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Preface

The field ofn-dimensional sphere packings is elegant and mature in itsemaatical development and cha-
racterization. However, it is still relatively limited irisi practical applications, especially far> 3. The
present text intends to open up two broad new areas for guteitgplication of this powerful body of mathe-
matical literature in science and engineering. Towards¢hid, Part | reviews the essential results available
in this field (reconciling the theoretical literature fonte and rare sphere packings, which are today largely
disjoint), catalogs the key properties of the principleskeand rare sphere packings and corresponding nets
available up tan = 24 (including hundreds of values not previously known), extgnds the study of regular
rare sphere packings and netsits 3 dimensions (an area which up to now has been largely unedjlo

Part Il then builds from the presentation in Part | to devélope new algorithms (LABDOG$,DOGS,
and latticeMADS) for performing efficient derivative-freptimization in non-differentiable problems with
expensive function evaluations, leveraging the latticesvd from dense sphere packings as an alternati-
ve to Cartesian grids to coordinate the search. We pay phatiattention to the improved uniformity and
nearest-neighbor configuration of the lattices used owar @artesian alternatives, and the improvements in
efficiency of optimization algorithms coordinated by suatti€es that follow as a direct consequence.

Finally, Part Ill builds from the presentation in Part | tovéop new interconnect strategies for switchless
multiprocessor computer systems, leveraging the netsetkefrom rare sphere packings as alternatives to
Cartesian grids to establish structured, fast, and inesipeinterconnects. We pay particular attention to the
improved coordination sequences facilitated by such negstheir Cartesian alternatives, and the improve-
ments in the rate of spread of information across the comgygtem that follow as a direct consequence.

In the applications discussed in Parts Il and Ill, Cartegjads are used as the default choice today in
almost all related realizations. A primary goal of this tixtio subvert this dominant Cartesian paradigm and
to establish, via the examples we have chosen to highligét significant performance gains may be realized
in practical engineering applications by leveragmdimensional sphere packings appropriately.

A gentle introduction to sphere packing theory

An n-dimensional infinitesphere packings simply an array of nodal points iR" obtained via the packing

of identicaln-dimensional spheres. Byacking we mean an equilibrium configuration of spheres, each with
at least 2 nearest neighbors, against which a repellant fisrapplied. Many packings investigated in the
literature arestablepackings, meaning that there is a restoring force assaciagith any small movement
of any node of the packing; this requires each sphere inrtfténjensional) packing to have at least 1
neighbors. Unstable packings with lower nearest-neigltbonts are also of interest. By replacing each
sphere in am-dimensional packing with a nodal point (representing.,,@gomputer), and connecting those
nodal points which are nearest neighborset(a.k.a.interconnecbr contact graphis formed.

1As mentioned in the second-to-last paragraph 288it is natural with certain sphere packings (for examji, A, and the
packings associated with thig?® and T, nets) to define nets which aret contact graphs of the corresponding sphere packings by
connecting non-nearest-neighbor points.



‘ n ‘ packing‘ name H A (©] ‘ G H T ‘ tdio

A triangular 0.9069 1.2092 0.08019 6 331
2 72 square 0.7854 1.5708 | 0.08333 4 221
Ay honeycomb|| 0.6046 2.4184 | 0.09623 3 166
Eg Gosset 0.2537 4,059 | 0.07168| 240 1,006,201,681
78 Cartesian || 0.01585 64.94 | 0.08333 16 1,256,465
8 Vo 5.590e-4 | 49.89 | 0.09206 4 37,009
(unstable) Y30 2.327e-4 87.31 0.09266 3 2290
Aoa Leech 0.001930 | 7.904 | 0.06577 | 196560 > 10°
24 7% Cartesian || 1.150e-10| 4,200,263 0.08333 48 24,680,949,041

Table P.1. Characteristics of selected lattice and uninuafdattice packings and nets. Note that 24 is a
natural stopping point in this study. It is special becatigethe only integen > 1 that satisfies the equation
1422+ ...+ n? = n? wherem s itself an integer; as a consequence, a particularly tmifattice with a
large number of symmetries is available in this dimension.

An n-dimensional realattice (a.k.a.lattice packing is a sphere packing which is shift invariant (that is,
which looks identical upon shifting any nodal point to th&ar); this shift invariance generally makes lattice
packings simpler to describe and enumerate than their tiimelalternatives. Note that there are many regu-
lar> sphere packings which aret shift invariant [the nonlattice packings correspondinghte honeycomb
netin 2D and the diamond and quartz nets in 3D are some wellskrexamples]. We will focus our attention
in this text on those packings and nets which are at leaisiodal(that is, which look identical upon shifting
any nodal point to the origin and rotating and reflecting appiately). Fordensesphere packings, from a
practical perspective, lattice packings are essentiallygood a choice as their more cumbersome nonlattice
alternatives fon < 24 in terms of the four metrics defined below (that is, for maixing packing density and
kissing number and minimizing covering thickness and gaation error). However, the bestre sphere
packings (with small kissing number) are all nonlatticekiags.

Asiillustrated in Table P.1 and Figure P.1, we may introdhessubject oh-dimensional sphere packings
by focusing our attention first on the= 2 case: specifically, on thgiangular* lattice (A2), the square
lattice (Z2), and thehoneycomimonlattice packingA; ). The characteristics of such sphere packings may be
quantified by the following measures:

e Thepacking radiuga.k.a.error-correction radiug of a packingp, is the maximal radius of the spheres in

a set of identical nonoverlapping spheres centered at eztdd point.

e The packing densityf a packing, is the fraction of the volume of the domain included withiset

of identical non-overlapping spheres of radpusentered at each nodal point on the packing. Packings that
maximize this metric are referred to el®se-packed

e The covering radiusof a packing,R, is the maximum distance between any point in the domain &nd i
nearest nodal point on the packing. Tdeep hole®f a packing are those points which are at a distdRce
from all of their nearest neighbors. Typical vectors fromaalal point to the nearest deep holes in a lattice

2The regularity of a nonlattice packing is quantified prelyise §4.1.

SForn=10, 11, 13, 18, 20, and 22, there exist nonlattice packingadi@dPyoc, Pi1a, Piaa, Big Bsg A3y) that are 8.3%, 9.6%,
9.6%, 4.0%, 5.2%, and 15.2% denser then the correspondsidiewn lattice packings (Conway & Sloane 1998, p. xix); t {his
into perspective, the density 66, is over 16 timesthe density 022,

4Note that many in this field refer to th lattice (Figure P.1a,b) as “hexagonal”. We prefer the urigmius name “triangular” to
avoid confusion with the honeycomb nonlattice packing (FégP.1e,f).
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Figure P.1: The triangular lattice (a,b), the square lattizd), and the honeycomb nonlattice packing (e,f).
Indicated in the left three subfigures is heckingwith spheres of radiug, the correspondingetor contact
graph(solid lines), a typical/orond cell (dashed line), and tHessing numbefthat is, the spheres that contact
a given sphere). Indicated in the right three subfiguresdastiveringwith spheres of radiuR. Looking at
their respective packing densitiAsn Table P.1, as compared with the square lattice, the tulandattice is

said to bedense and the honeycomb nonlattice packing is said todve.

packing are often denotét, [2], etc.

e Thecovering thicknessf a packing©, is the number of spheres of radiRcentered at each nodal point

containing an arbitrary point in the domain, averaged dverdomain.

e TheVorond cell of a nodal point in a packing)(PR,), consists of all points in the domain that are at least as

close to the nodal poirl; as they are to any other nodal poitjt

e Themean squared quantization error per dimensadfra lattice or uninodal nonlattice packin@, is the
average mean square distance of any point in the domainrieat®st nodal point, normalized byimes the
appropriate power of the volum¥, of the Voronoi cell. Shifting the origin to be at the ceidrof a Voronoi

cellQ(R), itis given by

G=—>_ where S:/ x|?dx, V:/ dx
Q(R) Q(R)

vii



e Thekissing numbefa.k.a.error coefficien} of a lattice or uninodal nonlattice packing,is the number
of nearest neighbors to any given nodal point in the packihat is, it is the number of spheres of radfus
centered at the nodal points of the packing that touch, @s“kithe sphere of radiysat the origin.

e The coordination numbepf a net (derived from a sphere packing, as discussed pr&yjois the first
number of the net'€oordination sequengehe k'th element of which is given bydx — tdx_1, wheretdy,
which quantifies the net®cal topological densityis the total number of nodes reached kiaops or less
from the origin in the nét

Certain applications, such as those explored in Part Ilireglense lattices. There are two key drawbacks
with Cartesian approaches for such applications. Firstligcretization of space is significantly less uniform
when using the Cartesian grid as opposed to the availakelmattves, as measured by the packing dersity
the covering thicknes®, and the mean-squared quantization error per dimenGi¢see Table P.1). Second,
the configuration of nearest-neighbor gridpoints is signifitgmore limitedwhen using the Cartesian grid,
as measured by the kissing numbgawnhich is an indicator of the degree of flexibility availaltben selecting
from nearest-neighbor points. As seen by comparingitke2, n = 8, andn = 24 cases in Table P.1, these
drawbacks become increasingly substantial as the dimensi® increased; by the dimension= 24, the
Cartesian grid has

a factor of 0001930'1.1501e— 10~ 17,000,000 worse (lower) packing density,

a factor of 4200,263/7.9035~ 530,000 worse (higher) covering thickness,

a factor of 008333/0.0658~ 1.27 worse (higher) mean-squared quantization error, and
a factor of 19656048~ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus,dleeton of the Cartesian grid, by default, for applica-
tions requiring dense (that is, uniform) lattices witb- 3 is simply untenable.

Other applications, such as those explored in Part Ill,ireqegular nets which, with low coordination
number, connect to a large number of nodes with each sueedssp from the origin, as quantified by the
net's coordination sequence. As mentioned previouslye&ulisieasure of a net’s topological density is given,
e.g., bytdig, which is the number of distinct nodes within 10 hops of thigiar Note that the coordination
number of then-dimensional Cartesian grid isi2the coordination number of the alternativ@limensional
constructions introduced ind&re as small as 3 or 4, while the topological density increaapidly as is
increased (compare, e.g., the valuesdgp for A} andZ?, with T = 3 andt = 4 respectively, to those fdfgo
andvg0 in Table P.1); it is thus seen that, for applications reqgigraphs with low coordination number and
high topological density, the selection of the Cartesiad,dry default, is also untenable.

We are thus motivated to make the fundamental results of tetise and rare-dimensional sphere
packing theory more broadly accessible to the science agidegring community, and to illustrate how this
powerful body of theory may be put to use in important new @ppibns of practical relevance. Towards
this end, Part | succinctly reviews and extends severalfgignt results in this mature and sophisticated
field, inter-relating the literature on dense and rare pagkiwhich is today largely disjoint. These results are
leveraged heavily in the applications described in Parésd 11l. We note that, beyond providing an up-to-
date and synthetic review of this otherwise difficult subje@ (hopefully) accessible language, a significant
number of new computations, constructions, algorithmgrioss and codes are also reported in Part | [the
reader is referred specifically t8884.4.1through 8.4.7 84.5 and %.1.5.

5In most cases, the natural net to form from a sphere packitigeisontact graph; in such cases, the kissing nunthemd the
coordination number are equal. As mentioned previouslyg,itatural with certain sphere packings to define nets whielmeat contact
graphs by connecting non-nearest-neighbor points; in sashs, the kissing number (a property of the sphere pacaimjjhe coordi-
nation number (as defined here, a property of a correspomgit)gare, in generahot equal. We find this clear semantical distinction to
be useful to prevent confusion between these two distimuteats; note that some authors (e.g., Conway & Sloane 1%98ptdmake
this distinction.
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Chapter 1

Historical retrospective

Contents
1.1 FinitepackingS. . . . . . . 3
1.2 Infinite packings . . . . . . . . e e 7

The mathematical characterization of sphere packings tasgaand rich history. Some recent articles
and popular books recount this history in detail, includiiogig (1999), Szpiro (2003), Hales (2006), and Aste
& Weaire (2008). The purpose of the present Part | is not teaiefhese historical retrospectives, which these
sources do quite adequately, but to characterize, catafmjextend the infinite packings available today to
facilitate their practical application in new fields. Noheless, we would remiss if we didn’t at least provide
a brief historical context to this field, which we attemptliistshort chapter.

1.1 Finite packings

Mystic marbles. We begin by defining, fom > 1, a notation to build from:

m
Tom21,  Tim# Y Tox=m (the positive integers)
=1

In the sixth century BC, Pythagoras and his secret societyjoferologists, the Pythagoreans, discovered
geometrically (see Figure 1, and pp. 43-50 of Heath 1931) the formula for the number ofahearplaced in
a (2D) triangle (that is, the “triangular numbers”):

m
Tom® 3 Tae=m(m+1)/2.
k=1

Stacked spheresThe earliest known mathematical work to discuss the (3@kshg of objects is a Sanskrit
documeniThe Aryabhatiya of Aryabhai@99 AD; see Clark 1930, p. 37), which states:

“In the case of ampaciti[lit., ‘pile’] which has ... the product of three terms, hagithe number of terms
for the first term and one as the common difference, dividedikyis thecitighanallit., ‘cubic contents of
the pile’]. Or, the cube of the number of terms plus one, mihescube root of this cube, divided by six.”
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Figure 1.1: (left) Ten marbles placed in a triangle [refdrte by the Pythagoreans asterpaktyg, and
upon which they placed a particular mystic significancell &ight) the Pythagoreans’ placement of two
triangular groups of marbles into an “oblongix (m+- 1) rectangle, from which the formula f@p m follows
immediately.

Thus, Aryabhata establishes, in words, two equivalentesgions for the number of objects (“cubic con-
tents”) in a (3D) triangular-based pyramid (“pile”) with objects on each edge:
- mm+1)(m+2)  (m+1)3—(m+1),

T = =
3m 3! 6 ’

note also thalgm = Y ; Tok.

Thomas Harriot was apparently the first to frame the problesploere packing mathematically in modern
times (see, e.g., the biography of Harriot by Rukeyser 1.9%2the request of Sir Walter Raleigh, for whom
Harriot served, among other capacities, as an instructastobnomical navigational and on various problems
related to gunnery, Harriot (on December 12, 1591) compbigtctid not publish, the number of cannonballs
in a pile with a triangular, squarex m], and rectangulamh x (m+ 1), a.k.a. “oblong”] base, as illustrated
in Figure1.2, obtainingTz m, Sy, andRny, respectively, where

m—+1)(2m+1)
6

m(m+1)(2m+4)
6

m m( m

Sn=Y K= . Rn=Y k(k+1) = Sn+Tom=

K=1 K=1
In 1614, Harriot wroteDe Numeris Triangularibus Et inde De Progressionibus Artieticis: Magisteria
magna(On triangular numbers and thence on arithmetic progressidine great doctring. Looking closely
at the triangular table of binomial coefficiefitsn pp. 1-3 (folios 108-110) of this remarkable document, it
is seen that Harriot understood theometricrelationship between the positive integ&is,, the “triangular
numbers’T, m [that is, the number of spheres in a (2D) triangle witspheres on each edge], the “pyramidal
numbers'Ts m [that is, the number of spheres in a (3D) trianglar-basedmya withm spheres on each edge],
and the next logical steps in this arithmetic progressiamrgby:

m(m+1)(m+2)(m+3)
41

m(m+ 1)(m+2)(m+ 3)(m+4)
5! ’

m m

Tam2 S Tax= , Tom2 S Tuk=

: k; 3k 5m kzl 4k
etc. In particular, Harriot noticed that tfe+ 1)'th element of the(n -+ m)’th row of this triangular table
is Tn,m. Accordingly, we may think off, m as the number of spheres in amdimensional pyramid” withm
spheres on each edge, wiitp representing+ 1 spheres configured at the corners of a reguidimensional
simplex. It is thus natural to credit Harriot (1614) with tfiest important steps towards the discovery of
laminated lattices, discussed further ih&and &.6.

IHarriot (1614) passed through several hands before finaltygpublished in 2009, almost 4 centuries later.
2This famous triangular table of binomial coefficients isdrrectly attributed by many in the west to Blaise Pascal §23), though
it dates back to several earlier sources, the earliest B&mgpla’s Sanskrit workChandas Shastravritten in the fifth century BC.
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Figure 1.2: Pyramidal stacks of spheres with triangularasg, and “oblong” (rectangular) bases. All three
stacks are subsets of the face-centered cubic latticeysdied further in 8.3,

Harriot also introduced the packing problem to Johanneddfepltimately leading Kepler (1611), in
another remarkable documeirena seu de nive sexang(khe six-cornered snowflakevhich also hypo-
thesized about a related atomistic physical basis for hmxagymmetry in crystal structures of water, to
conjecture that

“The (cubic or hexagonal close) packing is the tightest jpbsssuch that in no other arrangement can
more spheres be packed into the same container.”

Kepler’s conjecture is patently false if considered in atéiiontainer of a specified shape. For instance, a
2d x 2d x 2d cubic container can fit 8 spheres of diamatef arranged in Cartesian configuration, but can
only fit 5 spheres if arranged in a “close-packed” configorgtilt is presumed that Kepler in fact recognized
this, and thus Kepler’s conjecture is commonly understaod @onjecture regarding the densest packing
possible in the limit that the size of the container is takeimfinity (for further discusssion, sed &).

Permuted planets Note in Figurel.2 that any sphere (referred to as a “sun”) on the interior ofiites has

12 nearest neighbors (referred to as its “planets”). Camiid this sun and its 12 planets in isolation, there
is in fact adequate room to permute the planets to differesitipns while keeping them in contact with the
sun, something like a 12-cornered Rubik’s cube with sphépieces (see Figurk3). Due to the extra space
available in this configuration, it is unclear upon first iaspon whether or not there is sufficient room to fit
a 13'th planet in to touch the sun while keeping all of the oth2 planets in contact with it. In 1694, Isaac
Newton conjectured this could not be done, in a famous désagent with David Gregory, who thought it
could. Newton turned out to be right, with a complete progaitfiiven in Schitte & van der Waerden (1953),
and a substantially simplified proof given in Leech (1956).

Cartoned cans Moving from 16th-century stacks of cannonballs to 21sttaey commerce, the question
of dense finite packings of circles and spheres finds prdcttavance in a variety of packaging problems.
For example, to form a rectangular cardboard carton for 12 fianla cans, 164 ¢hof cardboard per can is
needed if 18 cans are placed in a cartesian configuration3aitiws of 6 cans per row, whereas 3.3% less
cardboard per can is needed if 18 cans are placed in a treangprfiguration (within a rectangular box) with
5 rows of{4,3,4,3,4 cans per row. If an eye-catching (stackable, strong, “dreghexagonal cardboard
carton for the soda cans is used, with 19 cans (describedrietireg terms as “18 plus 1 free”) again placed
in a triangular configuration, 17.7% less cardboard per saaduired.

Catastrophic sausagesTwo new questions arise when one “shrink-wraps” a numimgiof n-dimensional
spheres (resulting in a convex, fitted container), namehatwonfiguration of the spheres minimizes the sur-
face area of the resulting container, and what configuratimimizes the volume of the resulting container?

SFor larger containers, the arrangements which pack in teatgst number of spheres (or other objects) must in generfund
numerically (see Gensane 2004, Schirmann 2006, and Fare@0609).
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Figure 1.3: lllustration of the 13 spheres (a.k.a. Newtarg®ry) problem and planetary permutations. Con-
figuration (a) is 13 of the spheres taken from the secondl,taird fourth layers of the stack in the orientation
shown in Figurel.2b, whereas configuration (c) is 13 of the spheres taken franthind, fourth, and fifth
layers of the stack in the orientation shown in Figliréa [extended by one additional layer]. In both configu-
rations, the 12 “planets” (positioned around the centrah"$are centered at the vertices of a cuboctahedron.
The planets can be permuted by “pinching” together two offthe planets on the corners of each square
face, in an alternating fashion, to form a symmetric icosiahleconfiguration with significant space between
each pair of planets [configuration (b)], then “pushing”@pairs of planets in an analogous fashion to form
a different cuboctahedron. Alternatively, starting froamfiguration (b), identifying any pair of opposite pla-
nets as “poles”, and slightly shifting the five planets inteat the “tropics” as close as possible to their
nearest respective poles, the resulting northern and eguginoupings of planets can be rotated in relation to
each other along the equator. Repeated application of thvesiindamental motions can be used to permute
the planets arbitrarily.

Both questions remain open, and are reviewed in Zong (18&)arding the minimim surface area question,
it was conjectured by Croft, Falconer, & Guy (1991) that thi@imum surface area, fan > 2 and large
m, is achieved with a roughly spherical arrangement. In esttregarding the minimim volume question,
it was conjectured by L. Fejes Toth (1975) that the minimwtume, forn > 5 and anym, is achieved by
placing the spheres in a line, leading to a shrink-wrappe@dsioer in the shape of a “sausage”. ot 3, it
has been shown that a roughly spherical arrangement miggntiie volume fom= 56, m= 59 to 62, and

m > 65, and it is conjectured that a sausage configuration maeisithe volume for all othen (see Gandini

& Willis 1992); for n = 4, there appears to be a similar “catastrophe” in the volamm@mizing solution,
from a sausage configuration to a roughly spherical configuraasm is increased beyond a critical value
(Willis 1983 conjectures this critical value to Ine~ 75000, whereas Gandini & Zucco 1992 conjectures it
to bem= 375769).

Concealed origins Finally, L. Fejes Toth (1959) presents a curious set oktjars that arise when consi-
dering the blocking of light with a finite number of opaquetspheres packed around the origin. The first
such question, known as Hornich’s Problem, seeks the sshallenber of opaque unit spheres that comple-
tely conceal light rays emanating from a point source at #rear of a transparent unit sphere at the origin.
A related question, known as L. Fejes Toth's Problem, sélatsmallest number of opaque spheres that
completely conceal light rays emanating from the surfaca ohit sphere at the origin (e.g., in Figutes,
adding additional outer planets to completely conceal tee of the sun from all angles). In 2D, the (trivial)
answer to both problems is 6, via the triangular packingdatdid in Figure P.1a. In higher dimensions, both
guestions remain open, and the answer differs dependindpether or not the sphere centers are restricted to
the nodal points of a lattice. For the L. Fejes Toth’s Prohlfor n > 3, the answer is unbounded if restricted
to lattice points, and bounded if not. For Hornich’s Probj¢ihe answer is bounded in both cases, with the
number of sphere$, required in the 3D case, when not restricted to lattice tsplmeing somewhere in the
range 30< h < 42. Zong (1999) derives several of the known bounds availaboth problems.
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Figure 1.4: (a) A regular truncated octahedron, used t&ifién Kelvin’s conjecture; (b) an irregular tetra-
kaidecahedron and dodecahedron, used t®fle the Weaire-Phelan structure.

1.2 Infinite packings

In the last 300 yearsnanydifferent constructions of infinite lattice and nonlattjzackings have been propo-
sed in each dimension. These packings each have differekingadensity, covering thickness, mean-squared
guantization error, and kissing number, and their corredpmm nets each have different topological density;
knowledge of these properties is essential when seleciiagling or net for any given application. We have
thus attempted to catalog these constructions and thgiepiies thoroughly in this review (se&)8§

In the characterization of density, amongstiattice packings of a given dimension, ti#e, Az, Dg4, Ds,

Eg, E7, Eg, and/A\p4 constructions given inBhave been proven to be of maximum density, in Lagrange (1773)
for n= 2, Gauss (1831) fon = 3, Korkine & Zolotareff (1873, 1877) fon =4 and 5, Blichfeldt (1935) for

n = 6 through 8, and Cohn & Kumar (2009) for= 24. There are no such proofs of optimality for other
values ofn, though the latticed, andKp, introduced in &.6are likely candidates in the range9n < 23.

Remarkably, if one considers both lattimednonlattice packings, proof of which packing is of maximum
density in a given dimension is still open fior- 3. It was established in Thue (1892) tiiathas the maximum
density amongst all lattice and nonlattice packingsifer 2. Considerable attention has been focused over
the centuries on the corresponding questior¥pin dimensiom = 3, that is, on Kepler’s conjecture (posed
in 1611) in the limit that the container size is taken to irtfinindeed, David Hilbert, in his celebrated list
of 23 significant open problems in mathematics in 1900, itetlia generalization of Kepler’s conjecture as
part of his 18th problem (see, e.g., Milnor 1976).

Note that it is not at all obvious that an infinite packing agpular asAsz would necessarily be the packing
that maximizes density. Indeed, as mentioned in footBod@ pagevi, nonlattice packings are known in
dimensions =10, 11, 13, 18, 20, and 22 that are each slightly denser tleeahethsest known lattice packings
in these dimensions.

In three dimensions, physiologist Stephen Hales (172 hismgroundbreaking worklegetable Staticks
reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Huntthe greatincumbent of weight, pressed
into the interstices of the Pease, which they adequatedgdfilp, being therefore formed into pretty regular
dodecahedrons.”

This report implied that many of the dilated peas in this expent had 12 nearest neighbors and/or pen-
tagonal faces. However, the “pretty regular” qualificatieft a certain ambiguity, and this experiment left
mathematicians puzzled, as it is patently impossible éRtf with regular dodecahedra. Kelvin (1887) for-
malized the question inherent in Hales’ dilated pea expeminby asking howR® could be divided into
regions of equal volume while minimizing the partitionatar He conjectured the answer to be a regular
tiling of R with truncated octahedra, which are in fact the Voronolsoef the A} lattice (see §.4.3. [No-

te that the Voronoi cell of thég lattice is the (face-transitivehombicdodecahedron, which is dual to the
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cuboctahedron illustrated in Figurés3a,c and tilesR® with slightly greater partitional area than does the
tiling with truncated octahedra.] Kelvin’s conjectureatidfor over 100 years, until Weaire & Phelan (1994)
discovered a tiling oR® based on irregular tetrakaidecahedra (with 2 hexagonebkfaad 12 pentagonal
faces) and irregular dodecahedra (with 12 pentagonal)abéstiling has 0.3% less partitional area than the
much more regular tiling with truncated octahedra congidday Kelvin (see Figuré.4). In hindsight, it is
quite possible that Hales might have in fact stumbled upeiV¥kaire-Phelan structure in his cooking pot (in
1727!) and, seeing all of those pentagonal faces and 12-&dewell as 14-sided) dilated peas, asserted that
what he was looking at was a culinary approximation to agitiR2 with regular dodecahedra, even though
such a tiling is impossible.

Returning to Kepler's conjecture, in 1998, Thomas Halesr@lation to Stephen) announced a long-
sought-after proof, in a remarkably difficult analysis makiextensive use of computer calculations. This
proof was spread over a sequence of papers published in d@ing thext followed (see Hales 2005). An exten-
sive discussion of this proof, which is still under matheiggdtscrutiny, is given in Szpiro (2003). Inspiration
for this proof was based, in part, on a strategy to prove K&ptenjecture proposed by L. Fejes Toth (1953),
the first step of which is a quantitative version of the Newt@negory problem discussed il 8.
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Dense lattice packings fom < 24
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There are many dense lattices more complex than the Cartkdtace that offer superior uniformity
and nearest-neighbor configuration, as quantified by tmelatd metrics introduced in the Preface (namely,
packing density, covering thickness, mean-square quaittizerror, and kissing number). This section pro-
vides an overview of many of these lattices; the definitiveprehensive reference for this subject is Conway
& Sloane (1998), to which the reader is referred for much ndetailed discussion and further references on
many of the topics discussed in this chapter. The subjeadihg theory, reviewed ing is closely related to
the subject of such dense lattice packings (see &8 mentioned in the Preface, the practical applications
explored in Part Il of this text leverage these constructiogavily.

2.1 Lattice terminology

The notatiorL, = M, means that the latticés, andM,, areequivalen{when appropriately rotated and scaled)
at the specified dimensian Also note that the four most basic families of latticesadiced in this chapter,
denotedZ", A,, Dn, andEp, are often referred to asot latticesdue to their relation to the root systems of
Lie algebra.

There are three primary methdds define any givem-dimensional real lattice:

1A convenient alternative method for building a cloud ofit&tpoints near the origin is based on the stencil of neareighbor
points to the origin in the lattice, repeatedly shiftingstetencil to each of the lattice points near the origin deireechthus far in order
to create additional lattice points in the cloud. Unfortiehy this simple alternative method does not work for difii¢as, such a®;;
andA], (see 8.3and2.4).
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e As anexplicit descriptiorof the points included in the lattice.

e As aninteger linear combinatioifthat is, a linear combination with integer coefficientspafet ofn basis
vectorsh' defined inR"™™ for m > 0; for convenience, we arrange these basis vectors as thmos|of
abasis matrix B.

e As aunion of cosetsor sets of nodal points, which themselves may or may notttieda.

The standard forms of these definitions, as used throughisuttiapter, make it straightforward to generalize
application codes that can build easily upon any of theckagtso described.
Any real (or complex) lattic&, has associated with itdual lattice L;, defined such that

Ly={xeR" (orC") : x-ueZ forall ue Ly}, (2.1)

whereZ denotes the set of all integers, dot denotes the usual smalduct, and overbar denotes the usual
complex conjugate. IB is a square basis matrix fap, thenB~" is a square basis matrix fag,.

Unless specified otherwise, the word lattice in this papglies a real lattice, defined iR". However,
note that it is straightforward to extend this work to comxplattices, defined irC". To accomplish this
extension, it is necessary to extend the concept of theenéegvhich are used to construct a lattice via the
“integer” linear combination of the basis vectors in a basgtrix B, as described above. There are two
primary such extensions:

e TheGaussian integersiefined a&/ = {a+bi : a,b € Z} where i= /-1, which lie on a square array in
the complex plan€.

e TheEisenstein integerslefined ag® = {a+bw : a,b € Z} wherew = (—1+i+v/3)/2 [note thatw® = 1],
which lie on a triangular array in the complex pladie

We may thus define three types of lattices from a basis mBtrix

e areal lattice, defined as a linear combination of the coluafiswith integers as weights;

e a (complex)¥ lattice, defined as a linear combination of the column®8afith Gaussian integers as
weights; and

e a (complex)& lattice, defined as a linear combination of the column8afith Eisenstein integers as
weights.

The speciah-dimensional realt/, andé&’ lattices formed by takin® = I« are denoted", Z[i]", andZ[w]|"
respectively. Note also that, for any complex lattice witmeentsZ € C", there is a corresponding real lattice
with elementst € R?" such that

x=(0{a} D{a} ... O0{z} O} (2.2)

The present sequence of papers focuses on the practicdinese lattice and nonlattice packings with> 3.
Thus, in the present Part |, we only make brief use of comgltiicks to simplify certain constructions.

2.2 The Cartesian latticeZ"

TheCartesian latticeZ", is definedz" = {(x17...,xn) DX € Z}, and is constructed via integer linear com-
bination of the columns of the basis matBx= I,,.n. The Cartesian lattice is self duaf")* = Z").

2In the literature on this subject, it is more common to usgmerator matrix Mto describe the construction of lattices. The basis
matrix conventionB used here is related simply to the corresponding generaarixysuch that = MT; we find the basis matrix
convention to be more natural in terms of its linear algebirterpretation.

3Note that integer linear combinations of the columns of nmeatrices danot produce lattices (as defined in the second paragraph
of the “gentle introduction” of the Preface). The matricisteld in & as basis matrices are special in this regard. Note also &ésid b
matrices are not at all unique, but the lattices construfttad alternative forms of them are equivalent; the formshef basis matrices
listed in 8 were selected based on their simplicity.
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2.3 The checkerboard latticeD,, and its dual Dy,

Thecheckerboard latticeDp, is ann-dimensional extension of the 3-dimensiofade-centered cubi@CC,
a.k.a.cubic close packégdattice. It is defined

Dn={(X1,...,%) €Z" : Xy +...+ X = even}, (2.3a)

and may be constructed via integer linear combination otttemns of then x n basis matrix

-1 1 0
-1 -1 1
Bp, = . (2.3b)
-1 1
0 -1

The dual of the checkerboard lattice, denddgdand reasonably identified as tbfset Cartesian lattice
is ann-dimensional extension of the 3-dimensiobhably-centered cubi(BCC) lattice. It may be written as

Dh = DnU([1]+Dn) U([2]+Dn) U([3] +Dn) = Z"U([1] + Z"), (2.4a)

where thecoset representatived], [2], and[3] are defined in this case such that

1/2 0 1/2
= 1/2 ;2= ol (3= 1/2
1/2 1 ~1/2

TheD;, lattice may also be constructed via integer linear comimnaif the columns of the x n basis matrix

1 0 05
1 05

Bo; = | (2.4b)
1 05
0 05

It is important to recognize that, for> 5, the contact graph of tha;, lattice is simply two disjoint nets
given by the contact graphs of t&# and shiftedZ" sets of lattice points upon whidb;, may be built [see
(2.49]. Thus, as suggested by Conway & Sloane (1997), we inte@docn > 4, ageneralized neformed by
connecting each node of the unshiffBtiset to the 2 nearest nodes on the shifté set, and each node on
the shiftedZ" set to the 2 nearest nodes on the unshiftéd set. The resulting net, of coordination number
2", is uninodal, but isiota contact graph of the corresponding sphere packing.

2.3.1 The offset checkerboard packind®;

The packingD}, reasonably identified as tludfset checkerboard packinig ann-dimensional extension of
the 3-dimensionaliamondpacking, and is defined simply as

Dy = DnU([1] 4 Dn); (2.5)

note thatD,] is a lattice packing only for evem and thaDj is thediamond packingfor further discussion,
see §.4.10).
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Figure 2.1: A cloud of points on th&, lattice, defined on a plane k3. Note that the normal Vecton, =
(11 1)T points directly out of the page in this view.

2.4 The zero-sum latticeA, and its dual A

Thezero-sum latticeAn, may be thought of as amdimensional extension of the 2-dimensiotréngular
lattice; in 3 dimensionsAs = Ds. It is defined

An={(X0,- -, %) EZ™L i x4 ...+ X0 =0}, (2.6a)

and may be constructed via integer linear combination otttemns of thgn+ 1) x n basis matrix

-1 0 1
1 -1 1
Ba, = R with na,=1:1- (2.6b)
1 -1 1
0 1 1

Notice thatA, is constructed here via basis vectors im+ 1 dimensions. The resulting lattice lies in an
n-dimensional subspace R**1; this subspace is normal to the vectag. An illustrative example ig\, the
triangular D lattice, which may conveniently be constructed on a plarififsee Figure.1).

Note that, starting from a (2D) triangular configuration odieges or cannonballs (see Figure P.1a), one
can stack additional layers of oranges in a trangular cordtgn on top, appropriately offset from the base
layer, to build up the (3D) FCC configuration mentioned poesly (see Figuré.2a). This idea is referred to
aslamination and will be extended further in?§6 when considering tha,, andK, families of lattices.

Also note that, in the special caserof= 2, theA; lattice may also be written as

Ay 2 RyU(a+Ry), where a= (%/22> (2.6¢c)

andR; is therectangular grid(not a lattice, nor even a nonlattice packing) obtained bgtshing theZ?

lattice in the second element by a factornds.
The dual of the zero-sum lattice, deno#&{] may be written as

n

A= (8 +An), (2.7a)

s=0
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where then+ 1 coset representativés, for s=0,...,n, are defined such that thé&h component of the
vector|g] is

S k<n+1l-s
(sl = {2*&1 =n+i=s (2.7b)
=== otherwise
n+1

The A}, lattice may be constructed via integer linear combinatibthe columns of thgn+ 1) x n basis
matrix

1 1 1 %‘1

-1 o L
"

1 1

Ba; = nf with Na; = Na,- (2.7¢)

1

o

0 =

2.4.1 The glued zero-sum latticesy,

A related family of lattice packings, developed in 812 of @tetr (1951) and reasonably identified as the
glued zero-sum lattices;Ais a family of lattices somewhere betwesnandA;; [as given in 2.73] defined
via the union of translates of\, forn > 5:

AL =AU([g+A)U([28] +A) U...U([(r—1)s] +An), where r-s=n+1, (2.8)

where the components of the “glue” vectdslsare specified in4.7h, and where ands are integer divisors
of (n+1) with 1< s<n+1and 1<r < n+1, excluding the casfr = 2,s= 3} for n= 5. The latticesA;,
Al AL A, ASL AY,, AT AL, andAll are found to have especially good covering thickness, \ighdst
four currently the thinnest coverings available in thespective dimensions (see Baranovskii 1994, Anzin
2002, and Sikiri¢, Schiirmann, & Vallentin 2008). Notecathat A2 = E7, A} = E;, and A3 = Eg, each of
which is discussed further below.

Note finally that the contact graphs of some of Ajdattices, such aAg andA‘l‘l, are disjoint nets given
by the contact graphs of thi, and shiftedA, sets of lattice points upon which these glued zero-suntésti
are built [seeZ.8)]. Thus, as in the case &f; for n > 4 as discussed ir?83, ageneralized nemay be formed
by connecting each node of the unshiffggdset to the nearest nodes on the shifigdet. Again, the resulting
net is uninodal, but is not a contact graph of the correspapsibhere packing.

2.5 TheEg (Gosset) E7, & Eg lattices and their duals
TheGosset lattice = Eg, which has a (remarkable) kissing numberef 240, may be defined simply as

Eg = Dg, (2.9a)

and may be constructed via integer linear combination otttemns of the 8 8 basis matrix
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2 -1 0 12

1 -1 1/2

1 -1 1/2

1 -1 1/2

Be, = 1 -1 ~1/2
1 -1 -1/2

1 -1/2

0 ~1/2

(2.9b)

The latticeEy is defined by restrictings, as constructed above, to a 7-dimensional subspace,

Ez={(x1,...,xg) €EEg : X1 +...+xg =0}, (2.10a)

and may be constructed directly via integer linear comimnaif the columns of the 8 7 basis matrix

-1 0 12 1/2
1 -1 1/2 1/2
1 -1 1/2 1/2
1 -1 1/2 ) 1/2
Bg, = 1 1 7]/_/2 , with Ng, = 1§2 (2.10b)
1 -1 -1/2 1/2
1 -1/2 1/2
0 -1/2 1/2
The dual of theEy lattice may be written as
1/4
E: =E;U([1]+E7),  where [1]= 1/4 , (2.11a)
~3/4
~3/4

and may be constructed directly via integer linear comimnatf the columns of the 8 7 basis matrix

-1 0 -3/4
1 -1 -3/4
1 -1 1/4
1 -1 1/4 .
Be; = 1 1 1a |’ with Ng; = Ng,. (2.11b)
1 -1 1/4
1 1/4
0 1/4

The latticeEs is defined by further restricting, as defined in4.10), to a 6-dimensional subspace,

Ee = {(x1,...,X8) €E7 : X1 +xg =0}, (2.12a)

and may be constructed directly via integer linear comimnatf the columns of the 8 6 basis matrix
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0 1/2 1 1/2
-1 1/2 0 1/2
1 -1 1/2 0 1/2 | |
1 -1 1/2 . 0 1/2
Bg, = 1 1 7]/_/2 , with Ne = 0 1§2 _(n56 nE7). (2.12b)
1 -1 -1/2 0 1/2 | |
1 -1/2 0 1/2
0 ~-1/2 1 1/2
The dual of thekg lattice may be written as
0
-2/3
-2/3
E; —EsU([1+Es)U([2+Es), where [1]=| 1/4 [, [2=—[1], (2.13a)
lk4
0

and may be constructed directly via integer linear comimnaif the columns of the 8 6 basis matrix

0 0 12

=, 2/3 1/2
1 -1 2/3 1/2
BEg = 1 11 1 _iég _1]/_/22 with Ne+ = Ng. (2.13b)
1 -1/3 -1/2
-1/3 -1/2
0 0 -1/2

2.6 The laminated lattices/\,, and the closely-relatedK, lattices

The lattices in the\, andK,, families can be built up one dimension, or “laminate”, atragj starting from
the integer latticeZ = A1 = Kj), to triangular A2 = A\ = Kj), to FCC @3 = D3 = A3 = K3), all the way
up (one layer at a time) to the remarkable Leech latifeg & K24). Both families of lattices may in fact be
extended (but not uniquely) to at least 48.

The Leech lattice/\24, is the unique lattice im = 24 dimensions with a (remarkable) kissing number of
T =196,560. It may be constructed via integer linear combinatiothefcolumns of the 24 24 basis matrix
Bx,,» Which is depicted below in the celebrated Miracle Octadésator (MOG) coordinates (see Curtis 1976
and Conway & Sloane 1998). Further, as in Bge— E; — Eg progression described i2&, the /A, lattices
forn=23 22 ...,1 may all be constructed by restricting the, lattice to smaller and smaller subspaces via
the normal vectors assembled in the maltixdepicted belov.

4There are, of coursenanyequivalent constructions @; through/3 via restriction ofA,4, and the available literature on the
subject considers these symmetries at length. The comiefioien of Ny depicted here was deduced, with some effort, from Figure 6.2
of Conway & Sloane (1998).
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Thus, the/\,3 lattice is obtained from the points of th, lattice in R?* (which themselves are ge-
nerated via integer linear combination of the columnd®g§,) which lie in the 23-dimensional subspace
orthogonal tonp,,. Similarly, the Ay lattice is obtained from the points of thiy4 lattice which lie in
the 22-dimensional subspace orthogonal to bpth andny,,, etc. Noting the block diagonal structure of
Na, it follows thatA, may be constructed using the basis matrix, den@&gd given by then x n subma-
trix in the upper-left corner oBy,, for anyn e Ny = {21,20,16,9,8,5,4}. For the remaining dimensions,
ne Ny =1{191817,1514,13 1211 10,7,6,3,2,1}, An may be constructed via the appropriate restriction
of the lattice generated by the next larger basis matrixénsitN,; for example/A14 may be constructed in
R16 via restriction of the lattice generated by the basis mdfix to the subspace normal to the vectors (in
R16) given by the first 16 elements of,, andnp,,.

A similar sequence of lattices, denoti€gl may be constructed via restriction of the Leech latticenége
rated viaBp,,) in a similar fashion (for details, see Figure 6.3 of Conwagkkane 1998). Lattices from the
An and/orK, families have the maximal packing densities and kissingbensiamongst all lattices for the
entire range considered here<in < 24. Note that the\,, andK families are not equivalent in the range
7 < n < 17, with A being superior td<, by all four metrics introduced in the Preface at most values o
in this range, except for the narrow rangedh < 13, where in facK, has a slight advantage. Note also
that there is some flexibility in the definition of the lattic&11, A12, andA;3; the branch of thé\, family
considered here is that which maximizes the kissing numioethis range oh, and thus the corresponding
lattices are denotetl?™, ATE, andAT§™. Note thatKi, is referred to as the Coxeter-Todd lattice and is
referred to as the Barnes-Wall lattice.

2.7 Numerically-generated lattices with thin coverings fon=61to 15

Recall from &.1 that ann-dimensional real lattice may be defined as an integer linearbination of a set
of n basis vectorg' defined inR™"™ for m > 0O; that is, any lattice point may be written as

x = yibt +ysb? 4 ...+ ynb" = By,

where the element$y,...,yn} of the vectory are taken as integers. The square of the distance of any
lattice point from the origin is thus given bi(y) = y" Ay, whereA £ BTB is known as theGram matrix
associated with the lattice in question, and the funcfigy) is referred to as the correspondiggadratic
form [note that each term dof(y) is quadratic in the elements gf. All of the lattices studied thus far, when
scaled appropriately, are characterized by Gram matrigtesnteger elementsand thus their corresponding
quadratic formd (y) have integer coefficients (and are thus referred totegral quadratic forms

There is particular mathematical interest in discoverorggenerating numerically) both lattice and non-
lattice packings which minimize covering thickness angbacking density. The numerical approach to this
problem studied in Schiirmann & Vallentin (2006) and S&iBchiirmann, & Vallentin (2008) has generated
new lattices in dimensions= 6 to 15 with the thinnest covering thicknesses known amoalyj$ittices.
The lattice so generated in dimension 7 happens to corrddpam integral quadratic form, but the others,
apparently, do not.

SGram matrices\ corresponding to these 10 lattices (dendtgd LS, LS, .. ., LSs) are available at
http://fma2. mat h. uni - magdebur g. de/ ~I at geo/ covering_t abl e. ht n
(nonunique) basis matric&corresponding to each of these lattices may be generatguydiy taking the Cholesky decomposition of
the corresponding Gram matrix, As= B'B.



http://fma2.math.uni-magdeburg.de/~latgeo/covering_table.html
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Chapter 3

Characteristics of exemplary lattice and
nonlattice packings and nets

For all of the dense lattices described i, &s well as for all of the rare packings and nets described in
84, Tables 3.1-3.2 list the known values of the packing densjtthe covering thicknes®, and the mean
squared quantization error per dimensi@n,Table 3.1 also lists the coordination sequence thrdugtl0
of the corresponding net, as well as its local topologicalsity tdio. If this net is a contact graph, the
coordination number (that is, the first element of the comtion sequence) is equal to the kissing number
of the corresponding packing; if this netrista contact graph, it is marked with@ and the kissing number
T of the corresponding sphere packing is listed in parenthese

The other information appearing in Table 3.1 is describethér in 8. Note that Table 3.1 alone has 8
columns and over 100 rows, with those results which we believbe new denoted in italics. The original
source of each of the several hundred existing resultstegpoan not feasibly be spelled out here. Suffice it to
say that the vast majority of those existing results reltdddttices are discussed in Conway & Sloane (1998)
and in the On-Line Encyclopedia of Integer Sequehcesere a large number of the original references
are listed in detail. The vast majority of those existingutessrelated to 3D nets (seel)§ including clear
drawings of eaclas well as detailed lists of original references, are ginghé Reticular Chemistry Structure
Resourcg, for further discussion of this database and others, se@€ifi et al. (2008), Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that theeehandreds of new results reported in Tables 3.1
and 3.2, as denoted in italics; most of these are the respdintaking numerical simulation, some of which
tooks weeks of CPU time (on a quad-core 3GHz Intel Xeon sktoeomplete.

Note finally that there are a variety of (lattice-specificyw# quantize to the nearest lattice point; for an
introduction, see @

1Available on the web ait t p: / / www. r esear ch. att. conl ~nj as/ sequences!/ .
2Available onthe web at, e.cht t p: // rcsr. anu. edu. au/ net s/ f cu, where fcu” may be replaced by any of the lowercase boldface
three-letter identifiers given in Table 3.1 andl §



http://www.research.att.com/~njas/sequences/
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/fcu

n packing net A (C] G coordination sequencgthroughk = 10) tdio \F;gri'?;;)s/,;]rggl)l
E Z,M neger || 1 1 [oosssss| 2222222222 21 R
Ao, A5 Ny triangular 0.90690 | 1.2092 | 0.080188 || 6,12, 18, 24, 30, 36, 42, 48, 54, 60 331 36.4853
72,D;,D3,D3 square 0.78540 | 1.5708 | 0.083333 || 4,8, 12, 16, 20, 24, 28, 32, 36, 40 221 44445 x
2 AL TA; honeycomb || 0.60460 | 2.4184 | 0.09623 || 3, 6,9, 12, 15, 18, 21, 24, 27, 30 166 6.6.6
AS A, ﬁggemyigt;% 0.39067 | 5.832 | 0.1652 || 3,4,6,8,12, 14, 15, 18, 21, 22 124 31212
D3, A3, A3 fcu 0.74048 | 2.0944 | 0.078745|| 12, 42,92, 162, 252, 362, 492, 642, 812, 1002 3871 324436 56
hcp 0.74048 | 2.0944 | 0.078745|| 12,44, 96, 170, 264, 380, 516, 674, 852, 1052 4061 32443 59
D3, A} bcu 0.68017 | 1.4635 | 0.078543|| 8,26, 56, 98, 152, 218, 296, 386, 488, 602 2331 424 6%
73 pcu 0.52360 | 2.7207 | 0.083333|| 6, 18, 38, 66, 102, 146, 198, 258, 326, 402 1561 412 63
qtz, V§° 0.39270 | 2.0405 | 0.08534 || 4,12, 30, 52, 80, 116, 156, 204, 258, 318 1231 | 6.6.62.62.87.8;
A;,D3 dia, V§° 0.34009 | 2.7207 | 0.09114 || 4,12, 24, 42, 64, 92, 124, 162, 204, 252 981 | 62.62.6,.62.62.6;
lon 0.34009 | 3.3068 | 0.09139 || 4,12, 25, 44, 67, 96, 130, 170, 214, 264 1027 | 6,.62.67.6,.62.62
A sod 0.2777 | 8.781 | 0.1092 || 4,10, 20, 34, 52, 74, 100, 130, 164, 202 791 4.4.6.6.6.6
3 A§ dia-a 0.12354 | 9.1723| 0.1511 || 4,6, 12,18, 36, 48, 60, 78, 108, 126 497 | 312.312.312
TAg sod-a 0.1033 | 28.26 | 0.1943 || 4,6,12,17, 28,38, 52, 64, 84, 104 410 | 38312312
qzd, T 0.6046 | 2.1549 | 0.08151 || G:4,12, 36, 72, 122, 188, 264, 354, 456, 570= 8) 2079 | 72.%.73.73.73.73
cds T 0.52360 | 2.7207 | 0.08333 || G:4, 12,30, 58, 94, 138, 190, 250, 318, 39d= 6) 1489 |  6.6.6.6.62.%
nbo, S3 0.39270 | 3.1416 | 0.08602 || 4,12, 28,50, 76, 110, 148, 194, 244, 302 1169 | 6,.62.62.6,.8,.8;
bto (o = 60°), || 0.2687 | 3.0042 | 0.09129
(unstable) V& (a~705°) || 02551 | 2.7251| 009217 || 36 12 24.43,64,91,124, 160, 202 730 1010,.10
ths (a=60"), || 0.2327 | 4.3099 | 0.09706
v (a~705) || 02207 | 3518 | 0.09817 3,6, 12, 24, 38, 56, 77, 102, 129, 160 608 10;.104.104
srs 0.1851 | 3.4281| 0.1072 || 3,6, 12, 24,35, 48, 69, 86, 108, 138 530 105.105.105
srs-a 0.0555 | 9.739 | 0.1882 || 3,4,6,8,12, 16, 24,32, 48,54 208 3.205.205

Table 3.1a. (Continued on next page.)
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D, 04, As o168 WP 2674 | 0076808 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080 48,841 396 4168 512
G: 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8Q80-= 24) 24,641 4112 8
Ay 0.55173 | 3.1780 | 0.078020|| 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750 35,751 3504120 510
A, 0.44138 | 1.7655 | 0.077559 || 10, 50, 150, 340, 650, 1110, 1750, 2600, 3690, 5050 15,401 440 65
74D} 0.30843 | 4.9348 | 0.08333 || 8,32, 88,192, 360, 608, 952, 1408, 1992, 2720 8361 424 64
4 AL 0.17655 | 6.3558 | 0.08827 || 5,20, 50, 110, 200, 340, 525, 780, 1095, 1500 4626 610
A, 0.10593 | 42.4 0.1221 || 5,15, 35, 70, 125, 205, 315, 460, 645, 875 2751 4.6
A; 0.03354 | 23.82 | 0.1398 || 5,8, 20,32, 80, 116, 170, 236, 380, 482 1530 3612
T || 0.3084 | 4.935 | 0.08333 || G:4,12, 36, 92, 200,384, 664, 1056, 1576, 2240 8) 6265 83.83.83.83.84.%
Sa 0.1542 | 3.855 | 0.08692 || 4,12, 36,84, 172, 292, 468, 692, 988, 1348 4097 | 8,.8,.85.85.85.85
(unstable) Tso " 0.1187 | 5814 | 0.09333 || 4,12, 36, 74, 136, 228, 352, 518, 732, 994 3087 | 86.86.87.87.87.8;
Y0 || 0.06793 | 6.458 | 0.09736 || 3, 6,12, 24,48, 90, 146, 230, 336, 478 1374 12,.12,.12,
Ds, /s 0.46526 | 4.5977 | 0.075786|| 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 28200 463,715 3240 4520 520
As 0.37988 | 5.9218 | 0.077647 || 30, 240, 1010, 2970, 7002, 14240, 26070, 44130, 70310, 20675 272,755 3120 4300 515
D 0.32899 | 2.4982 | 0.075625 || G: 32,242, 992, 2882, 6752, 13682, 24992, 42242, 67232, T0206- 10) 261,051 4480 616
D 0.28736 | 5.2638 | 0.07784 || 16, 120, 480, 1410, 3296, 6712, 12256, 20770, 33056, 50232 128,349 480,640
AL 0.25543 | 2.1243| 0.076922 || 12,72, 272, 762, 1752, 3512, 6372, 10722, 17012, 25752 66,241 450 66
VAl 0.16449 | 9.1955 | 0.083333 || 10,50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002 36,365 440 65
AL 0.08514 | 8.8223| 0.08646 || 6,30, 90, 240, 510, 1010, 1770, 2970, 4626, 7002 18,255 61°
5 AL 0.035174| 254.9 | 0.1349 || 6,21, 56,126, 252, 461, 786, 1266, 1946, 2877 7798 49.6°
Al 0.008055| 35.81 | 0.1313 || 6,10, 30, 50, 150, 230, 390, 570, 1050, 1420 3907 31015
T || 0.16449 | 9.1955| 0.08333 || G:4, 12, 36, 100, 258, 610, Pt = 10) ? 82.85.87.82.105.%
Ss 0.05140 | 9.310 | 0.08666 || 4,12, 36, 100, 244, 514, 980, 1682, 2724, 4162 10,459 8.8.8.8.8,.8,
VE || 0.04786 | 8.4884 | 0.08753 || 4,12, 36, 100, 248, 522, 988, 1724, 2800, 4324 10,759 8.8.8.8.8,.8;
(unstable) | Y& || 0.03516 | 254.8 | 0.1350 || 3,6, 12,24, 48, 90, 168, 312, 556, 914 2134 12,.12,.12,
T || 0.02478 | 6.2578 | 0.09038 || G:4, 12, 36, 100, 268, 7T = 14) ? 82.85.87.82.1130.%
v || 0.02478 | 6.016 | 0.09037 || 4,12, 36, 100, 220, 428, 752, 1254, 1944, 2924 7675 8.8.8.8.8,.8;
Y2 || 0.01858 | 11.19 | 0.09605 || 3,6, 12, 24, 48, 90, 168, 312, 532, 872 2068 12,.12,.12,

Table 3.1b. (Continued on next page.)
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packing | net A (€] G coordination sequencethroughk = 10) tdio sg:?;xszr;]rgcb):)l
Es,N\s 0.37295 | 7.0722 | 0.074347|| 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104 2,900,773 | 372041800536
E; 0.33151 | 2.6521 | 0.074244|| 54,828, 5202, 20376, 60030, 146484, 312858, 605232, 1634830060 4,065,931 | 327041134527
Ds 0.32298 | 8.7205 | 0.075591|| 60, 792, 4724, 18096, 52716, 127816, 271908, 524640, 938582432 3,520,837 | 348041260530
Dg 0.27252 | 5.1677 | 0.07459 || 32,332, 1824, 6776, 19488, 46980, 99680, 192112, 343588767 1,289,685 4480 616
As 0.24415 | 9.8401 | 0.077466 || 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626598 1,775,005 | 37104630521
D; 0.16149 | 4.3603 | 0.075120| G: 64,728, 4032, 14896, 42560, 102024, 215488, 413792, B31g=10120 (1 = 12) 244,069 41984 632
A 0.13453 | 2.5511 | 0.076490 || 14, 98, 462, 1596, 4410, 10374, 21658, 41272, 73206, 122570 275,661 484 67
Lg 0.31853 | 2.4648 ? 32,7 ? ?
78 0.08075 | 17.441| 0.08333 || 12, 72,292, 912, 2364, 5336, 10836, 20256, 35436, 58728 134,245 450 5
AS 0.03844 | 19.681| 0.08525 || 7,42, 147, 462, 1127, 2562, 5047, 9492, 16317, 27174 62,378 62!
A 0.010459 | 1836.5| 0.14712 || 7,28, 84, 210, 462, 924, 1715, 2996, 4977, 7924 19,328 414 67
At 0.001774| 99.91 | 0.1259 || 7,12,42, 72,252, 402, 777, 1182, 2457, 3492 6,496 315126
T || 0.08075 | 17.441| 0.08333 || G:4, 12, 36, 100, (1 = 12) ? ?
Se 0.01514 | 9.78 | 0.08601 || 4,12, 36,100, 276, 660, 1484, 2920, ? ? 8.8.8.8.8,.8;
(unstable) s (9 74063 | 19.79 | 0.09322 || 4, 12, 36, 100, 276, 610, 1284, 2346, 4152, 6792 15613 | 88888,8;
Y || 4.640e-3| 24.15 | 0.09479 || 3,86, 12, 24, 48, 90, 168, 312, 580, 1046 2290 12,.12,.12,
E7. A7 0.29530 | 13.810 | 0.073231|| 126 2898, 25886, 133506, 490014, 1433810, 3573054, 7902534,2P06, 29896146 59,400,241 | 3201645796 563
DI 0.26170 | 4.7248 | 0.07273 || 64,1092, 8064, 37842, 131328, 371940, 906816, 19768980884 7344164 14,724,257 | 417926224
E; 0.21578 | 4.1872| 0.073116|| 56, 938, 7688, 39746, 150248, 455114, 1171928, 26686108882 10585514 20,601,723| 41512628
D7 0.20881 | 16.749 | 0.075686 | 84, 1498, 11620, 55650, 195972, 559258, 1371316, 2999683956, 11193882 22,392,919 384042604542
A7 0.14765 | 18.899 | 0.077396|| 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2203625692 10,089,705| 333641176528
D3 0.07382 | 4.5687 | 0.07493 || G: 128, 2186, 16256, 75938, 263552, 745418, 1817216, 3959402848, 14704202(1 = 14) | 29,487,171| 48064654
As 0.06542 | 3.0596 | 0.076187 || 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 23297652287 871,661 411268
LS 0.11738 | 2.9000 ? ? ? ?
A 0.03691 | 33.498 | 0.083333|| 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762 433,905 484 67
AS 0.01636 | 30.163| 0.08442 || 8,56, 224, 812, 2240, 5768, 12656, 26474, 49952, 91112 189,303 628
A 2.839%-3 ? ? 8, 36, 120, 330, 792, 1716, 3432, 6434, 11432, 19412 43,713 420,68
Ay 3.586e-4 | 137.9 | 0.1214 || 8,14, 56, 98, 392, 644, 1400, 2198, 5096, 7532 17,439 321127

Table 3.1c. (Continued on next page.)
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T8 || 0.05673 | 15.87 | 0.08076 || G:4, 12,36, 100, 276, 71 = 20) ? ?
T || 0.03691 | 33.50 | 0.08333 || G:4,12, 36, 100, 276, 71 = 14) ? ?
S7; || 4.035e-3| 24.15 | 0.08525 || 4,12, 36, 100, 276, ? ? ?
7 (unstable)| V& || 3.730e-3| 15.00 | 0.08702 || 4,12, 36, 100, 276, ? ? ?
VE0 || 2.424e-3| 32.39 | 0.09267 || 4,12,36,100, 276, 724, 1676, 3592, 7012, 12868 26,301 8.8.8.8.8,.8;
Y80 || 1.652e-3| 18.95 | 0.08854 || 3,6,12,24,48,? ? ?
Y20 || 1.074e-3| 36.73 | 0.09365 || 3,6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 12,.12,.12,
g% E/fs 0.25367 | 4.0587 | 0.071682 % 49212%%01’25%61%1%386%%960' 4113840, 14905440, 44480400, 23687 1,006,201,681| 367204218405120
Ds 012683 | 32.470 | 0.075914 615%3345&2;, 25424, 149568, 629808, 2100832, 5910288, 146132641008, 123,302,600 | 31344 44616 556
Ag 0.08456 | 32.993 | 0.077391| 72,1332, 11832, 66222, 271224, 889716, 2476296, 60778867416, 27717948 51,019,255 | 350442016536
D 0.03171 | 81174 | 0.074735 <13 7 1235162, fggc()% 6:552)0, 384064, 1614080, 5374176, 15097608132D, 83222784 5 ) acg ag: 437512 5128
A 0.02969 | 3.6658 | 0.075972|| 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146882 3,317,445 414469
LS 0.08253 | 3.1422 ? ? ? ?
8 78 0.01585 | 64.939 | 0.083333|| 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 33268848580 1,256,465 4112 68
Ay 6.599e-3| 65.99 | 0.0838 || 9,72,324,1332, 4104, 11832, 28674, 66222, 136404, 271224 520,198 636
A, 7.128e-4 ? ? 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43749 92,368 427 g°
Ay 6.759e-5| 301.1 | 0.1178 | 9,16, 72,128, 576, 968, 2340, 3768, 9648, 14716 32,242 328128
T0 || 0.01585 | 64.94 | 0.08333 || G:4,12,36, 100, 276, 724, AT = 16) ? ?
Sg || 9.903e-4| 28.28 | 0.08452 || 4,12, 36, 100, 276, 724, ? ? ?
(unstable) V@0 || 5.590e-4| 49.89 | 0.09206 || 4,12, 36, 100, 276, 724, 1908, 4390, 9876, 19682 37,009 8.8.8.8.8,.8;
Y0 || 2.327e-4| 87.31 | 0.09266 || 3,6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 12,.12,.12,

Table 3.1d. (Continued from previous pages.) Charactegsif some exemplary lattice and uninodal nonlattice pag&iand nets through# 8,

ordered from dense to rare in each section. Values in itaies(as far as we know) new. At each n, bold double underliafgbg are proven to be
optimal (maximum or minimum) amongstpdickings, and bold single underlined values are proven todignal amongst allattices. Bold values
(without underlines) are thbestknown values amongst glackings, and bold undertilded values are the best knowmegehmongst alhttices.
The point symbol is provided for those nets with 5; the vertex symbol is provided for those nets with 4. Nets whose coordination sequences
are identified with & are generalized nets, not contact graphs (see, e.g., thendem-last paragraph 0$2.3); in these cases, the kissing number
Tis indicated in parentheses after the coordination seqaelmcall other cases, the first element of the coordinatiausece is the kissing number
1. Note also that ther2° and YE° nets are constructed with = cos (1/n) for n > 3 (see84.4.9; in addition, the barycentric constructions with

o = 60, corresponding tdto andths, are also listed for n= 3.
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24 CHAPTER 3. CHARACTERISTICS OF LATTICE AND NONLATTICE PACGINGS AND NETS

‘ n ‘packing H A ‘ (C] ‘ G H T ‘
No 0.14577 | 9.0035 | 0.07206 || 272
Dg 0.14577 | 4.3331| 0.07110 || 144
D 0.01288 | 8.6662 | 0.07469 || 18
9 A 0.01268 | 4.3889 | 0.07582 || 20
A 0.08447 | 4.3402 | 0.07207 || 90
LS 0.08149 | 4.2686 ? ?
7° 0.006442 | 126.81| 0.08333|| 18
A1o 0.09202 | 12.409 | 0.07150| 336
Diy 0.07969 | 7.7825| 0.07081 || 180
10 Ao 0.005128 | 5.2517 | 0.07570 || 22
LS, 0.02995 | 5.1545 ? ?
710 0.002490 | 249.04 | 0.08333| 20
Ki1 0.06043 ? ? 432
\Wad 0.05888 | 24.781 | 0.07116 || 438
D}, 0.04163 | 8.4072 ? 220
11 A 0.001974| 6.2813 | 0.07562 || 24
Al 0.04740 | 5.5983 | 0.07025 || 132
LS, 0.04124 | 5.5056 ? ?

zt 9.200e-4 | 491.40 | 0.08333 22

K12,Kis 0.04945 | 17.783 | 0.07010| 756
N 0.04173 | 30.419 | 0.07058 || 648

D5, 0.02086 | 15.209 ? 264
z AL, 7.271e-4 | 7.5101 | 0.07557 | 26
LS, 0.004306 | 7.4655 ? ?
712 3.260e-4 | 973.41 | 0.08333| 24
Kis 0.02921 ? ? 918
/AT 0.02846 | 60.455 | 0.07009 | 906
Alg 2.569e-4 | 8.9768 | 0.07553| 28
13 AL, ? 7.8641 ? 368
LS, 0.002255| 7.7621 ? ?
VAS 1.112e-4 | 1934.6 | 0.08333| 26
A4 0.02162 | 98.876 | 0.06946 || 1422
AL, 8.740e-5 | 10.727 | 0.07551| 30
14| A, ? 9.0066 ? ?
LS, 0.005221| 8.8252 ? ?
74 3.658e-5 | 3855.6 | 0.08333| 28
Ais 0.01686 | 202.91 | 0.06892 || 2340
Arg 2.870e-5| 12.817 | 0.07549| 32
15 | A% ? 11.602 ? ?
LSe 6.206e-5 | 11.005 ? ?
745 1.164e-5 | 7703.1| 0.08333| 30

Table 3.2a. (Continued on next page.)
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‘ n ‘ packing H A ‘ © ‘ G H T ‘

N16, N\ 0.01471 96.500 | 0.06830 4320

16 Als 9.116e-6 | 15.311 | 0.07549 34
76 3.591e-6 | 15,422 | 0.08333 32
A17 0.008811 | 197.72 | 0.06822 || 5346
AL 2.807e-6 | 18.288 | 0.07549 36

1 A, ? 12.357 ? ?
7 1.076e-6 | 30,936 | 0.08333 34
A1g 0.005928 | 301.19 | 0.06792| 7398

18 Alg 8.396e-7 | 21.841 | 0.07550 38
718 3.134e-7 | 62,158 | 0.08333 36

N19 0.004121 607.62 | 0.06767 || 10668

Alg 2.443e-7 | 26.082 | 0.07552 40
19 AL ? 21.229 ? ?
e 8.892e-8 | 125,077 | 0.08333 38
A20 0.003226 | 889.86 | 0.06731| 17400
Ao 6.924e-8 | 31.143 | 0.07553 42
20 Ay ? 20.367 ? ?
720 2.461e-8 | 252,020 | 0.08333 40
A21 0.002466 | 1839.5 | 0.06701| 27720
A5 1.914e-9 | 37.185 | 0.07555 44
21 ALl ? 27.773 ? ?
72t 6.651e-9 | 508,417 | 0.08333 42
A2z 0.002128 | < 34268 ? 49896
Ny 2.952e-4 | <27.884 ? 1782
22 A, 5.168e-10| 44.395 | 0.07558 46
722 1.757e-9 | 1,026,792| 0.08333 44
A2z 0.001905 | < 76090 ? 93150
Nys 2.788e-4 | <15322 ? 4600
2 Asq 1.364e-10| 53.000 | 0.07560 48

733 4.543e-10| 2,075,774| 0.08333 46

N2a, Ny, || 0.001930 | 7.9035 | 0.06577 || 196560
24 A, 3.523e-11| 63.269 | 0.07563 50
724 1.150e-10| 4,200,263 | 0.08333 48

Table 3.2b. (Continued from previous page.) Charactersstf some exemplary dense lattices fot 0 to
24, with < denoting a bound, not an exact value; see Table 3.1 legenddscription of notation. Note
that the covering radii of\13 through/Ass and A17 throughA; are, respectively{v/26, ,/80/3,1/28} and
{\/26,,/80/3,1/28,1/28,/29} (this was verified numerically in the present work; lower bds on these
values, which turn out to be sharp, are given in Conway & S&h999).
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Chapter 4

Rare nonlattice packings & nets forn < 8
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We now turn our attention to the problem of infiniere sphere packings, with packing densioyver
than that of the corresponding Cartesian packing, and tieelyl related problem of infinite nets. Foe 2,
this problem is essentially trivial. Far = 3, the richness of solutions to this problem is fascinating,a
due to the intense interest in crystallographic structwiéis various desirable chemical properties, has been
exhaustively studied and catalogued. Ror 3, relatively few regular constructions are known, and fieqrs
as if what academic interest there has been has not yet lety tapplications of significance in science and
engineering; Part Il of this text intends to change thisistmotivating the present chapter.

Interest inn-dimensional space groups and symmetries dates back tarteee@nth century, with the
work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Rpees, Mobius, Jordan, Sohncke, Fedorov,
Schonflies, Fricke, and Klein. Historical accounts of #sly work, as well as several follow-on mathema-
tical developments related to space groups and symmaedriggyailable in Brown et al. (1978) and Schwar-
zenberger (1980). Much of the related work in the field of getsynwas developed by Coxeter (1970, 1973,
1974, 1987, 1989). Despite this intense interest, thereagefew explicit constructions of regular rare sphe-
re packings fon > 3 available today, outside of very short treatments of thgesii by O’Keeffe (1991b) and
Beukemann & Klee (1992), discussed below.
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As mentioned in the abstract and explored in depth in Partéiitain emerging engineering applications
now motivate the further development and deployment of iginéigite n-dimensional nets, with a particular
focus on structured nets with low coordination number agth kopological density. Such nets are well suited
for the rapid spread of information in switchless compuotaai interconnect systems with a reduced number
of wires and, thus, reduced cost. In such systems, a logételark withn > 3 may easily be designed and
built® and, as we will see, there are significant potential benefitsd doing. We are thus motivated to revisit
the problem of the design of structured nets with low coaation number. Note that none of the lattices
discussed in B have a coordination number lower than that of the corresipgn@artesian latticet = 2n.
However, fom = 3, there is a wide range of stable and unstable nonlattiddpgethat lead to such nets; as
shown below, many of these packings and nets generalizeafigtio higher dimensions.

4.1 Netterminology

The terminology used to discuss 3D nets, most of which gdinesaeadily to the discussion nfdimensional
nets, has been clarified significantly over the last decaukisanow quite precise.

Recall first the measures defined in the Preface, includiagdlordination numberthe coordination
sequenceand ak-hop measure dbcal topological densitgiven by the cumulative sum of all nodes reached
within k hops from origin, denotetty (Tables 3.1 and 3.2 list this quantity fer= 10). O’Keeffe (1991a)
defines another, sometimes preferred (see, e.g., Grossati&ue et al. 1996) measuregibbal topological
density td = limy_,»tdk/k", which reveals the rate of growth odiy with k in the limit of largek. [For a
uninodaln-dimensional nettd may be found by representifithe coordination sequence as @n- 1)'th-
order polynomial in the number of hofsthen taking the leading coefficient of this polynomial andding
by n.] Despite some impressive efforts in representing coatiin sequences with such polynomials (see,
e.g., Conway & Sloane 1997, and the references containegithethe measurel is currently unknown for
most of the nets discussed here. As a matter of computati@cédbility, we thus resort ind&o the tabulation
of the local topological density measutd; g, as this measure is much easier to compute.

Our attention in this text is focused almost exclusivelequilibrium packinggthat is, on sphere packings
which, if unperturbed, can bear compressive loads apptititeaedges of a packing that is built out to fill a
finite convex domain) and their correspondagilibrium netgwhich are constructed with tensile members
connecting nearest-neighbor nodes, and can bear tenads kpplied at the edges of a finite convex do-
mainy*. Equilibrium packings fall into two catagories: stableatlis, sphere packings which, if perturbed,
oscillate about their equilibrium configurations, and ratio these configurations if there is damping present)
and unstable (that is, sphere packings which depart frorfilegum if perturbed); we consider both.

After years of conflicting terminology in the literature oets, the concepts afycles rings, strong rings
tilings, natural tilings point symbolsandvertex symbolsave, in 3D, finally crystallized. The reader is re-
ferred to Blatov et al. (2009) and the references containecktn for description of this modern terminology,

1Recall, e.g., the “hypercube” computational interconrsgsttem introduced several years ago; though designed otical net-
work with n > 3, the hypercube, like most computational interconneeteties deployed today, is significantly hampered by itsrieit
dependence on a Cartesian topology.

20r by approximatingthis coordination sequence as @n— 1)’th-order polynomial for largek, if such a polynomial does not fit
exactly.

3A family of structures with both tensile and compressive rhers, known asensegrity might be said to cover the gap between
purely compressive sphere packings and purely tensile fats mathematical characterization of tensegrity systen8D is now
precise, due largely to the work of Skelton & de Oliveira (2DMAnN interesting extension of the present study would bgeteeralize
such tensegrity systems o> 3 dimensions.

“4For the purpose of the applications studied in Parts Il ahavé do not actually use the property of mechanical equiliorof the
corresponding structure; this property may rather be densd as a convenient means to an end when designing a regaldng or
net. Several nets discussed in the literature (see, e.fls Y8¥7, page 80) are not equilibrium sphere packings, agtitrbe interesting
to consider further.
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as well as numerous cautions concerning the conflicting mofatures adopted elsewhere in the published
literature. In short:

e A cycleis a sequence of nodes in a net, connected by edges, sudhetfiestand last nodes of the sequence

coincide, while none of the other nodes in the sequence appeae than once.

A cycle sumof cycles A and B, is the union of those edges in either A or Briat both.

A ring is a cycle that is not the sum of two smaller cycles.

A strong ringis a cycle that is not the sum of any number of smaller cycles.

A tiling of R3 by a 3D net is simply the dissection of 3D space into volumessgtaces, which in general

may be curved (aminimal surfaceslike soap bubbles; see, e.g., Sadoc & Rivier 1999), are dediby

cycles of the net. A 3D net generally admits many tilings.

e Thedualof a tiling is the unique new tiling obtained by placing a nesvtex inside each original tile and
connecting the vertices of adjacent tiles (that is, withretidaces) in the original tiling with edges. If a
tiling and its dual are identical, the tiling is said to &&f-dual The dual of a dual is the original tiling.

¢ A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles sucit the tiles have the
maximum combinatorial symmetry and all the faces of thes tilee strong rings. A 3D net ofte@dmits
a unique natural tiling. If a tiling and its dual are both matuthe pair is referred to astural duals If a
natural tiling is self-dual, it is said to beaturally self-dual

¢ The point symbolof a uninodal net, of the forrd2.B2.CC.. ., indicates that there ar pairs of edges
touching the node at the origin with shortest cycles of Ia#gth pairs of edges touching the node at the
origin with shortest cycles of lengt (with B > A), etc. Note that the sum of the superscripts in a point
symbol totalst(t —1)/2.

e Thevertex symbobf a uninodal net, of the forma.By.Cs. . ., indicates that the first pair of edges touching
the node at the origin hasshortest rings of length, the second pair of edges touching the node at the
origin hasb shortest rings of lengtB, etc. If for any entry there is only 1 such shortest ring, thieseript
is suppressed; if for any entry there is no ring, a subseripused. The entries are sorted such that smaller
rings are listed first, and when two rings of the same size @ppiege entry with the smaller subscript is
listed first. In the special case of= 4, the six entries of the vertex symbol are listed as threes i
entries, with each pair of entries corresponding to oppgsirs of edges, and are otherwise again sorted
from smallest to largest. Note that the number of entriesvargex symbol is(t1 —1)/2.

The concepts ofycles rings, strong rings point symbolsandvertex symbolextend immediately to di-
mensions; for practical considerations (specifically,duse the number of entries in a vertex symbol gets
unmanageable for largg, we list the point symbol in Table 3.1 wherewer 5, and the vertex symbol where
T < 4. The extension of the tiling conceptialimensions is more delicate, and is discussed furthe# i §

Following Delgado-Friedrichs et al. (2003a,b), tegularity of a 3D net may now be characterized pre-
cisely. In short, consider a 3D net wifhkinds of vertex andj kinds of edge and whose natural tiling is
characterized by kinds of face and kinds of tile. Delgado-Friedrichs & Huson (2000) introddce clear
and self-consistent method for characterizing the regulaf such a net simply by forming the arrgpgrs
examining the 4-digit number so formed, referred to adruesitivity of the net, the most “regular” 3D nets
are generally those with the smallest transitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and sdiyés primitive
cell®; that is, upon deletion of any further edges in the primitied], the resulting net breaks into multiple
disconnected structures. Beukemann & Klee (1992) estuatblat there are only 15 such minimal nets in 3D.
Delgado-Friedrichs & O’Keeffe (2003) define a 3D netasycentricif every vertex is placed in the center
of gravity of its neighbors (to which it is connected by edg8®nneau et al. (2004), in turn, establish that 7

SUnfortunately, not all 3D nets have natural tilings, and sdmve multiple natural tilings; §3 of Blatov et al. (20073disses this
issue further.

A primitive cellof a net is the smallest fundamental volume (e.g., hypejdhia¢, when repeated as an infinite array in all directions
with zero spacing, generates the net.
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of the 15 such minimal nets in 3D haeellisions that is, when arranged in barycentric fashion, the locatio
of two or more vertices coincide (and, thus, the netis in @selegenerate). Of the 8 remaining minimal nets
without collision, five are uninodal.

4.2 2D nets

Consider first the development of uninodal 2D nets with lowrdination number. Start from the triangular
(A5 = Ap) lattice (see Figure P.1a), the corresponding net of whscmi array of hexagons, and perform a
red/black/blue coloring of the nodes such that no two néareighbor nodes are the same color. If we retain
only the red and black nodes, we are left with llemeycomb packin@ee Figure P.1e), and the corresponding
net is an array of hexagons. The coordination number of thisles sphere packing is= 3, which is less
than that of the 2D square packifig= 4); this implies fewer wires in the corresponding computadion
interconnect application. Unfortunately, the topologidensity of this net is quite poor, witttl;o = 166 (that

is, with information spreading from one node to only 165 othefter a message progresses 10 hops in the
network application). We are thus motivated to explore otiays of constructing structured (that is, easy-
to-build and easy-to-navigate) nets with low coordinatiomber (that is, with low cost) but high topological
density (that is, with a fast spread of information).

Note that the honeycomb packing has a packing density wiidbss than that of the corresponding
triangular and square lattices discussed previously (abeP.1). If minimization of packing density is the
goal’, then the honeycomb packing may énegmentedby replacing every sphere with a set of three spheres
in contact, each such set forming an equilateral triangleelvtouches the neighbors in exactly the same
locations as the single sphere which it replaces in thermmaldunaugmented) packing (see, e.g., Heesch &
Laves 1933, Figure 13). The packing density of the resuliafpleaugmented honeyconpacking is less
than 2/3 that of the original honeycomb packing (see Table 3.1),ianke rarest uninodal sphere packing
available in 2D.

4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We ttheustify a List of Twelve highly “regular”
(as defined in 8.1, via their transitivity) uninodal 3D nets upon which we wdlcus our attention and which,
following Delgado-Friedrichs et al. (2003a,b), we dendigtifig from dense to rare):

1. fcu: face-centered cubic (FCC), 5. nbo: NbO, 9. cds CdSQ,
2. bcu: body-centered cubic (BCC), 6. dia: diamond, 10. bto: B,0s3,
3. pcu: cubic, 7. sod sodalite, 11. ths: ThSh,
4. qtz: quartz, 8. gzd: quartzdual, 12. srs: SrSp.

See Table 3.1 for the common names, associated packingg&egraharacteristics of eaghThese twelve
nets have been studied thoroughly in the literature, inowthe landmark work of Wells (1977, 1979, 1983,
1984) and scores of important publications since, inclgéioch & Fischer (1995, 2006) and the numerous
references contained therein; space does not allow a chemse review of this broad body of literature
here, nor even a comprehensive analysis of these twelvestuelied nets. Suffice it to say here that included
in our List of Twelve are the fegularnets (that is, of transitivity 1111pcu, pcu, nbo, dia, andsrs, and the

1 quasiregulamet (of transitivity 1112)fcu, as well as 2 of the 1demiregulamnets (of transitivity 11s), gtz
andsod (both of which have transitivity 1121), as discussed in @He et al. (2000) and Delgado-Friedrichs
et al. (2003a,b). Also included in this list are the 5 unirladaimal nets without collisionpcu, dia, cds

“Note that, forn > 3, the authors are actually unaware of any practical agjgitacther than mathematical curiosity, for which
minimization of packing density is a significant goal.

8Again, clear drawings of each of these nets are availatietas: / / r csr. anu. edu. au/ net s/ f cu, where f cu” may be replaced
by any of the lowercase boldface three-letter identifieverghere.
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srs, andths, the first 4 of which are naturally self-dual, as discusseBanneau et al. (2004, Table 1); note
thatcdsis of transitivity 1221, andhs is of transitivity 1212. The remaining 2 nets on our List of Twelve,
gzd (transitivity 1211; see Delgado-Friedrichs et al. 2003t lato (transitivity 1221; see Blatov 2007), are
included because of their close structural relationshthethers, as discussed further k14 We also note
that four on our List of Twelveqtz, gzd, bto, andsrs, arechiral (that is, these nets twist in such a way that
the nets and their reflections are not superposable).

The 12 remaining semiregular nets (of transitivity9)Iof Delgado-Friedrichs et al. (2003b, Table 1) are
the next natural candidates in this taxonorhyd, crs, reo, andrhr might be of particular interest), perhaps
followed by the 28 binodal edge-transitive nets (of tranisjt 21rs) of Delgado-Friedrichs et al. (2006, Table
1) and the 3 binodal minimal nets without collision (of traigty 2222, 2211, and 2321) of Bonneau et
al. (2004, Table 1) [see also Delgado-Friedrichs & O’Ke€#@07)]. Note that just half of the List of Twelve
considered here (specifically, in order of frequerdig, pcu, srs, ths, nbo, andcds) account for 66% of
the 774 uninodal metal-organic frameworks (MOFs) tabdlate¢he Cambridge Structural Database (CSD),
as reviewed by Ockwig et al. (2005), thus indicating the plence in nature of several of the structures
considered here.

The idea of augmentation, introduced ih & extends directly to many 3D nets in order to reduce packing
density. For example, in the (stable) packings relatedealidn andsod nets (discussed further iMl8l.1and
84.4.3respectively), both of which have coordination number 4,may replace each sphere with a set of
four spheres in contact, each such set of spheres formintgadnéelron, creating what is referred to as the
augmented diamon(tia-a) andaugmented sodalitésod-g nets. In the case of the augmentation of the
packing related to thdia net, each tetrahedral set touches the neighbors in exaetlsame locations as the
single sphere which it replaces in the original (unaugnmeacking (see Heesch & Laves 1933, Figure 12).
In the case of the augmentation of the packing related tatlinet, as the angles between the 4 nearest
neighbors of any node are not uniform in thed net, each tetrahedral set is slightly larger than the single
sphere which they replace in the original (unaugmenteddipgcand the contact points are slightly shifted
(O’Keeffe 1991b); note that the packing associated wittstiteanet is the rarest uninodal stable 3D packing
currently known. On the other hand, in the augmentatione{timstable) packing related to thies net, which
has coordination number 3, we may replace each sphere watirodthree spheres in contact, each such set of
spheres, as in the augmentation of the honeycomb packingirfg an equilateral triangle and touching the
neighbors in exactly the same locations as the single sptigich it replaces in the original (unaugmented)
packing (see Heesch & Laves 1933, Figure 10); note that tblemp@associated with the resultisgs-anet
is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycodia (transitivity 1222) todia, sod-a (transitivity
1332) tosod, andsrs-a (transitivity 1221) tosrs, it is seen that augmentation, while reducing the packing
densityA (see Table 3.1), also significantly reduces both the topcdddensitytdio, and the regularity of the
resulting net. Thus, the process of augmentation appedes ob little interest for the purpose of developing
efficient computational interconnects. Note that FiscR@06) and Dorozinski & Fischer (2006) show that
the process of augmentation can be repeated indefinitelglagr to obtain (non-uninodal) sphere packings of
arbitrarily low packing density.

Finally, there are two other 3D nets which, though less @ghlan our List of Twelve, are worthy of “ho-
norable mention’hexagonal close packingncp, transitivity 1232) andonsdaleite(lon, transitivity 1222).

As hinted by their identical packing densities (see Tahlg, Bicp is closely related técu, andlon is closely
related todia; curiously, both have slightlitighervalues oftd;o than do their more regular cousins. The re-
lations between these two pairs of packings is readily exidden they are considered as built up in layers,
as introduced in the second paragraph@#@&nd discussed further below.

TheAg lattice (a.k.a. FCC, corresponding to tlee net) may be built up as an alternating series of three
2D triangular fy) layers, offset from each other in the foabcabc . ., with the nodes in one layer over the

9As illustrated in Bonneau et al. (2004, Figure 3), a selftdiling of ths may in fact be constructed; this tiling has transitivity 122
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holes in the layer belowhcp is built up similarly, but with two alternating layers, offisfrom each other in
the formabab...

Similarly, the sphere packings corresponding todlzeandlon nets may be built up as alternating series
of approximately 2D honeycomb layers offset from each otfibese honeycomb “layers” are in fact not
quite 2D; if the nodes in a single layer are marked with anriadtee red/black coloring, the red nodes are
raised a bit and the black nodes lowered a bit. In both paskithg layers are offset from each other, with
the lowered nodes in one layer directly over the raised nodége other. In the packing corresponding to the
dia net, there are three such alternating layers stacked irotiedbcabc . .; in the packing corresponding
to thelon net, there are two such alternating layers stacked in thne &vab. . .

4.4 Uninodal extension of some regular 3D nets to higher dinmsions

Thefcu net is based on thBs = As lattice, and thus may be extendedittdimensions in two obvious ways
(that is, viaAn or Dp). The bcu net is based on thB% = Aj lattice, and thus may also be extendechto
dimensions in two obvious ways (VA or D}). Thepcu net is based on th&? lattice, and thus extends to
n dimension viaZ". This section explores how most of the other nets on the fifelve described above
extend naturally to higher dimensions.

It is important to recall that the nets in ti, case fom > 4 turn out to be a bit peculiar, as discussed
further in 8.3 the TP? and TE? nets encountered irM§4.7are similar.

4.4.1 Extendingdia: the Al and D; packings

Thedia net may be obtained from the well-knovdy packing defined inZ.5) (see also Sloane 1987), and
thus extends naturally to dimensions a®,|. However, there is an alternative construction of die net,
described below and denotag, which is equivalent t®; for n = 3 but extends ta dimensions differently.

In fact, a third extension of theia net ton dimensions, th&/2° construction, is introduced ir4§4.6 These
alternative extensions of tha net ton dimensions, with low coordination number, are perhap®bstiited
thanD; for many practical applications. We thus stress that namek as h-dimensional diamond” are
parochial, as there are sometimes multiple “naturatfimensional extensions of a net related to a given
three-dimensional crystalline structure (e@y,, A}, andV:Y). For n-dimensional nets in general, we thus
strongly prefer names derived from a corresponding wdikhddn-dimensional lattice or, when such a name
is not available, names evocative of theidimensional construction; this preference is in shargrastwith
the names suggested by O’Keeffe (1991b).

Recall the first paragraph o4& Now start from a BCCA; =2 D3) lattice and perform a red/black/-
blue/yellow coloring of the points such that no two nearesighbor points are the same color. If we retain
only the red and black points, we are left with the diamondpagt The coordination number of this packing
is T = 4, which is less than that of the 3D cubic packing=6), but also has a reduced topological density,
as quantified bydio (see Table 3.1). The diamond packing also has a packingtgevtsich is less than that
of the corresponding FCC, BCC, and cubic lattices.

Note in general [see2(73] that A, may be defined as the union oft 1 shiftedA, lattices, which is
analogous to the property [sé249] thatD;, may be defined as the union of 4 shif@gllattices. Recall from
(2.5 thatDy;, which we referred to theffset checkerboard packingas defined as the union of just 2 shifted
Dy, lattices, and generates the diamond packing in 3D (wbegr& Az). Motivated by the previous paragraph
and the first paragraph o#&, we are thus also keenly interested in the nonlattice pgckansidered in
Table 1 of O’Keeffe (1991b), denoted hekg and referred to as theffset zero-sum packingnd which is
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defined as the union of just 2 shiftég lattices [cf. @.5), (2.7)]:

1 k<n,

AL =AU+ A), where mf{F# N1 5

n+l

The coordination number of the regular uninodal nonlattiaekingA} is n+ 1, with thesen+ 1 nearest
neighbors forming a regular-dimensionalsimplex[that is, a regulan-dimensional polytope withn + 1
vertices—e.g., im = 3 dimensions, a tetrahedron]. The generalization of theejaoomb and diamond
packings to higher dimensions given Ay is significant, as it illustrates how a highly regular staiéeking
with coordination number lower than that of the correspogdiartesian lattice may be extended to dimensi-
onn > 3. Note also that the nonlattice packins are distinct from the lattice packing$, defined in .8),
which are generated in a similar manner.

4.4.2 AugmentingA;: the ,&n* packing

The third paragraph of 83 discusses the augmentation of th¢ packing, replacing each sphere with a
tetrahedral set of 4 smaller spheres. This idea extends diatety to the augmentation, mdimensions, of
theAl packing discussed above, replacing eaetitnensional) sphere with a regutadimensional simplex
of n+ 1 smaller spheres.

4.4.3 Extendingsod the "A} packing

The familiarsod net is formed by the edges of the Voronoi tesselation ofesfacned by thed; (that is,
BCC) packing, with the nodes of the net located at ltloéesof the packing rather than at the centers of
the spheres of the packing. As noted by O’Keeffe (1991b3, ¢bnstruction extends immediately to the
dimensional net formed by the Voronoi tesselation of spé¢he A, packing. Constructing tha;, packing

as defined in 8.4, the holes of this packing that are nearest to the origirt {ghan its Voronoi tesselation,
the corners of the Voronoi cell which contains the origir given by thén+ 1)! permutations of the vector
(see Conway & Sloane, 1999, page 474):

1

T
m(—n —n+2 —n+4 n) .

These nodal points [which, like the lattice pointsAjf itself, are defined in afn+ 1)-dimensional space,
but all lie in then-dimensional subspace orthogonal to the venjqrdefined in £.68] are equidistant from
theirn+ 1 nearest neighbors, and fopermutohedrgin 3D, truncated octahedfawhich tile n-dimensional
space. Note that these nodal points themselves form a ualisptiere packing with coordination number
T=n+1; due to its relationship to thtesselatiorof space via the points of th, packing, we thus introduce
the notation'A;; for this packing.

4.4.4 Extendingnbo: the S, construction

Thenbo net, a subset of thecu net, has an obvious uninodal extensiomtdimensions witht = 4, which

may be visualized as the contact graph formed by repeatimit Aypercube pattern as an infinite array with
unit spacing (see Figute3), where each hypercube itself has two paths which “snaleigaihe edges from

the (0,0,---,0,0) node to the(1,1,---,1,1) node, one coordinate direction at a time; we thus suggest the
symbolS,, to denote this construction. These two paths touch at thesigpcorners of the unit hypercube:

pathA: (0,0,---,0,0), (0,0,---,0,1), (0,0,---,1,1), ..., (0,1,---,1,1), (L,1,---,1,1), and
pathB: (007070) (1707"'7070)7 (1717"'7070)7 LR (117170) (117171)
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Figure 4.1: Construction of three rare packings: (left)Yaghoneycomb) net, (center) th@o (ths) net, and
(right) thevg0 (dia) net. All three constructions build from left to right in téove figures from a basi™
or “V” stencil, and have obvious extensions to higher dimensions

4.4.5 Extendingths and bto: the Y29 and Y&° constructions

The honeycomb packing; , of coordination numbet = 3, contains a fundamentit-shaped stencil. As
illustrated in Figuret.la, starting with thisy stencil and adjoining translates of itself, tip to tip, loisilup
the honeycomb packing in 2D. Extending this idea to 3D, astitated in Figurd.1b, we may “twist” theY
stencil by 90 at each level: starting with the basicstencil in, say, the'-e? plane, we can shift to the right
(in e!) and adjoinY stencils twisted by 90(that is, aligned in the'-e® plane), then shift to the right again
and adjoinY stencils twisted again (aligned in tleé-e? plane), etc. This construction forms tthes net in
3D, and extends immediately to dimension 3; we thus denote this constructivC.

Instead of twisting th&” stencil by 90 at each step, we may instead twist it by’ 60his forms thebto
net in 3D. As with thehcp versusfcu andlon versusdia nets in 3D, as described at the end éf$ there is
a bit of flexibility in terms of the ordering of the the sucagsswists forn > 3. A highly regular net for odd
n, which we denoter89, is formed by pairing off the dimensions after the first artéralating the twists as
follows: starting with the basi¥ stencil in, say, the!-e plane, we continue by adjoining stencils in the
el-e* plane, then in the!-e® plane, etc. We then adjoi stencils in thee!-z53 plane, wheres$ is the vector
formed by rotating the? unit vector 60 in the direction towards®; we continue by adjoininy’ stencils in
thee!-z§2 plane, then in the'-zg0 plane, etc. Next, we adjoiv stencils in thee'-z33° plane, where}3Cis the
vector formed by rotating thégvector 60 further in thee?-e3 plane; we continue by adjoining stencils
in thee!-z320 plane, then in the!-z12% plane, etc., and repeat (that is, with stencils again atign¢hee!-e?
plane).

TheY2? andYEP constructions have a parameter, denatehd defined as half of the angle between the
two top branches of th¥ stencil (thusgo — 0° closes down the' to anl, whereasx — 90° opens up the
Y to aT). The Voronoi volume of th&2° and Y80 constructions may be written as simple functionsiats
follows:

’Vygo(a)
’VYEO(G)

EZiZYgog} with @=45", fy,(a) = (2— v2) (1+cosa) (V2 sina)" %,
Y§o

= fYn
= fYn
This relation is plotted in Figuré.2a. The characteristics &f2° and Y80 reported in Table 3.1 are compu-
ted fora = cos1(1/n), as marked with circles in Figur2a, which maximizes the Voronoi volume and,
thus, minimizes the packing density. An alternative ndtahaice isa = 60, which results in barycentric
constructions o¥2° andY$°.
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Figure 4.2: Variation of the Voronoi volume of the (Ieff° & Y89 and (right)Vv2° & VE° packings as a
function ofa forn=2ton=8.

4.4.6 Extendingdia and gtz: the V2° and VE° constructions

The V% andV8P constructions are defined in an identical manner as ##iandY& counterparts, with &
stencil replacing th& stencil (see, e.g., Figure1c), thus resulting in nets with coordination numbet 4
instead oft = 3. These constructions lead to tthi@ andqtz nets in 3D.

As with the Y2° and Y8 construction, the/2° andVE® constructions have a parameter, denateahd
defined as half of the angle between the two top branches d&f #tencil. The Voronoi volume of the°
andV8° constructions may be written as simple functionsias follows:

Vygo(ar) = fy, () Pygo(x)
= fVI"I

with a=45, fy (a)=2"2cosa (sina)" L.

Vygo(0) = fuy (@) Vyg0(0) } () (sin)

This relation is plotted in Figuré.2b. The characteristics 8f2° andVE° reported in Table 3.1 are computed
for a = cos1(1/,/n), as marked with circles in Figure2a, which maximize the Voronoi volumes and, thus,
minimize the packing density. Note that tig° andVE° constructions are barycentric for aayin the range
O0<a<90.

4.4.7 Extendingcdsand gzd: the T2° and T&° constructions

The T2% and TS constructions are defined in an analogous manner as¥fgiv°, Y89, andVv&° counter-
parts, and lead to thelsandqgzd nets in 3D. The only difference now is that, instead of adij@riwo newY
or V symbols on the tips of each or V symbol in the previous layer, we now adjoin a single newymbol
centered atop each symbol in the previous layer, appropriately twisted; thesestructions thus result in
nets with coordination number= 4. Note that the “horizontal” and “vertical” distances be#am nodes in
these constructions are equal, and that these constraetierparameter free and barycentric.

Note that thex; direction is special in ther2°, Y80, V20, v80 T30 and T8 constructions. These con-
structions are configured in this way intentionally, in artteconstruct equilibrium packings; however, other
variations are certainly possible. Note also that'¥i§8, V&0, and T constructions involve pairing off the
dimensions after the first and rotating in each pair of dinTs60 at a time, in the manner described in
84.4.5 If we follow the same procedure but rotate’@Q a time, we recover nets equivalent to the correspon-
ding Y20, V20, and T nets, respectively, as defined previously.

Note also that they 29, V20, andT7° constructions form square layers in tisees plane, thees-es plane,
the eg-e7 plane, etc., whereas thé°, V80, and T8 constructions form triangular layers in these planes. In
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the resultingy2°, Y80, V20, andV&0 nets, there are, in fact, no edges of the net within thesedajfeat is,
all of the edges connect nodes in different layers). On therdiand, in the resultin2® and TS° nets, each
node is connected via edges of the net to exactly two othete:(not four or six) within these layers. As
with the peculiaD}; net discussed previously, tig° and TE constructions are, in fachot contact graphs
of the corresponding sphere packiffysome bonds must be cut in the corresponding contact gragtis,
in the case off 29, is simplyZ") in order to form theT 3 and T8 nets.

4.4.8 Other extensions

Sections4.4.1through4.4.7summarize several uninodal families mflimensional extrapolations of some
common 3D nets; most of these (unless indicated otherwiaagferences to existing literature) are new.
Note that O’Keeffe (1991b) mentions two other such extersione corresponding to then net and one
corresponding to theod-a the latter of which is currently the rarest uninodal stgdzleking known fon > 3
(and which, consistent with the above developed namingerions, we might suggest to identify &&;).
Beukemann & Klee (1992, page 50) mentions two extensionsadf bwn (at least, to = 4), both related to
thedia net. Judging from the vast assortment of distinct rare sppackings and related nets available in 3D,
there are certainlynanymore uninodal extensions to higher dimensions of regutar3® packings that are
still awaiting discovery; we have focused our attentioretmm what appear to be several of the most regular.
The regularity ofn-dimensional nets fon > 3 is discussed further below.

4.5 Regularity and transitivity of n-dimensional nets forn > 3

As reviewed in 8.1, the regularity of a 3D net is defined based on its transjtivithich in turn is based on
the so-called natural tiling of the 3D net. The natural tid<3D nets have been thoroughly characterized
in the literature for all of the most regular 3D nets avaiabh &.4, we described uninodal extensions of
several regular 3D nets to higher dimensions, and mentitrednany more such uninodal nets with- 3
most certainly exist. The natural question to ask, thenpis the concepts of regularity and transitivity can
be extended to higher dimensions, so that we may differternttietween these nets and identify those which
are the most regular.

This question is difficult to visualize in dimensions higltiean three, and requires a symbolic/numerical
description of the net to proceed. The net arising fromZhéattice forn = 4,5, ..., which is naturally tiled
by n-dimensional hypercubes, is by far the easiest startingtpbienote first the symbolsv,w,x,y,z} as
variables that range from 0 to 1. The 3D unit cube, dendxgd}, has six faces{xy0, xyl, x0z x1z,0yz 1yz}.
Each face, in turn, has four edges; e{@yz} has edge$0y0,0y1,00z 01z} . Finally, each edge connects two
nodes; e.g.{00z} connects nodeS000,001}. The 4D unit hypercubdwxyz, has eight 3-faces, which we
identify as{wxy0, wxyl, wx0z, wx1z, wOyz wlyz Oxyz 1xyz}, each 3-face has six 2-faces, each 2-face has four
edges, and each edge connects two nodes. The 5D unit hypefeulxyZ, has ten 4-faces, each 4-face has
eight 3-faces, each 3-face has six 2-faces, each 2-facetasdges, and each edge connects two nodes; etc.

In 3D, as reviewed in 4.1, the transitivity is based on the number of distinct noddges, (2D) faces,
and (3D) tiles. By analogy, then, in 4D we may define the ttaiityi of a net based on the number of
distinct nodes, edges, 2-faces, 3-faces, and (4D) tildsimatural tiling. Similarly, in 5D, we may define the
transitivity based on the number of distinct nodes, edgéaces, 3-faces, 4-faces and (5D) tiles in the natural
tiling; etc. Via this definition, the net derived from ti#é lattice has transitivity 11111, the net derived from
theZ® lattice has transitivity 111111, etc.

10Note that there is a lower-symmetry formafsin 3D with four nearest neighbors per node whose contactgaps generate the
cds net; see Delgado-Friedrichs (2005, Figure 1). Lower symyrferms of otherTE° and T8 constructions, whose nets are contact
graphs, might also exist.
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For all of the other nets witlm > 3 listed in Table 3.1, the computation of the transitivitynans an
important unsolved problem. Note that, in a tiling corrasgiog to a 3D net, the (2D) faces of the (3D) tiles
are, in general, minimal surfaces stretched over non-pliames built from (1D) edges between several
nodal points defined in 3D. In a tiling corresponding toradimensional net fon > 3, the 2-faces of the
tiles are, in general, minimal surfaces stretched over laoap frames between several nodes defined in
dimensions. [Note that the computation of such minimalae$ inn dimensions is straightforward using
standard level set methods; see, e.g., Cecil (2005).] Skwkthese nonplanar 2-faces combine to form the
boundaries of each 3-face, which itself is not confined tonlithin a 3D subspace of the-dimensional
domain. Several of these 3-faces then combine to form thedaries of each 4-face; etc.

Identification of such high-dimensional natural tilingsaigparently a task that could be readily accom-
plished numerically, but is, in general, expected to bedliffito visualize.
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5.1 Introduction

Though the lattices that arise fromdimensional sphere packings have connections that péenneany
foundational concepts in number theory and pure geombgyidt of successful direct applications in science
and engineering af-dimensional sphere packings with> 3 is currently surprisingly shattthis list includes

the numerical evaluation of integrals (Sloan & Kachoyan7)98

the solution of the linear Diophantine inequalities thégeim integer linear programming (Schrijver 1986),
the characterization of crystals with curious five-fold syetries (Janssen 1986),

attempts at unifying the 4 fundamental forces (in 10, 11,®d&nensions) via superstring theory (Kaku
1999), and

¢ the development of maximally effective numerical scheneeaddress an information-theoretic interfe-
rence suppression problem known as the Witsenhausen cexateple (Grover, Sahai, & Park 2010).

Far and away the most elegant and practical applicatiamdifnensional sphere packings, however, is in
the framing and understanding effror correcting codegECCS. The reader is referred to MacWilliams &
Sloane (1977), Thompson (1983), Pless (1998), Conway &n&l¢a998), and Morelos-Zaragoza (2006)
for some comprehensive reviews of this fascinating subjedirief overview of this field is given here to
emphasize the existing practical relevance-afimensional sphere packings with> 3; we aim to augment
this list of practical applications significantly in Partsaind 11l of this text, based heavily on the various
aspects of-dimensional sphere packing theory reviewed and exterdBdiit I.

To proceed, defin€&q [also denotedSF(q)] as the set of symbols in #nite field (a.k.a.Galois field
of orderq, whereq = p? with p prime, and defind=; as the set of all vectors of orderwith elements
selected fronFq. The cases of particular interest in this work are iveary fieldF, = {0,1}, theternary
field F3 = {0,1,2}, and thequaternary field F4 = {0, 1, w, @}, where, as in 8.1, w = (—1+iv/3)/2 [note
thatw? = @, @ = w, andw- w= 1]. In a finite fieldFq, addition @) and multiplication () are closed (that
is, they map to elements within the field) and satisfy the Lisuas: they are associative, commutative, and
distributive, there is a O element such that 0 = a, there is a 1 element such tretl = a, for eacha there
is an element—a) such thae+ (—a) = 0, and for eacla # 0 there is an elemest ! such thae-a ! = 1.
If qis itself prime (e.g., ifg = 2 or q = 3), then standard integer addition and multiplication ngddrms a
finite field. If not (e.g., ifg = 4), a bit more care is required in order to obtain closure iwithe finite field
while respecting these necessary rules on addition andpiicdtion. For the cases considered in this section
(specifically,F», F3, andF4), addition and multiplication oftq are thus defined as follows:

+Jojrl2 _-JJoj1]z2

all ol ofNolz1]2 offoJo]o
Fo: 0 0|1 0 0|0 Fa: 1 17510 1 o T 112
1 1o 1 01 2 2101 2 021
+[0]1]w]w JJojl]w]|w
0 0 1] w]|]ow 0 0|0 0 0
Fa: 1 1]0] w]|w 1/fol1]w]w
wllw|lwl0o]1 w0l w|lw]|1
wllw|lwl1]O0 w|[0]lw| 1w

A vector inFy is a vector of lengtm with each element ifrq. TheHamming distanceetween two such
vectors is the number of elements that differ between them.

INotably, Conway & Sloane (1998, page 12) state: “A relateuliegtion that has not yet received much attention is theofiseese
packings for solvingr-dimensionakearchor approximationproblems”; this is exactly the problem focused on in our Rart

2We limit our attention in the quaternary case to codes desigwer the finite fieldF4; though there is some attention in the literature
to codes defined ovet, [that is, over the integers mod 4], codes defined over finitdfitirn out to be, in a sense, more natural.
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An [n,Klq (if d is specified|n,k,d]q) g-ary lineaP code(LC) is defined via a set df < n independent
basis vectors' € Fn ThegK distinctcodewordsv' € Fn of the LC are given by alij-ary linear combinations
of the basis vectors' (that is, by all linear combmatmns with coefficients sédecfromFq, with addition
and multiplication defined elementwise Bg). The basis vectorg are generally selected such tménimum
distance dof the LC (that is, the minimum Hamming distance between ay ftesulting codewords) is
maximized.

This work focuses on cases wif= 2 [termed dinear binary cod€LBC)], q= 3 [termed dinear ternary
code(LTC)], andg = 4 [termed dinear quaternary codéLQC)]. In cases withg = 2, which are common, we
frequently write simplyin, k] or [n,k,d], dropping theg subscript. We denote By, i, (0r Vjnkq),) then x k
basis matrixwith the k basis vectors' as columns, and bW[n,k]q (orV\/[n,k,d]q) the n x ¢ codeword matrix
with thegk codewordsv' as columns. Without loss of generality, we wigy, and a companiom—Kk) x n

parity-check matrix kg o in the standard (a.k.aystematizform*

Tk i [d
Hinkg = [~Pnkxk Tnkxink]s Vinkg = [P(nk)XJ , W= {bi : (5.1)
When written in systematic form, each of the data vectdrblock decomposes into itsdata symbofsd’
and itsr = n—k parity symbold'; note thatr is sometimes called theedundancyof the code. Note also
thatHn i, Vink, = 0 (0N Fq)®, which establishes that the basis vectdrso constructed [and, thus, all of the

resulting codewords'] each satisfy th@arity-check equationsH[n K w =0 (onFg), as implied by the rows
of Hn i, and llustrated by the several examples givenin systerfmm in 85.2, 85.3 and %.4. Note further
that, for LBCs and LQCH = —P.

The key to designing a “goodh, k]q LC is to construct thearity submatrix B,_g).k in (5.1 in such a
way that the minimum distanaof the resulting code is maximized for given valuespk, andg. Indeed,
the problem of designing a good binary error correcting desdessentially a finite sphere packing problem
onF; thus the very close relationship between the design of-ewrecting codes and the design of infinite
dense sphere packingslitt, as discussed in%g

For g = p® with p prime, conjugationin Fq (that is, for a scalav € Fg) is defined such that = vP;
conjugation inFg (that is, for vectors € Fg), as well as for matrices formed with a number of such vectors
as columns, is performed elementwise. Anyq linear codeC has associated with it gn,n—k|q dual code
C! defined [cf. @.1)] such that

={weF] :w-u=0 forallueC}. (5.2)
q

The parity-check and codeword matrices3sf may be written in systematic form as

Hinn kg = [P7 lnkxmi)s Vi i [ s k] (5.3)

whereP denotes conjugation iRy of each element of the parity submatff the original[n, k|q linear code
C. Note thatP™ is of orderk x (n—k), and, of course, that vk =0 (onFg). Note further that,

[n,n—Klq " [n,n—Klqg
for LBCs and LTCsy = U andP = P.

SNonlinearg-ary codes also appear in the literature, in which the valiteavords ar@otsimply linear combinations of a set of basis
vectors and must be enumerated differently. Such codeshveine related to nonlattice packings, are in general mdfieudi to decode
than LCs, and are not considered further here.

4In the literature on this subject, it is more common to useentgator matrix'G to describe the construction of linear codes. The
“basis matrix” conventio® used here is related simply to the corresponding generattrxnsuch thaV/ = G' ; we find the basis matrix
convention to be more natural in terms of its linear algebiaterpretation.

5The word “bit”, a portmanteau word for “binary digit”, is gerally reserved for the case with= 2; in the general case, we use the
word “symbol” in its place.

6The qualifiers “(orFq)” and “(modq)” are used, as appropriate, to remind the reader that ricétiipn and addition in the equation
indicated are performed elementwise on the finite figjdas discussed above.
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Figure 5.1: Valid codewords of (left) the (SE[3, 2,2], LBC, and (right) its dual, the (perfect, SE@) 1, 3],
LBC. The blue sphere denotes the origin, a@&pecifies the number of edges between any two codewords.
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Figure 5.2: Valid codewords of (left) the (SE[3) 2, 2]3 LTC, and (right) its dual, the (SE(3,1,3]3 LTC.

A self-dualcodeC is a code for which the the transpose of the codeword m¥tresults in a new matrix
H which is itself the parity-check matrix of a code which is emilent toC, albeit not in systematic form.

Graphically, the codewords of dn,k,d], LBC may be thought of as a carefully chosen subset‘aff2
the 2' corners on a singla-dimensional unit hypercube, as illustrated foe 3 in Figure5.1, whereas an
[n,k,d]3 LTC may be thought of as a subset &f& the 3' gridpoints in a cluster of 2unit hypercubes in
n-dimensions, as illustrated for= 3 in Figure5.2 For anyq, d quantifies the minimum number of symbols
which differ between any two codewords. It follows that:

e AnLC with d =2 issingle error detectingSED) [see, e.g., Figures.1a ands.2a]. In this case, the sum (on
Fq) of the symbols in each transmitted codeword is zero, sdsfaissumed that at most one symbol error
occured and this sum is honzero, then a symbol error in tressgm occurred, whereas if it is zero, then
a symbol error did not occur. However, if a symbol error imsaission occured, the received (invalid)
message is generally equidistant from multiple codewaalg,is not possible to correct the symbol error.
Two or more symbol errors can cause the codeword to be migheted.

e An LC with d = 3 is single error correcting(SEQ [see, e.g., Figures.1b and5.2b]. In this case, if it is
again assumed that at most one symbol error in transmissmured, then if the received codeword is not
a codeword, there is only one codeword that is unit Hammistadce away, so the single symbol error
may in fact becorrected Again, 2 or more symbol errors can cause the codeword to biat@ipreted.

e An LC with d = 4 issingle error correcting and double error detecti@§@ECDED. In this case, if a single
symbol error occurs, the received codeword will be unit Hangnaistance away from a single codeword,
and thus single symbol errors can be corrected. On the oétmet, lif two symbol errors occur, the received
codeword is generally Hamming distance 2 away from multjoldewords, so double symbol errors can
be detected butotcorrected. Now, 3 or more symbol errors can cause the codewobe misinterpreted.

e An LC with d = 5 isdouble error correcting DEC), with 3 or more symbol errors causing misinterpreta-
tion.

e An LC with d = 6 isdouble error correcting and triple error detectif@ ECTED), with 4 or more symbol
errors causing misinterpretation.

e An LC with d = 7 istriple error correcting(TEC), with 4 or more symbol errors causing misinterpretation.

e An LC with d = 8 istriple error correcting and quadruple error detectifdECQED), with 5 or symbol
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Figure 5.3: The lattice corresponding to gmnk,d] LBC is formed by repeating the unit hypercube pattern
given by the LBC (see, e.g., Figukel) as an infinite array with unit spacing. In the above exampie,
illustrate this extension for (left) the face-centeredicBCC) lattice generated by t8,2,2] LBC, D3 =
ut, (WI[3,2,2] +278), and (right) the body-centered cubic (BCC) lattice gereztaty the[3,1,3] LBC, D} =

Ui2:1 (W'[3,1’3] +273). The blue spheres, taken together, forprianitive cellthat, repeated as an infinite array
with zerospacing, tile (that is, fill) the domain.

errors causing misinterpretation.
e An LC with d =9 is quadruple error correctingQEC), with 5 or more symbol errors causing misinter-
pretation.

The labels defined above are frequently used to quantifyrtioe @rrection capability of an LC. Alternative-
ly, if error correction isnotattempted, then:

An LC with d = 2 is single error detecting, with 2 or more symbol errors gaumisinterpretation.

An LC with d = 3 is double error detecting, with 3 or more symbol errors capsiisinterpretation.

An LC with d = 4 is triple error detecting, with 4 or more symbol errors gagsnisinterpretation.

An LC with d = 5 is quadruple error detecting, with 5 or more symbol erratssing misinterpretation.

Error correcting algorithms are useful for a broad rangeat&dransmission or data storage applications in
which it is difficult or impossible to request that a corruptdeword be retransmitted; algorithms which
use such LCs for error detection only, on the other hand, neayded only when efficient handshaking is
incorporated in @ manner which makes it easy to request aahdeany messages that might be corrupted
during transmission.

An [n,k,d]q LC is perfectif, for some integet > 0, each possible-dimensionalg-ary codeword is
of Hamming distance or less from a single codeword (that is, there are no “wastedlewords that are
Hamming distance+ 1 or more from the codewords, and thus may not be correctest timelassumption that
at most symbol errors have occured); note that a perfect code had ed?t +1 > 1. A remarkable proof by
Tietavainen (1973), which was based on related work byl\fat) establishes that thenly nontrivial perfect
LCsarethg(q™—1)/(q—1),(q"—1)/(q— 1) —m,3]q perfectg-ary Hamming codes and tti23,12, 7], and
[11,6,5]3 binary and ternary Golay codes, described furthel5r2@nd &.3.

An [n,k,d] LC is quasi-perfectf, for some integet > 1, each possible-dimensionabi-ary codeword is
either (a) of Hamming distan¢e- 1 or less from a single codeword, and thus uptd symbol errors may be
corrected, or (b) of Hamming distantéom at least one codeword, and thus codewords ts§mbol errors
may be detected but not necessarily corrected (that ise trer no “wasted” codewords that are Hamming
distance + 1 or more from a codeword, and thus may not be reconciled uhdeassumption that at madst
symbol errors have occured); note that a quasi-perfectlcageverd = 2t > 2.
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Note finally, as illustrated fon = 3 in Figure5.3 that a real lattice corresponding to pmk,d], LBC
may often be constructed by forming a union 6f@sets:

ok
Construction A | (Wi q), +22"), (5.4a)
i=1
where thecoset representativés this constructiom\/[n kdl fori=1,...,2 are the codewords of the, k, d],

LBC under consideration an@v + 2Z") denotes &" lattice scaled by a factor of 2 with all nodal points
shifted by the vectow; thus, Construction A denotes the union of the nodal poimseiveral such scaled and
shiftedZ" lattices. An alternative real lattice may sometimes be tranted via:

{Zﬂ e 22} (5.4b)

where(2Z) denotes the even integers, and thus the last condition istdoes writteny ! ; x; = 0 (mod 2).
In an analogous fashion, a complex lattice correspondiraafo, k, d]q LC may often be constructed by
forming a union ofg¥ shifted and scaled-dimensional’ latticesZ[w)]" (see &.1) such that

ok
Construction B U nkd +2J) where J= {x ezZ"

c‘k

Construction & : [ J (w inkdjq T TZ[]"), (5.5a)
i=1

where, in the sequel, the multiplicative factotakes two possible values (2 afid= w— w= iv/3) and the
coset representatives in this construct'uvpzk dlq fori=1,...,q% are the codewords of the, k, d]q LC under

consideration. An alternative complex lattice may somesiie constructed via:

L_ixi} i } (5.5b)

where(Tt&’) denotes the lattice of Eisenstein integers in the complaregmultiplied (that is, rotated and
scaled) by the (possibly complex) factar Note the remarkable similarity in structure between the re
constructions in §.49-(5.48) and the complex constructions i6.69-(5.55. Note also that real lattices
corresponding to any of the complex lattices so construttayl easily be generated via.p).

k

Construction & : U inkdl, + 1) where J= {x € Zw|"
i=1

5.2 Exemplary linear binary codes (LBCs)

We now summarize some of the families of LBCs available,gmérg each in systematic forra.().

5.2.1 Binary single parity-check codes

The simplé [n,n— 1,2] binary single parity-check codese SED, and includg, 1,2] (self-dual),[3,2,2],
[4,3,2], [5,4,2], etc. Using such a code, for ea@ih— 1) data bits to be transmitted parity bit is generated
such that the sum (mod 2) of the data bits plus the parity i)t ishen decoding, an error is flagged if this
sum (mod 2) is 1. Thé3,2,2] code illustrated in FigurB.1a is given by

0 1

1 1. (5.6)

1

10 0
Hezg=(1 1 1, Vgag=(0 1], Wgpp=|{0
1 0 0

R OoR

1

“As mentioned previously, whep= 2, we suppress thgsubscript for notational clarity; we thus do this throughg%.2.
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Other binary single parity-check codes have a partity subrR [see 6.3)] of similar form (a row of 1's).
As seen fon = 3in Figure5.3a, via Construction A, thgn, n— 1, 2] binary single parity-check code generates
the Dy, lattice (see 8.3), which forn= 3 is FCC.

A single parity-check code (binary or otherwise), with= 2, can detect but not correct an error in an
unknown position. However, it can correct arasure that is, the loss of data from a known position. A
common application of this capability is in a RAID 5 systenpapular configuration for a relatively small
Redundant Array of Independent Disks such a system, data is striped acnosisives using a single parity
check code; if any single drive fails, it can be recoveredbynby achieving parity with the other disks.

5.2.2 Binary repetition codes

The dual of the binary single parity-check codes are thelsifnpl, n] binary repetition codesvhich include
[2,1,2] (SED, self-dual)[3,1, 3] (SEC, perfect)|4,1,4] (SECDED),[5,1,5] (DEC), etc. This family of codes
just repeats any given data littimes; when decoding, one simply needs to determine whidhetwo
codewords that the received code is nearest to.[3e3] code illustrated in Figurg.1b is given by

1 0 1
1 1 0
Hzi3 = (1 0 1> , Vi3 = (i) ;o Wigag = 8 i . (5.7)

Other binary repetition codes have a partity submatrixwilair form (a column of 1's). As seen for= 3 in
Figure5.3b, via Construction A, thén, 1, n| binary repetition code generates g lattice (see 8.3), which

for n= 3 is BCC. Via Construction B, on the other hand, {Bel, 8] binary repetition code generates the
Eg lattice (see 8.5). Note also that th¢3,2,2] binary single parity-check code with each bitVinrepeated
vertically mtimes leads to &3m, 2,2m| code, which may subsequently be rearranged into systefoatc
takingm = 4 and applying Construction B, the resultifig, 2,8] code, which is TECQED, generates the

AT lattice (see 8.6).

5.2.3 Binary Hamming codes

The[2™—1,2™—1—m, 3] binary Hamming codeare perfectand SEC, and inclu@el, 3], [7,4, 3], [15,11, 3],
[31,26,3], [63,57,3], [127,120,3], etc. For a giver{2™ — 1 — m) data bits to be transmitted, each parity bit
is generated such that the sum (mod 2) of a particular sulbské aata bits plus that parity bit is 0. Note
that, when decoding, tha parity bits may be used in a simple fashion to determine niytwhether or not

a single bit error occured (which is true if one or more of ghearity bits is nonzero), but if it didyhichbit
contains the error, as discussed further in58To illustrate, the venerabl@, 4, 3] code, with four data bits
{d1,dz,ds,ds} and three parity bit$bs, by, bs}, is given by

1.0 0 &
010 0 d
011110 001 0 ds
H[7,4,3] =1 0 1 1 0 1 0], V[7,4~3] =0 0 0 1|, w= d4 (58a)
110100 001 1 1 by
10 1 1 by
1 1 0 bs
0101010101010 10
0011001100110 0 1
000011 110000111
Wra3=fo 0 0 0 0 0 00 1 11 1 1 1 1 (5.8b)
001 11100110000 1
0101101010100 10

The parity-check matriid of the[7,4,3] code has as columns all nonzero binary vectors of lefrgthk) = 3;
when expressed in systematic form, fhe- k) columns ofH corresponding to the identity matrix are shifted
to the end, and the remainikgcolumns ofH, in arbitrary order, make up the partity submatfixOther
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binary Hamming codes may be built up similarly. Via Constiat A, the [7,4, 3] binary Hamming code
generates thE; lattice (see 8.5).

A Hamming code (binary or otherwise), with= 3, can only correct a single error in an unknown position.
However, it can correct up to twaerasureqcf. 85.2.1). A common application of this capability is in a RAID 6
system, a popular RAID configuration for large storage systm data critical applications. In such a system,
data may be striped acrossirives using a Hamming code; if any single drive fails, it b@&recovered using
an appropriate parity check equation (that is, one of thitypelreck equations that takes that bit into account).
If (while rebuilding the information on that disk, which ntigtake a while if the disk is large)secondrive
fails, then two useful equations may be derived from(the k) parity check equations: one that takes failed
disk A into account but not failed disk B, and one that takdéediedisk B into account but not failed disk A.
By restoring parity in these two derived equations, therimi@ion onbothdrives may be rebuilt.

5.2.4 Binary simplex codes

The dual of the binary Hamming codes are fB8& — 1,m 2™1] binary simplex codefa.k.a. the binary
maximum-length-sequen@dLS) codes], which includ€3, 2, 2] (SED), [7,3,4] (SECDED),[15,4,8] (TEC-
QED), etc. These codes are remarkable geometrically, astiiewords form a regular simplex. Tf&2, 2
code is illustrated in Figurg.1a; the[7, 3,4] code is given by

1 0
01110 0 P
1 0 1 0 1 0 O
Hrsa=|7 1 0 o o 1 ol V734= 2 é 1 (5.9)
11 1 0 0 O 11 0
1 1

Other binary simplex codes have a partity submatrix givemilarly by the transpose of the corresponding
binary Hamming code. Via Construction A, tlii& 3,4] binary simplex code generates the lattice (see
§2.5). Via Construction B, th¢l5,4, 8] binary simplex code generates the; lattice (see 8.6).

5.2.5 Extended binary Hamming codes

The[2™,2™— 1 —m, 4] extended binary Hamming coda® quasi-perfect and SECDED, and incl{did, 4|,
[8,4,4] (self-dual),[16,11,4], etc. These codes are just binary Hamming codes ee3with an additional
overall parity bit (see 8.2.), and thus, assuming no more than 2 bit errors have occurayl be decoded
similarly, as discussed further is&. To illustrate, the venerab[8,4,4] code is given by

1.0 0
010 0
0111100 00 1 0
1011010 0 000 1
Heag =17 1 0 1 0 0o 1 o VB44=|0 1 1 1 (5.10)
1110000 101 1
110 1
11 1

Other extended binary Hamming codes have a partity subxthaii may similarly be constructed by adding
an overall parity bit to the corresponding binary HammindeoVia Construction A, thé8, 4, 4] extended
binary Hamming code again generatesHadattice.

5.2.6 Binary biorthogonal codes

The dual of the extended binary Hamming codes aréhan+ 1, 2™1] binary biorthogonal codea.k.aHa-
damard codes and includd4, 3, 2] (SED),[8,4, 4] (SECDED, self-dual)16,5, 8] (TECQED),[32,6,16], etc.
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The[32,6,16] code was used on the Mariner 9 spacecraft. These codes timguished by the characteristic
that their codewords are mutually orthogonal [thatiS,w! = 0 (mod 2) fori # j]. Note that thg4,3,2] and
[8,4,4] codes have already been discussed above. The binary lgortabcodes each have a partity subma-
trix that is simply the transpose of the parity submatrixef torresponding extended binary Hamming code,
the construction of which is described i6.8.5 Via Construction B, th¢16,5,8] binary biorthogonal code
generates thA ¢ lattice.

5.2.7 Binary quadratic residue codes

The [n,(n+1)/2,d] binary quadratic residue codesre defined for all prima for which there exists an
integer 1< x < n such that? = 2 (modn) [equivalently, for all primen of the formn = 8m- 1 wheremis an
integer], and includ€r, 4, 3] (SEC, perfect, as introduced s 8.3, [17,9,5] (DEC),[23,12,7] (TEC, perfect,
a.k.a. thevinary Golay codg [31,16,7] (TEC),[41,21,9] (QEC),[47,24,11], etc. Adding an overall parity bit
to these codes, tHe+ 1, (n+1)/2,d+ 1] extended binary quadratic residue codleslude[8, 4,4] (SECDED,
quasi-perfect, self-dual, as introduced .25, [18 9,6] (DECTED),[24,12 8] (TECQED, quasi-perfect,
self-dual, a.k.a. thextended binary Golay coylg32,16,8] (TECQED), [42,21,10], [48,24,12], etc. The
venerabld24,12 8] extended binary Golay code, used by the Voyager 1 & 2 spaitesrgiven by

|12x12}

Hpa128 = [Piaxiz  l12c12], Vipa12g = {pllez .

(5.11)
Piox12 =

RPRRRPRRRRRERRLRRERO
RFPORRPROROOORR

POROOORRRORLER
PRPORFRPOOORRRFROPR
ORRFRPORPROOORRRE
PORRFRPROROOORRLHEL
PRPRRPRORPRORPROOOLR
ORrRPRFRPRORRFRPOROOLR
OORrRRFRPRPFRPRORFRPRRFROROR
OO0OORRFRPRRFRPRORRORLPR

1
1
1
0
1
1
1
0
0
0
1
0

=
[

Note thatP is symmetric. Thg23,12,7] binary Golay code may be obtained pyncturingthe [24,12, 8]
code listed above; that is, by eliminating any rowRdftypically, the last).

Via Construction B, th¢24, 12, 8] extended binary Golay code generatedtbech half-lattice ks, which
may be joined with a translate of itself [that 424+ a wherea; = —3/2 anday = 1/2 fork =2,...,24] to
construct the\y4 lattice.

Note that many of the binary codes introduced above fall iwithlarger family of codes collectively
referred to aRkeed-Mullercodes, as illustrated in Figuke4.

5.2.8 Extending, puncturing, and shortening

The (perfect) binary Hamming and binary Golay codes magtiendedo quasi-perfect codes by adding
an overall parity bit, thereby increasimdoy 1 and, in the case of these specific codes, increasimgl. A
code obtained by essentially the reverse of this procesgviag a parity bit and thus reducing battand

d by 1, is sometimes said to lpunctured In contrast, a code obtained by removif©ig 1 data bits, thus
reducing bottm andk by ¢, is said to beshortenedA typical and common application is in error-correcting
memory systems for computers, in which the data often coratsaily in blocks of 64 bits. Starting from
the [127,120 3] binary Hamming code, one may eliminate 56 data bits to createortenedr1,64,3] SEC
code; alternatively, starting from th&28 120 4] extended binary Hamming code, one may eliminate 56 data
bits to create a shortengd2, 64,4] SECDED code. Many ECC Memory and RAID 6 storage systems are
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k=2"d=1

v .
universe codes

[32,32,1]
[16,16,1] L k=2"-1,d=2
48 81 0[32 31.2) single parity-check codes
J4,4.1] .[16.15,2] L k=2"-1-md=4
extended Hamming codes
J2.2.1] 48,72 [32,26,4]
[4,3,2] [16,11,4]
J212l 844 [3216.8] k=2m1 d=2mb/2
O[ 4,1,4] 0[16, 58] self-dual codes
8,18 (326,16
161,16 R

321,32

JL1,1]

ol
k=m+1,d=2m1
biorthogonal codes

k=1,d=2"

= repetition codes

Figure 5.4: The family of2™ k d] Reed-Muller binary codes fan=0 to 5.

based on variants of such shortened binary Hamming codeésh ate simple and fast to use. Note also that,
via Construction B, th§1, 9, 8] code obtained by shortening tf#4, 12 8] extended binary Golay code by 3
data bits generates directly the; lattice.

5.3 Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available,gméng each in systematic forri.(), noting
that all have analogs in the binary setting.

5.3.1 Ternary single parity-check codes

The[n,n—1,2]zternary single parity-check codase SED, and includ®, 1, 25 (self-dual),[3,2,2]3, [4,3,2]3,
etc. As illustrated fon = 3 in Figure5.2a, the[3, 2,23 code is given by

1 0 01 2 0 1 2 0 1
Hiz22; = (1 1 1) s V322,=|0 1], Wgzo,=|0 0 0 1 1 1 2 2 . (5.12)
2 2 0 2 1 2 1 0 1 O

Other ternary single parity-check codes have a partity subrP [see 6.3)] of similar form (a row of 2’s).
Via ConstructiorA‘}, the[3,2,2]3 ternary single parity-check code generatesifdattice.

5.3.2 Ternary repetition codes

The dual of the ternary single parity-check codes are[hg n|3 ternary repetition codeswhich include
[2,1,2]3 (SED, self-dual)[3,1,3]3 (SEC),[4,1,4]|3 (SECDED), etc. As illustrated far = 3 in Figure5.2b,
the[3,1, 3|3 code is given by

2 1 0 1 0 1 2
H[3.1,3]3:<2 0 1), V31,35 = i » Wigig, = 8 i g . (5.13)
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Other ternary repetition codes have a partity submatrixrofiar form (a column of 1's). Via Construction
A‘Z@, the 3, 1,33 ternary repetition code generates Bgattice. Via Constructio®,, on the other hand, the
[6,1,6]3 ternary repetition code generates Kie lattice.

5.3.3 Ternary Hamming codes

The[(3M-1)/2,(3™—1)/2—m,3]3 ternary Hamming codeasre perfect and SEC, and include2, 3|3 (self-
dual, a.k.a. theéetracod@, [13,10, 3], [40, 36,33, etc. To illustrate, the venerahg 2, 33 tetracode is given
by

1110
Hia23, = (1 2 0 1)» Via23s =
2 1

The parity-check matrid of the [4,2,3]3 code has as columns those nonzero ternary vectors of length
(n—k) = 2 whose first nonzero entry is 1; when expressed in systerfatit, the (n— k) columns ofH
corresponding to the identity matrix are shifted to the eard] the remaining columns ofH, in arbitrary
order, make up the entries efP. Other ternary Hamming codes may be built up similarly; fearaple, the
[13,10, 3|3 code is given by

001 11 11
Hi131035 = ( 1100 1 1 1
121 20 2

1 0
0 1
> ol (5.14)

1 1 11 0 O
2 2 20 1 0>7 V13103 = {Iégxm} . (5.15)
1 01 20 0 1 *10

A
=—P3x10

Via ConstructiorA‘}, the[4,2,3]3 tetracode again generates thelattice.

5.3.4 Ternary simplex codes

The dual of the ternary Hamming codes are {38 — 1) /2, m, 3™ 1]3 ternary simplex codesvhich include
[4,2,3]3 (SEC, perfect, self-dual)13,3,9]3 (QEC),[40,4,27]3, etc. These codes are remarkable geometri-
cally, as their codewords are all equidistant from one agrotfernary simplex codes have a partity submatrix
given by the negative transpose of the corresponding tgti@amming code.

5.3.5 Ternary quadratic residue codes

The[n, (n+1)/2,d]s ternary quadratic residue codese defined for all prima for which there exists an inte-
ger 1< x < nsuch thak? = 3 (modn) [equivalently, for all primen of the formn = 12m+ 1 wheremis an inte-
ger], and includ¢ll, 6,5|3 (DEC, perfect, a.k.a. thernary Golay codg [13,7,5|3 (DEC),[23,12,8]3 (TEC-
QED), [37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these codes,[the 1, (n+1)/2,d+ 1|3
extended ternary quadratic residue codeslude [12,6,6]3 (DECTED, quasi-perfect, self-dual, a.kthe
extended ternary Golay cojjé14,7,6]; (DECTED),[24,12,9]3 (QEC),[38,19,11]3, [48,24,15]3, etc. The
venerabld12, 6, 6]3 extended ternary Golay code is given by

|
Hi126.65 = [*Psxs |6x6] » Vizee; = {F%iﬂ , Pexe= (5.16)

RPRrRrRPRRO
FNNROR
NN R OR R
NRPORNER
oORr NN R
= NN

1
Note thatP is symmetric. Thgl1l 6,5|3 ternary Golay code may be obtained by puncturing|ft#6, 6|3
code listed above.

Via Constructiongg, the[12,6,6]3 extended ternary Golay code generates an intermedidtelathich
may be joined with two translates of itself to generate/thglattice.
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5.4 Exemplary linear quaternary codes (LQCSs)
We now summarize some of the families of LQCs available,grtisg each in systematic forrf.().

5.4.1 Quaternary single parity-check codes

The [n,n— 1,2], quaternary single parity-check codase SED, and includg,1,2], (self-dual),[3,2,2]4,
[4,3,2]4, etc. The[3,2,2]4 code is given by

10
He2z,=(1 1 1), Vp2z,=(0 1],
11
_ _ z (5.17)
0 1 w w 01 w w 0 1 w w 0 1 w w
Wso2,=(0 0 0 01 1 1 1w 0 0 0@ 0@ @ © ©
0 1 w w 1 0 w w w ®w 0 1 w w 1 0
Other quaternary single parity-check codes have a patthiynatrixP of similar form.

5.4.2 Quaternary repetition codes

The dual of the quaternary single parity-check codes ardrttien|, quaternary repetition codesvhich
include[2,1,2]4 (SED, self-dual)[3,1,3]4 (SEC),[4,1,4]4 (SECDED), etc. Thé3,1,3]4 code is given by

11 0 1 0 1 w
Hz13, = (1 0 1) s Vpig, = i , Was13, = 8 i w
®

Other quaternary repetition codes have a partity submatisimilar form.

(5.18)

EIEIE

5.4.3 Quaternary Hamming codes

The[(4™—1)/3,(4™—1)/3—m, 3|4 quaternary Hamming codese perfect and SEC, and inclufie3, 3)4,
[21,18 3]4, [85,81, 3|4, etc. To illustrate, thés, 3, 3|4 code is given by

1 0 O
0 1 O
1 1 1 1 0
H[5,3,3]4:<1 w @& 0 1)7 V533, = (1) (l) fll . (5.19)
1 0w o

The parity-check matri¥d of the [5,3,3]4 code has as columns those nonzero quaternary vectors difileng
(n—k) = 2 whose first nonzero entry is 1; when expressed in systerfaatit, the (n — k) columns ofH
corresponding to the identity matrix are shifted to the eard] the remaining columns ofH, in arbitrary
order, make up the entries Bf Other quaternary Hamming codes may be built up similarly.

5.4.4 Quaternary simplex codes

The dual of the quaternary Hamming codes are[tH® — 1) /3,m,4™ 1], quaternary simplex codgwhich
include(5,2,4|4 (SECDED),[21, 3,16]4, [85,4,64]4, etc. These codes are remarkable geometrically, as their
codewords are all equidistant from one another. Quateiarglex codes have a partity submatrix given by
the conjugate transpose of the corresponding quaternanyntitag code.

5.4.5 Quaternary quadratic residue codes

The|n, (n+ 1)/2,d]4 quaternary quadratic residue codase defined for all prime of the formn=8m+3
wherem s an integer, and includ®, 3,3]4 (SEC, perfect, see584.3, [11,6,5]4 (DEC), [13,7,5]4 (DEC),
[19,10,7]4 (TEC), [29,15,11]4, [37,19,11]4, etc. The relatedn+ 1, (n+ 1)/2,d + 1]4 extended quaternary
quadratic residue codasclude[6,3,4]4 (SECDED, quasi-perfect, self-dual, a.k.a. texacodg [12,6,6]4
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Bi1o
A0 Ao
Booo Boio Booa
Aooo  Aoto  Aocor  Aorr
Bioo Biix Bim
Air Aor
Bo11
Figure 5.5: A labelling of 16 points of thB; lattice (due to Ungerboeck 1982). Thgy points have coor-
dinates which are both even integers [eApgo = (O 0)], and theB;jx points have coordinates which are
both odd integers [e.gBooo = (1 1)]. The completeD; lattice is formed by repeating this 2D pattern as
an infinite array with unit spacing, as in Figuse3; note that each of the subsetsf corresponding to a
particular label is itself an appropriate shift of @Alattice (that is, thé- lattice with the spacing quadrupled
between the points).

(DECTED), [14,7,6]4 (DECTED, self-dual)|20,10,8], (TECQED),[30,15,12)4 (self-dual),[38,19,12],,
etc. The venerabli, 3,4|4 hexacode is given by

1 0
11 110 8 (l) 2
H[6,3‘4]4 =11 9 w 0 1 0], V[6,3‘4]4 = 1 1 e (520)
1 w w 0 0 1 =
1 w w
1 0 o
Note thatP is symmetric. Thé5, 3, 3|4 quaternary quadratic residue code may be obtained by pumgthe

[6,3,4]4 code listed above.

Via ConstructiorAéa, the[6, 3,4]4 hexacode generates tKg, lattice.

The [6,3,4]4 hexacode, with %= 64 codewords, is of particular importance due to the strectuole
it plays in some convenient constructions of {Bd,12 8] extended binary Golay code (seB.8.7), with
212 — 4096 codewordw/, and the correspondinfipy lattice. To construct the extended binary Golay code in
this manner (see 811 of Conway & Sloane 1998), we may firshgeréinary vectors of length 24 intod6
arrays with binary entries. The sum of the bits (mod 2) in aw or column of this array gives itsarity,
which is said to beevenif the bits sum to 0 anddd if the bits sum to 1. We then define tipeojection of
any binary vectod € F3 onto a symbok € F4 via the produck = (0 1 ® w)d(onFs). The[24,12 8]
extended binary Golay code is then given by the set cyf/mIF%“ such that, in the corresponding4 array,

e the parity of all of the columns matches the parity of the p,rand
o the projection of the six columns of the array forms a codevedithe |6, 3,4]4 hexacode.

An alternative construction of th&,, lattice, due to Vardy & Be’ery (1993) and which also levermge
cleverly the[6,3,4]4 hexacode, is based on the Ungerboeck (1982) partitionirigedD, lattice (see 8.3
into Ajjx and Bjjk subsets, as depicted in Figuses. Binary vectors of length 24 are now constructed as
2 x 6 arrays whose entries are pointd®f, labelled as shown. When considering a pair of such poiaig [s

T
Cc= (A517J'1,k1 Ai27J'2.,k2) 1,
e the pair is said to bevenor oddbased on the sum (mod 2) of the indides j1,i2, j2},

the indexi; is known as thda-parity of the pair,
the sum (mod 2) ok; andk; is known as thé-parity of the pair, and

theprojectionof the pair is defined as above, based on the vettor(il j1 2 jz)T.

The Leech lattice\4 is then given by the set of all € Z2* such that, in the corresponding array,

o all array entries are either points in tAgy subsets oD, (referred to as #ype-Aarray), or points in the
Bijx subsets oD, (referred to as &ype-Barray),

e the overalk parity of the array [that is, the sum (mod 2) of tkearity of the 6 pairs of points] is even if
the array is typd\ and odd if the array is typB,
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e the pairs of points in the 6 columns of the array are eithese\a@h (referred to as avenarray) or all odd
(referred to as anddarray),

o the overalh parity of the array [that is, the sum (mod 2) of theparity of the 6 pairs of points] is even if
the array even and odd if the array is odd, and

e the projection of the six columns of the array forms a codevedithe |6, 3,4]4 hexacode.

The union of all points corresponding to Type A arrays in toastruction forms theeech half lattice by
mentioned in §.2.7, whereas the union of all points corresponding to Type Byarfarms its translate,
Ho4+ a. TheHy4 lattice can be further decomposed into all points corredpato even arrays, which forms
theLeech quarter lattice @y, and all points corresponding to odd arrays, which formg@sslate Qo4+ b.
The Az4 lattice is then given by the union @24, Q24+ b, Q24+ a, and Q24+ a -+ b; this construction is
exploited in $.1.5when presenting a remarkably efficient algorithm for quaaiton fromR?* to Aoa.

5.5 Decoding

The use of arn,k,d]q linear code (a.k.dinear block codgin practice to communicate data over a noisy
channel is straightforward:

arrange the original data intdocksof lengthk over analphabetof g symbols;

codeeach resulting data vectdre F‘é into a longer codeword € Fg viaw = V[n’k,d]qd;

transmit the corresponding codewavd: Fq” over the noisy channel;

receive the (possibly corrupted) mess#ge F(;‘ on the other end;

decodehe received messagbleveragingﬂ[n’k,d]q; that is, find the most likely codeword corresponding
to the received message and the data vectatthat generated it.

The decoding problem is quite rich; many creative schemes haen proposed over the years for de-
coding the various LCs that have been introduced thus famelisas many others. This subject goes a bit
beyond the scope of the present review, but we would be remigsdidn’t at least briefly introduce a few
exemplary decoding strategies.

For the purpose of fast decoding of an LC, it is useful to adeisconvenient alternatives to the systematic
form. If H andV are the parity-check and basis matrices ofraR, d]q LC in systematic form, wittHV =0
(onFg), then arequivalent_C, possibly not in systematic form, is given by taking

H=HQ and V=Q V. (5.21)

It follows immediately that, agairdV = 0 (on Fg). In the simplest such transformatid®,is a permutation
matrix, and thu® 1 = Q' ; this transformation corresponds to reordering the rowsarfid the corresponding
columns ofH (that is, reordering the data bits and parity bits in theegponding LC). Other equivalent LCs
may be constructed in this manner by relaxing the constthaittQ be a permutation matrix, effectively
taking linear combinations (0fg) of the rows ofV and the corresponding columnsliéf Note further that
reordering the columns &f and/or the rows oA leaves an LC unchanged.

5.5.1 Algebraic decoding

Certain LBCs may be decoded quickly by arranging the coluafitise parity-check matrix in a convenient
order and examining the binary number given by the produthefparity-check matrix and the (possibly,
corrupted) received message. To illustrate, considefal#e3] binary Hamming code introduced irb 8.3
Transforming as described above with
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0 01 0 0 O
0 0 0 01 0 O
0 0 0 0 0 1 O
Q=10 0 0 0 O O 1
0 0 01 0 0 O
0 1 0 0 0 0 O
1 0 0 0 0 O

results in a modified basis matik and a modified parity-check matrik arranged such that the columns of
H appear in binary order:
11 )
0 1 1), Vygag=
10
d3

i 00
Hrag=(0 1
1 0

ds

Taking the matriXH[szl’zm,j_,m’g] of a binary Hamming code arranged in such a fashion (in ther@bo
examplem = 3) times (mod 2) any of the codewords(generated viav = V[zm,lvzm,l,mvg,]d whered €
F2"~1-™) gives the zero vector. On the other hand, taking the méigx_1m 1 m3 times (mod 2) any
invalid vectorW gives the nonzersyndrome vectos, of orderm = n— k, which may be interpreted as a
nonzerom-bit binary number called theyndrome denoteds, of the received message. Conveniently, as a
direct result of the structure ¢i used in this construction, the numkeidentifies precisely which bit of
the received message vector arranged as shown above, must be flipped in order to deteriénnearest
codeword, thereby performing single error correction (5EC

Consider now the class d2™,2™ — 1 — m,4] extended binary Hamming codes introduced 1285
Define the syndromeas in the corresponding binary Hamming code of leri@th— 1) as discussed above,
neglecting the overall parity bit, and defipas the sum (mod 2) over all the bits, including the overalitpar
bit. There are zero bit errors §= p = 0, there two bit errors (which may be detected but not uniguel
corrected) ifs## 0 andp = 0, and there is a single bit errorgf= 1 (in which case, i6= 0, this error is in the
overall parity bit, and, is # 0, this error is in one of the other bits and may be correctesgdans just as
in the corresponding binary Hamming code). This strategg fherforms single error correction and double
error detection (SECDED).

The extended binary Golay code introduced m2&7may be decoded via syndrome computation in a
similar fashion, though several more checks are involvetheprocedure performs triple error correction and
quadruple error detection (TECQED) on the received mestsaecall the definitions dfl, V, andP = PT
for the [24,12, 8] extended binary Golay code in systematic form, as listed .inlf. Note thatv TV = 0, and
thusV' serves as an alternative parity-check matrix for this c@iningwy (s) as the Hamming weight
(that is, the number of nonzero elements) of the vestand defining' as tha’th column ofP, € as the’th
Cartesian unit vector, and 0 as the zero vector, we may dek@defollows:

bs
by
d
by | . (5.22)

0 1
1 0
1 0 dp

OO O0OORrRRFREF
OO RrPFPOOoPRr
OFr OPrOoOr o
coroOrRB
=
I

sets=VTW, if wy(s) < 3thenset=[s; 0], flag=0, return, end if (case A)
setr =Ps, if wy(r) <3thenset=|0; r|,flag=0, return, endif (case B)
fori=1:12
if wy(s+p') <2thenset= [s+p'; €], flag=0,return, endif (case C)
if wy(r+p') <2thenset=[€; r+p'],flag=0,return,endif (case D)
end for
flag=1; return (4 total errors, can not be uniquely corrected

Upon return, assuming the received veatohas 4 or less bit errors, if flag 0, then 3 or fewer errors are
detected and the corrected vectowis= W + ¢, whereas if flag= 1, then 4 errors are detected amatan not
be uniquely corrected. To verify this algorithm, notingtth'd w = 0 for any codewora, it is sufficient to
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analyze the algorithm fow = 0 only. Block partitioningv = [x; y], consider the following 4 correctable
cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to streicture ofP, parity bit errors (that is,
WH (y) # 0) result inwy (s) > 6; if wyy (S) is less than this, thep= 0 ands=VTW = Ix = x.

Case B (0 data bit errors, up to 3 parity bit errors): Note B\t = H, and thug = HW. By an analogous
argument as that used in Case A, due to the structui® dfta bit errors (that isyn (x) # 0) result in
Wy (r) > 6; if wi(s) is less than this, then=0andr =HW =1y =y.

Case C (1 parity bit error, up to 2 data bit errors): In thisecase individually check each of the (12)
possible cases corresponding to a single parity bit erssertially repeating the analysis of Case A, mutatis
mutandis. That is, for eadhwe consider the possibility thgt= €, and thuss = x +p', and check to see if
W (X) =wh (s+p') < 2.

Case D (1 data bit error, up to 2 parity bit errors): In thisscage individually check each of the (12) possible
cases corresponding to a single data bit error, essentggdlating the analysis of Case B, mutatis mutandis
(cf. Case C).

5.5.2 Cyclic form

A cyclic codds an LC that may be transformed [via21)] into a form in which all cyclic shifts of codewords
are themselves also codewords. The basis m¥trixVn.k and parity-check matrixt = Hn_y).n of any
[n,K]q cyclic code may be written in the standard form

Vo 0
Vi Vo
he 1 ... ho 0 : vi
h M1 .. ho
Hinkg = . . o » Vinkg = | Vn—k Vo (5.23)
0 he  heq ho Vn—k Vi
0 Vn—k

A convenient construction which simplifies the analysismfrak]q cyclic code, as defined above, is the
cyclic shiftoperatorz. The use of this operator as discussed here is akin to itswikeZ-transform analysis
of discrete-time linear systems, with the major differebeéng that it is used here in a cyclic context on
Fq: that is, arithmetic with polynomials im and coefficients irFq is performed as usual, except that the
coefficients of each power afare combined via the arithmetic rules &g (see the second paragraph of
§5.1), and higher powers af are simplified via the cyclic condition

7'=1 (5.24)

In the deployment of afn, k|4 cyclic code, the operatarappears in

thedata polynomial dz) =do +d1z+...+ 172t

the basis polynomial ) =Vo +Vviz +...+ Vo 2" K,

the codeword polynomial ) =wo+wWiz+...+ Wn_12" 2,
thereceived-message polynomid{z) = Wo +Wyz+ ... + Wn_1Z2""1, and
the parity-check polynomial (@) =ho +hiz+...+hZ"
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The basis polynomial(z) and parity-check polynomidi(z) are constructed in mutually-orthogonal manner
that, taken together, enforces the cyclic conditioR4):

v(z)h(z) = (' 1), (5.25a)

which may also be written
[V(2)h(z)] mod (' - 1) =0; (5.25b)

note that the mod command usedin25h means that the polynomipd(z) h(z)] is divided by the polynomial
(2'—1) and the remainder is equal to 0. One such factorizatiqa'ef 1) on Fq, which exists for any and
g, is

—1=(z-10)@ Y+ ?%+ . +z+1); (5.26)
this leads to the single parity check coden— 1, 2| if one takesv(z) = (z— 1) andh(z) equal to the rest,
and to the repetition coda, 1, n|q if one takesh(z) = (z— 1) andv(z) equal to the rest. Other cyclic codes
over Fq for prime g may be built from the unique irreducible factors of the palgmal (" — 1), grouping
these factors appropriately to fowz) andh(z); a few such factorizations for various valuesdre listed
in Table 5.1 forg = 2 (in which—1 = 1) and Table 5.2 foq = 3 (in which—1 = 2); others are easily found
using Mathematica. Factorin@" — 1) overF, is more delicate, as the factorizations do not reduce tougniq
irreducible forms; one such factorization is listed in EblL3. Based on5(259 and such factorizations,
a large number of cyclic codes may be constructed. Howewdy, a few such codes have both favorable
minimum distancel and an available simple error dectection/correction sehewome such codes are listed
in Table 5.4.

Given a data vectat € F‘é, the use of an LC in cyclic form is again straightforward:

e form a data polynomial(z) with thek elements ofl as coefficients;

e code dz) into a codeword polynomial(z) leveraging the basis polynomia{z) [using nonsystematic
coding, one simply takes(z) = d(z) v(2)];

e transmit the corresponding codewavck F{' over the noisy channel;

e receive the (possibly corrupted) message Fj' on the other end;

e decodehe corresponding/(2) leveraging the parity-check polynomia(z).

Cyclic coding. For the purpose of fast decoding, we now present two methdtiswhich the basis poly-
nomial v(z) may be leveraged to generate a codeword polynom(al in systematic form [that is, rather
than takingw(z) = d(z) v(z)]. By convention, the systematic form in the cyclic case Ugshifts thek data
symbols ind(z) to the end of the codeword, that is:

w(2) = b(z) + 2" *d(2)
=bo+b1z+...+ by k12 do K 2 e L

If k/n < 0.5, a recursive approach may be used to determine the panitgalg inb(z). By (5.25h and
the fact that each valid codeword polynomidk) is itself a linear combination of the basis polynomiglg),
it is seen that

(5.27)

u(zy mod(z'—1)=0 where u(z) £h(2)W(z) = Up+ U1z+ UZ + ...

Initializing the lastk symbols ofw(z) as shown in%.27), the remaining symbols af(z) may thus be deter-
mined from the resulting convolution formulae fgy_1 throughuy as follows:

Un—1=hoWn_1+...+hiWh k 1=0 =  Wnk-1=—[NoWn-1+...+he_1Wh_k_2]/hk,
Un—2=hoWn2+...+hiWh k 2=0 = Wnk2=—[NoWn_2+...+he_1Wh_k_3]/hk,

U=howxk +...4hwg =0 = wg =—|[howk +...+hcw  ]/he
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1=+ )&+ +2+2+1)
z 1:(z+1)(z3+z+1)(z3+22+1)
P1=z+)Z+z2+ )L+ 2+ )+ 2+ )+ P+ P +2+1)
2 1=+ )+ L2+ + L+ 2+ 2+ )+ 2+ P+ P+ A A+

Table 5.1. Unique irreducible factors @f' — 1) overF; for various values offi.

1= (z+2)(z+1)(Z+1)
2 1= (242 (P +28+ 2 +224+2)(D2+ L+ 22+ 2 +2)
22 1= (z24+2) (2 +22+2)(2+2+2)(2+2+2+2)(F +22 +22+2)

Table 5.2. Unique irreducible factors @f' — 1) overF3 for various values offi.

‘ 2 -1=Z+wz+1)(Z+wZ +wz+1) ‘

Table 5.3. A useful (though nonunique) factorization(sf— 1) over F4; note that Table 5.1 provides an
alternative factorization o(fz5 —1) overF, which is also valid oveF.

| code | description | v(2) | h(z) |

[n,n—1,2]» §5.2.1 z+1 AR SRS ST o

[n,1,n], §5.2.2 1424 4z41 z+1

[7,4,3)> §5.2.3 Z+z+1 2+ +z+1

[15,11,3), §5.2.3 Z+z+1 My B+ D+ P+ AR +z4+1
(31,26,3], §5.2.3 P+72+1 (B1-1)/(2+2Z2+1) overF,
[63,57,3]2 §5.2.3 2iz+1 (B3 -1)/(8+2z+1) overFy
[127,120,3], §5.2.3 774+84+1 (227 -1)/(Z +Z2+1) overF,
[2312,7), §5.2.7 | 24P 47+ B+ P4zl 22y A B Pzl
[n,n—1,2]3 §5.3.1 z+2 e AR U S S o

[n,1,n)3 §5.3.2 14244zl z+2

[13/10,3]3 §5.3.3 B+2+2 2422+ B4 2B 4 2P+ A+ P+ A +1
[11,6,5]3 §5.3.5 P+284+P+22+2 P+ 422 +22+27+1
[nn—1,2]4 §5.4.1 z+1 27124zl

[n,1,n]4 §5.4.2 A2zl z+1

5,3,3)4 §5.4.3 Z+wz+l 2+ +wz+l

[85,81,3)4 §5.4.3 424 wz+1 (5-1)/(Z+ 22+ wz+1) overFy

Table 5.4. Some small cyclic codes. Note that a cyclic fornthef[4,2,3]3, [40,36,3]3, and[21,18,3]4
Hamming codes do not exist (that is, the bds®|3, [40,36]3, and[21, 184 codes that may be cast in cyclic
form haved = 2); in fact, a Hamming code of length= (g™ — 1) /(q— 1) overFq exists in cyclic form only
if mand(q— 1) are coprime (Blahut 2003).

If k/n> 0.5, a polynomial division approach to determine the paritylsgls is more efficient. This is
accomplished by writing the shift of the data symbols as somatiple of the basis polynomial(z) plus a
remainder (2):

272 =q(2v(2) +r(2) = [2"*d(2) modv(z) =r(2),

where the mod command is interpreted as526h). Since the degree of(z) is (n— k), the maximum
degree of (2) is (n—k—1). Calculating (z) as shown above, takigz) = —r(z), and rearranging the above
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equations, it is seen that
W(2) = b(z)+ 2 *d(2) = q(2(2),

thus verifying that the polynomial(z) so generated is in fact a valid codeword polynomial, as itnsi#iple
of the basis polynomial(z).

Cyclic decoding.In single parity-check codes, single symbol errors are 8dgth(z)Ww(z) # 0. In repetition
codes, the symbols @¥(Z) may be corrected by simple majority vote.

Decoding of the binary Hamming and the extended binary Godales is introduced in85.1 Such syn-
drome decoding methods extend easily to codes in cyclic,formhich the required syndrome computations
are especially streamlined, as now shown. Note that angt gatieword polynomial(z) is a multiple of the
basis polynomial(z); the syndrome polynomial(g) of the received-message polynomidk)’is thus given
by the remainder:

S(z) = W(z) modv(z).

Since the degree of(z) is (n— k), the maximum degree &{z) is (n—k— 1), and thus the corresponding
syndrome vectos is of orderm = (n— k), as expected [see discussion afe2Q)].

The polynomial multiplications and divisions involved imetcyclic coding and decoding algorithms de-
scribed above are easy to code and efficient to calculatehirreanapplication-specific integrated circuit
(ASIQ or afield-programmable gate arrafFPGA), in which repeated computations with shifted data may
be performed quickly. The reduced storage associated hatiector representation of the basis matrix and
the parity-check matrix in cyclic form help to facilitatecduimplementations.

5.5.3 Shannon’s theorem and turbo codes

The low-dimensional LBC, LTC, and LQC constructions givéoee are now supplanted by the more com-
plexturbo codes for high performance coding applications such as B8&8 ethernet and deep space com-
munication. Though these codes are generally much longerttite simple codes discussed above, they are
built on the same fundamental principles, and achieve angoglificiency over a noisy channel that is very
close to the celebrated Shannon limit (Shannon 1949). Fee imformation on such codes, the reader is
referred to Gallager (1963), Berrat al. (1993), and Moon (2005). Note also that the study of ternad a
guaternary codes is far more than a mathematical curiaséy; memory storage technology concepts le-
veraging, for example, DNA-based storage, with a four-abir alphabefA, T, G,C}, directly motivate the
further development of non-binary error-correcting cgdstrategies.

5.5.4 Soft-decision decoding

The type of decoding discussed i6.5.15.5.3 in which the received vectok is assumed to be iR}, is
known ashard-decision decoding

Another formulation of the decoding problem assumes agpitwt € Fg, but thatv € R". The decoding
problem in this case, callesbft-decision decodings similar to that considered before (again, to find the most
likely codewordw corresponding tév, and the original data vectdrthat generated it), but is now based on
finding the codewordv that minimizes the Euclidian distance forather than that which minimizes the
Hamming distance.

For example, consider the soft-decision decoding of a Biparity check code. Assume that the trans-
mitted codeworav € F} (that is, the symbols being transmitted are binary, andigahse rescaled to bel)
but that the received messagec R" (that is, the symbols received are real). In this case, wedeagde the
received message by initially taking = sign(w). If the resulting decoded vector fails the parity check, we
simply take the decision that we were least certain aboat {ghthe element ok that is closest to zero) and
round it the other direction; this is known #agner’s decoding ruléSilverman & Balser 1954).
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Many soft-decision decoding algorithms are essentiallyegalizations of Wagner’s decoding rule. Fur-
ther, most soft-decision decoding algorithms may be fraasestraightforward restrictions of a corresponding
lattice quantization algorithm (se@&)&o the appropriate subset of the lattice in question.
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Chapter 6

Further connections between lattice
theory and coding theory
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6.1 Quantization onto lattices

We now introduce some methods for quantization from antyipointx in R" onto a poin& on a discrete
lattice, which may be defined via integer linear combinatibtihe columns of the corresponding basis matrix
B. The solution to this problem is lattice specific, and is ttieated lattice by lattice in the subsections below.
Note that &.1.1through &.1.4are adapted from Conway & Sloane (1998), afdl&is adapted from Vardy

& Be'ery (1993). Note also that we neglect the problem ofiscpbf the lattices in this discussion, which is
trivial to implement in code.

6.1.1 Quantization toZ"

Quantize tdZ" simply by rounding each elementwto the nearest integer.

6.1.2 Quantization toDy,

Quantize tdD,, by roundingx two different ways:
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e Round each element afto the nearest integer, and call the regult

e Round each element afto the nearest integexcepthat element ok which is furthest from an integer,
and round that element the wrong way (that is, round it dovgtesd of up, or up instead of down); call
the resuli.

Compute the suraof the individual elements o, the desired quantiziation §= X if is sis even, an& = X
if sis odd.

6.1.3 Quantization toA,

TheA, lattice is defined in am-dimensional subspadgof Y = R""1. The subspac€ is spanned by tha
columns of the corresponding basis maBjy, and the orthogonal complement©fs spanned by the vector
Na,- Thus, the nearest point in the subspages C, to any given poiny € Y is given by

Yc=Y— (yvnAn) “Nayg-

An orthogonal basiB?An of C may easily be determined froBp, via Gram Schmidt orthogonalization. With
this orthogonal basis, the vectors R" comprising thed, lattice may be related to the corresponding vectors
yc € CC Y (that is, on am-dimensional subspace &"*1) via the equation

yc = Bax. (6.1a)

Thus, starting from some pointe R" but not yet quantized onto the lattice, we can easily detegrttie
correspondingn + 1)-dimensional vectoyc which lies within then-dimensional subspade of R™* via
(6.19. Given this value of/c € C, we now need to quantize onto the lattice. We may accomgtishith
the following simple steps:

e Round each component g§ to the nearest integer, and call the regulDefine the deficiency = 3; i,
which quantifies the orthogonal distance of the p§ifrom the subspacé.
e If A=0, theny =1¥. If not, defined = yc — ¥, and distribute the integers.0.,namong the indicew, . .. , i,
such that
—1/2<d(¥i,) <d(¥i,) < ... <d(i,) < 1/2

In

o . ~ yik -1 k< Aa
If A > 0, then nudg§ back onto theC subspace by defining, = < . .
99 P y i {yik otherwise
. L )Y+l k>n+A,
If A <0, then nudg§ back onto theC subspace by defining, = ¢~ )
i otherwise

Back inn-dimensional parameter space, the quantized Vialel€ corresponds to
x=Ba V. (6.1b)

6.1.4 Quantization to the union of cosets

The dual lattice®;; andAy;, the triangular latticéy, and the packin®,; (including the latticEg = Ej 2 D)
are described via the union of simple, real cosetidd, (2.79, (2.69, and @.5), respectively. The lattices
E7 andE7 may be built via the union of simple, real cosets via ConsioacA [see £.43], with coset
representative\zv'[n‘k‘d] defined in 6.8) and 6.9) respectively. To quantize a lattice described in such an@an
(as a union of simple cosets), one may quantize to each emksiéndently, then select from these individual
guantizations that lattice point which is nearest to thginsl pointx.

The latticesEg andEg may be built via the union of complex cosets [which are scafetishifted complex
& latticesZ[w]®] via ConstructionAT [see 6.59], with coset representativw%n‘k’d] givenin(.13 and 6.12

respectively. Following Conway & Sloane (1984), to disizef pointx to coset in these cases:
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Determine the complex vectarc C3 corresponding ta € R®. Shift and scale such that= (z—a;)/6.
Determine the real vectér € R® corresponding t@ € C3. Quantize the first, second, and third pairs of
elements oR to the real triangulaf; lattice to create the quantized vecior

Determine the complex vectdre C3 corresponding t& € R®. Unscale and unshift such that 67 + a;.
Determine the real vectére R® corresponding td € C3.

6.1.5 Quantization to/Ay4

We now jump to the Leech lattice in dimensior= 24. Recall from 8.6that the best lattices in dimensions
n=9ton= 23 may all be determined as lower-dimensional cross-geztif\,4; once the (difficulth = 24
case is mastered, quantization to these intermediate gioreis relatively straightforward.

Efficient quantization to\y4 is a problem that received intense scrutiny in the 1980s anl¢t €990s.
The best algorithm described in the literature, due to Va&dye'ery (1993), is based on the construction
of Np4 described in the last paragraph &.8.5 and essentially represents a culmination of the previous
efforts that led to it. This remarkable algorithm requiretycabout 3000 to 3600 floating-point operations
and comparisons, and a comparable number of integer opesatnd comparisons, to compute the point of
the A\,4 lattice that is closest to any given point R?4. The algorithm leverages effectively many of the
fundamental symmetries inherent/\a,, including its close relationships with both carefullyeslen subsets
of the D>, lattice (Figure5.5) as well as thé6, 3,4]4 hexacode (8.4.5.

Though it was proposed in 1993, the logic inherent to this#lgm is so intricate that, as of the writing
of this review, an executable version of it did not appeargodadily available in the literature. We have thus
written an efficient Fortran90 implementation of this algorithm, which is aable online at:

http://renai ssance. ucsd. edu/ sof t war e/ DecodeLeech. t gz
This implementation is thoroughly commented, and is wriftea notation consistent with that of Vardy &
Be’ery (1993). Thus, in addition to being a useful code fowpeactical applications of the Leech lattice in
science and engineering, it is hoped that this executablle can itself be a helpful guide in the understanding
of this complex algorithm.

In short, using the notation introduced at the end B#& this algorithm first splits the problem of
quantizating a point € R?* to the nearesh,4 point into two subproblems:

e quantizing toHo4; that is, when forming the original vectore R?* into a 2x 6 array of pointgh, € R?
forh=0,1andn=0,...,5, quantizing eachn, to the bestjx points in the Ungerboeck partitioning of
D, such that the overall parity of the array is even, while the projection of the 8 array of points forms
a codeword of thé6, 3,4]4 hexacode; and

e quantizing toH»4+ &; that is, quantizing to the beBjk points in the Ungerboeck partitioning Bk such
that the overalk parity of the array is odd, while, again, the projection @& #hx 6 array of points forms a
codeword of th€6, 3,4]4 hexacode.

The best of the two lattice points selected by these subgnabls then returned.

During the execution of each of these two subproblems, thgesk point ta, in eachAjjc family (in
the even overak parity case) or in each;j family (in the odd overalk parity case) is first identified, and
thesquared Euclidian distand&SED) to each of these points is calculated. For eiaghd j, the “preferred”
value ofk (that is, the one that leads to the least SED for that poirdetermined, and the SED penafly
for chosing the other value &fis computed. The algorithm then further splits the quatitrato Hy4 (and,
similarly to Ho4 + @) into two smaller sub-subproblems:

e quantizing toQy4; that is, to arrays with the specified overalbarity such that, additionally, the overall
parity is even; and

1our implementation of this algorithm executes in about Oiisaconds on a 2008 vintage laptop (2.53GHz Intel Core ®)Du
which is sufficiently fast for many applications. It is alsivial to parallelize this code efficiently over four sep@r&omputational
threads, as quantization to each Leech quarter latticendléd independently.
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e quantizing toQu4+ b; that is, to arrays with the specified ovetlaparity such that, additionally, the overall
h parity is odd.

The best of the two lattice points selected by these subreblems is then returned.
The quantization t6),4 and its 3 translates is, in turn, decomposed into 5 distiegtss

1. Only two sets of indiceS§io, jo,i1, j1} project to each symbd € F4; in this step, for each symbegland for
each columm of the 2x 6 array, we identify the “preferred representation” as fedtwhich, when taken
together with their corresponding preferred valuekydindks, minimize the SED of the column, and the
other set, referred to as the “non-preferred representatice also calculate the SED penalty associated
with chosing the non-preferred representation. Convelyighturns out that the preferred representation
and the non-preferred representation necessarily hawesaph parity.

2. The three lists of penalties associated with changingohenn-wisek parities (case 0), the column-wise
h parities (case 1), or both (case 2) are then sorted (our mgiéation uses mergesorts, due to their cache
efficiency; heapsorts or quicksorts are viable alternajive

3. The SED for each preferred “block” (that is, each pair diioms) is then computed.

4. For each of the 64 codewords of the hexacode [s&¥){, we then find the smallest possible correction(s)
to the set of preferred representations such that thekgtatity and the totah parity match the specified
values required for the particular translat€®f, being considered (of 4 possible cases). This step leverages
the sorted lists computed in step 2.

5. For each of 16 sets of symbols [given Wy € F4 andw; € F4], calculate the total SED of corrected
representations, determined in step 4, correspondingetd thalid codewords of the hexacode [given by
w; € F4 and{ws, Wy, ws} selected according Mg 3 4, defined in 6.20]. We then find the minimum total
SED amongst these 16 corrected representations, and tieéucorresponding lattice point.

6.2 Enumerating nearest-neighbor lattice points

In the practical use of lattices in engineering applicatioone occasionally needs to generate a list of all
lattice points that are nearest neighbors to a given laptset. It is sufficient to generate a list of all lattice
points that are nearest neighbors of the origin, then td 8ige points as necessary to the vicinity of any
other lattice point. The present section describes two austto generate such lists of nearest neighbors on a
lattice.

6.2.1 Caseswitm< 8

Noting first (see 8.1) that a basis matriB of ann-dimensional lattice might itself have more thamnows,
the following algorithm is found to be effective for all lates up to abouh = 8:

0. Initializep=1.

1. Define a distribution of point& such that each element of each of these vectors is seleotadtie set of
integers{—p,...,0,...,p}, and thatall possible vectorshat can be created in such a fashion, except the
origin, are present (without duplication) in this distrilaun.

2. Compute the distance of each transformed pgiat BZ' in this distribution from the origin, and eliminate
those points in the distribution that are farther from thigiarthan the minimum distance computed in the
set.

3. Countthe number of points remaining in the distributibthis number equals the (known) kissing number
of the lattice under consideration, as listed in Tables®2l-then determine an orthogorafrom B via
Gram Schmidt orthogonalization, sét= BT§! for all i, and exit; otherwise, incremeptand repeat from
step 1.
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Though this simple algorithm is not at all efficient, o< 8 it really need not be, as the nearest neighbor
distribution is identical around every lattice point, ahdd this algorithm need only be run once for any given
lattice.

6.2.2 Cases witm> 8

Forn > 8, the algorithm described above is prohibitively expeasiVe thus focus here on an efficient manner
of obtaining the 196,560 nearest neighbors to the origimeflieech lattice\,4, then on the restriction of
this set of neighbors, one dimension at a time, dowm+09.

To proceed, it is first necessary to enumerate the codewdrtteeddinary Golay code following the
approach described irb8.7 Recall that the basis matrix of the binary Golay code hasdsion 24x 12;
thus, the 22 = 4096 codewords of the binary Golay code follow immediatalainary linear combination
(thatis, as a linear combination, mod 2, with binary coedfits) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors of ltleech lattice, we may proceed (following
Conway & Sloane 1998) by constructing three distinct sefsoafts:

e The first set, consisting of 9804 points, is obtained using the binary Golay codewordsudised above.
Construct first a 24 24 matrixA with —3 everywhere along the main diagonal and 1 everywhere eten, T
take each codeword of the binary Golay code, one at a timeaepach 0 with-1, and perform elementwise
multiplication of this modified codeword to each column&fthereby generating 24 points for each of the
212 pinary Golay codewords, of2- 24 = 98 304 points.

e The next set, consisting of 104 points, is composed of vectors with 22 zero elementswaclements
that are either 4 or-4. As there are 276 ways to select the locations of the noreteneents, and2= 4 valid
ways to populate them, we obtaiR-276= 1,104 points.

e The third set, consisting of 9I52 points, is obtained using the 759 vectors of the Wittglesivhich are
just the 759 binary Golay codewords (discussed above) afiwe. Note that each of these vectors has 8
ones and 16 zeros. Construct ar 828 matrixC such that each element of each column is either a-22r
with an even number of minus signs in each column (note thleetare 2 = 128 such columns possible).
We then distribute the elements in each of the 128 columf@sioto each of 8 positions where the ones sit in
each of the 759 vectors of the Witt design, thereby obtaithegemaining 128759= 97,152 points.

The 98304+ 1,104+ 97,152= 196,560 points so generated are the nearest neighbors to the ofig
N24. Then, throwing out those pointsfor which z- np,, # 0 (see 8.6) leaves the 93,150 neighborsAfs;
additionally throwing out those poinisfor whichz - np,, # 0 leaves the 49,896 neighbors/of; etc.
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Chapter 7

Extending lattice theory for coordinated
derivative-free optimization
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7.1 Introduction to derivative-free optimization

The minimization of computationally expensive, high-dim®nal functions is often most efficiently per-
formed via gradient-based optimization algorithms such@sinear conjugate gradients and L-BFGS-B.
In complex systems for which an accurate computer modelagable, the gradient required by such algo-
rithms may often be found via adjoint analysis. However, witee function in question is not sufficiently
smooth to leverage gradient information effectively dgiits optimization (see, e.g., Figurel), a derivative-
free approach is necessary. Such a scenario is evidentxdonge, when optimizing a finite-time-average
approximation of an infinite-time-average statistic of aatic system such as a turbulent flow. Such an ap-
proximation may be determined via simulation or experime&he truncation of the averaging window used
to determine this approximation renders derivative-bageimization strategies ill suited, as the truncation
error, though small, is effectively decorrelated from ooe/fsimulation/experiment to the next. This effective
decorrelation of the truncation error is reflected by theogrgmtial growth, over the entire finite time horizon
considered, of the adjoint field related to the optimizapiooblem of interest in the simulation-based setting.




68 CHAPTER 7. EXTENDING LATTICE THEORY FOR DERIVATIVE-FREDBPTIMIZATION

Figure 7.1: Prototypical nonsmooth optimization problemvhich local gradient information is ill suited to
accelerate the optimization algorithm.

As a result, derivative-free algorithms are often requf@dhe optimization of nonsmooth scalar func-
tions inn dimensions. The core idea of all efficient algorithms forljpeans of this type is to keep function
evaluations far apart until convergence is approacBesheralized pattern seardlGPS algorithms, a mo-
dern class of methods particularly well suited to such pots, accomplish this by coordinating the search
with an underlying grid which is refined, and coarsened, as@piate.

One of the most efficient subclasses of GPS algorithms, kramnthesurrogate management framework
(SMF, see Bookeet al. 1999), alternates between an explorategrchover an interpolating function which
summarizes the trends exhibited by existing function emadns, and an exhaustiy®ll which checks the
function on neighboring points to confirm or confute the lamatimality of any givencandidate minimum
point (CMP) on the underlying grid. The original SMF algorithm implemed a GPS step on an underly-
ing Cartesian grid, augmented with a Kriging-based suegaarch. Rather than using thelimensional
Cartesian grid (the typical choice), Part Il of this text gagts the use of lattices derived frardimensional
sphere packings. As reviewed in Part I, such lattices anmgifgigntly more uniform and have many more
nearest neighbors than their Cartesian counterparts.d@aktese facts make them far better suited for coor-
dinating GPS algorithmsas demonstrated in a variety of numerical tests preseatedin Part I1.

7.1.1 The inherent role of uniform simplexes in derivativefree optimization

One of the earliest derivative-free optimization apprascto appear in the literature is thewnhill simplex
method(see Spendley, Hext, & Himsworth 1962 and Nelder & Mead 1986 downhill simplex method
is inherently based on an iterative, amoeba-like evolumoving one point at a time) of a set of+ 1
points inn dimensions towards the minimum of a (possibly, nonsmoathgtion. A large body of literature
appeared after the original introduction of this methodcmof which was aimed at heuristic strategies
designed to keep the evolving simplex as regular as posaiblie iteration proceeds, while expanding
or contracting as appropriate. The grid-based methodsiaenes! in the present work are fundamentally
different, so we will not dwell on such grid-free methodshistintroduction. However, it is worth noting the
inherent dependence on the regularity an evolgingplex(that is, on am-dimensional polytope with+ 1
vertices) in this classical method, and an analogous fottieei present work on the identification (see3
and characterization (se€ .8 and7.5 of a maximally-uniform simplex (referred to in the presermrk as
aminimum positive basiground the best point encountered thus far as the iterptimceeds, referred to in
the present work as@ndidate minimum poinThe role of the simplex in both cases is essentially idahtic
to identify the best direction to move next using a minimurmiver of new function evaluations.

Linfact, as mentioned previously, Conway & Sloane (19982psiate: “A related application that has not yet receivedhmaitention
is the use of these packings for solving n-dimensional sear@approximation problems”; this is exactly the focus oftPa
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7.1.2 Global convergence via a dumb method: exhaustive satmg (ES)

Due to the often significant expense associated with peifaynepeated function evaluations (for example, as
discussed above, turbulent flow simulations or experimeatderivative-free optimization algorithm which
converges to within an accurate tolerance of the globalmini of a nonconvex function of interest with a
minimum number of function evaluations is desired. It isattthat, in the general case, proof of convergence
of an optimization algorithm to a global minimum is possiblely when, in the limit of a large number
of function evaluation®N, the function evaluations become dense in the feasibl®meafi parameter space
(Torn & Zilinskas, 1987). Though the algorithms developethie present work, when implemented properly,
satisfy this condition, so do far inferior approaches, sasta rather unintelligent algorithm which we call
exhaustive samplin@ES), which simply covers the feasible parameter space witidagvaluates the function
ateverygridpoint, refines the grid by a factor of two, and repeatd teriminated. Thus, a guarantee of global
convergence is not sufficient to establish dfficiencyof an optimization algorithm. If function evaluations
are relatively expensive, and thus only a relatively smathber of function evaluations can ultimately be
afforded, effective heuristics for rapid convergence aghaps even more important than rigorous proofs of
the behavior of the optimization algorithm in the limit ofdge N, a limit that might actually be argued to
be of limited relevance when function evaluations are egpen Given that such algorithms are often used
in applications in which only a few hundred function evaloas can be afforded, careful attention to such
heuristics forms an important foundation for the preseundyst

7.1.3 Successive polling (SP) and generalized pattern searGPS) algorithms

If, for the moment, we give up on the goal of global converggitite perhaps simplest grid-based derivative-
free optimization algorithm, which we calliccessive pollin¢SP), proceeds as follows:

e Start with a coarse grid and evaluate the function at sonmgrgjgoint on this grid, identified as the first
candidate minimum point (CMP).

e Then, poll (that is, evaluate) the function values on gridfsowhich neighbor the CMP in parameter space,
at a sufficient number of gridpoints fsitively spaf the feasible neighborhood of the CMP [this step
ensures convergence, as discussed further in Torczon B88Keret al. 1999, and Coope & Price 2001].
When polling:

(a) If any poll point is found to have a function value lessrhiaat of the CMP, immediately consider this
new point the new CMP and terminate the present poll step.

(b) If no poll points are found to have function values lesatthat of the CMP, refine the grid by a factor
of two.

e Initiate a new poll step, either (a) around the new CMP or (byuad the old CMP on the refined grid, and
repeat until terminated.

Though the basic SP algorithm described above, on its ownptisvery efficient, there are a variety of
effective techniques for accelerating it. All grid-basetiemes which effectively build on this basic SP idea
are classified ageneralized pattern seardG&P9 algorithms.

7.1.4 The surrogate management framework (SMF)

The most efficient subclass of GPS algorithms, known as the&ate Management Framework (SMF; see
Bookeret al., 1999), leverages inexpensive interpolating “surrotfatections (often, Kriging interpolations
are used) to summarize the trends of the existing functiatuations, and to provide suggested new regions

2That is, such that any feasible point in the neighborhoochef@MP can be reached vidiaear combination with non-negative
coefficientf the vectors from the CMP to the poll points.
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of parameter space in which to perform one or more additifumaition evaluation(s) between each poll step.
SMF algorithms thus alternate beween two steps:

(i) Searchover the inexpensive interpolating function to identifgsked on the existing function evaluations,
the most promising gridpoint at which to perform a new fuoictevaluation. Perform a function evaluation
at this point, update the interpolating function, and répEae search step may be terminated either when it
returns a gridpoint at which the function has already beatuated, or when the function, once evaluated,
has a value greater than that of the CMP.

(i) Poll the neighborhood of the new CMP identified by the search #hgor following rules (a) and (b)
above.

There is substantial flexibility during the search step dbed above. An effective search is essential for
an efficient SMF algorithm. In the case that the search behawerly and fails to return improved function
values, the SMF algorithm essentially reduces to the SRittigu If, however, the surrogate-based search is
effective, the SMF algorithm will converge to a minimum fasfer than a simple SP-based minimization. As
the search and poll steps are essentially independent bfather, we will discuss them each in turn in the
chapters that follow, then discuss how they may be combined.

Note that if the search produces a new CMP which is sevempgiits away from the previous function
evaluations, which occasionally happens when explorimgtions with multiple minima, the grid may be
coarsenedappropriately in order to explore the vicinity of this new €Mfficiently (that is, with a coarse
grid first, then refined as necessary). Note also that thepioliEting surrogate function of the SMF may be
used toorder the function evaluations of the poll step, such that thodegmints which are most likely to
have a function value lower than that of the CMP are evalufitstd By so doing, the poll steps will, on
average, terminate sooner, and the computational cose @wtbrall algorithm may be reduced further.

To the best of our knowledge, all previous GPS and SMF implaati®ns have been coordinated using
Cartesian grids. However, like in the game of checkers (eshtAmerican” checkers with “Chinese” checkers),
Cartesian grids are not the only choice for discretizingpaater space. Other structured choices arising from
n-dimensional sphere packing theory (see Tables 7.1 an@@dXurther characterizations id)gare signifi-
cantly more uniform and have many more nearest neighbquecegly as the dimension of the problem in
guestion is increased; both of these properties suit tHesmative lattices well for coordinating grid-based
optimization algorithms.

Part | of this study consisely summarizesimensional sphere packing theory, describing almostyeve
thing one needs to know about lattices up to dimensien24 in order to use them effectively in practical
engineering applications. To extend the lattice theorycdlesd in Part | of this text in order to coordina-
te a derivative-free optimization, a few additional comeonalgorithms are needed, which are described
in the remainder of 8 For simplicity, Part Il focuses on the use of just two sucttidas, the zero-sum
lattice An, which is ann-dimensional analog of the 2-dimensional hexagonal kticd the 3-dimensional
face-centered-cubic lattice, and the Gosset laHig;avhich is an 8-dimensional analog of the 3-dimensional
diamond packing, and is especially uniform; both of theti&ckss are described completely i.& he utility
of other lattices in this setting will be explored in futurerk.

7.1.5 Framing the search for a uniform simplex as a discrete Romson problem

Thomson (1904), in his study of the structure of the atom réslited with being the first to address the
problen®: “Where shouldk inimical dictators settle on a planet in order to be as faryafi@m each other
as possible?” This question extends naturallg-timensional planets, and has received significant attenti
in the years since Thomson’s original paper. The questioaadily answered numerically by assigning an
identical “charge” to each af identical “particles”, restricting particle motion to tiserrface of the sphere,

3This curious problem, articulated by Meschkowski (1960eims of inimical dictators (see also L. Fejes Toth 19713ua®es that
all locations on the planet’s surface are equally desirabid that the inimical dictators all cooperate.
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n | lattice name A €] G T
A hexagonal 0.90690| 1.2092| 0.080188
22 square 0.78540| 1.5708 0.083333| 4

Az face-centered cubic (FCC) 0.74048| 2.0944 | 0.078745| 12
3 AL body-centered cubic (BCC)) 0.68017| 1.4635| 0.078543| 8

73 cubic 0.52360| 2.7207| 0.083333|| 6
Eg Gosset 0.25367| 4.0587| 0.071682| 240
Dg 0.12683| 32.470| 0.075914| 112
Ag zero-sum 0.08456| 32.993| 0.077391| 72
8 Dg 0.03171| 8.1174| 0.074735|| 16
Ag 0.02969| 3.6658| 0.075972| 18
78 Cartesian 0.01585| 64.939| 0.083333| 16

Table 7.1. Characteristics of select distinct lattices imahsions 2, 3, and 8, ordered from dense to rare
(for a more complete characterization, see Tables 3.1 @édfFart I). Listed (see Part I) are the packing
density,A, covering thickness?, mean squared quantization error per dimensi&rand kissing number,
Note thatZ" is significantly outperformed in every standard metric iewdimensiom > 1 by the available
alternatives.

Ax Az | Ds | Ds Ee | E7 | BEs | Kiz | A6 Noa
fa | 1.155| 1.414| 2 | 2.83| 4.62| 8 | 16 | 152 | 4096 1.68¢7
fr 1.5 2 3 4 6 9 | 15| 31.5] 135 4095

Table 7.2. The densest, most uniform lattices availablesireial dimensions, and two factors quantifying
the degree to which these lattices are better than the pomdag Cartesian grid in the same dimensifn;
denotes the factor of improvementin the packing densitjndication of the uniformity of the lattice, anid
denotes the factor of improvementin the kissing numbeméditation of the flexibility available in selecting
a positive basis from the nearest neighbors on the lattioge bhat the improvements becoming especially
pronounced as the dimensioiis increased.

and iteratively moving each particle (with some dampingligolp in the direction of the force caused by
the other particles (projected onto the sphere) until attigas come to equilibrium. The precise solution
reached is a function of the distance metric and power law uden computing the force between any two
particles; in the electrostatic setting, Thomson used tidi@tian distance between the particles, and a force
which is proportional to the inverse square of this distadde setting based on other distance measures
(e.g., measured along the surface of the sphere insteadmg al straight line) and other power laws are
referred to as generalized Thomson problems; in particilarcase based on tipgh power in the limit that

p — oo (that is, the max value) was studied in Tammes (1930), inthidysof the boundaries of pollen grains.

In this chapter, we generalize this classical question oways, and introduce a new metric to characte-
rize the solution found:
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e First, the locations where the particles are allowed tdesatie restricted to a discrete set of points on a
sphere, which are specified as the nearest-neighbor latiiogs to the CMP.

e Next, we allow some the particles’ locations on the spheteetspecified (that is, fixed) in advance, and
only move the remaining (free) particles to arrive at the kekition possible.

e Finally, the new metric we introduce is a check of whetherairthe distribution produced by numerical
solution of the resulting “discrete Thomson problem” forasositive basi®f the feasible neighborhood
of the CMP; that is, in the case with no active constraints §¢f4), whether or not all points on the
unit sphere around the CMP can be reached via a linear cotitineith non-negative coefficients the
vectors from the CMP to the optimized particle locations.

After developing a method to test for a positive basis, tmeaiader of this section develops three efficient
algorithms to iterate on this “discrete Thomson problemtilinpositive basis is found. To accomplish this,
these algorithms first solve the discrete Thomson problememically forn+ mparticles wheren= 1. If the
optimization algorithm succeeds in producing a positiveifadhe algorithm exits; otherwise is increased
by one and the process repeated until a positive basis isntietd. The resulting algoroithm is leveraged
heavily during the poll step of the lattice-based SMF aldponis developed later in Part I1.

7.2 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, veatvtimes need an efficient test to determine
whether or not the vectors to these points from the CMP forrmsitipe basis of the feasible domain around
the CMP. Without loss of generality, we will shift this prelbh so that the CMP corresponds to the origin in
the discussion that follows.

A set of vectors{%X!,...,%¥} for k > n+1 is said topositively sparR" if any point inR" may be re-
ached via a linear combination of these vectors with noratieg coefficients. Since thendasis vectors
{el,....e", —¢el,...,—€"} positively spanR", a convenient test for whether or not the vectf&s, ..., %<}
positively sparR" is to determine whether or not each vector in theFset{e!, ..., €", —e!,..., —€"} can be
reached by a positive linear combination of the vec{ds. ..,%¥}. That is, for each vectarc E, a solution
z, withz >0 fori = 1,...,k, to the equatioiXz = eis sought, wher& = (x* ... X¥). If such az exists
for each vectoe € E, then the vectorgX?, ..., %} positively sparR"; if such az does not exist, then the
vectors{x®,... %X} do not positively spaiR".

Thus, testing a set of vectors to determine whether or natsitipely span®R" reduces simply to testing
for the existence of a solution tm2vell-definedlinear programsin standard form. Techniques to perform
such tests, such as Matlab’snpr og algorithm, are well developed and readily available. Fentif a set
of k vectors positiviely spanR", it is a simple matter to check whether or not this set of vexi® also a
positive basis ofR", if such a check is necessary, simply by checking whethembrny subset ok — 1
vectors chosen from this set also positively sgdnNote that a positive basis withvectors will necessarily
havek in the rangen+ 1 < k < 2n; the case wittk = n+ 1 is referred to as minimalpositive basis, and the
case withk = 2nis referred to as enaximalpositive basis.

7.3 Selecting a positive basis from nearest-neighbor late points

In 86 of Part I, we described how to enumerate all points whighnearest neighbors of the origin of a lattice
(and thus, with the appropriate shift, all points which aeamest neighbors of any CMP on the lattice). In
87.2 above, we described how to test a subset of such points td fee vectors from the origin to these

points form a positive basis around the CMP. We now presemrnaigl algorithm to solve the problem of
selecting a positive basis from the nearest-neighborsso€P using a minimal number of new poll points,
while creating the maximum achievable angular uniformiggween the vectors from the CMP to each of
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Figure 7.2: Various minimal positive bases (shown in reduad the origin (shown in blue) in the (left)
triangular, (center) BCC, and (right) FCC lattices. Notattthe triangular and BCC lattices each have two
perfectly distributed minimal positive bases. In contréisére are several choices for selecting a minimal
positive basis in the FCC lattice, but none is perfectlyritisted.

these points (that is, while minimizing the skewness of #®ulting poll set). Note in Figuré.2 that, as
the number of nearest neighbors increases, the flexihiligolving this (apparently, NP-hard) problem also
increases, though a perfectly distributed minimal posibasis (using + 1 points) is not always available.
Ideally, form = 1, the solution to the discrete Thomson problem will prodageositive basis with good
angular uniformity; if it does not, we may successively amaentm by one and try again until we succeed in
producing a positive basis. We have studied three algosittemsolving this problem:

Algorithm A.If the kissing number of the lattice under consideration is relatively large {tisaif T >> n;

for example, for the Leech lattio®,4), then a straightforward algorithm can first be used to sélvemson’s
problem on a continuous sphere rindimensions. This can be done simply and quickly by fixqmg O
repulsive particles at the prespecified lattice points,iaitidlizing n+ m— g free repulsive particles on the
sphere randomly. Then, at each iteration, a straightfahface-based algorithm may be used to move each
free particle along the surface of the sphere a small amauheidirection that the other particles are tending
to push it, and iterating until the set of particles appraecan equilibrium. The free particle that is nearest
to a nearest-neighbor lattice point around the CMP is themethdo said lattice point and fixed there, and
the remaining free particles adjusted until they reach aemuilibrium. This adjust/fix/adjust/fix sequence is
repeated until all particles are fixed at lattice points.

Algorithm B.If the kissing number of the lattice under consideration is relatively small {tisaif T is not

well over an order of magnitude larger tha)) then it turns out to be more expedient to solve the discrete
Thomson problem directly. To accomplish this, again takheq presepecified repulsive particles as fixed,
we initializen4+ m— q free repulsive particles randomly o+ m— g nearest-neighbor lattice points around
the CMP and then, at each iteration, move the two or thiree particles that are furthest from equilibriumiin
the force-based model described above (that is, those &mielps which have the highest force component
projected onto the surface of the sphere) into new positetexcted from the available locations in such a
way as to minimize the maximum force (projected onto the sphever the entire set of (fixed and free)
particles. Though each iteration of this algorithm invaha: exhaustive search for placing the two or three
free particles in question, it converges quickly whiea O(100) or less.

Algorithm C.For intermediate kissing numbersa hybrid approach may be used: a “good” initial distribatio
may be found using AlgorithrA, then this distribution may be refined using Algoritsn

4Moving more than two or three particles at a time in this athon makes each iteration computationally intensive, aasl litle
impact on overall convergence of the algorithm, whereasimgoonly one at a time is found to significantly impede coneeige to the
optimal solution.
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In each of these algorithms, to minimize the number of newtion evaluations required at each poll step,
a check is first made to determine whether any previous fometvaluations have already been performed on
the nearest-neighbor lattice points around the CMP. Ifteem particles are fixed at these locations, while the
remaining particles are adjusted via one of the three alyns described above. By so doing, previously-
calculated function values may be used with maximum effeoss during the polling procedure. When
performing the poll step of a surrogate-based search, iardodorient the new poll set favorably (and, on
average, exit the poll step quickly), a particle may also kedfiat the nearest neighbor point with the lowest
value of the surrogate function; when polling, this pollqtds thus evaluated first.

The iterative algorithms described above, though in pcacfuite effective, are not guaranteed to converge
from arbitrary initial conditions to a positive basis for @en value ofm, even if such a positive basis exists.
To address this issue, if the algorithm used fails to progupesitive basis, the algorithm may be repeated
using a new random starting distribution. Our numericattaglicate that this repeated random initialization
scheme usually generates a positive basis within a fevaliziéitions when such a positive basis indeed exists.
Since at times, for a givem, there exists no configuration of the free particles on treres-neighbor lattice
points that produces a positive basis, particularly wherptievious function evaluations being leveraged are
poorly configured, the number of new random initializatiagngnited to a prespecified value. Once this value
is reachedmis increased by one and the process repeated. As the costtofieetion evaluation increases,
the user can increase the number of random initializatittesnpted using one of the above algorithms for
each value ofmin order to avoid the computation of extraneous poll poin& tight in fact be unnecessary
if sufficient exploration by the discrete Thomson algoritdescribed above is performed.

Numerical tests have demonstrated the efficacy of this raingple strategy, which reliably generates
a positive basis while keeping computational costs to armunmi even when leveraging a relatively poor
configuration of previous function evaluations and whenkivay in relatively high dimension. Additionally,
the algorithm itself is independent of the lattice beingdyskee only inputs to the algorithm are the dimension
of the problem, the locations of the nearest-neighborckattioints, and the identification of those nearest-
neighbor lattice points for which previous function evdioas are available.

7.4 Implementation of feasible domain boundaries

When implementing a global searchridimensions, or even when implementing a local search onaitum
which is ill-defined for certain nonphysical values of thegmaeters (such as negative concentrations of
chemicals), it is important to restrict the optimizatiog@lithm to look only over a prespecified “feasible”
region of parameter space. For simplicity, the present vasgumes rectangular constraints on this feasible
domain (that is, simple upper and lower bounds on each paeawedue). An efficienb-dimensional lattice
with packing radiupy, is used to quantize the interior of the feasible domain, iefiiqn — 1)-dimensional
lattices with packing radiup,_1 = pn/2 are used to quantize the portions of the boundary of thebieas
domain with one active constraint (that is, the “faces”jicént (n — 2)-dimensional lattices with packing
radiuspn_2 = pn/4 are used to quantize the portions of the boundary of thébleaomain with two active
constraints (that is, the “edges”), etc. The present sectéscribes how to search over the boundaries of the
feasible domain, and how to move on and off of these bounslageappropriate, while carefully restricting
all function evaluations to the interior and boundary ¢z in order to coordinate an efficient search.

We distinguish between two scenarios in which the pollirggpathm as described thus far must be adju-
sted to avoid violating thén — 1)-dimensional boundarié®f the feasible domain. In the first scenario, the
CMP is relatively far (that is, greater th@p but less than @2,) from the boundary of the feasible domain,
and thus one or more of the poll points as determined by oneeohlgorithms proposed in7& might land
slightly outside this boundary. In this scenario, an effectemedy is simply teeliminateall lattice points

5That is, the portions of the boundary with a single activestint.
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Figure 7.3: A scenario in which a CMPat= (00 0)T sits on an(n— 2) = 1-dimensional edge of am= 3-
dimensional feasible region with bounxis> 0 andx, > 0. Note that the feasible neighborhood of this edge
is positively spanned by the nearest neighbors on the intatiiee, and that two additional vectors are added
to the poll set to facilitate moving off of each of these agtdonstraint boundaries.

which land outside of the feasible domain from the list ofgudial poll points, and then taugmenthis re-
stricted list of potential poll points with all lattice pdson the nearbyn — 1)-dimensional constraint surface
which are less thangy from the CMP. From this modified list of potential poll pointee poll set may be
selected in the usual fashion using one of the algorithmeriesl in §.3

In the second scenario, the CMP is relatively close (thdess tharmp,) to the boundary of the feasible
domain. In this scenario, it is most effective simply to sttie CMP onto the nearest lattice point on the-
1)-dimensional constraint surface. With the CMP on the fédasibmain boundary, each poll step explores a
minimum positive basis selected on the lattice quantiziregn — 1)-dimensional boundary and, in addition,
polls an additional lattice point on the interior of the filsdss domain to allow the algorithm to move back off
this constraint boundary. Ideally, this additional poirttudd be located on a inward-facing vector normal to
the (n— 1)-dimensional feasible domain boundary a distapc&om the CMP; we thus choose the interior
lattice point closest to this location.

Multiple active constraints are handled in an analogousnmaafsee Figur&.3). In ann-dimensional
optimization problem withp > 2 active constraints, the CMP is located on an active canstfsurface”
of dimensionn — p. An efficient (n— p)-dimensional lattice with packing radiys_p = pn/2P is used to
guantize this active constraint surface, and a poll setristtocted by creating a positive basis selected from
the points neighboring the CMP within tije — p)-dimensional active constraint surface, together vaith
additional points located on tH@ — p+ 1)-dimensional constraint surfaces neighboring the CMRallge
thesep additional points would be located on vectors normal to(the p)-dimensional active constraint
surface a distancgn_p+1 = pn/2P~1 from the CMP; we thus choose the lattice points on (the p+ 1)-
dimensional feasible domain boundaries closest to thesgitms.

In practice, it is found that, once an optimization routineves ontop > 1 feasible domain boundaries,
it only somewhat infrequently moves back off. To accounttfas, thep additional poll points mentioned in
the previous paragraph are pollaffer the other poll points forming the positive basis within ttme— p)-
dimensional active constraint surface.
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7.5 Quantifying the skewness of minimal positive bases

A final relevant metric of a lattice that relates to the parfance of the corresponding lattice-based optimiza-
tion is the deviation from perfect uniformity of the best inial positive basis available on nearest-neighbor
lattice points. Théest nearest-neighbor minimal positive basis skewogadattice,s, is thus now defined
as the ratio between the largest and the smallest angles®etany two vectors in the best minimal positive
basis available on nearest-neighbor lattice points, mimgs Therefores = 0 indicates a perfectly uniform
minimal positive basis on nearest-neighbor lattice poamgsexhibited by, (see Figur&’.2a) andA; (Figure
7.20). In constrastAg throughAg all haves = 0.3333 (see, e.gAs in Figure7.2c).

Surprisingly, the best nearest-neighbor minimal postigsis skewness @& is s= 1; one might initially
expect it to be much smaller than this (indeed, one might liwgitat would be fairly close te = 0) due to the
relatively large kissing numbert & 240) of thisn = 8 lattice. Interestingly, the best nearest-neighbor p@sit
basis ofEg when usingh+ 2 points (that is, instead of a minimal positive basis with 1 points) is perfectly
uniform. The tests reported later in Part Il thus use2 points instead ofi + 1 points when polling on the
Eg lattice.

A minimal positive basis on nearest-neighbor lattice poaesn’t even exist on tH&" lattice (indeed,

a positive basis on nearest neighbors of Zfdattice requires a full & points). This was, in fact, a matter
of significant inconvenience in previous work when using@aetesian lattice as the default choice for such
problems, as using a maximal positive basis rather than amalrpositive basis essentially doubles the cost
of each complete poll step for largeWhen developing a minimal positive basis for thlattice, it is thus
common (see, e.g., Booket al. 1999) to select the Cartesian unit vectetghroughe” and one additional
“oddball” vector in the(—1,—1,...,—1) direction which is,/n longer. Note the “clustering” of the Cartesian
unit vectors in directions generally opposite to the oddiedtor. To quantify, the skewness of this minimal
positive basis is cos(—1/,/n)/(11/2) — 1, which in dimensions = 2 through 8 is given by 0.5, 0.3918,
0.3333,0.2952, 0.2677, 0.2468, and 0.2301. Note thatevitd skewness of the angular distribution of this
minimal positive basis actually decreases gradually agliimension of the problem increases, the ratio in
lengths of the vectors to the nearest-neighbor latticetpand the oddball vector in this basis increases
like \/n (that is, from 1.4142 im = 2 to 2.8284 inn = 8). This is quite unfortunate, as it leads to a peculiar
nonisotropic behavior of the optimization algorithm ovargmeter space (for further discussion on this point,
see the sixth paragraph 0i@.1). The tests reported later in Part Il use this peculiar mimmpositive basis,
with a long oddball vector, when polling on tié lattice.

We now have all of the ingredients necessary to coordinaté Slglorithms, as introduced irv 8L, with
any of the lattices listed in Tables 3.1-3.2 of Part |, whilgthbreusing previous function evaluations as
effecieintly as possible as well as respecting sharp boandise feasible region of parameter space.
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Chapter 8

Kriging interpolation
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8.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm (3e & to interpolate, and extrapolate, the trends
exhibited by the existing function evaluations in order tggest new regions of parameter space, perhaps
far from the CMP, where the function value is anticipatedhvgome reasonable degree of probability, to be
lower than that of the CMP. There are a variety of possibilgsaa accomplishing this; we leverage here the
Kriging interpolation strategy (Krige 1951; Matheron 1988nes 2001; Rasmussen & Williams 2006).

The problem of interpolation is the problem of drawing a sthamurve through data points in order to
estimate the function values in regions where the functieelfihas not yet been computed. The problem
of interpolation, thus, necessarily builds on some hypsithhat models the function behavior in order to
“connect the dots”. The most common such model is a mechamieg based on a thin piece of wood,
or “spline”, that is “bent” in order to touch all the data ptsinthis mechanical model leads directly to the
mathematical algorithm known as cubic spline interpolatioperhaps equally valid hypothesis, which forms
the foundation for the Kriging interpolation strategy,asriodel the underlying function as a realization, with
maximum likelihood, of some stochastic proc3® stochastic model used in this approach is selected to
be general enough to model a broad range of functions reblsonall, yet simple enough to be fairly
inexpensive to tune appropriately based on the measuradatre are many such stochastic models which
one can select; the simple stochastic model considerediédemle to the easy-to-use interpolation strategy
commonly referred to as ordinary Kriging.
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8.2 Notation of statistical description

To begin, consideN points{x%,...,xN}, at which the function will ultimately be evaluated, and rebthe
function’s value at thesl points with the random vector

f(x1) f1
f(xN) N
To proceed further, we need a clear statistical framewodegzribe this random vector.

The cumulative distribution function (CDF) of the randonctig f, denotedd:(f), is a mapping from
f € R"to the real interval0, 1] that monotonically increases in each of the componerttsasfd is defined

df(t) - P(fl < il’ f2 Sizv"' ) fn < in)v

wheref is some particular value of the random vectaand P(S) denotes a probability measure that the
conditions stated i are true. In the scalar case, for examplg,1) = 0.6 means that it is 60% likely that
the random variablé satisfies the conditiof < 1. For a random vectdrwhose CDF is modelled as being
differentiable everywhere, the probability density fuant(PDF)ps(f') > O is a scalar function df defined
such that

. il iz 1rl / / / / N andf(t)
dit)= [ [Zo [Tpt)dtdsdh o ()= 37 aF, o here

For small|Af’|, the quantityps(f’)Af]{ AfS---Af), represents the probability that the random vedttakes
some value within a small rectangular region centered avahesf’ and of widthAf/ in each coordinate
directiong. Note that the integral of(f') over all possible values df is unity, that is

/ pr(F)df’ = 1.
Rn

The expected value of a functigyf) of a random vector is given by

z{g(N} = [ o) pr(f)dx’

The expected value may be interpreted as the average of &mtityun question over many realizations. In
particular, the meahand covarianc®: of the random vectdrare defined as

ferity= [ Op(dr,  R2e{(-H-0T = [ @"=H1 =07 p()ar

8.3 Statistical modeling assumptions of the ordinary Krighg model

The PDF of the random vectbr= f«1 in this analysis is modelled as Gaussian, and is thus restrio the
generic form _ B
—(f—H)TP L —f
L oM =DTRE =)
(2T[)n/2|pf|l/2 2

where the covariand@ is modelled as a constaot, referred to as the variance, times a correlation m#&rix
whose{i, j }'th component;; is given by a model of the correlation of the random functidretween points

pe(f') = (8.1a)
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X! andxj, where this correlation model-, ) itself decays exponentially with the distance betweentsoin
andx!; that is,

n

P2 0%R, where rij 2r(x',x)) and r(x,y) éﬂexp(—egm—ydpf) (8.1b)
for some yet-to-be-determined constaats 6, > 0, and O< p, < 2 for ¢ = 1,...,n. The mearf in the
Gaussian modeB(19 is itself modelled as uniform over all of its components:

2 (8.1¢)

for some yet-to-be-determined constgnThere is extensive debate in the recent literature (sge,lsaaks

& Srivastava 1989; Rasmussen & Williams 2006) on the stadistnodeling assumptions one should use
in a Kriging model of this sort. It is straightforward to ertéthe present investigation to incorporate less
restrictive Kriging models; the ordinary Kriging model isad here primarily due to its simplicity.

8.4 Adjusting the coefficients of the model based on the data

If the vector of observed function values is

P
fO = .
fN
then the PDF corresponding to this observation in the itatisnodel proposed ir8(1) can be written as
1 —(fo—p)TRY(fo— 1)
0\ _
pf(f )_ (Zn)n/Z(GZ)n/2|R|1/ZeXp 202 : (8'2)

The process of Kriging modeling boils down to selecting theapeters?, ,, p;, andp in the statistical
model proposed ing;1) to maximize the PDF evaluated for the function values digtodservedf = °, as

givenin @.2).

Maximizing ps(f°) is equivalent to minimizing the negative of its log. Thug, $amplicity, consider

(fo— )R H(f—p1)
202

Setting the derivatives afwith respect tq1 ando? equal to zero and solving, the optimal valuegi@indo?
are determined immediately:

J=—log[ps(f°)] = glog(Zn) + g log(c?) + % log(|R|) + : (8.3)

_URAf L (- p) TR — )

W= TR - n ‘

With these optimal values gfando? applied, noting that the last term if.Q) is now constant, what remains
to be done is to minimize

(8.4)

2= Jlog(0?) + 3 0g(|R) (8.5)

with respect to the remaining free parametdsandp,, whereo? is given as a function dRin (8.4) andR,
in turn, is given as a function of the free parame@grandp, in (8.1H. This minimization must, in general, be

1To simplify this optimization,p, may be specified by the user instead of being determined \ieiaption; this is especially
appropriate to do when the number of function evaluatihnis relatively small, and thus there is not yet enough dataeterchine
both the6, and p, uniquely. If this approach is followedy, = 1 or 2 are natural choices; the case with= 1 is referred to as an
Ornstein-Uhlenbeck process, whereas the casemyith 2 is infinitely differentiable everywhere.
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performed numerically. However, the functidnis smooth in the parameteds and p;, so this optimization
may be performed efficiently with a standard gradient-badgdrithm, such as the nonquadratic conjugate
gradient algorithm, where the gradient itself, for simipyicmay easily be determined via a simple finite
difference or complex-step derivative approach.

Note that, after each new function evaluation, the Krigilagameters adjust only slightly, and thus the
previously-converged values of these parameters form eellert initial guess for this gradient-based op-
timization algorithm. Note also that, while performinggtuptimization, the determinant of the correlation
matrix occasionally reaches machine zero. To avoid the nigailifficulty that taking the log of zero would
otherwise induce, a smald{10-%)] term may be added to the diagonal element®d8y so doing, the Kri-
ging predictor does not quite have the value of the samplelataeach sampled point; however, it remains
quite close, and the algorithm is made numerically robustlret al, 1999].

8.5 Using the tuned statistical model to predict new functia values

Once the parameters of the stochastic model have been tardaseribed above, the tuned Kriging model
facilitates the computationally inexpensive predictiéthe function value at any new locatianTo perform
this prediction, consider now thé+ 1 points{x*,...,xN,x}, and model the function’s value at thee- 1

points with the vector
=(.)=(b
A T\

wheref is theN x 1 random vector considered previously ants the random scalar modeling the function
at the new point. Analogous statistical assumptions aslaidh (8.1) are again applied, with the correlation
matrix now written as

R— F ﬂ Pr2o?R (8.6)
whereR is theN x N correlation matrix considered previously and, consistétit this definition, the vector
ris constructed with components

n

ﬁ:r(xivﬂv where r(X,y)éJ_leXp(—eng—yAp/)-
=1
Following Jones (2001), note by the matrix inversion lemh&R 1 may be written

g1_[R T T_[RI+RFA-RINHTRT —R (1R (8.7)
o1 iy —(1—FTR71F)71Y_-FR71 (1_r_TR71r—)71 .
Keeping the paramter values, 6,, p;, andp as tuned previously, we now examine the variation of the

PDF in the remaining unknown random variakfieSubstituting 8.6) and @.7) into a PDF of the form&.19,

we may write
|- T§71 !
f'—u f'—u

=Ci-exp 202 (8.8)
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Figure 8.1: (a) The Kriging predictoﬂ(x), and (b) its associated uncertairﬂfi(,x), for a perturbed quadratic
bowl sampled on a square grid 0k77 points. (c) The correspondidgx) = f(x) — c-s?(x) search function
used for a global search in two dimensions (s@e §

where, with a minor amount of algebraic rearrangement, taemand variance of this scalar Gaussian dis-
tribution modeling the random scaléwork out to bé

f) =2{f(0} = £{f} =p+rTR ('~ ), (8.9a)
LX) = {[f(X) - ]2} = £{[f - f]?} =c?(1—r"R ). (8.9b)

Equations 8.99-(8.9b give the final formulae for the Kriging predictof?(i), and its associated uncertainty,
2(%).

When applied numerically to a representative test prob&expected, the Kriging predictor function,
which we denote‘A(i), interpolates [that is, it goes through every observedtianovalue at pointx = x*
to X = x"], whereas the uncertainty function, deno(k), is zero at each sampled point, and resembles a
Gaussian “bump” between these sampled points, as seenurelBid. Note that, once the parameters of the
statistical model have been determined, as describefl.if) e formula 8.99-(8.9b for the Kriging pre-
dictor f()?) and its corresponding uncertairgy(x) at any test poink is computationally quite inexpensie

2An alternative interpretation of this process models thestanty itself as a stochastic variable rather than as a constaltbwiiog
this line of reasoning ultimately gives the same formulathnrpredictorf()?) as given in 8.99, and a slightly modified formula for its
associated uncertainty,

2 Too1,, (L=rTRr)?
F(X) = 0?(1-rTR I+ TR ) (8.95)

Which formula [B.9b) or (8.95)] is used in the present model is ultimately a matter ofditonsequence as far as the overall derivative-
free optimization algorithm is concerned; we thus preferftrm given in 8.9b) due to its computational simplicity.

3Note that, for maximum efficiencyg ! should be saved between function evaluations and reus@védoy new computation of
ands? required.
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Chapter 9

Global optimization leveraging
Kriging-based interpolation

The previous chapter reviewed the Kriging interpolatiaatstgy which, based on a sparse set of observed
function valuesf °(x) for i = 1,...,N, develops a function predictd(x) and a model of the uncertainty
§(x) associated with this prediction for any given set of paramedluesx. Leveraging this Kriging model,
an efficient search algorithm can now be developed for thgatere-free optimization algorithm summarized
in8§7.1

The effectiveness of the various Kriging-based searchegfies which one might propose may be tested
by applying them repeatedly to simple test problems viadfewing procedure:

e a search functiod(x) is first developed based on a Kriging model fit to the existimction evaluati-
ons,

e a gradient-based search is used to minimize this (computdly inexpensive, smoothly-varying)
search function,

e the functionf (x) is sampled at the poiitwhich minimizes the search functin

¢ the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem withiptes minima, f (x) = sin(x) +x2, on the
interval x € [—10,10], and use four starting points to initialize the seaxch —10,x = —5.2, x = 6, and

x = 10. Ineffective search strategies will not converge to fbég minimum off (x) in this test, and may not
even converge to alocal minimum. More effective searchesjias converge to the global minimum following
this approach, and the number of function evaluations reddor convergence indicates the effectiveness of
the search strategy used.

Perhaps the most “obvious” strategy to use in such problemsgiply fitting a Kriging model to the
known data, then searching the Kriging predictor itsé{f) = f(x), for its minimum value. This simple
approach has been implemented in a variety of examples witbonably good results (see Bookeral,
1999). However, as shown clearly in Figurd, this approach can easily break down. The Kriging predictor
does not necessarily model the function accurately, anchittémization fails to guarantee convergence to
even a local minimum of the functioi(x). This observed fact can be motivated informally by idemtifythe
Kriging predictor as aimterpolatingfunction which only under extradrdinary conditions pietdia function
value significantly lower than all of the previously-comgdtfunction values; under ordinary conditions, a
strategy of minimizing the predictor will thus often stailthe vicinity of the previously-evaluated points.

1For the moment, to focus our attention on the behavior of ézech algorithm itself, no underlying grid is used to conadé the
search in order to keep function evaluations far apart.
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Figure 9.1: Convergence of a search algorithm based on nzimignthe Kriging predictorJ(x) = f(x), at
each iteration. This algorithm does not necessarily c@e/ér even a local minimum, and in this example
has stalled, far from the global minimum, after six iterato

To avoid the shortcomings of a search defined solely by themeation of the predictor, another strategy
explored by Bookeet al (1999) is to evaluate the functiontato points in parameter space during the search:
one point chosen to minimize the predictor, and the othertmiosen to maximize the predictor uncertainty.
Such a heuristic provides a guarantee of global convergascihe seach becomes dense in the parameter
space as the total number of function evaluatibhspproaches infinity (se€’8L.9. However, this approach
generally does not converge quickly as compared with theorgnl methods described below, as the extra
search point has no component associated with the predictdiis thus often evaluated in relatively “poor”
regions of parameter space.

We are thus motivated to develop a more flexible strategy pdoes slightly awayfrom the minima of
the predictor. To achieve this, consider the minimizatibd(@) = f(x) — c- s2(x), wherec is some constant
(see Cox & John 1997 and Jones 2001). A search coordinatddsbfunction will tend to explore regions
of parameter space where both the predictor of the functdurevs relatively lonandthe uncertainty of this
prediction in the Kriging model is relatively high. With thétrategy, the search is driven to regions of higher
uncertainty, with the-c- s?(x) term inJ(x) tending to cause the algorithm to explore away from prevjous
evaluated points. Additionally, minimizing(x) — ¢ - s%(x) allows the algorithm to explore the vicinity of
multiple local minima in successive iterations in order to determivith an increasing degree of certainty,
which local “bowl!” in fact has the deepest minimum. The pagganc provides a natural means to “tune”
the degree to which the search is driven to regions of higheemainty, with smaller values affocusing
the search more on refining the vicinity of the lowest funtti@lue(s) already found, and larger valueg of
focusing the search more on exploring regions of paramptareswhich are still relatively poorly sampled.
This parameter may tuned based on knowledge of the funcémmglminimized: if the function is suspected
to have multiple minimag can be made relatively large to ensure a more exploratorgiseahereas if the
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Figure 9.2: Convergence of a search algorithm based on riziinigthe search functiod(x) = f(x) —c-s2(x)
at each iteration, taking= 1. Note that the global minimum is found after just a few itenas. However,
global convergence is not guaranteed.

function is suspected of having a single minimwntan be made relatively small to ensure a more focused
search in the vicinity of the CMP. For an appropriate intediate value ot, the resulting algorithm is often
quite effective at both global exploration and local refiremof the minimum, as illustrated in Figuge2.

The strategy of searchintix) = f(x) — c-s2(x) also extends naturally to multiple dimensions, as illustia

for a two-dimensional problem in Figui&lc. Note also that, in the spirit of Booket al (1999) [who
effectively suggested, in the present notation, explobiaged on botle = 0 andc — « at each search step],
one can perform a search using multiple but finite values aif each search step, returning a set of points
designed to focus, to varying degrees, on the competingtigs of global exploration and local refinement.
If at each search stdpat least one point is included which minimiz&&) — ¢, - 2(x) for a value ofc, which
itself approaches ask — o, then the search drives at least some new function evahsasiofficiently far
from the existing points that the function evaluations euatly become dense over the feasible domain, thus
guaranteeing global convergence. Thusf@r) —c-s?(x) search, when used properly, can indeed be used in
a globally convergent manner.

Minimizing J(x) = f(x) — c-s?(x) is not the only strategy to take advantage of the estimateefincer-
tainty of the predictor provided by the Kriging model. Anetteffective search strategy involves maximizing
the probability of achieving a target level of improvemealdw the current CMP; this is called tieaximum
likelihood of improvemen(MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen EQ#r 1992,
and Mockus 1994]. If the current CMP has a function vafyug, then this search strategy seeks thébr
which the probability of finding a function valugx) less than some prespecified target validget [that
is, for which f(x) < farget < fmin] is maximized in the Kriging model. Iff (x) is known to be a positive
function, a typical target value in this approactfigget= (1 — ) fmin, Whered may be selected somewhere
in the range of M1 to Q2. As for the parameterdiscussed in the previous paragraph, the parametethis
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Figure 9.3: MLI search with a targ@&t= 10%. Note convergence to global minimum, as well as expoyat
nature of the search which guarantees global convergence.

strategy tunes the degree to which the search is driven torregf higher uncertainty, with smaller values of
o0 focusing the search more on refining the vicinity of the lawfaaction value(s) already found, and larger
values ofd focusing the search more on exploring regions of parampgareswhich are still relatively poorly
sampled. As seen in Figuge3, the MLI search offers performance similar to thex) — ¢- s2(x) method dis-
cussed previously. In contrast with tfiéx) — c- s%(x) approach, even for a fixed (finite) value&fthe MLI
approach eventually drives the function evaluations farugh away from existing points that the function
evaluations eventually become dense over the feasibleidpthas guaranteeing global convergence. Thus,
the MLI approach is inherently globally convergent.

Even more sophisticated search strategies can also besgpas reviewed elegantly by Jones (2001).
However, the simplicity, flexibility, and performance givby the strategy of minimizing(x) = f(x) —c-
§(x) renders this approach as adequate for our testing purpeses h

Since both thel(x) = f(x) — ¢c- (x) search function and the MLI search function are inexpenisive
compute, continuous, and smooth, but in general have nultiinima, an efficient gradient-based search,
initialized from several well-selected points in parameigace, may be used to to minimize them. As the
uncertaintys?(x) goes to zero at each sample poiftx) will tend to dip between each sample point. Thus,
a search is initialized onr N total points forming a positive basis near (say, at a digaripn/2) to each
of theN sample points, and each of these starting points is marchetbtal minima of the search function
using an efficient gradient-based search (which is com&daio remain within the feasible domain xf
The lowest point of the paths so generated will very likelythe global minima of the search function. For
simplicity, the necessary gradients for this search mayonepeited via a simple second-order central finite
difference scheme applied to the Kriging model, though nsoghisticated and efficient approaches are also
possible.
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Lattice-based derivative-free
optimization via global surrogates
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Putting everything together, we now develop and test whaitiemetify as thelLattice Based Derivative-
free Optimization via Global SurrogatédsABDOGS algorithm. This algorithm consists of an SMF-based
optimization (see 8.1) coordinated by uniforrm-dimensional lattices (see Part | and further extensions in
8§7) while leveraging a Kriging interpolant (se@)8o perform an efficient global search based on the search
functionJ(x) = f(x) —c-s2(x) (see §). The full algorithm has been implemented in an efficient erioal
code, dubbed Checkers, and is tested in this section=ir2 to n = 8 dimensions using th&", A,, andEs
lattices to coordinate the search, and is applied here to:

e randomly shifted quadratic bowls
fo(x) = (x = x)TA(x—Xx°)

e randomly shifted Rosenbrock functions:
fr(x) = S {[1— (6 — )] + (=1)"500{(%+1 —Xfy1) — (i —x*)?|},
e the Branin function:
fe(x) = [1 — 2x2 + 0.05 SiM41X2) — X1]? + [%2 — 0.5 8in(2mx1 )2,
e and the T;” function:
fwm (X) = sin(5x1) 4 sin(5x2) + 0.02[(5%1 4 1.5)2 + (5x2 + 1.5)2.

Note that the first two test functions anedimensional and have unique minima, whereas the last teto te
functions are 2-dimensional and have multiple minima. Miwsther testing remains to be done, and will be
reported in future work.
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(n] 2 [ 3 [ 4 | 5 [ 6 [ 7 | 8 |
p| 74.77 | 8132 | 84.03 | 8453 | 84.43 | 84.56 | 85.28
r | 0.4290] 0.4161] 0.3273] 0.3585] 0.3150] 0.3345] 0.3060

Table 10.1. Performance comparison betweerthbased SP algorithm and tié-based SP algorithm app-
lied to randomly shifted quadratic bowls foe= 2 to 8. It is seen that th&g-based SP algorithm outperformed
the Z8-based SP algorithm 85% of the time, and on average requi#ds® many function evaluations to
reach the same level of convergence.

n| 8 |
90.65
0.1554

-~ |

Table 10.2. Performance comparison betweenBgbased SP algorithm and ti#%*-based SP algorithm
applied to randomly shifted quadratic bowls. It is seen thaEg-based SP algorithm outperformed &
based SP algorithm 91% of the time, and on average requigédak/many function evaluations to reach the
same level of convergence, thus offering nearly twice théop@ance ofA,,.

10.1 SP applied to randomly-shifted quadratic bowls

To test the hypothesis that the efficiency of a pattern sdamignificantly affected by the packing efficiency
and/or the nearest-neighbor distribution of the lattichgctv coordinate it, a large number of SP optimizati-
ons were first performed on randomly-shifted quadratic Bdwlgather and compare statistical data on the
performance oZ"-basedAn-based, anég-based SP optimizations. The positive-definite matrieesO and
offsetsx® defining the quadratic bowls to be minimized, as well as theisg points used in the searches,
were selected at random for every set of tests, and thelifftiaA,, andEg lattices were scaled such that the
initial number of points per unit volume of parameter spaes wentical.

The Z"-based An-based, andEg-based SP algorithms were run from the same starting pomthe
same quadratic test functions to the same level of conveggéiote that several of the significant built-in
acceleration features of the full Checkers code were intfacted off for this baseline comparison. Most
notably, complete polls were performed (that is, the pelpstwere not terminated immediately upon finding
a lower CMP), and no attempt was made to reuse previouslypated points when forming each successive
poll set, or to orient optimally any given poll set. In fadigtangular distribution of the poll set around the
CMP was fixed from one step to the next in these initial tests.

Two quantitative measures of the relative efficiency of thgmization algorithms to be tested are now
defined. The metrip is defined as thpercentage of runs which the lattice-based algorithm requires fewer
function evaluations than does tfi-based algorithm to converge 99.99% of the way from theahitalue
of J(x) to the optimal value ofi(x) [which, in these test problems, is easy to compute anallfjicThe
metricr is defined as theatio of the average number of function evaluatioaguired for the lattice-based
algorithm to converge 99.99% of the way from the initial v@bfJ(x) to the optimal value ad(x) divided by
the average number of function evaluations needed faZfHeased algorithm to converge the same amount.

The p andr measures described above (averaged over 5000 runs for alaehofn) were calculated in
the case of thé,, lattice (forn = 2 ton = 8) and theEg lattice, and are reported in Tables 10.1 and 10.2. Note
that values ofp over 50% and values ofless than 1 indicate that, on average, the lattice-basetg8SRthm
outperforms th&"-based SP algorithm, with quantifying how often and quantifying how much.

Note in Table 3.1 that the “best” lattice m= 2 andn = 3, accoring to several standard metricshis
however, as the dimension of the problem increases, senthie lattices become available, and thahby 8
the Eg lattice appears to be the best choice. This observatiomisistent with the numerical results reported
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Figure 10.1: Typical paths taken by tAe-based SP algorithm (dots) and th&based SP algorithm (+) on a
randomly-shifted quadratic bowl.

in Tables 10.1 and 10.2, which indicates thatAhebased optimizations provided a consistent and substantia
improvement over th&"-based optimizations over the entire ramge 2 to 8, and that, im = 8, theEg-based
optimization significantly outperformed tg-based optimization.

The mechanism by which the lattice-based SP algorithmseoiaipn theZ"-based SP algorithm on qua-
dratic test problems is now examined in detail. As descrjiresliously, theZ" minimal positive basis vectors
are distributed with poor angular uniformity and can notélested on nearest-neighbor lattice points. When
the optimal descent direction is poorly approximated bgdmet 1 vectors (such as when the optimal descent
direction is configured somewhere approximately midwawben the oddball vector and one of the Cartesi-
an unit vectors), the search path must “zig-zag” to move tde/the actual minimum. If the local curvature of
the function is small compared to the current lattice spgdimen the search algorithm must take several steps
in arather poor direction before it must eventually turnkbdawn the “valley floor”, as illustrated by the path
of theZ"-based SP algorithm in Figufig.1 Once in this valley, the lattice spacing must be diministigch
that each step of the “zig-zag” path required to proceed dinervalley floor in fact decreases the function;
this leads to otherwise unnecessary lattice refinementrarsdviery slow progress by the SP algorithm. This
effect is exacerbated when the vectors of the poll set arelagtantially different length, as the entire set
of vectors must be scaled down until movement along the tilire©f the longest poll vector during this
zig-zagging motion still decreases the function. This $adhe poor convergence behavior demonstrated by
the Z"-based SP algorithm along the narrow valley floor of the gatéelbowl indicated in Figuré0.1 Of
course, the present arguments are statistical in natuddnaspecific cases either tihg-based SP algorithm
or theZ"-based SP algorithm will sometimes get “lucky” and convergeaarkably quickly. However, it is
clear that the optimal descent direction at any given itenas more likely to be “far” from the poll vectors
when the poll set is distributed with poor angular unifogmit

10.2 SP applied to randomly-shifted Rosenbrock functions

The Ap-based an&."-based SP algorithms were also applied to a randomly-shRtesenbrock function in
a similar fashion. Figur&0.2demonstrates a typical case, indicating the respecties tconvergence of
the two SP algorithms. Th&,-based SP algorithm demonstrates a substantially improwedergence rate
compared to th&"-based SP algorithm.
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0 500 1000 1500 2000
Figure 10.2: A sample SP minimization comparing thebased case (dash-dot line at left and blaek

at center) with theZ"-based case (solid line at left and bluat right) on a randomly shifted Rosenbrock
function. Note the superior convergence rate ofAhdased approach (as illustrated in the convergence plot
at left), resulting in further progress toward the minimuinfila—1] (as illustrated in the subfigures at center

and right).

These results demonstrate that the efficiency of the SPopoofi a pattern search can be substantially
improved simply by implementing a more efficient lattice teatletize parameter space.

10.3 LABDOGS applied to randomly shifted Rosenbrock functons

To test the hypothesis that the efficiency of the full LABDOGI§orithm is significantly affected by the
choice of the lattices which coordinate it, a more demantisgthan a quadratic bowl is required. We thus
consider here the application of the full LABDOGS algorithonrandomly shifted Rosenbrock functions.
The “valley” in which the minimum of the Rosenbrock functibes is narrow, curved, and relatively flat
(that is, with a vanishing second derivative) along thedrattThis makes it a difficult test case for any SMF-
like algorithm to approximate with a surrogate function officient accuracy to be particularly useful along
the valley floor, other than simply to indicate where the fimtevaluations are currently relatively sparse.
In other words, both the search and poll components of the@BS algorithm are put to the test when
searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of thg-based and."-based LABDOGS algorithms (usirg= 5)
applied to randomly shifted Rosenbrock functions are reglonere. As in the SP tests described previously,
the initial A, andZ" lattices were scaled appropriately so as to be of the sartia uhensity.

Recall in the SP tests the metyic which quantifiechow oftenthe lattice-based method outperformed
the Cartesian-based method, and the metnehich quantifyinghow muchthe lattice-based method outper-
formed the Cartesian-based method. In this section, wewssimilar metricsp-andr, but now terminate
each optimization after a particular number of iteratioather than after convergence to a given percenta-
ge of the (known) optimal solution. Specifically, the mefpics defined as the percentage of runs in which
the Ap-based LABDOGS algorithm converged further than didZRebased LABDOGS algorithm after 300
function evaluations, whereas the metris defined as the ratio of the average function value to whieh t
An-based LABDOGS algorithm converged after 300 function ex&bns divided by the average function
value to which theZ"-based LABDOGS algorithm converged after 300 functioneatibns. The results for
n=2to5 (averaged over 200 runs for= 2, 3, and 4, and 100 runs far= 5) are reported in Table 10.3. Note
that values ofp over 50% and values afless than 1 indicate that, on average, the lattice-based1@BS
algorithm outperforms th&"-based LABDOGS algorithm, witp quantifying how often and quantifying



10.4. LABDOGS APPLIED TO BRANIN ANDTy 91

i T
107 1 :
*’T :
| .
Y
|
.
10 Ao 3
v : i
5 WWM :
L 1
W %
10° 1 Db E
- —
‘ : i
e 1
1
107 k.m‘_"'—w‘
e,
R e =

L ! L I ! L
0 20 40 60 80 100 120 140 160 180 200

Figure 10.3: Convergence of the Checkers code uain@ed) vsZ" (green), on am = 6 Rosenbrock func-
tion.

(n] 2 ] 3] 4[5 |
p| 640 | 56.0 | 63.0 | 68.0
[ 0.651] 0.699] 0.773| 0.758

Table 10.3. Performance comparison betweenfiibased LABDOGS algorithm and tt&"-based LAB-
DOGS algorithm applied to randomly shifted Rosenbrock fiams. Forn = 2, it is seen that thé,-based
SP algorithm outperformed tt&'-based SP algorithm about 64% of the time, and on averagemed to a
function value 65% better using the same number of functaltuations.

how much. It is seen that thi,-based LABDOGS algorithm consistently and significantlypauforms the
Z"-based LABDOGS algorithm.

Figure10.3compares the convergence of thgbased an@."-based LABDOGS algorithms on a repre-
sentative realization of the Rosenbrock function ia 6. The convergence of the two algorithms are similar in
behavior during the first 20 iterations, during which thegrgha nearly identical search, with the differences
between the two becoming more and more apparent as coneergeapproached. Initially, the poll steps
return much smaller improvements than the search step® thasurrogate model adequately represents the
walls of the Rosenbrock function, thereby identifying tivaltey floor”, the search becomes less effective,
and both algorithms rely more heavily on the polling aldaritto identify the minimum.

10.4 LABDOGS applied to Branin andT;

Thus far, only functions with unique minima have been exgioAs the LABDOGS algorithm has the ca-
pability to locate and explore multiple local minima in ateatpt to identify and refine an estimate of the
global minimum, some searches were performed on two testifuns with multiple minima, Branin ant,
to demonstrate this capability.

Ontheinterval-2 < x < 2, -2 <y < 2, the Branin function has five local minima. As seen in FidiLie}
with the search parameter= 2, the LABDOGS algorithm does an excellent job of locatind arploring all
of these local minima, eventually converging to an accugatiénate of the global minimum. With= 10000,
the search tends to be more “space-filling”, acting at eagp &t reduce the maximum uncertainty of the
Kriging surrogate. It is clearly evident that, as the nunmdfdunction evaluations gets large in the- 10000
case, this search will tend to explore nearly uniformly aber entire feasible domain. [In the limit thais
infinite, the function evaluations become densB as «, thereby assuring global convergence.] However, for
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Figure 10.4: Points evaluated by the LABDOGS algorithm wégploring the Branin function (with multiple
minima), with (left)c = 2 and (right)c = 10000. Note the more “focused” sampling wieis small and the
more “exploratory” sampling wheais large.
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Figure 10.5: Points evaluated by the LABDOGS algorithm whgploring theT; function (with multiple
minima) with c = 1000 after (left) 30 function evaluations, (center) 60 fimt evaluations, and (right) 100
function evaluations. Note (after 30 function evaluatjoihst the LABDOGS algorithm initially identifies
and converges to a local minimum near the lower-left cotdiimately (after 100 function evaluations), the
LABDOGS algorithm successfully identifies a refined estenatthe global minimum.

a small number of total function evaluatioNgwhich should be the primary problem of interest if function

evaluations are expensive!], the strategy with smaliarfact identifies and refines the estimate of the global
minimum point much sooner, as the case with lacggastes a lot of computational effort reducing the

uncertainty of the surrogate in areas predicted to have fooction values.

Similar behavior can be seen for tigtest function in Figuré 0.5 Initially, the algorithm happens upon
the local minimum in the lower-left corner of the feasiblewhin. With its exploratory function evaluations,
however, the algorithm ultimately identifies and refineggtmate of the global minimum.

While these results indicate encouraging global explormafiurther testing of the LABDOGS algorithm
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on nonconvex functions is certainly warranted, partidylar high-dimensional problems. In particular, fur-
ther refinement of the algorithm to provide the most robustlgioation of “focused” and “exploratory” samp-
ling remains to be performed; however, the present reslgesly demonstrate the capability and flexibility
of the LABDOGS algorithm to strike this balance while maintag maximum computational efficiency.

10.5 LABDOGS Performance Summary

This chapter proposes a new algorithm, dubbed LABDOGS, déovdtive-free optimization formed via the
tight integration of

e the efficient SMF algorithm (seer8l) for a surrogate-based search coordinated by an undedyidg
in order to keep function evaluations far apart until cogeerce is approached,

e a uniform “grid” selected from those available in latticedny (see Part | and further extensions i §
to coordinate such an optimization algorithm, in order thuee the average quantization error of a grid
of a given density and to better distribute the poll pointsryithe poll step, and

e a highly effective search algorithm, leveraging a Krigingerpolant (see & to construct the search
functionJ(x) = f(x) — c- $(x) combining both the function predictor and a model of its aised
uncertainty, in order to provide a flexible combination aftafl exploration and local refinement during
the search (seedg

The numerical results achieved via this algorithm, as rtegjplan this chapter, indicate effective convergence
of the resulting algorithm on a range of benchmark optinniraproblems, and reveal a clear advantage for
using an efficient lattice derived from amdimensional sphere packing to coordinate such a searttterra
than the heretofore default choic®], which is simply untenable in light of the clear advantageasing
alternative lattices which are, quantifiably, both morefanmh and have a more favorable distribution of
nearest neighbors, especially as the dimension of the @atiion problem is increased.

The flexible numerical code we have developed which implasiis algorithm, dubbed Checkers, has
been written from scratch, and each subroutine of the codebkan scrutinized to maximize its overall
efficiency for systems with expensive function evaluations
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