 lattice (see §2.6).

5.2.3 Binary Hamming codes

The[2m−1,2m−1−m,3] binary Hamming codesare perfect and SEC, and include[3,1,3], [7,4,3], [15,11,3],
[31,26,3], [63,57,3], [127,120,3], etc. For a given(2m−1−m) data bits to be transmitted, each parity bit
is generated such that the sum (mod 2) of a particular subset of the data bits plus that parity bit is 0. Note
that, when decoding, them parity bits may be used in a simple fashion to determine not only whether or not
a single bit error occured (which is true if one or more of these parity bits is nonzero), but if it did,whichbit
contains the error, as discussed further in §5.5. To illustrate, the venerable[7,4,3] code, with four data bits
{d1,d2,d3,d4} and three parity bits{b1,b2,b3}, is given by

H[7,4,3] =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


 , V[7,4,3] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




, w =




d1
d2
d3
d4
b1
b2
b3




, (5.8a)

W[7,4,3] =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1




. (5.8b)

The parity-check matrixH of the[7,4,3] code has as columns all nonzero binary vectors of length(n−k) = 3;
when expressed in systematic form, the(n−k) columns ofH corresponding to the identity matrix are shifted
to the end, and the remainingk columns ofH, in arbitrary order, make up the partity submatrixP. Other
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binary Hamming codes may be built up similarly. Via Construction A, the [7,4,3] binary Hamming code
generates theE∗

7 lattice (see §2.5).
A Hamming code (binary or otherwise), withd = 3, can only correct a single error in an unknown position.

However, it can correct up to twoerasures(cf. §5.2.1). A common application of this capability is in a RAID 6
system, a popular RAID configuration for large storage systems in data critical applications. In such a system,
data may be striped acrossn drives using a Hamming code; if any single drive fails, it canbe recovered using
an appropriate parity check equation (that is, one of the parity check equations that takes that bit into account).
If (while rebuilding the information on that disk, which might take a while if the disk is large) aseconddrive
fails, then two useful equations may be derived from the(n−k) parity check equations: one that takes failed
disk A into account but not failed disk B, and one that takes failed disk B into account but not failed disk A.
By restoring parity in these two derived equations, the information onbothdrives may be rebuilt.

5.2.4 Binary simplex codes

The dual of the binary Hamming codes are the[2m− 1,m,2m−1] binary simplex codes[a.k.a. the binary
maximum-length-sequence(MLS) codes], which include[3,2,2] (SED),[7,3,4] (SECDED),[15,4,8] (TEC-
QED), etc. These codes are remarkable geometrically, as their codewords form a regular simplex. The[3,2,2]
code is illustrated in Figure5.1a; the[7,3,4] code is given by

H[7,3,4] =




0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1


 , V[7,3,4] =




1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0
1 1 1




. (5.9)

Other binary simplex codes have a partity submatrix given similarly by the transpose of the corresponding
binary Hamming code. Via Construction A, the[7,3,4] binary simplex code generates theE7 lattice (see
§2.5). Via Construction B, the[15,4,8] binary simplex code generates theΛ15 lattice (see §2.6).

5.2.5 Extended binary Hamming codes

The[2m,2m−1−m,4] extended binary Hamming codesare quasi-perfect and SECDED, and include[4,1,4],
[8,4,4] (self-dual),[16,11,4], etc. These codes are just binary Hamming codes (see §5.2.3) with an additional
overall parity bit (see §5.2.1), and thus, assuming no more than 2 bit errors have occured, may be decoded
similarly, as discussed further in §5.5. To illustrate, the venerable[8,4,4] code is given by

H[8,4,4] =




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


 , V[8,4,4] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




. (5.10)

Other extended binary Hamming codes have a partity submatrix that may similarly be constructed by adding
an overall parity bit to the corresponding binary Hamming code. Via Construction A, the[8,4,4] extended
binary Hamming code again generates theE8 lattice.

5.2.6 Binary biorthogonal codes

The dual of the extended binary Hamming codes are the[2m,m+1,2m−1] binary biorthogonal codes(a.k.a.Ha-
damard codes), and include[4,3,2] (SED),[8,4,4] (SECDED, self-dual),[16,5,8] (TECQED),[32,6,16], etc.
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The[32,6,16] code was used on the Mariner 9 spacecraft. These codes are distinguished by the characteristic
that their codewords are mutually orthogonal [that is,wi ·w j = 0 (mod 2) fori 6= j]. Note that the[4,3,2] and
[8,4,4] codes have already been discussed above. The binary biorthogonal codes each have a partity subma-
trix that is simply the transpose of the parity submatrix of the corresponding extended binary Hamming code,
the construction of which is described in §5.2.5. Via Construction B, the[16,5,8] binary biorthogonal code
generates theΛ16 lattice.

5.2.7 Binary quadratic residue codes

The [n,(n+ 1)/2,d] binary quadratic residue codesare defined for all primen for which there exists an
integer 1< x< n such thatx2 = 2 (modn) [equivalently, for all primen of the formn = 8m±1 wherem is an
integer], and include[7,4,3] (SEC, perfect, as introduced in §5.2.3), [17,9,5] (DEC),[23,12,7] (TEC, perfect,
a.k.a. thebinary Golay code), [31,16,7] (TEC),[41,21,9] (QEC),[47,24,11], etc. Adding an overall parity bit
to these codes, the[n+1,(n+1)/2,d+1]extended binary quadratic residue codesinclude[8,4,4] (SECDED,
quasi-perfect, self-dual, as introduced in §5.2.5), [18,9,6] (DECTED), [24,12,8] (TECQED, quasi-perfect,
self-dual, a.k.a. theextended binary Golay code), [32,16,8] (TECQED), [42,21,10], [48,24,12], etc. The
venerable[24,12,8] extended binary Golay code, used by the Voyager 1 & 2 spacecraft, is given by

H[24,12,8] =
[
P12×12 I12×12

]
, V[24,12,8] =

[
I12×12
P12×12

]
,

P12×12 =




0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1




.

(5.11)

Note thatP is symmetric. The[23,12,7] binary Golay code may be obtained bypuncturingthe [24,12,8]
code listed above; that is, by eliminating any row ofP (typically, the last).

Via Construction B, the[24,12,8] extended binary Golay code generates theLeech half-lattice H24, which
may be joined with a translate of itself [that is,H24+a wherea1 = −3/2 andak = 1/2 for k = 2, . . . ,24] to
construct theΛ24 lattice.

Note that many of the binary codes introduced above fall within a larger family of codes collectively
referred to asReed-Mullercodes, as illustrated in Figure5.4.

5.2.8 Extending, puncturing, and shortening

The (perfect) binary Hamming and binary Golay codes may beextendedto quasi-perfect codes by adding
an overall parity bit, thereby increasingn by 1 and, in the case of these specific codes, increasingd by 1. A
code obtained by essentially the reverse of this process, removing a parity bit and thus reducing bothn and
d by 1, is sometimes said to bepunctured. In contrast, a code obtained by removingℓ ≥ 1 data bits, thus
reducing bothn andk by ℓ, is said to beshortened. A typical and common application is in error-correcting
memory systems for computers, in which the data often comes naturally in blocks of 64 bits. Starting from
the [127,120,3] binary Hamming code, one may eliminate 56 data bits to createa shortened[71,64,3] SEC
code; alternatively, starting from the[128,120,4] extended binary Hamming code, one may eliminate 56 data
bits to create a shortened[72,64,4] SECDED code. Many ECC Memory and RAID 6 storage systems are
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[1,1,1]

[2,1,2]

[2,2,1]

[4,1,4]

[4,3,2]

[4,4,1]

[8,1,8]

[8,4,4]

[8,7,2]

[8,8,1]

[16,1,16]

[16,5,8]

[16,11,4]

[16,15,2]

[16,16,1]

[32,1,32]

[32,6,16]

[32,16,8]

[32,26,4]

[32,31,2]

[32,32,1]

k = 1, d = 2m

repetition codes

k = m+1, d = 2m−1

biorthogonal codes

k = 2m−1, d = 2(m+1)/2

self-dual codes

k = 2m−1−m, d = 4
extended Hamming codes

k = 2m−1, d = 2
single parity-check codes

k = 2m, d = 1
universe codes

Figure 5.4: The family of[2m,k,d] Reed-Muller binary codes form= 0 to 5.

based on variants of such shortened binary Hamming codes, which are simple and fast to use. Note also that,
via Construction B, the[21,9,8] code obtained by shortening the[24,12,8] extended binary Golay code by 3
data bits generates directly theΛ21 lattice.

5.3 Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available, presenting each in systematic form (5.1), noting
that all have analogs in the binary setting.

5.3.1 Ternary single parity-check codes

The[n,n−1,2]3 ternary single parity-check codesare SED, and include[2,1,2]3 (self-dual),[3,2,2]3, [4,3,2]3,
etc. As illustrated forn = 3 in Figure5.2a, the[3,2,2]3 code is given by

H[3,2,2]3 =
(
1 1 1

)
, V[3,2,2]3 =




1 0
0 1
2 2


 , W[3,2,2]3 =




0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 2 1 2 1 0 1 0 2


 . (5.12)

Other ternary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 2’s).
Via ConstructionAθ

E
, the[3,2,2]3 ternary single parity-check code generates theE∗

6 lattice.

5.3.2 Ternary repetition codes

The dual of the ternary single parity-check codes are the[n,1,n]3 ternary repetition codes, which include
[2,1,2]3 (SED, self-dual),[3,1,3]3 (SEC),[4,1,4]3 (SECDED), etc. As illustrated forn = 3 in Figure5.2b,
the[3,1,3]3 code is given by

H[3,1,3]3 =

(
2 1 0
2 0 1

)
, V[3,1,3]3 =




1
1
1


 , W[3,1,3]3 =




0 1 2
0 1 2
0 1 2


 . (5.13)
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Other ternary repetition codes have a partity submatrix of similar form (a column of 1’s). Via Construction
Aθ

E
, the[3,1,3]3 ternary repetition code generates theE6 lattice. Via ConstructionBθ

E
, on the other hand, the

[6,1,6]3 ternary repetition code generates theK12 lattice.

5.3.3 Ternary Hamming codes

The[(3m−1)/2,(3m−1)/2−m,3]3 ternary Hamming codesare perfect and SEC, and include[4,2,3]3 (self-
dual, a.k.a. thetetracode), [13,10,3]3, [40,36,3]3, etc. To illustrate, the venerable[4,2,3]3 tetracode is given
by

H[4,2,3]3 =

(
1 1 1 0
1 2 0 1

)
, V[4,2,3]3 =




1 0
0 1
2 2
2 1


 . (5.14)

The parity-check matrixH of the [4,2,3]3 code has as columns those nonzero ternary vectors of length
(n− k) = 2 whose first nonzero entry is 1; when expressed in systematicform, the(n− k) columns ofH
corresponding to the identity matrix are shifted to the end,and the remainingk columns ofH, in arbitrary
order, make up the entries of−P. Other ternary Hamming codes may be built up similarly; for example, the
[13,10,3]3 code is given by

H[13,10,3]3 =

( 0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 2 2 2
1 2 1 2 0 1 2 0 1 2
︸ ︷︷ ︸

,−P3×10

1 0 0
0 1 0
0 0 1

)
, V[13,10,3]3 =

[
I10×10
P3×10

]
. (5.15)

Via ConstructionAθ
E

, the[4,2,3]3 tetracode again generates theE8 lattice.

5.3.4 Ternary simplex codes

The dual of the ternary Hamming codes are the[(3m−1)/2,m,3m−1]3 ternary simplex codes, which include
[4,2,3]3 (SEC, perfect, self-dual),[13,3,9]3 (QEC), [40,4,27]3, etc. These codes are remarkable geometri-
cally, as their codewords are all equidistant from one another. Ternary simplex codes have a partity submatrix
given by the negative transpose of the corresponding ternary Hamming code.

5.3.5 Ternary quadratic residue codes

The[n,(n+1)/2,d]3 ternary quadratic residue codesare defined for all primen for which there exists an inte-
ger 1< x< nsuch thatx2 = 3 (modn) [equivalently, for all primenof the formn= 12m±1 wherem is an inte-
ger], and include[11,6,5]3 (DEC, perfect, a.k.a. theternary Golay code), [13,7,5]3 (DEC),[23,12,8]3 (TEC-
QED),[37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these codes, the[n+1,(n+1)/2,d+1]3
extended ternary quadratic residue codesinclude [12,6,6]3 (DECTED, quasi-perfect, self-dual, a.k.a.the
extended ternary Golay code), [14,7,6]3 (DECTED), [24,12,9]3 (QEC), [38,19,11]3, [48,24,15]3, etc. The
venerable[12,6,6]3 extended ternary Golay code is given by

H[12,6,6]3 =
[
−P6×6 I6×6

]
, V[12,6,6]3 =

[
I6×6
P6×6

]
, P6×6 =




0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0




. (5.16)

Note thatP is symmetric. The[11,6,5]3 ternary Golay code may be obtained by puncturing the[12,6,6]3
code listed above.

Via ConstructionBθ
E

, the[12,6,6]3 extended ternary Golay code generates an intermediate lattice which
may be joined with two translates of itself to generate theΛ24 lattice.
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5.4 Exemplary linear quaternary codes (LQCs)

We now summarize some of the families of LQCs available, presenting each in systematic form (5.1).

5.4.1 Quaternary single parity-check codes

The [n,n−1,2]4 quaternary single parity-check codesare SED, and include[2,1,2]4 (self-dual),[3,2,2]4,
[4,3,2]4, etc. The[3,2,2]4 code is given by

H[3,2,2]4 =
(
1 1 1

)
, V[3,2,2]4 =




1 0
0 1
1 1


 ,

W[3,2,2]4 =




0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄
0 0 0 0 1 1 1 1 ω ω ω ω ω̄ ω̄ ω̄ ω̄
0 1 ω ω̄ 1 0 ω̄ ω ω ω̄ 0 1 ω̄ ω 1 0


 .

(5.17)

Other quaternary single parity-check codes have a partity submatrixP of similar form.

5.4.2 Quaternary repetition codes

The dual of the quaternary single parity-check codes are the[n,1,n]4 quaternary repetition codes, which
include[2,1,2]4 (SED, self-dual),[3,1,3]4 (SEC),[4,1,4]4 (SECDED), etc. The[3,1,3]4 code is given by

H[3,1,3]4 =

(
1 1 0
1 0 1

)
, V[3,1,3]4 =




1
1
1


 , W[3,1,3]4 =




0 1 ω ω̄
0 1 ω ω̄
0 1 ω ω̄


 . (5.18)

Other quaternary repetition codes have a partity submatrixof similar form.

5.4.3 Quaternary Hamming codes

The [(4m−1)/3,(4m−1)/3−m,3]4 quaternary Hamming codesare perfect and SEC, and include[5,3,3]4,
[21,18,3]4, [85,81,3]4, etc. To illustrate, the[5,3,3]4 code is given by

H[5,3,3]4 =

(
1 1 1 1 0
1 ω ω̄ 0 1

)
, V[5,3,3]4 =




1 0 0
0 1 0
0 0 1
1 1 1
1 ω ω̄


 . (5.19)

The parity-check matrixH of the [5,3,3]4 code has as columns those nonzero quaternary vectors of length
(n− k) = 2 whose first nonzero entry is 1; when expressed in systematicform, the(n− k) columns ofH
corresponding to the identity matrix are shifted to the end,and the remainingk columns ofH, in arbitrary
order, make up the entries ofP. Other quaternary Hamming codes may be built up similarly.

5.4.4 Quaternary simplex codes

The dual of the quaternary Hamming codes are the[(4m−1)/3,m,4m−1]4 quaternary simplex codes, which
include[5,2,4]4 (SECDED),[21,3,16]4, [85,4,64]4, etc. These codes are remarkable geometrically, as their
codewords are all equidistant from one another. Quaternarysimplex codes have a partity submatrix given by
the conjugate transpose of the corresponding quaternary Hamming code.

5.4.5 Quaternary quadratic residue codes

The [n,(n+1)/2,d]4 quaternary quadratic residue codesare defined for all primen of the formn = 8m±3
wherem is an integer, and include[5,3,3]4 (SEC, perfect, see §5.4.3), [11,6,5]4 (DEC), [13,7,5]4 (DEC),
[19,10,7]4 (TEC), [29,15,11]4, [37,19,11]4, etc. The related[n+ 1,(n+ 1)/2,d+ 1]4 extended quaternary
quadratic residue codesinclude[6,3,4]4 (SECDED, quasi-perfect, self-dual, a.k.a. thehexacode), [12,6,6]4
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A110

B110
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B010
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B111
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B001

B011
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B101

A011

Figure 5.5: A labelling of 16 points of theD2 lattice (due to Ungerboeck 1982). TheAi jk points have coor-
dinates which are both even integers [e.g.,A000 =

(
0 0

)
], and theBi jk points have coordinates which are

both odd integers [e.g.,B000 =
(

1 1
)
]. The completeD2 lattice is formed by repeating this 2D pattern as

an infinite array with unit spacing, as in Figure5.3; note that each of the subsets ofD2 corresponding to a
particular label is itself an appropriate shift of a 4D2 lattice (that is, theD2 lattice with the spacing quadrupled
between the points).

(DECTED), [14,7,6]4 (DECTED, self-dual),[20,10,8]4 (TECQED), [30,15,12]4 (self-dual),[38,19,12]4,
etc. The venerable[6,3,4]4 hexacode is given by

H[6,3,4]4 =




1 1 1 1 0 0
1 ω ω̄ 0 1 0
1 ω̄ ω 0 0 1


 , V[6,3,4]4 =




1 0 0
0 1 0
0 0 1
1 1 1
1 ω ω̄
1 ω̄ ω




. (5.20)

Note thatP is symmetric. The[5,3,3]4 quaternary quadratic residue code may be obtained by puncturing the
[6,3,4]4 code listed above.

Via ConstructionA2
E

, the[6,3,4]4 hexacode generates theK12 lattice.
The [6,3,4]4 hexacode, with 43 = 64 codewords, is of particular importance due to the structured role

it plays in some convenient constructions of the[24,12,8] extended binary Golay code (see §5.2.7), with
212 = 4096 codewordsw, and the correspondingΛ24 lattice. To construct the extended binary Golay code in
this manner (see §11 of Conway & Sloane 1998), we may first arrange binary vectors of length 24 into 4×6
arrays with binary entries. The sum of the bits (mod 2) in any row or column of this array gives itsparity,
which is said to beevenif the bits sum to 0 andodd if the bits sum to 1. We then define theprojectionof
any binary vectord ∈ F4

2 onto a symbolx∈ F4 via the productx =
(
0 1 ω ω̄

)
d (onF4). The[24,12,8]

extended binary Golay code is then given by the set of allw ∈ F24
2 such that, in the corresponding 4×6 array,

• the parity of all of the columns matches the parity of the top row, and
• the projection of the six columns of the array forms a codeword of the[6,3,4]4 hexacode.

An alternative construction of theΛ24 lattice, due to Vardy & Be’ery (1993) and which also leverages
cleverly the[6,3,4]4 hexacode, is based on the Ungerboeck (1982) partitioning oftheD2 lattice (see §2.3)
into Ai jk and Bi jk subsets, as depicted in Figure5.5. Binary vectors of length 24 are now constructed as
2×6 arrays whose entries are points ofD2, labelled as shown. When considering a pair of such points [say,
c =

(
Ai1, j1,k1 Ai2, j2,k2

)T
],

• the pair is said to beevenor oddbased on the sum (mod 2) of the indices{i1, j1, i2, j2},
• the indexi1 is known as theh-parityof the pair,
• the sum (mod 2) ofk1 andk2 is known as thek-parityof the pair, and
• theprojectionof the pair is defined as above, based on the vectord =

(
i1 j1 i2 j2

)T
.

The Leech latticeΛ24 is then given by the set of allu ∈ Z24 such that, in the corresponding 2×6 array,

• all array entries are either points in theAi jk subsets ofD2 (referred to as atype-Aarray), or points in the
Bi jk subsets ofD2 (referred to as atype-Barray),

• the overallk parity of the array [that is, the sum (mod 2) of thek-parity of the 6 pairs of points] is even if
the array is typeA and odd if the array is typeB,
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• the pairs of points in the 6 columns of the array are either alleven (referred to as anevenarray) or all odd
(referred to as anoddarray),

• the overallh parity of the array [that is, the sum (mod 2) of theh-parity of the 6 pairs of points] is even if
the array even and odd if the array is odd, and

• the projection of the six columns of the array forms a codeword of the[6,3,4]4 hexacode.

The union of all points corresponding to Type A arrays in thisconstruction forms theLeech half lattice H24

mentioned in §5.2.7, whereas the union of all points corresponding to Type B arrays forms its translate,
H24+a. TheH24 lattice can be further decomposed into all points corresponding to even arrays, which forms
theLeech quarter lattice Q24, and all points corresponding to odd arrays, which forms itstranslate,Q24+b.
The Λ24 lattice is then given by the union ofQ24, Q24 + b, Q24 + a, andQ24 + a+ b; this construction is
exploited in §6.1.5when presenting a remarkably efficient algorithm for quantization fromR

24 to Λ24.

5.5 Decoding

The use of an[n,k,d]q linear code (a.k.a.linear block code) in practice to communicate data over a noisy
channel is straightforward:

• arrange the original data intoblocksof lengthk over analphabetof q symbols;
• codeeach resulting data vectord ∈ Fk

q into a longer codewordw ∈ Fn
q via w = V[n,k,d]qd;

• transmit the corresponding codewordw ∈ Fn
q over the noisy channel;

• receive the (possibly corrupted) messageŵ ∈ Fn
q on the other end;

• decodethe received messagêw leveragingH[n,k,d]q; that is, find the most likely codewordw corresponding
to the received messageŵ, and the data vectord that generated it.

The decoding problem is quite rich; many creative schemes have been proposed over the years for de-
coding the various LCs that have been introduced thus far, aswell as many others. This subject goes a bit
beyond the scope of the present review, but we would be remissif we didn’t at least briefly introduce a few
exemplary decoding strategies.

For the purpose of fast decoding of an LC, it is useful to consider convenient alternatives to the systematic
form. If H andV are the parity-check and basis matrices of an[n,k,d]q LC in systematic form, withHV = 0
(onFq), then anequivalentLC, possibly not in systematic form, is given by taking

H̃ = HQ and Ṽ = Q−1V. (5.21)

It follows immediately that, again,̃HṼ = 0 (onFq). In the simplest such transformation,Q is a permutation
matrix, and thusQ−1 = QT ; this transformation corresponds to reordering the rows ofV and the corresponding
columns ofH (that is, reordering the data bits and parity bits in the corresponding LC). Other equivalent LCs
may be constructed in this manner by relaxing the constraintthat Q be a permutation matrix, effectively
taking linear combinations (onFq) of the rows ofV and the corresponding columns ofH. Note further that
reordering the columns ofV and/or the rows ofH leaves an LC unchanged.

5.5.1 Algebraic decoding

Certain LBCs may be decoded quickly by arranging the columnsof the parity-check matrix in a convenient
order and examining the binary number given by the product ofthe parity-check matrix and the (possibly,
corrupted) received message. To illustrate, consider the[7,4,3] binary Hamming code introduced in §5.2.3.
Transforming as described above with



DRAFT
5.5. DECODING 53

Q =




0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




results in a modified basis matrix̃V, and a modified parity-check matrix̃H arranged such that the columns of
H̃ appear in binary order:

H̃[7,4,3] =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 , Ṽ[7,4,3] =




1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1




, w̃ =




b3
b2
d1
b1
d2
d3
d4




. (5.22)

Taking the matrixH̃[2m−1,2m−1−m,3] of a binary Hamming code arranged in such a fashion (in the above
example,m = 3) times (mod 2) any of the codewordsw̃ (generated viãw = Ṽ[2m−1,2m−1−m,3]d whered ∈
F2m−1−m

2 ) gives the zero vector. On the other hand, taking the matrixH̃[2m−1,2m−1−m,3] times (mod 2) any
invalid vector ˆ̃w gives the nonzerosyndrome vectors, of orderm = n− k, which may be interpreted as a
nonzerom-bit binary number called thesyndrome, denoteds, of the received message. Conveniently, as a
direct result of the structure of̃H used in this construction, the numbers identifies precisely which bit of
the received message vectorˆ̃w, arranged as shown above, must be flipped in order to determine the nearest
codeword, thereby performing single error correction (SEC).

Consider now the class of[2m,2m− 1−m,4] extended binary Hamming codes introduced in §5.2.5.
Define the syndromes as in the corresponding binary Hamming code of length(2m−1) as discussed above,
neglecting the overall parity bit, and definep as the sum (mod 2) over all the bits, including the overall parity
bit. There are zero bit errors ifs = p = 0, there two bit errors (which may be detected but not uniquely
corrected) ifs 6= 0 andp = 0, and there is a single bit error ifp = 1 (in which case, ifs= 0, this error is in the
overall parity bit, and, ifs 6= 0, this error is in one of the other bits and may be corrected based ons just as
in the corresponding binary Hamming code). This strategy thus performs single error correction and double
error detection (SECDED).

The extended binary Golay code introduced in §5.2.7may be decoded via syndrome computation in a
similar fashion, though several more checks are involved, as the procedure performs triple error correction and
quadruple error detection (TECQED) on the received messageŵ. Recall the definitions ofH, V, andP = PT

for the [24,12,8] extended binary Golay code in systematic form, as listed in (5.11). Note thatVTV = 0, and
thusVT serves as an alternative parity-check matrix for this code.DefiningwH(s) as the Hamming weight
(that is, the number of nonzero elements) of the vectors, and definingpi as thei’th column ofP, ei as thei’th
Cartesian unit vector, and 0 as the zero vector, we may decodeŵ as follows:

sets= VTŵ, if wH(s) ≤ 3 then setc =
[
s; 0

]
, flag= 0, return, end if (case A)

setr = Ps, if wH(r) ≤ 3 then setc =
[
0; r

]
, flag= 0, return, end if (case B)

for i = 1 : 12
if wH(s+pi) ≤ 2 then setc =

[
s+pi; ei

]
, flag= 0, return, end if (case C)

if wH(r +pi) ≤ 2 then setc =
[
ei ; r +pi

]
, flag= 0, return, end if (case D)

end for
flag=1; return (4 total errors, can not be uniquely corrected)

Upon return, assuming the received vectorŵ has 4 or less bit errors, if flag= 0, then 3 or fewer errors are
detected and the corrected vector isw = ŵ+c, whereas if flag= 1, then 4 errors are detected andŵ can not
be uniquely corrected. To verify this algorithm, noting that VTw = 0 for any codewordw, it is sufficient to
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analyze the algorithm forw = 0 only. Block partitioningŵ =
[
x; y

]
, consider the following 4 correctable

cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to thestructure ofP, parity bit errors (that is,
wH(y) 6= 0) result inwH(s) ≥ 6; if wH(s) is less than this, theny = 0 ands= VTŵ = Ix = x.

Case B (0 data bit errors, up to 3 parity bit errors): Note thatPVT = H, and thusr = Hŵ. By an analogous
argument as that used in Case A, due to the structure ofP, data bit errors (that is,wH(x) 6= 0) result in
wH(r) ≥ 6; if wH(s) is less than this, thenx = 0 andr = Hŵ = Iy = y.

Case C (1 parity bit error, up to 2 data bit errors): In this case, we individually check each of the (12)
possible cases corresponding to a single parity bit error, essentially repeating the analysis of Case A, mutatis
mutandis. That is, for eachi, we consider the possibility thaty = ei , and thuss= x+pi , and check to see if
wH(x) = wH(s+pi) ≤ 2.

Case D (1 data bit error, up to 2 parity bit errors): In this case, we individually check each of the (12) possible
cases corresponding to a single data bit error, essentiallyrepeating the analysis of Case B, mutatis mutandis
(cf. Case C).

5.5.2 Cyclic form

A cyclic codeis an LC that may be transformed [via (5.21)] into a form in which all cyclic shifts of codewords
are themselves also codewords. The basis matrixV = Vn×k and parity-check matrixH = H(n−k)×n of any
[n,k]q cyclic code may be written in the standard form

H[n,k]q =




hk hk−1 . . . h0 0
hk hk−1 . . . h0

. . .
. . .

. . .
. . .

0 hk hk−1 . . . h0


 , V[n,k]q =




v0 0
v1 v0
... v1

. . .

vn−k
...

. . . v0

vn−k
. . . v1
. . .

...
0 vn−k




. (5.23)

A convenient construction which simplifies the analysis of an [n,k]q cyclic code, as defined above, is the
cyclic shiftoperatorz. The use of this operator as discussed here is akin to its use in theZ-transform analysis
of discrete-time linear systems, with the major differencebeing that it is used here in a cyclic context on
Fq: that is, arithmetic with polynomials inz and coefficients inFq is performed as usual, except that the
coefficients of each power ofz are combined via the arithmetic rules onFq (see the second paragraph of
§5.1), and higher powers ofzk are simplified via the cyclic condition

zn = 1. (5.24)

In the deployment of an[n,k]q cyclic code, the operatorzappears in

thedata polynomial d(z) = d0 +d1z + . . .+dk−1z
k−1

thebasis polynomial v(z) = v0 +v1z + . . .+vn−kz
n−k,

thecodeword polynomial w(z) = w0 +w1z+ . . .+wn−1zn−1,

thereceived-message polynomialŵ(z) = ŵ0 + ŵ1z+ . . .+ ŵn−1zn−1, and

theparity-check polynomial h(z) = h0 +h1z + . . .+hkz
k.
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The basis polynomialv(z) and parity-check polynomialh(z) are constructed in mutually-orthogonal manner
that, taken together, enforces the cyclic condition (5.24):

v(z)h(z) = (zn−1), (5.25a)

which may also be written
[v(z)h(z)] mod(zn−1) = 0; (5.25b)

note that the mod command used in (5.25b) means that the polynomial[v(z)h(z)] is divided by the polynomial
(zn−1) and the remainder is equal to 0. One such factorization of(zn−1) onFq, which exists for anyn and
q, is

zn−1 = (z−1)(zn−1+zn−2+ . . .+z+1); (5.26)

this leads to the single parity check code[n,n−1,2]q if one takesv(z) = (z−1) andh(z) equal to the rest,
and to the repetition code[n,1,n]q if one takesh(z) = (z−1) andv(z) equal to the rest. Other cyclic codes
overFq for prime q may be built from the unique irreducible factors of the polynomial (zn − 1), grouping
these factors appropriately to formv(z) andh(z); a few such factorizations for various values ofn are listed
in Table 5.1 forq = 2 (in which−1 = 1) and Table 5.2 forq = 3 (in which−1 = 2); others are easily found
using Mathematica. Factoring(zn−1) overF4 is more delicate, as the factorizations do not reduce to unique
irreducible forms; one such factorization is listed in Table 5.3. Based on (5.25a) and such factorizations,
a large number of cyclic codes may be constructed. However, only a few such codes have both favorable
minimum distanced and an available simple error dectection/correction scheme; some such codes are listed
in Table 5.4.

Given a data vectord ∈ Fk
q, the use of an LC in cyclic form is again straightforward:

• form a data polynomiald(z) with thek elements ofd as coefficients;
• code d(z) into a codeword polynomialw(z) leveraging the basis polynomialv(z) [using nonsystematic

coding, one simply takesw(z) = d(z)v(z)];
• transmit the corresponding codewordw ∈ Fn

q over the noisy channel;
• receive the (possibly corrupted) messageŵ ∈ Fn

q on the other end;
• decodethe corresponding ˆw(z) leveraging the parity-check polynomialh(z).

Cyclic coding. For the purpose of fast decoding, we now present two methods with which the basis poly-
nomial v(z) may be leveraged to generate a codeword polynomialw(z) in systematic form [that is, rather
than takingw(z) = d(z)v(z)]. By convention, the systematic form in the cyclic case usually shifts thek data
symbols ind(z) to the end of the codeword, that is:

w(z) = b(z)+zn−kd(z)

= b0 +b1z+ . . .+bn−k−1z
n−k−1 +d0z

n−k +d1z
n−k+1 + . . .+dk−1zn−1.

(5.27)

If k/n < 0.5, a recursive approach may be used to determine the parity symbols inb(z). By (5.25b) and
the fact that each valid codeword polynomialw(z) is itself a linear combination of the basis polynomialsv(z),
it is seen that

u(z) mod(zn−1) = 0 where u(z) , h(z)w(z) = u0 +u1z+u2z
2 + . . .

Initializing the lastk symbols ofw(z) as shown in (5.27), the remaining symbols ofw(z) may thus be deter-
mined from the resulting convolution formulae forun−1 throughuk as follows:

un−1 = h0wn−1 + . . .+hkwn−k−1 = 0 ⇒ wn−k−1 = −[h0wn−1 + . . .+hk−1wn−k−2]/hk,

un−2 = h0wn−2 + . . .+hkwn−k−2 = 0 ⇒ wn−k−2 = −[h0wn−2 + . . .+hk−1wn−k−3]/hk,

...

uk = h0wk + . . .+hkw0 = 0 ⇒ w0 = −[h0wk + . . .+hk−1w1 ]/hk.
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z5−1 = (z+1)(z4 +z3 +z2 +z+1)

z7−1 = (z+1)(z3 +z+1)(z3 +z2 +1)

z15−1 = (z+1)(z2 +z+1)(z4 +z+1)(z4 +z3 +1)(z4 +z3 +z2 +z+1)

z23−1 = (z+1)(z11+z9 +z7 +z6 +z5 +z+1)(z11+z10+z6 +z5 +z4 +z2 +1)

Table 5.1. Unique irreducible factors of(zn−1) overF2 for various values ofn.

z4−1 = (z+2)(z+1)(z2 +1)

z11−1 = (z+2)(z5 +2z3 +z2 +2z+2)(z5 +z4 +2z3 +z2 +2)

z13−1 = (z+2)(z3 +2z+2)(z3 +z2 +2)(z3 +z2 +z+2)(z3 +2z2 +2z+2)

Table 5.2. Unique irreducible factors of(zn−1) overF3 for various values ofn.

z5−1 = (z2 +ωz+1)(z3 +ωz2 +ωz+1)

Table 5.3. A useful (though nonunique) factorization of(z5 − 1) over F4; note that Table 5.1 provides an
alternative factorization of(z5−1) overF2 which is also valid overF4.

code description v(z) h(z)

[n,n−1,2]2 §5.2.1 z+1 zn−1 +zn−2 + . . .+z+1

[n,1,n]2 §5.2.2 zn−1 +zn−2 + . . .+z+1 z+1

[7,4,3]2 §5.2.3 z3 +z+1 z4 +z2 +z+1

[15,11,3]2 §5.2.3 z4 +z+1 z11+z8 +z7 +z5 +z3 +z2 +z+1

[31,26,3]2 §5.2.3 z5 +z2 +1 (z31−1)/(z5 +z2 +1) overF2

[63,57,3]2 §5.2.3 z6 +z+1 (z63−1)/(z6 +z+1) overF2

[127,120,3]2 §5.2.3 z7 +z3 +1 (z127−1)/(z7 +z3 +1) overF2

[23,12,7]2 §5.2.7 z11+z9 +z7 +z6 +z5 +z+1 z12+z10+z7 +z4 +z3 +z2 +z+1

[n,n−1,2]3 §5.3.1 z+2 zn−1 +zn−2 + . . .+z+1

[n,1,n]3 §5.3.2 zn−1 +zn−2 + . . .+z+1 z+2

[13,10,3]3 §5.3.3 z3 +z2 +2 z10+2z9 +z8 +2z6 +2z5 +z4 +z3 +z2 +1

[11,6,5]3 §5.3.5 z5 +2z3 +z2 +2z+2 z6 +z4 +2z3 +2z2 +2z+1

[n,n−1,2]4 §5.4.1 z+1 zn−1 +zn−2 + . . .+z+1

[n,1,n]4 §5.4.2 zn−1 +zn−2 + . . .+z+1 z+1

[5,3,3]4 §5.4.3 z2 +ωz+1 z3 +ωz2 +ωz+1

[85,81,3]4 §5.4.3 z4 +z3 +ωz+1 (z85−1)/(z4 +z3 +ωz+1) overF4

Table 5.4. Some small cyclic codes. Note that a cyclic form ofthe [4,2,3]3, [40,36,3]3, and [21,18,3]4
Hamming codes do not exist (that is, the best[4,2]3, [40,36]3, and[21,18]4 codes that may be cast in cyclic
form haved = 2); in fact, a Hamming code of lengthn = (qm−1)/(q−1) overFq exists in cyclic form only
if m and(q−1) are coprime (Blahut 2003).

If k/n > 0.5, a polynomial division approach to determine the parity symbols is more efficient. This is
accomplished by writing the shift of the data symbols as somemultiple of the basis polynomialv(z) plus a
remainderr(z):

zn−kd(z) = q(z)v(z)+ r(z) ⇒ [zn−kd(z)] modv(z) = r(z),

where the mod command is interpreted as in (5.25b). Since the degree ofv(z) is (n− k), the maximum
degree ofr(z) is (n−k−1). Calculatingr(z) as shown above, takingb(z) =−r(z), and rearranging the above
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equations, it is seen that
w(z) = b(z)+zn−kd(z) = q(z)v(z),

thus verifying that the polynomialw(z) so generated is in fact a valid codeword polynomial, as it is amultiple
of the basis polynomialv(z).

Cyclic decoding.In single parity-check codes, single symbol errors are flagged if h(z)ŵ(z) 6= 0. In repetition
codes, the symbols of ˆw(z) may be corrected by simple majority vote.

Decoding of the binary Hamming and the extended binary Golaycodes is introduced in §5.5.1. Such syn-
drome decoding methods extend easily to codes in cyclic form, in which the required syndrome computations
are especially streamlined, as now shown. Note that any valid codeword polynomialw(z) is a multiple of the
basis polynomialv(z); thesyndrome polynomial s(z) of the received-message polynomial ˆw(z) is thus given
by the remainder:

s(z) = ŵ(z) modv(z).

Since the degree ofv(z) is (n− k), the maximum degree ofs(z) is (n− k− 1), and thus the corresponding
syndrome vectors is of orderm= (n−k), as expected [see discussion after (5.22)].

The polynomial multiplications and divisions involved in the cyclic coding and decoding algorithms de-
scribed above are easy to code and efficient to calculate in either anapplication-specific integrated circuit
(ASIC) or afield-programmable gate array(FPGA), in which repeated computations with shifted data may
be performed quickly. The reduced storage associated with the vector representation of the basis matrix and
the parity-check matrix in cyclic form help to facilitate such implementations.

5.5.3 Shannon’s theorem and turbo codes

The low-dimensional LBC, LTC, and LQC constructions given above are now supplanted by the more com-
plex turbocodes for high performance coding applications such as 10GBase-T ethernet and deep space com-
munication. Though these codes are generally much longer than the simple codes discussed above, they are
built on the same fundamental principles, and achieve a coding efficiency over a noisy channel that is very
close to the celebrated Shannon limit (Shannon 1949). For more information on such codes, the reader is
referred to Gallager (1963), Berrouet al. (1993), and Moon (2005). Note also that the study of ternary and
quaternary codes is far more than a mathematical curiosity;new memory storage technology concepts le-
veraging, for example, DNA-based storage, with a four-character alphabet{A,T,G,C}, directly motivate the
further development of non-binary error-correcting coding strategies.

5.5.4 Soft-decision decoding

The type of decoding discussed in §5.5.1-5.5.3, in which the received vector̂w is assumed to be inFn
q, is

known ashard-decision decoding.
Another formulation of the decoding problem assumes again thatw ∈ Fn

q, but thatŵ ∈ Rn. The decoding
problem in this case, calledsoft-decision decoding, is similar to that considered before (again, to find the most
likely codewordw corresponding tôw, and the original data vectord that generated it), but is now based on
finding the codewordw that minimizes the Euclidian distance tôw rather than that which minimizes the
Hamming distance.

For example, consider the soft-decision decoding of a binary parity check code. Assume that the trans-
mitted codewordw ∈ Fn

2 (that is, the symbols being transmitted are binary, and in this case rescaled to be±1)
but that the received messageŵ ∈ Rn (that is, the symbols received are real). In this case, we maydecode the
received message by initially takingw = sign(ŵ). If the resulting decoded vector fails the parity check, we
simply take the decision that we were least certain about (that is, the element of̂w that is closest to zero) and
round it the other direction; this is known asWagner’s decoding rule(Silverman & Balser 1954).
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Many soft-decision decoding algorithms are essentially generalizations of Wagner’s decoding rule. Fur-
ther, most soft-decision decoding algorithms may be framedas straightforward restrictions of a corresponding
lattice quantization algorithm (see §6) to the appropriate subset of the lattice in question.
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Chapter 6

Further connections between lattice
theory and coding theory
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6.1 Quantization onto lattices

We now introduce some methods for quantization from an arbitrary pointx in Rn onto a point̃x on a discrete
lattice, which may be defined via integer linear combinationof the columns of the corresponding basis matrix
B. The solution to this problem is lattice specific, and is thustreated lattice by lattice in the subsections below.
Note that §6.1.1through §6.1.4are adapted from Conway & Sloane (1998), and §6.1.5is adapted from Vardy
& Be’ery (1993). Note also that we neglect the problem of scaling of the lattices in this discussion, which is
trivial to implement in code.

6.1.1 Quantization toZn

Quantize toZn simply by rounding each element ofx to the nearest integer.

6.1.2 Quantization toDn

Quantize toDn by roundingx two different ways:
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• Round each element ofx to the nearest integer, and call the resultx̂.
• Round each element ofx to the nearest integerexceptthat element ofx which is furthest from an integer,

and round that element the wrong way (that is, round it down instead of up, or up instead of down); call
the result̂̂x.

Compute the sumsof the individual elements of̂x; the desired quantiziation is̃x = x̂ if is s is even, and̃x = ˆ̂x
if s is odd.

6.1.3 Quantization toAn

TheAn lattice is defined in ann-dimensional subspaceC of Y = Rn+1. The subspaceC is spanned by then
columns of the corresponding basis matrixBAn, and the orthogonal complement ofC is spanned by the vector
nAn. Thus, the nearest point in the subspace,yC ∈ C, to any given pointy ∈ Y is given by

yC = y− (y,nAn) ·nAn.

An orthogonal basiŝBAn of C may easily be determined fromBAn via Gram Schmidt orthogonalization. With
this orthogonal basis, the vectorsx∈Rn comprising theAn lattice may be related to the corresponding vectors
yC ∈ C ⊂ Y (that is, on ann-dimensional subspace ofRn+1) via the equation

yC = B̂Anx. (6.1a)

Thus, starting from some pointx ∈ Rn but not yet quantized onto the lattice, we can easily determine the
corresponding(n+ 1)-dimensional vectoryC which lies within then-dimensional subspaceC of R

n+1 via
(6.1a). Given this value ofyC ∈ C, we now need to quantize onto the lattice. We may accomplish this with
the following simple steps:

• Round each component ofyC to the nearest integer, and call the resultŷ. Define the deficiency∆ = ∑i ŷi ,
which quantifies the orthogonal distance of the pointŷ from the subspaceC.

• If ∆ = 0, thenỹ = ŷ. If not, defined = yC− ŷ, and distribute the integers 0, . . . ,n among the indicesi0, . . . , in
such that

−1/2≤ d(ŷi0) ≤ d(ŷi1) ≤ . . . ≤ d(ŷin) ≤ 1/2.

If ∆ > 0, then nudgêy back onto theC subspace by defining ˜yik =

{
ŷik −1 k < ∆,

ŷik otherwise.

If ∆ < 0, then nudgêy back onto theC subspace by defining ˜yik =

{
ŷik +1 k > n+ ∆,

ŷik otherwise.

Back inn-dimensional parameter space, the quantized valueỹ ∈ C corresponds to

x̃ = B̂T
An

ỹ. (6.1b)

6.1.4 Quantization to the union of cosets

The dual latticesD∗
n andA∗

n, the triangular latticeA2, and the packingD+
n (including the latticeE8

∼= E∗
8
∼= D+

8 )
are described via the union of simple, real cosets in (2.4a), (2.7a), (2.6c), and (2.5), respectively. The lattices
E7 and E∗

7 may be built via the union of simple, real cosets via Construction A [see (5.4a)], with coset
representativeswi

[n,k,d] defined in (5.8) and (5.9) respectively. To quantize a lattice described in such a manner
(as a union of simple cosets), one may quantize to each coset independently, then select from these individual
quantizations that lattice point which is nearest to the original pointx.

The latticesE6 andE∗
6 may be built via the union of complex cosets [which are scaledand shifted complex

E latticesZ[ω]3] via ConstructionAπ
E

[see (5.5a)], with coset representativeswi
[n,k,d] given in (5.13) and (5.12)

respectively. Following Conway & Sloane (1984), to discretize a pointx to coseti in these cases:
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• Determine the complex vectorz∈ C3 corresponding tox ∈ R6. Shift and scale such thatẑ = (z−ai)/θ.
• Determine the real vector̂x ∈ R6 corresponding tôz ∈ C3. Quantize the first, second, and third pairs of

elements of̂x to the real triangularA2 lattice to create the quantized vectorˆ̃x.
• Determine the complex vectorˆ̃z∈ C

3 corresponding tõ̂x ∈ R
6. Unscale and unshift such thatz̃ = θ ˆ̃z+ai.

• Determine the real vectorx̃ ∈ R6 corresponding tõz∈ C3.

6.1.5 Quantization toΛ24

We now jump to the Leech lattice in dimensionn = 24. Recall from §2.6that the best lattices in dimensions
n= 9 ton = 23 may all be determined as lower-dimensional cross-sections ofΛ24; once the (difficult)n = 24
case is mastered, quantization to these intermediate dimensions is relatively straightforward.

Efficient quantization toΛ24 is a problem that received intense scrutiny in the 1980s and early 1990s.
The best algorithm described in the literature, due to Vardy& Be’ery (1993), is based on the construction
of Λ24 described in the last paragraph of §5.4.5, and essentially represents a culmination of the previous
efforts that led to it. This remarkable algorithm requires only about 3000 to 3600 floating-point operations
and comparisons, and a comparable number of integer operations and comparisons, to compute the point of
the Λ24 lattice that is closest to any given pointr ∈ R

24. The algorithm leverages effectively many of the
fundamental symmetries inherent inΛ24, including its close relationships with both carefully-chosen subsets
of theD2 lattice (Figure5.5) as well as the[6,3,4]4 hexacode (§5.4.5).

Though it was proposed in 1993, the logic inherent to this algorithm is so intricate that, as of the writing
of this review, an executable version of it did not appear to be readily available in the literature. We have thus
written an efficient1 Fortran90 implementation of this algorithm, which is available online at:

http://renaissance.ucsd.edu/software/DecodeLeech.tgz
This implementation is thoroughly commented, and is written in a notation consistent with that of Vardy &
Be’ery (1993). Thus, in addition to being a useful code for new practical applications of the Leech lattice in
science and engineering, it is hoped that this executable code can itself be a helpful guide in the understanding
of this complex algorithm.

In short, using the notation introduced at the end of §5.4.5, this algorithm first splits the problem of
quantizating a pointr ∈ R24 to the nearestΛ24 point into two subproblems:

• quantizing toH24; that is, when forming the original vectorr ∈ R24 into a 2×6 array of pointsrhn ∈ R2

for h = 0,1 andn = 0, . . . ,5, quantizing eachrhn to the bestAi jk points in the Ungerboeck partitioning of
D2 such that the overallk parity of the array is even, while the projection of the 2×6 array of points forms
a codeword of the[6,3,4]4 hexacode; and

• quantizing toH24+a; that is, quantizing to the bestBi jk points in the Ungerboeck partitioning ofD2 such
that the overallk parity of the array is odd, while, again, the projection of the 2×6 array of points forms a
codeword of the[6,3,4]4 hexacode.

The best of the two lattice points selected by these subproblems is then returned.
During the execution of each of these two subproblems, the closest point torhn in eachAi jk family (in

the even overallk parity case) or in eachBi jk family (in the odd overallk parity case) is first identified, and
thesquared Euclidian distance(SED) to each of these points is calculated. For eachi and j, the “preferred”
value ofk (that is, the one that leads to the least SED for that point) isdetermined, and the SED penaltyδ
for chosing the other value ofk is computed. The algorithm then further splits the quantization to H24 (and,
similarly toH24+a) into two smaller sub-subproblems:

• quantizing toQ24; that is, to arrays with the specified overallk parity such that, additionally, the overallh
parity is even; and

1Our implementation of this algorithm executes in about 0.3 milliseconds on a 2008 vintage laptop (2.53GHz Intel Core 2 Duo),
which is sufficiently fast for many applications. It is also trivial to parallelize this code efficiently over four separate computational
threads, as quantization to each Leech quarter lattice is handled independently.

http://renaissance.ucsd.edu/software/DecodeLeech.tgz
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• quantizing toQ24+b; that is, to arrays with the specified overallk parity such that, additionally, the overall
h parity is odd.

The best of the two lattice points selected by these sub-subproblems is then returned.
The quantization toQ24 and its 3 translates is, in turn, decomposed into 5 distinct steps:

1. Only two sets of indices{i0, j0, i1, j1} project to each symbolp∈ F4; in this step, for each symbolp and for
each columnn of the 2×6 array, we identify the “preferred representation” as thatset which, when taken
together with their corresponding preferred values ofk0 andk1, minimize the SED of the column, and the
other set, referred to as the “non-preferred representation”; we also calculate the SED penalty associated
with chosing the non-preferred representation. Conveniently, it turns out that the preferred representation
and the non-preferred representation necessarily have oppositeh parity.

2. The three lists of penalties associated with changing thecolumn-wisek parities (case 0), the column-wise
h parities (case 1), or both (case 2) are then sorted (our implementation uses mergesorts, due to their cache
efficiency; heapsorts or quicksorts are viable alternatives).

3. The SED for each preferred “block” (that is, each pair of columns) is then computed.
4. For each of the 64 codewords of the hexacode [see (5.20)], we then find the smallest possible correction(s)

to the set of preferred representations such that the totalk parity and the totalh parity match the specified
values required for the particular translate ofQ24 being considered (of 4 possible cases). This step leverages
the sorted lists computed in step 2.

5. For each of 16 sets of symbols [given byw0 ∈ F4 and w1 ∈ F4], calculate the total SED of corrected
representations, determined in step 4, corresponding to the 4 valid codewords of the hexacode [given by
w2 ∈ F4 and{w3,w4,w5} selected according toV[6,3,4]4 defined in (5.20)]. We then find the minimum total
SED amongst these 16 corrected representations, and returnthe corresponding lattice point.

6.2 Enumerating nearest-neighbor lattice points

In the practical use of lattices in engineering applications, one occasionally needs to generate a list of all
lattice points that are nearest neighbors to a given latticepoint. It is sufficient to generate a list of all lattice
points that are nearest neighbors of the origin, then to shift these points as necessary to the vicinity of any
other lattice point. The present section describes two methods to generate such lists of nearest neighbors on a
lattice.

6.2.1 Cases withn≤ 8

Noting first (see §2.1) that a basis matrixB of ann-dimensional lattice might itself have more thann rows,
the following algorithm is found to be effective for all lattices up to aboutn = 8:

0. Initialize p = 1.
1. Define a distribution of points̃zi such that each element of each of these vectors is selected from the set of

integers{−p, . . . ,0, . . . , p}, and thatall possible vectorsthat can be created in such a fashion, except the
origin, are present (without duplication) in this distribution.

2. Compute the distance of each transformed pointỹi = Bz̃i in this distribution from the origin, and eliminate
those points in the distribution that are farther from the origin than the minimum distance computed in the
set.

3. Count the number of points remaining in the distribution.If this number equals the (known) kissing number
of the lattice under consideration, as listed in Tables 3.1-3.2, then determine an orthogonalB̂ from B via
Gram Schmidt orthogonalization, setx̃i = B̂T ỹi for all i, and exit; otherwise, incrementp and repeat from
step 1.
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Though this simple algorithm is not at all efficient, forn ≤ 8 it really need not be, as the nearest neighbor
distribution is identical around every lattice point, and thus this algorithm need only be run once for any given
lattice.

6.2.2 Cases withn > 8

Forn> 8, the algorithm described above is prohibitively expensive. We thus focus here on an efficient manner
of obtaining the 196,560 nearest neighbors to the origin of the Leech latticeΛ24, then on the restriction of
this set of neighbors, one dimension at a time, down ton = 9.

To proceed, it is first necessary to enumerate the codewords of the binary Golay code following the
approach described in §5.2.7. Recall that the basis matrix of the binary Golay code has dimension 24×12;
thus, the 212 = 4096 codewords of the binary Golay code follow immediately as a binary linear combination
(that is, as a linear combination, mod 2, with binary coefficients) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors of theLeech lattice, we may proceed (following
Conway & Sloane 1998) by constructing three distinct sets ofpoints:
• The first set, consisting of 98,304 points, is obtained using the binary Golay codewords discussed above.
Construct first a 24×24 matrixA with −3 everywhere along the main diagonal and 1 everywhere else. Then,
take each codeword of the binary Golay code, one at a time, replace each 0 with−1, and perform elementwise
multiplication of this modified codeword to each column ofA, thereby generating 24 points for each of the
212 binary Golay codewords, or 212 ·24= 98,304 points.
• The next set, consisting of 1,104 points, is composed of vectors with 22 zero elements and two elements
that are either 4 or−4. As there are 276 ways to select the locations of the nonzeroelements, and 22 = 4 valid
ways to populate them, we obtain 22 ·276= 1,104 points.
• The third set, consisting of 97,152 points, is obtained using the 759 vectors of the Witt design, which are
just the 759 binary Golay codewords (discussed above) of weight 8. Note that each of these vectors has 8
ones and 16 zeros. Construct an 8×128 matrixC such that each element of each column is either a 2 or−2,
with an even number of minus signs in each column (note that there are 27 = 128 such columns possible).
We then distribute the elements in each of the 128 columns ofC into each of 8 positions where the ones sit in
each of the 759 vectors of the Witt design, thereby obtainingthe remaining 128·759= 97,152 points.

The 98,304+ 1,104+ 97,152= 196,560 points so generated are the nearest neighbors to the origin of
Λ24. Then, throwing out those pointsz for which z ·nΛ23 6= 0 (see §2.6) leaves the 93,150 neighbors ofΛ23;
additionally throwing out those pointsz for whichz ·nΛ22 6= 0 leaves the 49,896 neighbors ofΛ22; etc.
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Chapter 7

Extending lattice theory for coordinated
derivative-free optimization

Contents
7.1 Introduction to derivative-free optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 The inherent role of uniform simplexes in derivative-free optimization. . . . . . . . . . . . . . . 68

7.1.2 Global convergence via a dumb method: exhaustive sampling (ES) . . . . . . . . . . . . . . . . . 69

7.1.3 Successive polling (SP) and generalized pattern search (GPS) algorithms . . . . . . . . . . . . . 69

7.1.4 The surrogate management framework (SMF). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.5 Framing the search for a uniform simplex as a discrete Thomson problem. . . . . . . . . . . . . 70

7.2 Testing for a positive basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Selecting a positive basis from nearest-neighbor lattice points . . . . . . . . . . . . . . . . . . . . . . 72

7.4 Implementation of feasible domain boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.5 Quantifying the skewness of minimal positive bases. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1 Introduction to derivative-free optimization

The minimization of computationally expensive, high-dimensional functions is often most efficiently per-
formed via gradient-based optimization algorithms such asnonlinear conjugate gradients and L-BFGS-B.
In complex systems for which an accurate computer model is available, the gradient required by such algo-
rithms may often be found via adjoint analysis. However, when the function in question is not sufficiently
smooth to leverage gradient information effectively during its optimization (see, e.g., Figure7.1), a derivative-
free approach is necessary. Such a scenario is evident, for example, when optimizing a finite-time-average
approximation of an infinite-time-average statistic of a chaotic system such as a turbulent flow. Such an ap-
proximation may be determined via simulation or experiment. The truncation of the averaging window used
to determine this approximation renders derivative-basedoptimization strategies ill suited, as the truncation
error, though small, is effectively decorrelated from one flow simulation/experiment to the next. This effective
decorrelation of the truncation error is reflected by the exponential growth, over the entire finite time horizon
considered, of the adjoint field related to the optimizationproblem of interest in the simulation-based setting.
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Figure 7.1: Prototypical nonsmooth optimization problem for which local gradient information is ill suited to
accelerate the optimization algorithm.

As a result, derivative-free algorithms are often requiredfor the optimization of nonsmooth scalar func-
tions inn dimensions. The core idea of all efficient algorithms for problems of this type is to keep function
evaluations far apart until convergence is approached.Generalized pattern search(GPS) algorithms, a mo-
dern class of methods particularly well suited to such problems, accomplish this by coordinating the search
with an underlying grid which is refined, and coarsened, as appropriate.

One of the most efficient subclasses of GPS algorithms, knownas thesurrogate management framework
(SMF; see Bookeret al.1999), alternates between an exploratorysearchover an interpolating function which
summarizes the trends exhibited by existing function evaluations, and an exhaustivepoll which checks the
function on neighboring points to confirm or confute the local optimality of any givencandidate minimum
point (CMP) on the underlying grid. The original SMF algorithm implemented a GPS step on an underly-
ing Cartesian grid, augmented with a Kriging-based surrogate search. Rather than using then-dimensional
Cartesian grid (the typical choice), Part II of this text suggests the use of lattices derived fromn-dimensional
sphere packings. As reviewed in Part I, such lattices are significantly more uniform and have many more
nearest neighbors than their Cartesian counterparts. Bothof these facts make them far better suited for coor-
dinating GPS algorithms1, as demonstrated in a variety of numerical tests presented later in Part II.

7.1.1 The inherent role of uniform simplexes in derivative-free optimization

One of the earliest derivative-free optimization approaches to appear in the literature is thedownhill simplex
method(see Spendley, Hext, & Himsworth 1962 and Nelder & Mead 1965). The downhill simplex method
is inherently based on an iterative, amoeba-like evolution(moving one point at a time) of a set ofn+ 1
points inn dimensions towards the minimum of a (possibly, nonsmooth) function. A large body of literature
appeared after the original introduction of this method, much of which was aimed at heuristic strategies
designed to keep the evolving simplex as regular as possibleas the iteration proceeds, while expanding
or contracting as appropriate. The grid-based methods considered in the present work are fundamentally
different, so we will not dwell on such grid-free methods in this introduction. However, it is worth noting the
inherent dependence on the regularity an evolvingsimplex(that is, on ann-dimensional polytope withn+1
vertices) in this classical method, and an analogous focus in the present work on the identification (see §7.3)
and characterization (see §7.2 and7.5) of a maximally-uniform simplex (referred to in the presentwork as
a minimum positive basis) around the best point encountered thus far as the iterationproceeds, referred to in
the present work as acandidate minimum point. The role of the simplex in both cases is essentially identical:
to identify the best direction to move next using a minimum number of new function evaluations.

1In fact, as mentioned previously, Conway & Sloane (1998, p. 12) state: “A related application that has not yet received much attention
is the use of these packings for solving n-dimensional search or approximation problems”; this is exactly the focus of Part II.
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7.1.2 Global convergence via a dumb method: exhaustive sampling (ES)

Due to the often significant expense associated with performing repeated function evaluations (for example, as
discussed above, turbulent flow simulations or experiments), a derivative-free optimization algorithm which
converges to within an accurate tolerance of the global minimum of a nonconvex function of interest with a
minimum number of function evaluations is desired. It is noted that, in the general case, proof of convergence
of an optimization algorithm to a global minimum is possibleonly when, in the limit of a large number
of function evaluationsN, the function evaluations become dense in the feasible region of parameter space
(Torn & Zilinskas, 1987). Though the algorithms developed in the present work, when implemented properly,
satisfy this condition, so do far inferior approaches, suchas a rather unintelligent algorithm which we call
exhaustive sampling(ES), which simply covers the feasible parameter space with a grid, evaluates the function
ateverygridpoint, refines the grid by a factor of two, and repeats until terminated. Thus, a guarantee of global
convergence is not sufficient to establish theefficiencyof an optimization algorithm. If function evaluations
are relatively expensive, and thus only a relatively small number of function evaluations can ultimately be
afforded, effective heuristics for rapid convergence are perhaps even more important than rigorous proofs of
the behavior of the optimization algorithm in the limit of large N, a limit that might actually be argued to
be of limited relevance when function evaluations are expensive. Given that such algorithms are often used
in applications in which only a few hundred function evaluations can be afforded, careful attention to such
heuristics forms an important foundation for the present study.

7.1.3 Successive polling (SP) and generalized pattern search (GPS) algorithms

If, for the moment, we give up on the goal of global convergence, the perhaps simplest grid-based derivative-
free optimization algorithm, which we callsuccessive polling(SP), proceeds as follows:

• Start with a coarse grid and evaluate the function at some starting point on this grid, identified as the first
candidate minimum point (CMP).

• Then, poll (that is, evaluate) the function values on gridpoints which neighbor the CMP in parameter space,
at a sufficient number of gridpoints topositively span2 the feasible neighborhood of the CMP [this step
ensures convergence, as discussed further in Torczon 1997,Bookeret al.1999, and Coope & Price 2001].
When polling:

(a) If any poll point is found to have a function value less than that of the CMP, immediately consider this
new point the new CMP and terminate the present poll step.

(b) If no poll points are found to have function values less than that of the CMP, refine the grid by a factor
of two.

• Initiate a new poll step, either (a) around the new CMP or (b) around the old CMP on the refined grid, and
repeat until terminated.

Though the basic SP algorithm described above, on its own, isnot very efficient, there are a variety of
effective techniques for accelerating it. All grid-based schemes which effectively build on this basic SP idea
are classified asgeneralized pattern search(GPS) algorithms.

7.1.4 The surrogate management framework (SMF)

The most efficient subclass of GPS algorithms, known as the Surrogate Management Framework (SMF; see
Bookeret al., 1999), leverages inexpensive interpolating “surrogate” functions (often, Kriging interpolations
are used) to summarize the trends of the existing function evaluations, and to provide suggested new regions

2That is, such that any feasible point in the neighborhood of the CMP can be reached via alinear combination with non-negative
coefficientsof the vectors from the CMP to the poll points.
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of parameter space in which to perform one or more additionalfunction evaluation(s) between each poll step.
SMF algorithms thus alternate beween two steps:

(i) Searchover the inexpensive interpolating function to identify, based on the existing function evaluations,
the most promising gridpoint at which to perform a new function evaluation. Perform a function evaluation
at this point, update the interpolating function, and repeat. The search step may be terminated either when it
returns a gridpoint at which the function has already been evaluated, or when the function, once evaluated,
has a value greater than that of the CMP.

(ii) Poll the neighborhood of the new CMP identified by the search algorithm, following rules (a) and (b)
above.

There is substantial flexibility during the search step described above. An effective search is essential for
an efficient SMF algorithm. In the case that the search behaves poorly and fails to return improved function
values, the SMF algorithm essentially reduces to the SP algorithm. If, however, the surrogate-based search is
effective, the SMF algorithm will converge to a minimum far faster than a simple SP-based minimization. As
the search and poll steps are essentially independent of each other, we will discuss them each in turn in the
chapters that follow, then discuss how they may be combined.

Note that if the search produces a new CMP which is several gridpoints away from the previous function
evaluations, which occasionally happens when exploring functions with multiple minima, the grid may be
coarsenedappropriately in order to explore the vicinity of this new CMP efficiently (that is, with a coarse
grid first, then refined as necessary). Note also that the interpolating surrogate function of the SMF may be
used toorder the function evaluations of the poll step, such that those poll points which are most likely to
have a function value lower than that of the CMP are evaluatedfirst. By so doing, the poll steps will, on
average, terminate sooner, and the computational cost of the overall algorithm may be reduced further.

To the best of our knowledge, all previous GPS and SMF implementations have been coordinated using
Cartesian grids. However, like in the game of checkers (contrast “American” checkers with “Chinese” checkers),
Cartesian grids are not the only choice for discretizing parameter space. Other structured choices arising from
n-dimensional sphere packing theory (see Tables 7.1 and 7.2,and further characterizations in §3) are signifi-
cantly more uniform and have many more nearest neighbors, especially as the dimension of the problem in
question is increased; both of these properties suit these alternative lattices well for coordinating grid-based
optimization algorithms.

Part I of this study consisely summarizesn-dimensional sphere packing theory, describing almost every-
thing one needs to know about lattices up to dimensionn = 24 in order to use them effectively in practical
engineering applications. To extend the lattice theory described in Part I of this text in order to coordina-
te a derivative-free optimization, a few additional component algorithms are needed, which are described
in the remainder of §7. For simplicity, Part II focuses on the use of just two such lattices, the zero-sum
lattice An, which is ann-dimensional analog of the 2-dimensional hexagonal lattice and the 3-dimensional
face-centered-cubic lattice, and the Gosset latticeE8, which is an 8-dimensional analog of the 3-dimensional
diamond packing, and is especially uniform; both of these lattices are described completely in §2. The utility
of other lattices in this setting will be explored in future work.

7.1.5 Framing the search for a uniform simplex as a discrete Thomson problem

Thomson (1904), in his study of the structure of the atom, is credited with being the first to address the
problem3: “Where shouldk inimical dictators settle on a planet in order to be as far away from each other
as possible?” This question extends naturally ton-dimensional planets, and has received significant attention
in the years since Thomson’s original paper. The question isreadily answered numerically by assigning an
identical “charge” to each ofn identical “particles”, restricting particle motion to thesurface of the sphere,

3This curious problem, articulated by Meschkowski (1960) interms of inimical dictators (see also L. Fejes Toth 1971), assumes that
all locations on the planet’s surface are equally desirable, and that the inimical dictators all cooperate.
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n lattice name ∆ Θ G τ

A2 hexagonal 0.90690 1.2092 0.080188 6
2

Z2 square 0.78540 1.5708 0.083333 4

A3 face-centered cubic (FCC) 0.74048 2.0944 0.078745 12

3 A∗
3 body-centered cubic (BCC) 0.68017 1.4635 0.078543 8

Z3 cubic 0.52360 2.7207 0.083333 6

E8 Gosset 0.25367 4.0587 0.071682 240

D8 0.12683 32.470 0.075914 112

A8 zero-sum 0.08456 32.993 0.077391 72
8

D∗
8 0.03171 8.1174 0.074735 16

A∗
8 0.02969 3.6658 0.075972 18

Z8 Cartesian 0.01585 64.939 0.083333 16

Table 7.1. Characteristics of select distinct lattices in dimensions 2, 3, and 8, ordered from dense to rare
(for a more complete characterization, see Tables 3.1 and 3.2 of Part I). Listed (see Part I) are the packing
density,∆, covering thickness,Θ, mean squared quantization error per dimension,G, and kissing number,τ.
Note thatZn is significantly outperformed in every standard metric in every dimensionn > 1 by the available
alternatives.

A2 A3 D4 D5 E6 E7 E8 K12 Λ16 Λ24

f∆ 1.155 1.414 2 2.83 4.62 8 16 152 4096 1.68e7

fτ 1.5 2 3 4 6 9 15 31.5 135 4095

Table 7.2. The densest, most uniform lattices available in several dimensions, and two factors quantifying
the degree to which these lattices are better than the corresponding Cartesian grid in the same dimension;f∆
denotes the factor of improvement in the packing density, anindication of the uniformity of the lattice, andfτ
denotes the factor of improvement in the kissing number, an indication of the flexibility available in selecting
a positive basis from the nearest neighbors on the lattice. Note that the improvements becoming especially
pronounced as the dimensionn is increased.

and iteratively moving each particle (with some damping applied) in the direction of the force caused by
the other particles (projected onto the sphere) until all particles come to equilibrium. The precise solution
reached is a function of the distance metric and power law used when computing the force between any two
particles; in the electrostatic setting, Thomson used the Euclidian distance between the particles, and a force
which is proportional to the inverse square of this distance. The setting based on other distance measures
(e.g., measured along the surface of the sphere instead of along a straight line) and other power laws are
referred to as generalized Thomson problems; in particular, the case based on thep’th power in the limit that
p→ ∞ (that is, the max value) was studied in Tammes (1930), in his study of the boundaries of pollen grains.

In this chapter, we generalize this classical question in two ways, and introduce a new metric to characte-
rize the solution found:
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• First, the locations where the particles are allowed to settle are restricted to a discrete set of points on a
sphere, which are specified as the nearest-neighbor latticepoints to the CMP.

• Next, we allow some the particles’ locations on the sphere tobe specified (that is, fixed) in advance, and
only move the remaining (free) particles to arrive at the best solution possible.

• Finally, the new metric we introduce is a check of whether or not the distribution produced by numerical
solution of the resulting “discrete Thomson problem” formsa positive basisof the feasible neighborhood
of the CMP; that is, in the case with no active constraints (cf. §7.4), whether or not all points on the
unit sphere around the CMP can be reached via a linear combination with non-negative coefficientsof the
vectors from the CMP to the optimized particle locations.

After developing a method to test for a positive basis, the remainder of this section develops three efficient
algorithms to iterate on this “discrete Thomson problem” until a positive basis is found. To accomplish this,
these algorithms first solve the discrete Thomson problem numerically forn+mparticles wherem= 1. If the
optimization algorithm succeeds in producing a positive basis, the algorithm exits; otherwise,m is increased
by one and the process repeated until a positive basis is determined. The resulting algoroithm is leveraged
heavily during the poll step of the lattice-based SMF algorithms developed later in Part II.

7.2 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, we will at times need an efficient test to determine
whether or not the vectors to these points from the CMP form a positive basis of the feasible domain around
the CMP. Without loss of generality, we will shift this problem so that the CMP corresponds to the origin in
the discussion that follows.

A set of vectors{x̃1, . . . , x̃k} for k ≥ n+ 1 is said topositively spanRn if any point in Rn may be re-
ached via a linear combination of these vectors with non-negative coefficients. Since the 2n basis vectors
{e1, . . . ,en,−e1, . . . ,−en} positively spanRn, a convenient test for whether or not the vectors{x̃1, . . . , x̃k}
positively spanRn is to determine whether or not each vector in the setE = {e1, . . . ,en,−e1, . . . ,−en} can be
reached by a positive linear combination of the vectors{x̃1, . . . , x̃k}. That is, for each vectore∈ E, a solution
z, with zi ≥ 0 for i = 1, . . . ,k, to the equatioñXz = e is sought, wherẽX =

(
x̃1 . . . x̃k

)
. If such az exists

for each vectore∈ E, then the vectors{x̃1, . . . , x̃k} positively spanRn; if such az does not exist, then the
vectors{x̃1, . . . , x̃k} do not positively spanRn.

Thus, testing a set of vectors to determine whether or not it positively spansRn reduces simply to testing
for the existence of a solution to 2n well-definedlinear programsin standard form. Techniques to perform
such tests, such as Matlab’slinprog algorithm, are well developed and readily available. Further, if a set
of k vectors positiviely spansRn, it is a simple matter to check whether or not this set of vectors is also a
positive basis ofRn, if such a check is necessary, simply by checking whether or not any subset ofk−1
vectors chosen from this set also positively spanRn. Note that a positive basis withk vectors will necessarily
havek in the rangen+1≤ k≤ 2n; the case withk = n+1 is referred to as aminimalpositive basis, and the
case withk = 2n is referred to as amaximalpositive basis.

7.3 Selecting a positive basis from nearest-neighbor lattice points

In §6 of Part I, we described how to enumerate all points whichare nearest neighbors of the origin of a lattice
(and thus, with the appropriate shift, all points which are nearest neighbors of any CMP on the lattice). In
§7.2 above, we described how to test a subset of such points to see if the vectors from the origin to these
points form a positive basis around the CMP. We now present a general algorithm to solve the problem of
selecting a positive basis from the nearest-neighbors of the CMP using a minimal number of new poll points,
while creating the maximum achievable angular uniformity between the vectors from the CMP to each of
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Figure 7.2: Various minimal positive bases (shown in red) around the origin (shown in blue) in the (left)
triangular, (center) BCC, and (right) FCC lattices. Note that the triangular and BCC lattices each have two
perfectly distributed minimal positive bases. In contrast, there are several choices for selecting a minimal
positive basis in the FCC lattice, but none is perfectly distributed.

these points (that is, while minimizing the skewness of the resulting poll set). Note in Figure7.2 that, as
the number of nearest neighbors increases, the flexibility in solving this (apparently, NP-hard) problem also
increases, though a perfectly distributed minimal positive basis (usingn+ 1 points) is not always available.
Ideally, for m = 1, the solution to the discrete Thomson problem will producea positive basis with good
angular uniformity; if it does not, we may successively incrementmby one and try again until we succeed in
producing a positive basis. We have studied three algorithms for solving this problem:

Algorithm A.If the kissing numberτ of the lattice under consideration is relatively large (that is, if τ ≫ n;
for example, for the Leech latticeΛ24), then a straightforward algorithm can first be used to solveThomson’s
problem on a continuous sphere inn dimensions. This can be done simply and quickly by fixingq ≥ 0
repulsive particles at the prespecified lattice points, andinitializing n+ m−q free repulsive particles on the
sphere randomly. Then, at each iteration, a straightforward force-based algorithm may be used to move each
free particle along the surface of the sphere a small amount in the direction that the other particles are tending
to push it, and iterating until the set of particles approaches an equilibrium. The free particle that is nearest
to a nearest-neighbor lattice point around the CMP is then moved to said lattice point and fixed there, and
the remaining free particles adjusted until they reach a newequilibrium. This adjust/fix/adjust/fix sequence is
repeated until all particles are fixed at lattice points.

Algorithm B.If the kissing numberτ of the lattice under consideration is relatively small (that is, if τ is not
well over an order of magnitude larger thann), then it turns out to be more expedient to solve the discrete
Thomson problem directly. To accomplish this, again takingtheq presepecified repulsive particles as fixed,
we initializen+m−q free repulsive particles randomly onn+m−q nearest-neighbor lattice points around
the CMP and then, at each iteration, move the two or three4 free particles that are furthest from equilibrium in
the force-based model described above (that is, those free particles which have the highest force component
projected onto the surface of the sphere) into new positionsselected from the available locations in such a
way as to minimize the maximum force (projected onto the sphere) over the entire set of (fixed and free)
particles. Though each iteration of this algorithm involves an exhaustive search for placing the two or three
free particles in question, it converges quickly whenτ is O(100) or less.

Algorithm C.For intermediate kissing numbersτ, a hybrid approach may be used: a “good” initial distribution
may be found using AlgorithmA, then this distribution may be refined using AlgorithmB.

4Moving more than two or three particles at a time in this algorithm makes each iteration computationally intensive, and has little
impact on overall convergence of the algorithm, whereas moving only one at a time is found to significantly impede convergence to the
optimal solution.
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In each of these algorithms, to minimize the number of new function evaluations required at each poll step,
a check is first made to determine whether any previous function evaluations have already been performed on
the nearest-neighbor lattice points around the CMP. If so, then particles are fixed at these locations, while the
remaining particles are adjusted via one of the three algorithms described above. By so doing, previously-
calculated function values may be used with maximum effectiveness during the polling procedure. When
performing the poll step of a surrogate-based search, in order to orient the new poll set favorably (and, on
average, exit the poll step quickly), a particle may also be fixed at the nearest neighbor point with the lowest
value of the surrogate function; when polling, this poll point is thus evaluated first.

The iterative algorithms described above, though in practice quite effective, are not guaranteed to converge
from arbitrary initial conditions to a positive basis for a given value ofm, even if such a positive basis exists.
To address this issue, if the algorithm used fails to producea positive basis, the algorithm may be repeated
using a new random starting distribution. Our numerical tests indicate that this repeated random initialization
scheme usually generates a positive basis within a few initializations when such a positive basis indeed exists.
Since at times, for a givenm, there exists no configuration of the free particles on the nearest-neighbor lattice
points that produces a positive basis, particularly when the previous function evaluations being leveraged are
poorly configured, the number of new random initializationsis limited to a prespecified value. Once this value
is reached,m is increased by one and the process repeated. As the cost of each function evaluation increases,
the user can increase the number of random initializations attempted using one of the above algorithms for
each value ofm in order to avoid the computation of extraneous poll points that might in fact be unnecessary
if sufficient exploration by the discrete Thomson algorithmdescribed above is performed.

Numerical tests have demonstrated the efficacy of this rather simple strategy, which reliably generates
a positive basis while keeping computational costs to a minimum even when leveraging a relatively poor
configuration of previous function evaluations and when working in relatively high dimensionn. Additionally,
the algorithm itself is independent of the lattice being used; the only inputs to the algorithm are the dimension
of the problem, the locations of the nearest-neighbor lattice points, and the identification of those nearest-
neighbor lattice points for which previous function evaluations are available.

7.4 Implementation of feasible domain boundaries

When implementing a global search inn dimensions, or even when implementing a local search on a function
which is ill-defined for certain nonphysical values of the parameters (such as negative concentrations of
chemicals), it is important to restrict the optimization algorithm to look only over a prespecified “feasible”
region of parameter space. For simplicity, the present workassumes rectangular constraints on this feasible
domain (that is, simple upper and lower bounds on each parameter value). An efficientn-dimensional lattice
with packing radiusρn is used to quantize the interior of the feasible domain, efficient (n−1)-dimensional
lattices with packing radiusρn−1 = ρn/2 are used to quantize the portions of the boundary of the feasible
domain with one active constraint (that is, the “faces”), efficient (n− 2)-dimensional lattices with packing
radiusρn−2 = ρn/4 are used to quantize the portions of the boundary of the feasible domain with two active
constraints (that is, the “edges”), etc. The present section describes how to search over the boundaries of the
feasible domain, and how to move on and off of these boundaries as appropriate, while carefully restricting
all function evaluations to the interior and boundary lattices in order to coordinate an efficient search.

We distinguish between two scenarios in which the polling algorithm as described thus far must be adju-
sted to avoid violating the(n−1)-dimensional boundaries5 of the feasible domain. In the first scenario, the
CMP is relatively far (that is, greater thanρn but less than 2ρn) from the boundary of the feasible domain,
and thus one or more of the poll points as determined by one of the algorithms proposed in §7.3might land
slightly outside this boundary. In this scenario, an effective remedy is simply toeliminateall lattice points

5That is, the portions of the boundary with a single active constraint.
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Figure 7.3: A scenario in which a CMP atx =
(

0 0 0
)T

sits on an(n−2) = 1-dimensional edge of ann = 3-
dimensional feasible region with boundsx1 ≥ 0 andx2 ≥ 0. Note that the feasible neighborhood of this edge
is positively spanned by the nearest neighbors on the integer lattice, and that two additional vectors are added
to the poll set to facilitate moving off of each of these active constraint boundaries.

which land outside of the feasible domain from the list of potential poll points, and then toaugmentthis re-
stricted list of potential poll points with all lattice points on the nearby(n−1)-dimensional constraint surface
which are less than 2ρn from the CMP. From this modified list of potential poll points, the poll set may be
selected in the usual fashion using one of the algorithms described in §7.3.

In the second scenario, the CMP is relatively close (that is,less thanρn) to the boundary of the feasible
domain. In this scenario, it is most effective simply to shift the CMP onto the nearest lattice point on the(n−
1)-dimensional constraint surface. With the CMP on the feasible domain boundary, each poll step explores a
minimum positive basis selected on the lattice quantizing the(n−1)-dimensional boundary and, in addition,
polls an additional lattice point on the interior of the feasible domain to allow the algorithm to move back off
this constraint boundary. Ideally, this additional point would be located on a inward-facing vector normal to
the(n−1)-dimensional feasible domain boundary a distanceρn from the CMP; we thus choose the interior
lattice point closest to this location.

Multiple active constraints are handled in an analogous manner (see Figure7.3). In an n-dimensional
optimization problem withp ≥ 2 active constraints, the CMP is located on an active constraint “surface”
of dimensionn− p. An efficient (n− p)-dimensional lattice with packing radiusρn−p = ρn/2p is used to
quantize this active constraint surface, and a poll set is constructed by creating a positive basis selected from
the points neighboring the CMP within the(n− p)-dimensional active constraint surface, together withp
additional points located on the(n− p+ 1)-dimensional constraint surfaces neighboring the CMP. Ideally,
thesep additional points would be located on vectors normal to the(n− p)-dimensional active constraint
surface a distanceρn−p+1 = ρn/2p−1 from the CMP; we thus choose the lattice points on the(n− p+ 1)-
dimensional feasible domain boundaries closest to these locations.

In practice, it is found that, once an optimization routine moves ontop≥ 1 feasible domain boundaries,
it only somewhat infrequently moves back off. To account forthis, thep additional poll points mentioned in
the previous paragraph are polledafter the other poll points forming the positive basis within the(n− p)-
dimensional active constraint surface.
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7.5 Quantifying the skewness of minimal positive bases

A final relevant metric of a lattice that relates to the performance of the corresponding lattice-based optimiza-
tion is the deviation from perfect uniformity of the best minimal positive basis available on nearest-neighbor
lattice points. Thebest nearest-neighbor minimal positive basis skewnessof a lattice,s, is thus now defined
as the ratio between the largest and the smallest angles between any two vectors in the best minimal positive
basis available on nearest-neighbor lattice points, minusone. Therefore,s= 0 indicates a perfectly uniform
minimal positive basis on nearest-neighbor lattice points, as exhibited byA2 (see Figure7.2a) andA∗

3 (Figure
7.2b). In constrast,A3 throughA8 all haves= 0.3333 (see, e.g.,A3 in Figure7.2c).

Surprisingly, the best nearest-neighbor minimal positivebasis skewness ofE8 is s= 1; one might initially
expect it to be much smaller than this (indeed, one might hopethat it would be fairly close tos= 0) due to the
relatively large kissing number (τ = 240) of thisn= 8 lattice. Interestingly, the best nearest-neighbor positive
basis ofE8 when usingn+2 points (that is, instead of a minimal positive basis withn+1 points) is perfectly
uniform. The tests reported later in Part II thus usen+ 2 points instead ofn+ 1 points when polling on the
E8 lattice.

A minimal positive basis on nearest-neighbor lattice points doesn’t even exist on theZn lattice (indeed,
a positive basis on nearest neighbors of theZn lattice requires a full 2n points). This was, in fact, a matter
of significant inconvenience in previous work when using theCartesian lattice as the default choice for such
problems, as using a maximal positive basis rather than a minimal positive basis essentially doubles the cost
of each complete poll step for largen. When developing a minimal positive basis for theZn lattice, it is thus
common (see, e.g., Bookeret al. 1999) to select the Cartesian unit vectorse1 throughen and one additional
“oddball” vector in the(−1,−1, . . . ,−1) direction which is

√
n longer. Note the “clustering” of the Cartesian

unit vectors in directions generally opposite to the oddball vector. To quantify, the skewness of this minimal
positive basis is cos−1(−1/

√
n)/(π/2)−1, which in dimensionsn = 2 through 8 is given by 0.5, 0.3918,

0.3333, 0.2952, 0.2677, 0.2468, and 0.2301. Note that, while the skewness of the angular distribution of this
minimal positive basis actually decreases gradually as thedimension of the problem increases, the ratio in
lengths of the vectors to the nearest-neighbor lattice points and the oddball vector in this basis increases
like

√
n (that is, from 1.4142 inn = 2 to 2.8284 inn = 8). This is quite unfortunate, as it leads to a peculiar

nonisotropic behavior of the optimization algorithm over parameter space (for further discussion on this point,
see the sixth paragraph of §10.1). The tests reported later in Part II use this peculiar minimum positive basis,
with a long oddball vector, when polling on theZn lattice.

We now have all of the ingredients necessary to coordinate SMF algorithms, as introduced in §7.1, with
any of the lattices listed in Tables 3.1-3.2 of Part I, while both reusing previous function evaluations as
effecieintly as possible as well as respecting sharp boundson the feasible region of parameter space.
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Chapter 8

Kriging interpolation
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8.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm (see §7.1) is to interpolate, and extrapolate, the trends
exhibited by the existing function evaluations in order to suggest new regions of parameter space, perhaps
far from the CMP, where the function value is anticipated, with some reasonable degree of probability, to be
lower than that of the CMP. There are a variety of possibile ways of accomplishing this; we leverage here the
Kriging interpolation strategy (Krige 1951; Matheron 1963; Jones 2001; Rasmussen & Williams 2006).

The problem of interpolation is the problem of drawing a smooth curve through data points in order to
estimate the function values in regions where the function itself has not yet been computed. The problem
of interpolation, thus, necessarily builds on some hypothesis that models the function behavior in order to
“connect the dots”. The most common such model is a mechanical one, based on a thin piece of wood,
or “spline”, that is “bent” in order to touch all the data points; this mechanical model leads directly to the
mathematical algorithm known as cubic spline interpolation. A perhaps equally valid hypothesis, which forms
the foundation for the Kriging interpolation strategy, is to model the underlying function as a realization, with
maximum likelihood, of some stochastic process. The stochastic model used in this approach is selected to
be general enough to model a broad range of functions reasonably well, yet simple enough to be fairly
inexpensive to tune appropriately based on the measured data. There are many such stochastic models which
one can select; the simple stochastic model considered hereleads to the easy-to-use interpolation strategy
commonly referred to as ordinary Kriging.
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8.2 Notation of statistical description

To begin, considerN points{x1, . . . ,xN}, at which the function will ultimately be evaluated, and model the
function’s value at theseN points with the random vector

f =




f (x1)
...

f (xN)


=




f1
...
fN


 .

To proceed further, we need a clear statistical framework todescribe this random vector.
The cumulative distribution function (CDF) of the random vector f, denoteddf(f), is a mapping from

f ∈ Rn to the real interval[0,1] that monotonically increases in each of the components off, and is defined

df(f) = P( f1 ≤ f
1
, f2 ≤ f

2
, . . . , fn ≤ f

n
),

wheref is some particular value of the random vectorf and P(S) denotes a probability measure that the
conditions stated inS are true. In the scalar case, for example,df (1) = 0.6 means that it is 60% likely that
the random variablef satisfies the conditionf ≤ 1. For a random vectorf whose CDF is modelled as being
differentiable everywhere, the probability density function (PDF)pf(f ′) ≥ 0 is a scalar function off ′ defined
such that

df(f) =

Z f 1

−∞

Z f 2

−∞
· · ·

Z f n

−∞
pf(f

′)d f ′1 d f ′2 · · ·d f ′n ⇔ pf(f
′) =

∂ndf(f)
∂ f

1
∂ f

2
· · ·∂ f

n

∣∣∣
f=f ′

.

For small|∆f ′|, the quantitypf(f ′)∆ f ′1 ∆ f ′2 · · ·∆ f ′n represents the probability that the random vectorf takes
some value within a small rectangular region centered at thevalue f ′ and of width∆ f ′i in each coordinate
directionei . Note that the integral ofpf(f ′) over all possible values off ′ is unity, that is

Z

Rn
pf(f

′)df ′ = 1.

The expected value of a functiong(f) of a random vectorf is given by

E {g(f)} =

Z

Rn
g(f ′) pf(f

′)dx′.

The expected value may be interpreted as the average of the quantity in question over many realizations. In
particular, the mean̄f and covariancePf of the random vectorf are defined as

f̄ , E {f} =

Z

Rn
f ′ pf(f ′)df ′, Pf , E {(f − f̄)(f − f̄)T} =

Z

Rn
(f ′− f̄)(f ′− f̄)T pf(f ′)df ′.

8.3 Statistical modeling assumptions of the ordinary Kriging model

The PDF of the random vectorf = fn×1 in this analysis is modelled as Gaussian, and is thus restricted to the
generic form

pf(f ′) =
1

(2π)n/2|Pf |1/2
exp

−(f ′− f̄)TP−1
f (f ′− f̄)

2
, (8.1a)

where the covariancePf is modelled as a constantσ2, referred to as the variance, times a correlation matrixR
whose{i, j}’th componentr i j is given by a model of the correlation of the random functionf between points
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xi andx j , where this correlation modelr(·, ·) itself decays exponentially with the distance between pointsxi

andx j ; that is,

Pf , σ2R, where r i j , r(xi ,x j) and r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ −yℓ|pℓ

)
(8.1b)

for some yet-to-be-determined constantsσ2, θℓ > 0, and 0< pℓ ≤ 2 for ℓ = 1, . . . ,n. The mean̄f in the
Gaussian model (8.1a) is itself modelled as uniform over all of its components:

f̄ , µ1 (8.1c)

for some yet-to-be-determined constantµ. There is extensive debate in the recent literature (see, e.g., Isaaks
& Srivastava 1989; Rasmussen & Williams 2006) on the statistical modeling assumptions one should use
in a Kriging model of this sort. It is straightforward to extend the present investigation to incorporate less
restrictive Kriging models; the ordinary Kriging model is used here primarily due to its simplicity.

8.4 Adjusting the coefficients of the model based on the data

If the vector of observed function values is

f o =




f o
1
...
f o
N


 ,

then the PDF corresponding to this observation in the statistical model proposed in (8.1) can be written as

pf(f o) =
1

(2π)n/2(σ2)n/2|R|1/2
exp

−(f o−µ1)TR−1(f o−µ1)

2σ2 . (8.2)

The process of Kriging modeling boils down to selecting the parametersσ2, θℓ, pℓ, andµ in the statistical
model proposed in (8.1) to maximize the PDF evaluated for the function values actually observed,f = f o, as
given in (8.2).

Maximizing pf(f o) is equivalent to minimizing the negative of its log. Thus, for simplicity, consider

J = − log[pf(f
o)] =

n
2

log(2π)+
n
2

log(σ2)+
1
2

log(|R|)+
(f o−µ1)TR−1(f o−µ1)

2σ2 . (8.3)

Setting the derivatives ofJ with respect toµ andσ2 equal to zero and solving, the optimal values ofµ andσ2

are determined immediately:

µ=
1TR−1f o

1TR−11
, σ2 =

(f o−µ1)TR−1(f o−µ1)

n
. (8.4)

With these optimal values ofµ andσ2 applied, noting that the last term in (8.3) is now constant, what remains
to be done is to minimize

J1 =
n
2

log(σ2)+
1
2

log(|R|) (8.5)

with respect to the remaining free parameters1 θℓ andpℓ, whereσ2 is given as a function ofR in (8.4) andR,
in turn, is given as a function of the free parametersθℓ andpℓ in (8.1b). This minimization must, in general, be

1To simplify this optimization,pℓ may be specified by the user instead of being determined via optimization; this is especially
appropriate to do when the number of function evaluationsN is relatively small, and thus there is not yet enough data to determine
both theθℓ and pℓ uniquely. If this approach is followed,pℓ = 1 or 2 are natural choices; the case withpℓ = 1 is referred to as an
Ornstein-Uhlenbeck process, whereas the case withpℓ = 2 is infinitely differentiable everywhere.
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performed numerically. However, the functionJ1 is smooth in the parametersθℓ andpℓ, so this optimization
may be performed efficiently with a standard gradient-basedalgorithm, such as the nonquadratic conjugate
gradient algorithm, where the gradient itself, for simplicity, may easily be determined via a simple finite
difference or complex-step derivative approach.

Note that, after each new function evaluation, the Kriging parameters adjust only slightly, and thus the
previously-converged values of these parameters form an excellent initial guess for this gradient-based op-
timization algorithm. Note also that, while performing this optimization, the determinant of the correlation
matrix occasionally reaches machine zero. To avoid the numerical difficulty that taking the log of zero would
otherwise induce, a small [O(10−6)] term may be added to the diagonal elements ofR. By so doing, the Kri-
ging predictor does not quite have the value of the sampled data at each sampled point; however, it remains
quite close, and the algorithm is made numerically robust [Bookeret al, 1999].

8.5 Using the tuned statistical model to predict new function values

Once the parameters of the stochastic model have been tuned as described above, the tuned Kriging model
facilitates the computationally inexpensive prediction of the function value at any new location̄x. To perform
this prediction, consider now theN +1 points{x1, . . . ,xN, x̄}, and model the function’s value at theseN +1
points with the vector

f̄ =

(
f

f (x̄)

)
=

(
f
f̄

)
,

wheref is theN×1 random vector considered previously andf̄ is the random scalar modeling the function
at the new point. Analogous statistical assumptions as laidout in (8.1) are again applied, with the correlation
matrix now written as

R̄=

[
R r̄
r̄T 1

]
, Pf̄ , σ2R̄, (8.6)

whereR is theN×N correlation matrix considered previously and, consistentwith this definition, the vector
r̄ is constructed with components

r̄ i = r(xi , x̄), where r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ−yℓ|pℓ

)
.

Following Jones (2001), note by the matrix inversion lemma thatR̄−1 may be written

R̄−1 =

[
R r̄
r̄T 1

]−1

=

[
R−1 +R−1r̄(1− r̄TR−1r̄)−1r̄TR−1 −R−1r̄(1− r̄TR−1r̄)−1

−(1− r̄TR−1r̄)−1r̄TR−1 (1− r̄TR−1r̄)−1

]
. (8.7)

Keeping the paramter valuesσ2, θℓ, pℓ, andµ as tuned previously, we now examine the variation of the
PDF in the remaining unknown random variable,f̄ . Substituting (8.6) and (8.7) into a PDF of the form (8.1a),
we may write

pf̄(f̄
′) = C1 ·exp

−(f̄ ′−µ1)TR̄−1(f̄ ′−µ1)

2σ2 = C1 ·exp
−
[
f ′−µ1
f̄ ′−µ

]T

R̄−1

[
f ′−µ1
f̄ ′−µ

]

2σ2

= . . . = C2 ·exp
−[ f̄ ′− f̂ ]T [ f̄ ′− f̂ ]

2s2 ,

(8.8)
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Figure 8.1: (a) The Kriging predictor,̂f (x), and (b) its associated uncertainty,s2(x), for a perturbed quadratic
bowl sampled on a square grid of 7×7 points. (c) The correspondingJ(x) = f̂ (x)−c ·s2(x) search function
used for a global search in two dimensions (see §9).

where, with a minor amount of algebraic rearrangement, the mean and variance of this scalar Gaussian dis-
tribution modeling the random scalar̄f work out to be2

f̂ (x̄) = E { f (x̄)} = E { f̄} = µ+ rT R−1(f o−µ1), (8.9a)

s2(x̄) = E {[ f (x̄)− f̂ ]2} = E {[ f̄ − f̂ ]2} = σ2(1− rTR−1r). (8.9b)

Equations (8.9a)-(8.9b) give the final formulae for the Kriging predictor,f̂ (x̄), and its associated uncertainty,
s2(x̄).

When applied numerically to a representative test problem,as expected, the Kriging predictor function,
which we denotef̂ (x̄), interpolates [that is, it goes through every observed function value at points̄x = x1

to x̄ = xN], whereas the uncertainty function, denoteds2(x̄), is zero at each sampled point, and resembles a
Gaussian “bump” between these sampled points, as seen in Figure8.1. Note that, once the parameters of the
statistical model have been determined, as described in §8.4, the formula (8.9a)-(8.9b) for the Kriging pre-
dictor f̂ (x̄) and its corresponding uncertaintys2(x̄) at any test point̄x is computationally quite inexpensive3.

2An alternative interpretation of this process models the constantµ itself as a stochastic variable rather than as a constant. Following
this line of reasoning ultimately gives the same formula forthe predictorf̂ (x̄) as given in (8.9a), and a slightly modified formula for its
associated uncertainty,

s2(x̄) = σ2
(

1− rT R−1r +
(1− rT R−1r)2

1TR−11

)
. (8.9b’)

Which formula [(8.9b) or (8.9b’)] is used in the present model is ultimately a matter of little consequence as far as the overall derivative-
free optimization algorithm is concerned; we thus prefer the form given in (8.9b) due to its computational simplicity.

3Note that, for maximum efficiency,R−1 should be saved between function evaluations and reused forevery new computation of̂f
ands2 required.
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Chapter 9

Global optimization leveraging
Kriging-based interpolation

The previous chapter reviewed the Kriging interpolation strategy which, based on a sparse set of observed
function valuesf o(xi) for i = 1, . . . ,N, develops a function predictor̂f (x) and a model of the uncertainty
s2(x) associated with this prediction for any given set of parameter valuesx. Leveraging this Kriging model,
an efficient search algorithm can now be developed for the derivative-free optimization algorithm summarized
in §7.1.

The effectiveness of the various Kriging-based search strategies which one might propose may be tested
by applying them repeatedly to simple test problems via the following procedure:

• a search functionJ(x) is first developed based on a Kriging model fit to the existing function evaluati-
ons,

• a gradient-based search is used to minimize this (computationally inexpensive, smoothly-varying)
search function,

• the functionf (x) is sampled at the pointx̃ which minimizes the search function1,
• the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem with multiple minima, f (x) = sin(x) + x2, on the
interval x ∈ [−10,10], and use four starting points to initialize the searchx = −10, x = −5.2, x = 6, and
x= 10. Ineffective search strategies will not converge to the global minimum of f (x) in this test, and may not
even converge to a local minimum. More effective search strategies converge to the global minimum following
this approach, and the number of function evaluations required for convergence indicates the effectiveness of
the search strategy used.

Perhaps the most “obvious” strategy to use in such problems is simply fitting a Kriging model to the
known data, then searching the Kriging predictor itself,J(x) = f̂ (x), for its minimum value. This simple
approach has been implemented in a variety of examples with reasonably good results (see Bookeret al,
1999). However, as shown clearly in Figure9.1, this approach can easily break down. The Kriging predictor
does not necessarily model the function accurately, and itsminimization fails to guarantee convergence to
even a local minimum of the functionf (x). This observed fact can be motivated informally by identifying the
Kriging predictor as aninterpolatingfunction which only under extraördinary conditions predicts a function
value significantly lower than all of the previously-computed function values; under ordinary conditions, a
strategy of minimizing the predictor will thus often stall in the vicinity of the previously-evaluated points.

1For the moment, to focus our attention on the behavior of the search algorithm itself, no underlying grid is used to coordinate the
search in order to keep function evaluations far apart.



DRAFT
84 CHAPTER 9. GLOBAL OPTIMIZATION LEVERAGING KRIGING-BASED INTERPOLATION

−10 −5 0 5 10
−1

0

1

2

3

4

5

−10 −5 0 5 10
−1

0

1

2

3

4

5

−10 −5 0 5 10
−1

0

1

2

3

4

5

−10 −5 0 5 10
−1

0

1

2

3

4

5

−10 −5 0 5 10
−1

0

1

2

3

4

5

−10 −5 0 5 10
−1

0

1

2

3

4

5

 

 

Truth
Model
Data
Update

Figure 9.1: Convergence of a search algorithm based on minimizing the Kriging predictor,J(x) = f̂ (x), at
each iteration. This algorithm does not necessarily converge to even a local minimum, and in this example
has stalled, far from the global minimum, after six iterations.

To avoid the shortcomings of a search defined solely by the minimization of the predictor, another strategy
explored by Bookeret al (1999) is to evaluate the function attwopoints in parameter space during the search:
one point chosen to minimize the predictor, and the other point chosen to maximize the predictor uncertainty.
Such a heuristic provides a guarantee of global convergence, as the seach becomes dense in the parameter
space as the total number of function evaluations,N, approaches infinity (see §7.1.2). However, this approach
generally does not converge quickly as compared with the improved methods described below, as the extra
search point has no component associated with the predictor, and is thus often evaluated in relatively “poor”
regions of parameter space.

We are thus motivated to develop a more flexible strategy to exploreslightly awayfrom the minima of
the predictor. To achieve this, consider the minimization of J(x) = f̂ (x)−c ·s2(x), wherec is some constant
(see Cox & John 1997 and Jones 2001). A search coordinated by this function will tend to explore regions
of parameter space where both the predictor of the function value is relatively lowandthe uncertainty of this
prediction in the Kriging model is relatively high. With this strategy, the search is driven to regions of higher
uncertainty, with the−c ·s2(x) term inJ(x) tending to cause the algorithm to explore away from previously
evaluated points. Additionally, minimizinĝf (x)− c · s2(x) allows the algorithm to explore the vicinity of
multiple local minima in successive iterations in order to determine, with an increasing degree of certainty,
which local “bowl” in fact has the deepest minimum. The parameterc provides a natural means to “tune”
the degree to which the search is driven to regions of higher uncertainty, with smaller values ofc focusing
the search more on refining the vicinity of the lowest function value(s) already found, and larger values ofc
focusing the search more on exploring regions of parameter space which are still relatively poorly sampled.
This parameter may tuned based on knowledge of the function being minimized: if the function is suspected
to have multiple minima,c can be made relatively large to ensure a more exploratory search, whereas if the
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Figure 9.2: Convergence of a search algorithm based on minimizing the search functionJ(x)= f̂ (x)−c·s2(x)
at each iteration, takingc = 1. Note that the global minimum is found after just a few iterations. However,
global convergence is not guaranteed.

function is suspected of having a single minimum,c can be made relatively small to ensure a more focused
search in the vicinity of the CMP. For an appropriate intermediate value ofc, the resulting algorithm is often
quite effective at both global exploration and local refinement of the minimum, as illustrated in Figure9.2.
The strategy of searchingJ(x) = f̂ (x)−c ·s2(x) also extends naturally to multiple dimensions, as illustrated
for a two-dimensional problem in Figure8.1c. Note also that, in the spirit of Bookeret al (1999) [who
effectively suggested, in the present notation, exploringbased on bothc = 0 andc→ ∞ at each search step],
one can perform a search using multiple but finite values ofc at each search step, returning a set of points
designed to focus, to varying degrees, on the competing objectives of global exploration and local refinement.
If at each search stepk at least one point is included which minimizesf̂ (x)−ck ·s2(x) for a value ofck which
itself approaches∞ ask → ∞, then the search drives at least some new function evaluations sufficiently far
from the existing points that the function evaluations eventually become dense over the feasible domain, thus
guaranteeing global convergence. Thus, anf̂ (x)−c·s2(x) search, when used properly, can indeed be used in
a globally convergent manner.

Minimizing J(x) = f̂ (x)−c·s2(x) is not the only strategy to take advantage of the estimate of the uncer-
tainty of the predictor provided by the Kriging model. Another effective search strategy involves maximizing
the probability of achieving a target level of improvement below the current CMP; this is called themaximum
likelihood of improvement(MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen 1991, Elder 1992,
and Mockus 1994]. If the current CMP has a function valuefmin, then this search strategy seeks thatx for
which the probability of finding a function valuef (x) less than some prespecified target valueftarget [that
is, for which f (x) ≤ ftarget < fmin] is maximized in the Kriging model. Iff (x) is known to be a positive
function, a typical target value in this approach isftarget= (1− δ) fmin, whereδ may be selected somewhere
in the range of 0.01 to 0.2. As for the parameterc discussed in the previous paragraph, the parameterδ in this
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Figure 9.3: MLI search with a targetT = 10%. Note convergence to global minimum, as well as exploratory
nature of the search which guarantees global convergence.

strategy tunes the degree to which the search is driven to regions of higher uncertainty, with smaller values of
δ focusing the search more on refining the vicinity of the lowest function value(s) already found, and larger
values ofδ focusing the search more on exploring regions of parameter space which are still relatively poorly
sampled. As seen in Figure9.3, the MLI search offers performance similar to thef̂ (x)−c·s2(x) method dis-
cussed previously. In contrast with thef̂ (x)−c ·s2(x) approach, even for a fixed (finite) value ofδ, the MLI
approach eventually drives the function evaluations far enough away from existing points that the function
evaluations eventually become dense over the feasible domain, thus guaranteeing global convergence. Thus,
the MLI approach is inherently globally convergent.

Even more sophisticated search strategies can also be proposed, as reviewed elegantly by Jones (2001).
However, the simplicity, flexibility, and performance given by the strategy of minimizingJ(x) = f̂ (x)− c ·
s2(x) renders this approach as adequate for our testing purposes here.

Since both theJ(x) = f̂ (x)− c · s2(x) search function and the MLI search function are inexpensiveto
compute, continuous, and smooth, but in general have multiple minima, an efficient gradient-based search,
initialized from several well-selected points in parameter space, may be used to to minimize them. As the
uncertaintys2(x) goes to zero at each sample point,J(x) will tend to dip between each sample point. Thus,
a search is initialized on 2n ·N total points forming a positive basis near (say, at a distance of ρn/2) to each
of theN sample points, and each of these starting points is marched to a local minima of the search function
using an efficient gradient-based search (which is constrained to remain within the feasible domain ofx).
The lowest point of the paths so generated will very likely bethe global minima of the search function. For
simplicity, the necessary gradients for this search may be computed via a simple second-order central finite
difference scheme applied to the Kriging model, though moresophisticated and efficient approaches are also
possible.
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Chapter 10

Lattice-based derivative-free
optimization via global surrogates

Contents
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Putting everything together, we now develop and test what weidentify as theLattice Based Derivative-
free Optimization via Global Surrogates(LABDOGS) algorithm. This algorithm consists of an SMF-based
optimization (see §7.1) coordinated by uniformn-dimensional lattices (see Part I and further extensions in
§7) while leveraging a Kriging interpolant (see §8) to perform an efficient global search based on the search
functionJ(x) = f̂ (x)−c ·s2(x) (see §9). The full algorithm has been implemented in an efficient numerical
code, dubbed Checkers, and is tested in this section inn = 2 to n = 8 dimensions using theZn, An, andE8

lattices to coordinate the search, and is applied here to:

• randomly shifted quadratic bowls
fQ(x) = (x−xo)TA(x−xo)

• randomly shifted Rosenbrock functions:

fR(x) = ∑n−1
i=0 {[1− (xi −xo

i )]
2 +(−1)n500[(xi+1−xo

i+1)− (xi −xo
i )

2]2},

• the Branin function:

fB(x) = [1−2x2+0.05sin(4πx2)−x1]
2 +[x2−0.5sin(2πx1)]

2,

• and the “T1” function:

fM(x) = sin(5x1)+sin(5x2)+0.02[(5x1+1.5)2+(5x2+1.5)2].

Note that the first two test functions aren-dimensional and have unique minima, whereas the last two test
functions are 2-dimensional and have multiple minima. Muchfurther testing remains to be done, and will be
reported in future work.
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n 2 3 4 5 6 7 8

p 74.77 81.32 84.03 84.53 84.43 84.56 85.28
r 0.4290 0.4161 0.3273 0.3585 0.3150 0.3345 0.3060

Table 10.1. Performance comparison between theAn-based SP algorithm and theZn-based SP algorithm app-
lied to randomly shifted quadratic bowls forn= 2 to 8. It is seen that theA8-based SP algorithm outperformed
theZ8-based SP algorithm 85% of the time, and on average required 30% as many function evaluations to
reach the same level of convergence.

n 8

p 90.65
r 0.1554

Table 10.2. Performance comparison between theE8-based SP algorithm and theZ8-based SP algorithm
applied to randomly shifted quadratic bowls. It is seen thattheE8-based SP algorithm outperformed theZ8-
based SP algorithm 91% of the time, and on average required 17% as many function evaluations to reach the
same level of convergence, thus offering nearly twice the performance ofAn.

10.1 SP applied to randomly-shifted quadratic bowls

To test the hypothesis that the efficiency of a pattern searchis significantly affected by the packing efficiency
and/or the nearest-neighbor distribution of the lattices which coordinate it, a large number of SP optimizati-
ons were first performed on randomly-shifted quadratic bowls to gather and compare statistical data on the
performance ofZn-based,An-based, andE8-based SP optimizations. The positive-definite matricesA> 0 and
offsetsxo defining the quadratic bowls to be minimized, as well as the starting points used in the searches,
were selected at random for every set of tests, and the initial Zn, An, andE8 lattices were scaled such that the
initial number of points per unit volume of parameter space was identical.

The Zn-based,An-based, andE8-based SP algorithms were run from the same starting points on the
same quadratic test functions to the same level of convergence. Note that several of the significant built-in
acceleration features of the full Checkers code were in factturned off for this baseline comparison. Most
notably, complete polls were performed (that is, the poll steps were not terminated immediately upon finding
a lower CMP), and no attempt was made to reuse previously-computed points when forming each successive
poll set, or to orient optimally any given poll set. In fact, the angular distribution of the poll set around the
CMP was fixed from one step to the next in these initial tests.

Two quantitative measures of the relative efficiency of the optimization algorithms to be tested are now
defined. The metricp is defined as thepercentage of runsin which the lattice-based algorithm requires fewer
function evaluations than does theZn-based algorithm to converge 99.99% of the way from the initial value
of J(x) to the optimal value ofJ(x) [which, in these test problems, is easy to compute analytically]. The
metric r is defined as theratio of the average number of function evaluationsrequired for the lattice-based
algorithm to converge 99.99% of the way from the initial value ofJ(x) to the optimal value ofJ(x) divided by
the average number of function evaluations needed for theZn-based algorithm to converge the same amount.

The p andr measures described above (averaged over 5000 runs for each value ofn) were calculated in
the case of theAn lattice (forn= 2 ton = 8) and theE8 lattice, and are reported in Tables 10.1 and 10.2. Note
that values ofp over 50% and values ofr less than 1 indicate that, on average, the lattice-based SP algorithm
outperforms theZn-based SP algorithm, withp quantifying how often andr quantifying how much.

Note in Table 3.1 that the “best” lattice inn = 2 andn = 3, accoring to several standard metrics, isAn;
however, as the dimension of the problem increases, severalother lattices become available, and that byn= 8
theE8 lattice appears to be the best choice. This observation is consistent with the numerical results reported
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Figure 10.1: Typical paths taken by theA2-based SP algorithm (dots) and theZ2-based SP algorithm (+) on a
randomly-shifted quadratic bowl.

in Tables 10.1 and 10.2, which indicates that theAn-based optimizations provided a consistent and substantial
improvement over theZn-based optimizations over the entire rangen= 2 to 8, and that, inn= 8, theE8-based
optimization significantly outperformed theA8-based optimization.

The mechanism by which the lattice-based SP algorithms outperform theZn-based SP algorithm on qua-
dratic test problems is now examined in detail. As describedpreviously, theZn minimal positive basis vectors
are distributed with poor angular uniformity and can not be selected on nearest-neighbor lattice points. When
the optimal descent direction is poorly approximated by thesen+1 vectors (such as when the optimal descent
direction is configured somewhere approximately midway between the oddball vector and one of the Cartesi-
an unit vectors), the search path must “zig-zag” to move towards the actual minimum. If the local curvature of
the function is small compared to the current lattice spacing, then the search algorithm must take several steps
in a rather poor direction before it must eventually turn back down the “valley floor”, as illustrated by the path
of theZn-based SP algorithm in Figure10.1. Once in this valley, the lattice spacing must be diminishedsuch
that each step of the “zig-zag” path required to proceed downthe valley floor in fact decreases the function;
this leads to otherwise unnecessary lattice refinement and thus very slow progress by the SP algorithm. This
effect is exacerbated when the vectors of the poll set are of substantially different length, as the entire set
of vectors must be scaled down until movement along the direction of the longest poll vector during this
zig-zagging motion still decreases the function. This leads to the poor convergence behavior demonstrated by
theZn-based SP algorithm along the narrow valley floor of the quadratic bowl indicated in Figure10.1. Of
course, the present arguments are statistical in nature, and in specific cases either theAn-based SP algorithm
or theZn-based SP algorithm will sometimes get “lucky” and convergeremarkably quickly. However, it is
clear that the optimal descent direction at any given iteration is more likely to be “far” from the poll vectors
when the poll set is distributed with poor angular uniformity.

10.2 SP applied to randomly-shifted Rosenbrock functions

TheAn-based andZn-based SP algorithms were also applied to a randomly-shifted Rosenbrock function in
a similar fashion. Figure10.2demonstrates a typical case, indicating the respective rates of convergence of
the two SP algorithms. TheAn-based SP algorithm demonstrates a substantially improvedconvergence rate
compared to theZn-based SP algorithm.
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Figure 10.2: A sample SP minimization comparing theAn-based case (dash-dot line at left and black+
at center) with theZn-based case (solid line at left and blue∗ at right) on a randomly shifted Rosenbrock
function. Note the superior convergence rate of theAn-based approach (as illustrated in the convergence plot
at left), resulting in further progress toward the minimum at [1,−1] (as illustrated in the subfigures at center
and right).

These results demonstrate that the efficiency of the SP portion of a pattern search can be substantially
improved simply by implementing a more efficient lattice to discretize parameter space.

10.3 LABDOGS applied to randomly shifted Rosenbrock functions

To test the hypothesis that the efficiency of the full LABDOGSalgorithm is significantly affected by the
choice of the lattices which coordinate it, a more demandingtest than a quadratic bowl is required. We thus
consider here the application of the full LABDOGS algorithmto randomly shifted Rosenbrock functions.
The “valley” in which the minimum of the Rosenbrock functionlies is narrow, curved, and relatively flat
(that is, with a vanishing second derivative) along the bottom. This makes it a difficult test case for any SMF-
like algorithm to approximate with a surrogate function of sufficient accuracy to be particularly useful along
the valley floor, other than simply to indicate where the function evaluations are currently relatively sparse.
In other words, both the search and poll components of the LABDOGS algorithm are put to the test when
searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of theAn-based andZn-based LABDOGS algorithms (usingc = 5)
applied to randomly shifted Rosenbrock functions are reported here. As in the SP tests described previously,
the initial An andZ

n lattices were scaled appropriately so as to be of the same initial density.
Recall in the SP tests the metricp, which quantifiedhow oftenthe lattice-based method outperformed

the Cartesian-based method, and the metricr, which quantifyinghow muchthe lattice-based method outper-
formed the Cartesian-based method. In this section, we use two similar metrics, ¯p and ¯r, but now terminate
each optimization after a particular number of iterations rather than after convergence to a given percenta-
ge of the (known) optimal solution. Specifically, the metricp̄ is defined as the percentage of runs in which
theAn-based LABDOGS algorithm converged further than did theZn-based LABDOGS algorithm after 300
function evaluations, whereas the metric ¯r is defined as the ratio of the average function value to which the
An-based LABDOGS algorithm converged after 300 function evaluations divided by the average function
value to which theZn-based LABDOGS algorithm converged after 300 function evaluations. The results for
n= 2 to 5 (averaged over 200 runs forn= 2, 3, and 4, and 100 runs forn= 5) are reported in Table 10.3. Note
that values of ¯p over 50% and values of ¯r less than 1 indicate that, on average, the lattice-based LABDOGS
algorithm outperforms theZn-based LABDOGS algorithm, with ¯p quantifying how often and ¯r quantifying
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Figure 10.3: Convergence of the Checkers code usingAn (red) vsZn (green), on ann = 6 Rosenbrock func-
tion.

n 2 3 4 5

p̄ 64.0 56.0 63.0 68.0
r̄ 0.651 0.699 0.773 0.758

Table 10.3. Performance comparison between theAn-based LABDOGS algorithm and theZn-based LAB-
DOGS algorithm applied to randomly shifted Rosenbrock functions. Forn = 2, it is seen that theAn-based
SP algorithm outperformed theZn-based SP algorithm about 64% of the time, and on average converged to a
function value 65% better using the same number of function evaluations.

how much. It is seen that theAn-based LABDOGS algorithm consistently and significantly outperforms the
Zn-based LABDOGS algorithm.

Figure10.3compares the convergence of theAn-based andZn-based LABDOGS algorithms on a repre-
sentative realization of the Rosenbrock function inn= 6. The convergence of the two algorithms are similar in
behavior during the first 20 iterations, during which they share a nearly identical search, with the differences
between the two becoming more and more apparent as convergence is approached. Initially, the poll steps
return much smaller improvements than the search steps. Once the surrogate model adequately represents the
walls of the Rosenbrock function, thereby identifying the “valley floor”, the search becomes less effective,
and both algorithms rely more heavily on the polling algorithm to identify the minimum.

10.4 LABDOGS applied to Branin andT1

Thus far, only functions with unique minima have been explored. As the LABDOGS algorithm has the ca-
pability to locate and explore multiple local minima in an attempt to identify and refine an estimate of the
global minimum, some searches were performed on two test functions with multiple minima, Branin andT1,
to demonstrate this capability.

On the interval−2< x< 2,−2< y< 2, the Branin function has five local minima. As seen in Figure10.4,
with the search parameterc= 2, the LABDOGS algorithm does an excellent job of locating and exploring all
of these local minima, eventually converging to an accurateestimate of the global minimum. Withc= 10000,
the search tends to be more “space-filling”, acting at each step to reduce the maximum uncertainty of the
Kriging surrogate. It is clearly evident that, as the numberof function evaluations gets large in thec= 10000
case, this search will tend to explore nearly uniformly overthe entire feasible domain. [In the limit thatc is
infinite, the function evaluations become dense asN→∞, thereby assuring global convergence.]However, for
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Figure 10.4: Points evaluated by the LABDOGS algorithm whenexploring the Branin function (with multiple
minima), with (left)c = 2 and (right)c = 10000. Note the more “focused” sampling whenc is small and the
more “exploratory” sampling whenc is large.
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Figure 10.5: Points evaluated by the LABDOGS algorithm whenexploring theT1 function (with multiple
minima) withc = 1000 after (left) 30 function evaluations, (center) 60 function evaluations, and (right) 100
function evaluations. Note (after 30 function evaluations) that the LABDOGS algorithm initially identifies
and converges to a local minimum near the lower-left corner.Ultimately (after 100 function evaluations), the
LABDOGS algorithm successfully identifies a refined estimate of the global minimum.

a small number of total function evaluationsN [which should be the primary problem of interest if function
evaluations are expensive!], the strategy with smallerc in fact identifies and refines the estimate of the global
minimum point much sooner, as the case with largec wastes a lot of computational effort reducing the
uncertainty of the surrogate in areas predicted to have poorfunction values.

Similar behavior can be seen for theT1 test function in Figure10.5. Initially, the algorithm happens upon
the local minimum in the lower-left corner of the feasible domain. With its exploratory function evaluations,
however, the algorithm ultimately identifies and refines itsestimate of the global minimum.

While these results indicate encouraging global exploration, further testing of the LABDOGS algorithm



DRAFT
10.5. LABDOGS PERFORMANCE SUMMARY 93

on nonconvex functions is certainly warranted, particularly in high-dimensional problems. In particular, fur-
ther refinement of the algorithm to provide the most robust combination of “focused” and “exploratory” samp-
ling remains to be performed; however, the present results clearly demonstrate the capability and flexibility
of the LABDOGS algorithm to strike this balance while maintaining maximum computational efficiency.

10.5 LABDOGS Performance Summary

This chapter proposes a new algorithm, dubbed LABDOGS, for derivative-free optimization formed via the
tight integration of

• the efficient SMF algorithm (see §7.1) for a surrogate-based search coordinated by an underlyinggrid,
in order to keep function evaluations far apart until convergence is approached,

• a uniform “grid” selected from those available in lattice theory (see Part I and further extensions in §7)
to coordinate such an optimization algorithm, in order to reduce the average quantization error of a grid
of a given density and to better distribute the poll points during the poll step, and

• a highly effective search algorithm, leveraging a Kriging interpolant (see §8) to construct the search
functionJ(x) = f̂ (x)− c · s2(x) combining both the function predictor and a model of its associated
uncertainty, in order to provide a flexible combination of global exploration and local refinement during
the search (see §9).

The numerical results achieved via this algorithm, as reported in this chapter, indicate effective convergence
of the resulting algorithm on a range of benchmark optimization problems, and reveal a clear advantage for
using an efficient lattice derived from ann-dimensional sphere packing to coordinate such a search, rather
than the heretofore default choice,Zn, which is simply untenable in light of the clear advantages of using
alternative lattices which are, quantifiably, both more uniform and have a more favorable distribution of
nearest neighbors, especially as the dimension of the optimization problem is increased.

The flexible numerical code we have developed which implements this algorithm, dubbed Checkers, has
been written from scratch, and each subroutine of the code has been scrutinized to maximize its overall
efficiency for systems with expensive function evaluations.
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Fejes Tóth, L (1959) Verdeckung einer Kugel durch Kugeln.Publ. Math. Debrecen6, 234-240.
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