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Preface

The field of n-dimensional sphere packings is elegant and mature in its mathematical development and cha-

racterization. However, it is still relatively limited in its practical applications, especially for n > 3. The

present text intends to open up two broad new areas for profitable application of this powerful body of mathe-

matical literature in science and engineering. Towards this end, Part I reviews the essential results available

in this field (reconciling the theoretical literature for dense and rare sphere packings, which are today largely

disjoint), catalogs the key properties of the principle dense and rare sphere packings and corresponding nets

available up to1 n = 24 (including hundreds of values not previously known), and extends the study of regular

rare sphere packings and nets to n > 3 dimensions (an area which up to now has been largely unexplored).

Part II then builds from the presentation in Part I to develop three new algorithms (LABDOGS, αDOGS,

and latticeMADS) for performing efficient derivative-free optimization in non-differentiable problems with

1Note that n = 24 is a natural stopping point in this study. It is special because it is the only integer n > 1 that satisfies the equation

12 +22 + . . .+n2 = m2 where m is itself an integer; as a consequence, a particularly uniform lattice (known as the Leech lattice, denoted

Λ24) with a large number of symmetries is available in this dimension.
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expensive function evaluations, leveraging the lattices derivd from dense sphere packings as an alternati-

ve to Cartesian grids to coordinate the search. We pay particular attention to the improved uniformity and

nearest-neighbor configuration of the lattices used over their Cartesian alternatives, and the improvements in

efficiency of optimization algorithms coordinated by such lattices that follow as a direct consequence.

Finally, Part III builds from the presentation in Part I to develop new interconnect strategies for switchless

multiprocessor computer systems, leveraging the nets derived from rare sphere packings as alternatives to

Cartesian grids to establish structured, fast, and inexpensive interconnects. We pay particular attention to the

improved coordination sequences facilitated by such nets over their Cartesian alternatives, and the improve-

ments in the rate of spread of information across the computer system that follow as a direct consequence.

In the applications discussed in Parts II and III, Cartesian grids are used as the default choice today in

almost all related realizations. A primary goal of this text is to subvert this dominant Cartesian paradigm and

to establish, via the examples we have chosen to highlight, that significant performance gains may be realized

in practical engineering applications by leveraging n-dimensional sphere packings appropriately.

A gentle introduction to sphere packing theory

An n-dimensional infinite sphere packing is simply an array of nodal points in Rn obtained via the packing

of identical n-dimensional spheres. By packing, we mean an equilibrium configuration of spheres, each with

at least 2 nearest neighbors, against which a repellant force is applied. Many packings investigated in the

literature are stable packings, meaning that there is a restoring force associated with any small movement

of any node of the packing; this requires each sphere in the (n-dimensional) packing to have at least n + 1

neighbors. Unstable packings with lower nearest-neighbor counts are also of interest. By replacing each

sphere in an n-dimensional packing with a nodal point (representing, e.g., a computer), and connecting those
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nodal points which are nearest neighbors, a net (a.k.a. interconnect or contact graph) is formed2.

An n-dimensional real lattice (a.k.a. lattice packing) is a sphere packing which is shift invariant (that is,

which looks identical upon shifting any nodal point to the origin); this shift invariance generally makes lattice

packings simpler to describe and enumerate than their nonlattice alternatives. Note that there are many regu-

lar3 sphere packings which are not shift invariant [the nonlattice packings corresponding to the honeycomb

net in 2D and the diamond and quartz nets in 3D are some well-known examples]. We will focus our attention

in this text on those packings and nets which are at least uninodal (that is, which look identical upon shifting

any nodal point to the origin and rotating and reflecting appropriately). For dense sphere packings, from a

practical perspective, lattice packings are essentially4 as good a choice as their more cumbersome nonlattice

alternatives for n≤ 24 in terms of the four metrics defined below (that is, for maximizing packing density and

kissing number and minimizing covering thickness and quantization error). However, the best rare sphere

packings (with small kissing number) are all nonlattice packings.

As illustrated in Figure P.1 and Table P.1, we may introduce the subject of n-dimensional sphere packings

by focusing our attention first on the n = 2 case: specifically, on the triangular5 lattice (A2), the square

lattice (Z2), and the honeycomb nonlattice packing (A+
2 ). The characteristics of such sphere packings may be

quantified by the following measures:

2As mentioned in the second-to-last paragraph of §2.3, it is natural with certain sphere packings (for example, D∗
n, Ar

n, and the

packings associated with the T 90
n and T 60

n nets) to define nets which are not contact graphs of the corresponding sphere packings by

connecting non-nearest-neighbor points.
3The regularity of a nonlattice packing is quantified precisely in §4.1.
4For n = 10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denoted P10c, P11a, P13a, B ∗18, B ∗20, A ∗22) that are 8.3%, 9.6%,

9.6%, 4.0%, 5.2%, and 15.2% denser then the corresponding best known lattice packings (Conway & Sloane 1998, p. xix); to put this

into perspective, the density of Λ22 is over 106 times the density of Z
22.

5Note that many in this field refer to the A2 lattice (Figure P.1a,b) as “hexagonal”. We prefer the unambiguous name “triangular” to

avoid confusion with the honeycomb nonlattice packing (Figure P.1e,f).
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(a) (c) (e)

(b) (d) (f)

Figure P.1: The triangular lattice (a,b), the square lattice (c,d), and the honeycomb nonlattice packing (e,f).

Indicated in the top three subfigures is the packing with spheres of radius ρ, the corresponding net or contact

graph (solid lines), a typical Voronoı̈ cell (dashed line), and the kissing number (that is, the spheres that contact

a given sphere). Indicated in the bottom three subfigures is the covering with spheres of radius R. Looking at

their respective packing densities ∆ in Table P.1, as compared with the square lattice, the triangular lattice is

said to be dense, and the honeycomb nonlattice packing is said to be rare.



ix

n packing name ∆ Θ G τ td10

A2 triangular 0.9069 1.2092 0.08019 6 331

2 Z
2 square 0.7854 1.5708 0.08333 4 221

A+
2 honeycomb 0.6046 2.4184 0.09623 3 166

E8 Gosset 0.2537 4.059 0.07168 240 1,006,201,681

8

Z
8 Cartesian 0.01585 64.94 0.08333 16 1,256,465

V
90
8 5.590e-4 49.89 0.09206 4 37,009

(unstable)
Y90

8 2.327e-4 87.31 0.09266 3 2290

Λ24 Leech 0.001930 7.904 0.06577 196560 > 1015

24
Z

24 Cartesian 1.150e-10 4,200,263 0.08333 48 24,680,949,041

Table P.1. Characteristics of selected lattice and uninodal nonlattice packings and nets.

• The packing radius (a.k.a. error-correction radius) of a packing, ρ, is the maximal radius of the spheres in

a set of identical nonoverlapping spheres centered at each nodal point.

• The packing density of a packing, ∆, is the fraction of the volume of the domain included within a set

of identical non-overlapping spheres of radius ρ centered at each nodal point on the packing. Packings that

maximize this metric are referred to as close-packed.

• The covering radius of a packing, R, is the maximum distance between any point in the domain and its

nearest nodal point on the packing. The deep holes of a packing are those points which are at a distance R
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from all of their nearest neighbors. Typical vectors from a nodal point to the nearest deep holes in a lattice

packing are often denoted [1], [2], etc.

• The covering thickness of a packing, Θ, is the number of spheres of radius R centered at each nodal point

containing an arbitrary point in the domain, averaged over the domain.

• The Voronoı̈ cell of a nodal point in a packing, Ω(Pi), consists of all points in the domain that are at least as

close to the nodal point Pi as they are to any other nodal point Pj.

• The mean squared quantization error per dimension of a lattice or uninodal nonlattice packing, G, is the

average mean square distance of any point in the domain to its nearest nodal point, normalized by n times the

appropriate power of the volume, V , of the Voronoı̈ cell. Shifting the origin to be at the centroid of a Voronoı̈

cell Ω(Pi), it is given by

G =
S

nV
n+2

n

where S =

Z

Ω(Pi)
|x|2 dx, V =

Z

Ω(Pi)
dx. (1)

• The kissing number (a.k.a. error coefficient) of a lattice or uninodal nonlattice packing, τ, is the number

of nearest neighbors to any given nodal point in the packing. That is, it is the number of spheres of radius ρ
centered at the nodal points of the packing that touch, or “kiss”, the sphere of radius ρ at the origin.

• The coordination number of a net (derived from a sphere packing, as discussed previously) is the first

number of the net’s coordination sequence, the k’th element of which is given by tdk − tdk−1, where tdk,

which quantifies the net’s local topological density, is the total number of nodes reached via k hops or less

from the origin in the net6.

6In most cases, the natural net to form from a sphere packing is the contact graph; in such cases, the kissing number, τ, and the

coordination number are equal. As mentioned previously, it is natural with certain sphere packings to define nets which are not contact
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Certain applications, such as those explored in Part II, require dense lattices. There are two key drawbacks

with Cartesian approaches for such applications. First, the discretization of space is significantly less uniform

when using the Cartesian grid as opposed to the available alternatives, as measured by the packing density ∆,

the covering thickness Θ, and the mean-squared quantization error per dimension, G (see Table P.1). Second,

the configuration of nearest-neighbor gridpoints is significantly more limited when using the Cartesian grid,

as measured by the kissing number τ, which is an indicator of the degree of flexibility available when selecting

from nearest-neighbor points. As seen by comparing the n = 2, n = 8, and n = 24 cases in Table P.1, these

drawbacks become increasingly substantial as the dimension n is increased; by the dimension n = 24, the best

available lattice has

• a factor of 0.001930/1.1501e−10≈ 17,000,000 better (higher) packing density,

• a factor of 4,200,263/7.9035≈ 530,000 better (lower) covering thickness,

• a factor of 0.08333/0.0658≈ 1.27 better (lower) mean-squared quantization error, and

• a factor of 196560/48≈ 4100 better (higher) kissing number

than the corresponding Cartesian grid. Thus, the selection of the Cartesian grid, by default, for applications

requiring dense (that is, uniform) lattices with n > 3 is simply untenable.

Other applications, such as those explored in Part III, require regular nets which, with low coordination

number, connect to a large number of nodes with each successive hop from the origin, as quantified by the

net’s coordination sequence. As mentioned previously, a useful measure of a net’s topological density is given,

e.g., by td10, which is the number of distinct nodes within 10 hops of the origin. Note that the coordination

number of the n-dimensional Cartesian grid is 2n; the coordination number of the alternative n-dimensional

graphs by connecting non-nearest-neighbor points; in such cases, the kissing number (a property of the sphere packing) and the coordi-

nation number (as defined here, a property of a corresponding net) are, in general, not equal. We find this clear semantical distinction to

be useful to prevent confusion between these two distinct concepts; note that some authors (e.g., Conway & Sloane 1998) do not make

this distinction.
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constructions introduced in §4 are as small as 3 or 4, while the topological density increases rapidly as n is

increased (compare, e.g., the values of td10 for A+
2 and Z2, with τ = 3 and τ = 4 respectively, to those for Y90

8

and V
90
8 in Table P.1); it is thus seen that, for applications requiring graphs with low coordination number and

high topological density, the selection of the Cartesian grid, by default, is also untenable.

We are thus motivated to make the fundamental results of both dense and rare n-dimensional sphere

packing theory more broadly accessible to the science and engineering community, and to illustrate how this

powerful body of theory may be put to use in important new applications of practical relevance. Towards

this end, Part I succinctly reviews and extends several significant results in this mature and sophisticated

field, inter-relating the literature on dense and rare packings, which is today largely disjoint. These results are

leveraged heavily in the applications described in Parts II and III. We note that, beyond providing an up-to-

date and synthetic review of this otherwise difficult subject in a (hopefully) accessible language, a significant

number of new computations, constructions, algorithms, metrics, and codes are also reported in Part I [the

reader is referred specifically to §3, §4.4.1 through §4.4.7, §4.5, and §6.1.5].
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Chapter 1

Historical retrospective

Contents

1.1 Finite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Infinite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The mathematical characterization of sphere packings has a long and rich history. Some recent articles

and popular books recount this history in detail, including Zong (1999), Szpiro (2003), Hales (2006), and Aste

& Weaire (2008). The purpose of the present Part I is not to repeat these historical retrospectives, which these
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sources do quite adequately, but to characterize, catalog, and extend the infinite packings available today to

facilitate their practical application in new fields. Nonetheless, we would remiss if we didn’t at least provide

a brief historical context to this field, which we attempt in this short chapter.

1.1 Finite packings

Mystic marbles. We begin by defining, for m ≥ 1, a notation to build from:

T0,m , 1, T1,m ,
m

∑
k=1

T0,k = m (the positive integers).

In the sixth century BC, Pythagoras and his secret society of numerologists, the Pythagoreans, discovered

geometrically (see Figure 1.1, and pp. 43-50 of Heath 1931) the formula for the number of marbles placed in

a (2D) triangle (that is, the “triangular numbers”):

T2,m ,
m

∑
k=1

T1,k = m(m+ 1)/2.

Stacked spheres. The earliest known mathematical work to discuss the (3D) stacking of objects is a Sanskrit

document The Aryabhatiya of Aryabhata (499 AD; see Clark 1930, p. 37), which states:

“In the case of an upaciti [lit., ‘pile’] which has ... the product of three terms, having the number of terms

for the first term and one as the common difference, divided by six, is the citighana [lit., ‘cubic contents of

the pile’]. Or, the cube of the number of terms plus one, minus the cube root of this cube, divided by six.”
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Figure 1.1: (left) Ten marbles placed in a triangle [referred to by the Pythagoreans as a tetractys (in Greek,

τετρακτυ′ ς), and upon which they placed a particular mystic significance], and (right) the Pythagoreans’

placement of two triangular groups of marbles into an “oblong” m × (m + 1) rectangle, from which the

formula for T2,m follows immediately.

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of objects (“cubic con-

tents”) in a (3D) triangular-based pyramid (“pile”) with m objects on each edge:

T3,m =
m(m+ 1)(m+ 2)

3!
=

(m+ 1)3 − (m+ 1)

6
;

note also that T3,m , ∑m
k=1 T2,k.

Thomas Harriot was apparently the first to frame the problem of sphere packing mathematically in modern

times (see, e.g., the biography of Harriot by Rukeyser 1972). At the request of Sir Walter Raleigh, for whom

Harriot served, among other capacities, as an instructor of astronomical navigational and on various problems

related to gunnery, Harriot (on December 12, 1591) computed, but did not publish, the number of cannonballs
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Figure 1.2: Pyramidal stacks of spheres with triangular, square, and “oblong” (rectangular) bases. All three

stacks are subsets of the face-centered cubic lattice, discussed further in §2.3 and §2.4.

in a pile with a triangular, square [m×m], and rectangular [m× (m+ 1), a.k.a. “oblong”] base, as illustrated

in Figure 1.2, obtaining T3,m, Sm, and Rm respectively, where

Sm =
m

∑
k=1

k2 =
m(m+ 1)(2m+ 1)

6
, Rm =

m

∑
k=1

k(k + 1) = Sm + T2,m =
m(m+ 1)(2m+ 4)

6
.

In 1614, Harriot wrote De Numeris Triangularibus Et inde De Progressionibus Artithmeticis: Magisteria

magna (On triangular numbers and thence on arithmetic progressions: the great doctrine)1. Looking closely

at the triangular table of binomial coefficients2 on pp. 1-3 (folios 108-110) of this remarkable document, it

1Harriot (1614) passed through several hands before finally being published in 2009, almost 4 centuries later.
2This famous triangular table of binomial coefficients is incorrectly attributed by many in the west to Blaise Pascal (b. 1623), though

it dates back to several earlier sources, the earliest being Pingala’s Sanskrit work Chandas Shastra, written in the fifth century BC.
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is seen that Harriot understood the geometric relationship between the positive integers T1,m, the “triangular

numbers” T2,m [that is, the number of spheres in a (2D) triangle with m spheres on each edge], the “pyramidal

numbers” T3,m [that is, the number of spheres in a (3D) trianglar-based pyramid with m spheres on each edge],

and the next logical steps in this arithmetic progression, given by:

T4,m ,
m

∑
k=1

T3,k =
m(m+ 1)(m+ 2)(m+ 3)

4!
, T5,m ,

m

∑
k=1

T4,k =
m(m+ 1)(m+ 2)(m+ 3)(m+ 4)

5!
,

etc. In particular, Harriot noticed that the (n + 1)’th element of the (n + m)’th row of this triangular table is

Tn,m. Accordingly, we may think of Tn,m as the number of spheres in an “n-dimensional pyramid” with m sphe-

res on each edge, with Tn,2 representing n + 1 spheres configured at the corners of a regular n-dimensional

simplex [that is, a regular n-dimensional polytope with n + 1 vertices—e.g., in n = 3 dimensions, a tetra-

hedron]. It is thus natural to credit Harriot (1614) with the first important steps towards the discovery of

laminated lattices, discussed further in §2.4 and §2.6.

Indeed, the identification of a simplex is a close relation between simplexes and

In other words, putting a sphere of radius 2
√

2 centered at each of these points generates an 24-dimensional

pyramid with m = 2 spheres on each edge. Tacking a negative sign on the first element of each of these vec-

tors, these points are all part of the Leech lattice Λ24 as defined in §2.6.
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b c

d e f

g h i

k l m n

p q r s t

A B C D E

T0,1

[8,8,1]

T4,1

T5,1

Figure 1.3: The triangular numbers discussed in Harriot’s “great doctrine” on airthmetic progressions, and

their corresponding interpretation in terms of n-dimensional simplexes (for m = 2), n-dimensional pyramids

(for finite m), and the n-dimensional sphere packings corresponding to the laminated lattices Λn (as m → ∞).
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



0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1

0 4 1





Figure 1.4: The 25 columns of the above matrix define the coordinates of 25 points in n = 24 dimensions.

Each of these 25 points is of distance 4
√

2 from each of the others, thus forming a 24-dimensional simplex.
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Harriot also introduced the packing problem to Johannes Kepler, ultimately leading Kepler (1611), in

another remarkable document Strena seu de nive sexangula (The six-cornered snowflake), which also hypo-

thesized about a related atomistic physical basis for hexagonal symmetry in crystal structures of water, to

conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no other arrangement can

more spheres be packed into the same container.”

Kepler’s conjecture is patently false if considered in a finite container of a specified shape. For instance, a

2d × 2d × 2d cubic container can fit 8 spheres of diameter d if arranged in Cartesian configuration, but can

only fit 5 spheres if arranged in a “close-packed” configuration3. It is presumed that Kepler in fact recognized

this, and thus Kepler’s conjecture is commonly understood as a conjecture regarding the densest packing

possible in the limit that the size of the container is taken to infinity (for further discusssion, see §1.2).

Permuted planets. Note in Figure 1.2 that any sphere (referred to as a “sun”) on the interior of the piles has

12 nearest neighbors (referred to as its “planets”). Considering this sun and its 12 planets in isolation, there

is in fact adequate room to permute the planets to different positions while keeping them in contact with the

sun, something like a 12-cornered Rubik’s cube with spherical pieces (see Figure 1.5). Due to the extra space

available in this configuration, it is unclear upon first inspection whether or not there is sufficient room to fit

a 13’th planet in to touch the sun while keeping all of the other 12 planets in contact with it. In 1694, Isaac

Newton conjectured this could not be done, in a famous disagreement with David Gregory, who thought it

could. Newton turned out to be right, with a complete proof first given in Schütte & van der Waerden (1953),

and a substantially simplified proof given in Leech (1956).

3For larger containers, the arrangements which pack in the greatest number of spheres (or other objects) must in general be found

numerically (see Gensane 2004, Schürmann 2006, and Friedman 2009).
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Cartoned cans. Moving from 16th-century stacks of cannonballs to 21st-century commerce, the question

of dense finite packings of circles and spheres finds practical relevance in a variety of packaging problems.

For example, to form a rectangular cardboard carton for 12 fl oz soda cans, 164 cm2 of cardboard per can is

needed if 18 cans are placed in a cartesian configuration with 3 rows of 6 cans per row, whereas 3.3% less

cardboard per can is needed if 18 cans are placed in a triangular configuration (within a rectangular box) with

5 rows of {4,3,4,3,4} cans per row. If an eye-catching (stackable, strong, “green”...) hexagonal cardboard

carton for the soda cans is used, with 19 cans (described in marketing terms as “18 plus 1 free”) again placed

in a triangular configuration, 17.7% less cardboard per can is required.

Catastrophic sausages. Two new questions arise when one “shrink-wraps” a number (m) of n-dimensional

spheres (resulting in a convex, fitted container), namely: what configuration of the spheres minimizes the sur-

face area of the resulting container, and what configuration minimizes the volume of the resulting container?
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Both questions remain open, and are reviewed in Zong (1999). Regarding the minimim surface area question,

it was conjectured by Croft, Falconer, & Guy (1991) that the minimum surface area, for n ≥ 2 and large

m, is achieved with a roughly spherical arrangement. In contrast, regarding the minimim volume question,

it was conjectured by L. Fejes Tóth (1975) that the minimum volume, for n ≥ 5 and any m, is achieved by

placing the spheres in a line, leading to a shrink-wrapped container in the shape of a “sausage”. For n = 3, it

has been shown that a roughly spherical arrangement minimizes the volume for m = 56, m = 59 to 62, and

m ≥ 65, and it is conjectured that a sausage configuration minimizes the volume for all other m (see Gandini

& Willis 1992); for n = 4, there appears to be a similar “catastrophe” in the volume-minimizing solution,

from a sausage configuration to a roughly spherical configuration, as m is increased beyond a critical value

(which Willis 1983 conjectures to be m ≈ 75000, and Gandini & Zucco 1992 conjectures to be m = 375769).

Concealed origins. Finally, L. Fejes Tóth (1959) presents a curious set of questions that arise when consi-

dering the blocking of light with a finite number of opaque unit spheres packed around the origin. The first

such question, known as Hornich’s Problem, seeks the smallest number of opaque unit spheres that comple-

tely conceal light rays emanating from a point source at the center of a transparent unit sphere at the origin.

A related question, known as L. Fejes Tóth’s Problem, seeks the smallest number of opaque spheres that

completely conceal light rays emanating from the surface of a unit sphere at the origin (e.g., in Figure 1.5,

adding additional outer planets to completely conceal the view of the sun from all angles). In 2D, the (trivial)

answer to both problems is 6, via the triangular packing indicated in Figure P.1a. In higher dimensions, both

questions remain open, and the answer differs depending on whether or not the sphere centers are restricted to

the nodal points of a lattice. For the L. Fejes Tóth’s Problem, for n ≥ 3, the answer is unbounded if restricted

to lattice points, and bounded if not. For Hornich’s Problem, the answer is bounded in both cases, with the

number of spheres, h, required in the 3D case, when not restricted to lattice points, being somewhere in the

range 30 ≤ h ≤ 42. Zong (1999) derives several of the known bounds available in both problems.
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⇒ ⇒

Figure 1.5: Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and planetary permutations. Con-

figuration (a) is 13 of the spheres taken from the second, third, and fourth layers of the stack in the orientation

shown in Figure 1.2b, whereas configuration (c) is 13 of the spheres taken from the third, fourth, and fifth

layers of the stack in the orientation shown in Figure 1.2a [extended by one additional layer]. In both configu-

rations, the 12 “planets” (positioned around the central “sun”) are centered at the vertices of a cuboctahedron.

The planets can be permuted by “pinching” together two of the four planets on the corners of each square

face, in an alternating fashion, to form a symmetric icosahedral configuration with significant space between

each pair of planets [configuration (b)], then “pushing” apart pairs of planets in an analogous fashion to form

a different cuboctahedron. Alternatively, starting from configuration (b), identifying any pair of opposite pla-

nets as “poles”, and slightly shifting the five planets in each of the “tropics” as close as possible to their

nearest respective poles, the resulting northern and southern groupings of planets can be rotated in relation to

each other along the equator. Repeated application of these two fundamental motions can be used to permute

the planets arbitrarily.
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1.2 Infinite packings

In the last 300 years, many different constructions of infinite lattice and nonlattice packings have been propo-

sed in each dimension. These packings each have different packing density, covering thickness, mean-squared

quantization error, and kissing number, and their corresponding nets each have different topological density;

knowledge of these properties is essential when selecting a packing or net for any given application. We have

thus attempted to catalog these constructions and their properties thoroughly in this review (see §3).

In the characterization of density, amongst all lattice packings of a given dimension, the A2, A3, D4, D5,

E6, E7, E8, and Λ24 constructions given in §2 have been proven to be of maximum density, in Lagrange (1773)

for n = 2, Gauss (1831) for n = 3, Korkine & Zolotareff (1873, 1877) for n = 4 and 5, Blichfeldt (1935) for

n = 6 through 8, and Cohn & Kumar (2009) for n = 24. There are no such proofs of optimality for other

values of n, though the lattices Λn and Kn introduced in §2.6 are likely candidates in the range 9 ≤ n ≤ 23.

Remarkably, if one considers both lattice and nonlattice packings, proof of which packing is of maximum

density in a given dimension is still open for n > 3. It was established in Thue (1892) that A2 has the maximum

density amongst all lattice and nonlattice packings for n = 2. Considerable attention has been focused over

the centuries on the corresponding question for A3 in dimension n = 3, that is, on Kepler’s conjecture (posed

in 1611) in the limit that the container size is taken to infinity. Indeed, David Hilbert, in his celebrated list

of 23 significant open problems in mathematics in 1900, included a generalization of Kepler’s conjecture as

part of his 18th problem (see, e.g., Milnor 1976).

Note that it is not at all obvious that an infinite packing as regular as A3 would necessarily be the packing

that maximizes density. Indeed, as mentioned in footnote 4 on page vii, nonlattice packings are known in

dimensions n = 10, 11, 13, 18, 20, and 22 that are each slightly denser than the densest known lattice packings

in these dimensions.
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In three dimensions, physiologist Stephen Hales (1727), in his groundbreaking work Vegetable Staticks,

reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot, . . . by the great incumbent of weight, pressed

into the interstices of the Pease, which they adequately filled up, being therefore formed into pretty regular

dodecahedrons.”

This report implied that many of the dilated peas in this experiment had 12 nearest neighbors and/or pen-

tagonal faces. However, the “pretty regular” qualification left a certain ambiguity, and this experiment left

mathematicians puzzled, as it is patently impossible to tile R3 with regular dodecahedra. Kelvin (1887) for-

malized the question inherent in Hales’ dilated pea experiment by asking how R3 could be divided into

regions of equal volume while minimizing the partitional area. He conjectured the answer to be a regular

tiling of R3 with truncated octahedra, which are in fact the Voronoı̈ cells of the A∗
3 lattice (see §4.4.3). [No-

te that the Voronoı̈ cell of the A3 lattice is the (face-transitive) rhombic dodecahedron, which is dual to the

cuboctahedron illustrated in Figures 1.5a,c and tiles R3 with slightly greater partitional area than does the

tiling with truncated octahedra.] Kelvin’s conjecture stood for over 100 years, until Weaire & Phelan (1994)

discovered a tiling of R3 based on irregular tetrakaidecahedra (with 2 hexagonal faces and 12 pentagonal

faces) and irregular dodecahedra (with 12 pentagonal faces); this tiling has 0.3% less partitional area than the

much more regular tiling with truncated octahedra considered by Kelvin (see Figure 1.6). In hindsight, it is

quite possible that Hales might have in fact stumbled upon the Weaire-Phelan structure in his cooking pot (in

1727!) and, seeing all of those pentagonal faces and 12-sided (as well as 14-sided) dilated peas, asserted that

what he was looking at was a culinary approximation to a tiling of R
3 with regular dodecahedra, even though

such a tiling is impossible.
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Figure 1.6: (a) A regular truncated octahedron, used to tile R3 in Kelvin’s conjecture; (b) an irregular tetra-

kaidecahedron and dodecahedron, used to tile R3 in the Weaire-Phelan structure.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (no relation to Stephen) announced a long-

sought-after proof, in a remarkably difficult analysis making extensive use of computer calculations. This

proof was spread over a sequence of papers published in the years that followed (see Hales 2005). An exten-

sive discussion of this proof, which is still under mathematical scrutiny, is given in Szpiro (2003). Inspiration

for this proof was based, in part, on a strategy to prove Kepler’s conjecture proposed by L. Fejes Tóth (1953),

the first step of which is a quantitative version of the Newton-Gregory problem discussed in §1.1.
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Dense lattice packings for n ≤ 24
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There are many dense lattices more complex than the Cartesian lattice that offer superior uniformity

and nearest-neighbor configuration, as quantified by the standard metrics introduced in the Preface (namely,

packing density, covering thickness, mean-square quantization error, and kissing number). This section pro-

vides an overview of many of these lattices; the definitive comprehensive reference for this subject is Conway

& Sloane (1998), to which the reader is referred for much more detailed discussion and further references on

many of the topics discussed in this chapter. The subject of coding theory, reviewed in §5, is closely related to

the subject of such dense lattice packings (see also §6). As mentioned in the Preface, the practical applications

explored in Part II of this text leverage these constructions heavily.

2.1 Lattice terminology

The notation Ln
∼= Mn means that the lattices Ln and Mn are equivalent (when appropriately rotated and scaled)

at the specified dimension n. Also note that the four most basic families of lattices introduced in this chapter,

denoted Zn, An, Dn, and En, are often referred to as root lattices due to their relation to the root systems of

Lie algebra.

There are three primary methods1 to define any given n-dimensional real lattice:

1A convenient alternative method for building a cloud of lattice points near the origin is based on the stencil of nearest-neighbor

points to the origin in the lattice, repeatedly shifting this stencil to each of the lattice points near the origin determined thus far in order

to create additional lattice points in the cloud. Unfortunately, this simple alternative method does not work for all lattices, such as D∗
n

and Ar
n (see §2.3 and 2.4).
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• As an explicit description of the points included in the lattice.

• As an integer linear combination (that is, a linear combination with integer coefficients) of a set of n basis

vectors bi defined in Rn+m for m ≥ 0; for convenience, we arrange these basis vectors as the columns2 of

a basis matrix3 B.

• As a union of cosets, or sets of nodal points, which themselves may or may not be lattices.

The standard forms of these definitions, as used throughout this chapter, make it straightforward to generalize

application codes that can build easily upon any of the lattices so described.

Any real (or complex) lattice Ln has associated with it a dual lattice L∗
n defined such that

L∗
n =

{
x ∈ R

n (or C
n) : x · ū ∈ Z for all u ∈ Ln

}
, (2.1)

where Z denotes the set of all integers, dot denotes the usual scalar product, and overbar denotes the usual

complex conjugate. If B is a square basis matrix for Ln, then B−T is a square basis matrix for L∗
n.

Unless specified otherwise, the word lattice in this paper implies a real lattice, defined in R
n. However,

note that it is straightforward to extend this work to complex lattices, defined in Cn. To accomplish this

extension, it is necessary to extend the concept of the integers, which are used to construct a lattice via the

“integer” linear combination of the basis vectors in a basis matrix B, as described above. There are two

primary such extensions:

2In the literature on this subject, it is more common to use a generator matrix M to describe the construction of lattices. The basis

matrix convention B used here is related simply to the corresponding generator matrix such that B = MT ; we find the basis matrix

convention to be more natural in terms of its linear algebraic interpretation.
3Note that integer linear combinations of the columns of most matrices do not produce lattices (as defined in the second paragraph

of the “gentle introduction” of the Preface). The matrices listed in §2 as basis matrices are special in this regard. Note also that basis

matrices are not at all unique, but the lattices constructed from alternative forms of them are equivalent; the forms of the basis matrices

listed in §2 were selected based on their simplicity.
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• The Gaussian integers, defined as G = {a+bi : a,b ∈ Z} where i =
√
−1, which lie on a square array in

the complex plane C.

• The Eisenstein integers, defined as E = {a+bω : a,b ∈ Z} where ω = (−1+ i
√

3)/2 [note that ω3 = 1],

which lie on a triangular array in the complex plane C.

We may thus define three types of lattices from a basis matrix B:

• a real lattice, defined as a linear combination of the columns of B with integers as weights;

• a (complex) G lattice, defined as a linear combination of the columns of B with Gaussian integers as

weights; and

• a (complex) E lattice, defined as a linear combination of the columns of B with Eisenstein integers as

weights.

The special n-dimensional real, G , and E lattices formed by taking B = In×n are denoted Zn, Z[i]n, and Z[ω]n

respectively. Note also that, for any complex lattice with elements z̃ ∈ Cn, there is a corresponding real lattice

with elements x̃ ∈ R2n such that

x̃ =
(
ℜ{z̃1} ℑ{z̃1} . . . ℜ{z̃n} ℑ{z̃n}

)T
. (2.2)

The present sequence of papers focuses on the practical use of real lattice and nonlattice packings with n > 3.

Thus, in the present Part I, we only make brief use of complex lattices to simplify certain constructions.

2.2 The Cartesian lattice Zn

The Cartesian lattice, Z
n, is defined Z

n =
{
(x1, . . . ,xn) : xi ∈ Z

}
, and is constructed via integer linear com-

bination of the columns of the basis matrix B = In×n. The Cartesian lattice is self dual [(Zn)∗ ∼= Zn].
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2.3 The checkerboard lattice Dn and its dual D∗
n

The checkerboard lattice, Dn, is an n-dimensional extension of the 3-dimensional face-centered cubic (FCC,
a.k.a. cubic close packed) lattice. It is defined

Dn =
{
(x1, . . . ,xn) ∈ Z

n : x1 + . . .+xn = even
}
, (2.3a)

and may be constructed via integer linear combination of the columns of the n×n basis matrix

BDn
=





−1 1 0

−1 −1 1

. . .
. . .

−1 1

0 −1




. (2.3b)

The dual of the checkerboard lattice, denoted D∗
n and reasonably identified as the offset Cartesian lattice, is

an n-dimensional extension of the 3-dimensional body-centered cubic (BCC) lattice. It may be written as

D∗
n = Dn ∪ ([1]+Dn)∪ ([2]+Dn)∪ ([3]+Dn) ∼= Z

n ∪ ([1]+Z
n), (2.4a)

where the coset representatives [1], [2], and [3] are defined in this case such that

[1] =





1/2
...

1/2

1/2




, [2] =





0
...
0

1




, [3] =





1/2
...

1/2

−1/2




.
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The D∗
n lattice may also be constructed via integer linear combination of the columns of the n×n basis matrix

BD∗
n
=





1 0 0.5
1 0.5

. . .
...

1 0.5
0 0.5




. (2.4b)

It is important to recognize that, for n ≥ 5, the contact graph of the D∗
n lattice is simply two disjoint nets

given by the contact graphs of the Zn and shifted Zn sets of lattice points upon which D∗
n may be built [see

(2.4a)]. Thus, as suggested by Conway & Sloane (1997), we introduce, for n ≥ 4, a generalized net formed by

connecting each node of the unshifted Z
n set to the 2n nearest nodes on the shifted Z

n set, and each node on

the shifted Zn set to the 2n nearest nodes on the unshifted Zn set. The resulting net, of coordination number

2n, is uninodal, but is not a contact graph of the corresponding sphere packing.

2.3.1 The offset checkerboard packing D+
n

The packing D+
n , reasonably identified as the offset checkerboard packing, is an n-dimensional extension of

the 3-dimensional diamond packing, and is defined simply as

D+
n = Dn ∪ ([1]+Dn); (2.5)

note that D+
n is a lattice packing only for even n, and that D+

3 is the diamond packing (for further discussion,

see §4.4.1).



CHAPTER 2. DENSE LATTICE PACKINGS FOR N ≤ 24 14

2.4 The zero-sum lattice An and its dual A∗
n

The zero-sum lattice, An, may be thought of as an n-dimensional extension of the 2-dimensional triangular

lattice; in 3 dimensions, A3
∼= D3. It is defined

An =
{
(x0, . . . ,xn) ∈ Z

n+1 : x0 + . . .+xn = 0
}
, (2.6a)

and may be constructed via integer linear combination of the columns of the (n + 1)×n basis matrix

BAn
=





−1 0

1 −1

. . .
. . .

1 −1

0 1




, with nAn

=





1

1
...
1

1




. (2.6b)

Notice that An is constructed here via n basis vectors in n + 1 dimensions. The resulting lattice lies in an

n-dimensional subspace in Rn+1; this subspace is normal to the vector nAn . An illustrative example is A2, the

triangular 2D lattice, which may conveniently be constructed on a plane in R
3 (see Figure 2.1).

Note that, starting from a (2D) triangular configuration of oranges or cannonballs (see Figure P.1a), one

can stack additional layers of oranges in a trangular configuration on top, appropriately offset from the base

layer, to build up the (3D) FCC configuration mentioned previously (see Figure 1.2a). This idea is referred to

as lamination, and will be extended further in §2.6 when considering the Λn and Kn families of lattices.
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Figure 2.1: A cloud of points on the A2 lattice, defined on a plane in R3. The normal vector nA2
=
(

1 1 1
)T

points directly out of the page in this view.

Also note that, in the special case of n = 2, the A2 lattice may also be written as

A2
∼= R2 ∪ (a+R2), where a =

(
1/2√
3/2

)
(2.6c)

and R2 is the rectangular grid (not a lattice, nor even a nonlattice packing) obtained by stretching the Z2

lattice in the second element by a factor of
√

3.
The dual of the zero-sum lattice, denoted A∗

n, may be written as

A∗
n =

n
[

s=0

([s]+An), (2.7a)
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where the n + 1 coset representatives [s] are defined such that the k’th component of the vector [s] is

[s]k =

{
s

n+1 k ≤ n+1− s,
s−n−1

n+1 otherwise.
(2.7b)

The A∗
n lattice may be constructed via integer linear combination of the columns of the (n + 1)× n basis

matrix

BA∗
n
=





1 1 · · · 1 −n
n+1

−1 0 1
n+1

−1 1
n+1

. . .
...

−1 1
n+1

0 1
n+1





, with nA∗
n
= nAn

. (2.7c)

2.4.1 The glued zero-sum lattices Ar
n

A related family of lattice packings, developed in §12 of Coxeter (1951) and reasonably identified as the

glued zero-sum lattices Ar
n, is a family of lattices somewhere between An and A∗

n [as given in (2.7a)] defined

via the union of r translates of An for n ≥ 5:

Ar
n = An ∪ ([s]+ An)∪ ([2s]+ An)∪ ...∪ ([(r−1)s]+ An), where r · s = n + 1, (2.8)

where the components of the “glue” vectors [s] are specified in (2.7b), and where r and s are integer divisors

of (n + 1) with 1 < s < n + 1 and 1 < r < n + 1, excluding the case {r = 2,s = 3} for n = 5. The lattices A5
9,

A4
11, A7

13, A5
14, A8

15, A9
17, A10

19, A7
20, and A11

21 are found to have especially good covering thickness, with the last

four currently the thinnest coverings available in their respective dimensions (see Baranovskii 1994, Anzin
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2002, and Sikirić, Schürmann, & Vallentin 2008). Note also that A2
7
∼= E7, A4

7
∼= E∗

7 , and A3
8
∼= E8, each of

which is discussed further below.

Note finally that the contact graphs of some of the Ar
n lattices, such as A5

9 and A4
11, are disjoint nets given

by the contact graphs of the An and shifted An sets of lattice points upon which these glued zero-sum lattices

are built [see (2.8)]. Thus, as in the case of D∗
n for n > 4 as discussed in §2.3, a generalized net may be formed

by connecting each node of the unshifted An set to the nearest nodes on the shifted An set. Again, the resulting

net is uninodal, but is not a contact graph of the corresponding sphere packing.

2.5 The E8 (Gosset), E7, & E6 lattices and their duals

The Gosset lattice E8
∼= E∗

8 , which has a (remarkable) kissing number of τ = 240, may be defined simply as

E8 = D+
8 , (2.9a)

and may be constructed via integer linear combination of the columns of the 8×8 basis matrix

BE8
=





2 −1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2





. (2.9b)

The lattice E7 is defined by restricting E8, as constructed above, to a 7-dimensional subspace,

E7 = {(x1, . . . ,x8) ∈ E8 : x1 + . . .+x8 = 0}, (2.10a)
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and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE7
=





−1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2





, with nE7
=





1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2





. (2.10b)

The dual of the E7 lattice may be written as

E∗
7 = E7 ∪ ([1]+E7), where [1] =





1/4
...

1/4

−3/4

−3/4




, (2.11a)

and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE∗
7
=





−1 0 −3/4

1 −1 −3/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 1/4

0 1/4





, with nE∗
7
= nE7

. (2.11b)



2.5. THE E8 (GOSSET), E7, & E6 LATTICES AND THEIR DUALS 16.5

The lattice E6 is defined by further restricting E7, as defined in (2.10), to a 6-dimensional subspace,

E6 = {(x1, . . . ,x8) ∈ E7 : x1 +x8 = 0}, (2.12a)

and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix

BE6
=





0 1/2

−1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2





, with NE =





1 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

1 1/2





=




| |

nE6
nE7

| |



 . (2.12b)

The dual of the E6 lattice may be written as

E∗
6 = E6 ∪ ([1]+E6)∪ ([2]+E6), where [1] =





0

−2/3

−2/3

1/4
...

1/4

0





, [2] = −[1], (2.13a)
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and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix

BE∗
6
=





0 0 1/2

−1 2/3 1/2

1 −1 2/3 1/2

1 −1 −1/3 1/2

1 −1 −1/3 −1/2

1 −1/3 −1/2

−1/3 −1/2

0 0 −1/2





, with NE∗ = NE . (2.13b)

2.6 The laminated lattices Λn and the closely-related Kn lattices

The lattices in the Λn and Kn families can be built up one dimension, or “laminate”, at a time, starting from

the integer lattice (Z ∼= Λ1
∼= K1), to triangular (A2

∼= Λ2
∼= K2), to FCC (A3

∼= D3
∼= Λ3

∼= K3), all the way

up (one layer at a time) to the remarkable Leech lattice (Λ24
∼= K24). Both families of lattices may in fact be

extended (but not uniquely) to at least n = 48.

The Leech lattice, Λ24, is the unique lattice in n = 24 dimensions with a (remarkable) kissing number of

τ = 196,560. It may be constructed via integer linear combination of the columns of the 24×24 basis matrix

BΛ24
, which is depicted below in the celebrated Miracle Octad Generator (MOG) coordinates (see Curtis 1976

and Conway & Sloane 1998). Further, as in the E8 → E7 → E6 progression described in §2.5, the Λn lattices

for n = 23,22, . . . ,1 may all be constructed by restricting the Λ24 lattice to smaller and smaller subspaces via

the normal vectors assembled in the matrix NΛ depicted below4.

4There are, of course, many equivalent constructions of Λ1 through Λ23 via restriction of Λ24, and the available literature on the

subject considers these symmetries at length. The convenient form of NΛ depicted here was deduced, with some effort, from Figure 6.2

of Conway & Sloane (1998).
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BΛ24
=

1√
8





8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 −3

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 2 2 2 1

4 2 2 2 1

4 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 2 2 2 2 1

4 2 2 2 2 1

4 2 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

2 2 2 1

2 1

2 1

1




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NΛ =





1

1

1 1

1 1 1

1

1 −1

1 −1

1

1

1 −1

1 −1

1

1 1

1 1

1

1 1

1

1 1

1 1

1 1

1

1 −1

1 −1

1





=
(
nΛ0

. . . nΛ23

)
.
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Thus, the Λ23 lattice is obtained from the points of the Λ24 lattice in R24 (which themselves are ge-

nerated via integer linear combination of the columns of BΛ24
) which lie in the 23-dimensional subspace

orthogonal to nΛ23
. Similarly, the Λ22 lattice is obtained from the points of the Λ24 lattice which lie in

the 22-dimensional subspace orthogonal to both nΛ23
and nΛ22

, etc. Noting the block diagonal structure of

NΛ, it follows that Λn may be constructed using the basis matrix, denoted BΛn , given by the n× n subma-

trix in the upper-left corner of BΛ24
for any n ∈ N1 = {21,20,16,9,8,5,4}. For the remaining dimensions,

n ∈ N2 = {19,18,17,15,14,13,12,11,10,7,6,3,2,1}, Λn may be constructed via the appropriate restriction

of the lattice generated by the next larger basis matrix in the set N1; for example, Λ14 may be constructed in

R16 via restriction of the lattice generated by the basis matrix BΛ16
to the subspace normal to the vectors (in

R
16) given by the first 16 elements of nΛ15

and nΛ14
.

A similar sequence of lattices, denoted Kn, may be constructed via restriction of the Leech lattice (gene-

rated via BΛ24
) in a similar fashion (for details, see Figure 6.3 of Conway & Sloane 1998). Lattices from the

Λn and/or Kn families have the maximal packing densities and kissing numbers amongst all lattices for the

entire range considered here, 1 ≤ n ≤ 24. Note that the Λn and Kn families are not equivalent in the range

7 ≤ n ≤ 17, with Λn being superior to Kn by all four metrics introduced in the Preface at most values of n

in this range, except for the narrow range 11 ≤ n ≤ 13, where in fact Kn has a slight advantage. Note also

that there is some flexibility in the definition of the lattices Λ11, Λ12, and Λ13; the branch of the Λn family

considered here is that which maximizes the kissing number τ in this range of n, and thus the corresponding

lattices are denoted Λmax
11 , Λmax

12 , and Λmax
13 . Note that K12 is referred to as the Coxeter-Todd lattice and Λ16 is

referred to as the Barnes-Wall lattice.
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2.7 Numerically-generated lattices with thin coverings for n = 6 to 15

Recall from §2.1 that an n-dimensional real lattice may be defined as an integer linear combination of a set

of n basis vectors bi defined in Rn+m for m ≥ 0; that is, any lattice point may be written as

x = y1b1 + y2b2 + . . .+ ynbn = By,

where the elements {y1, . . . ,yn} of the vector y are taken as integers. The square of the distance of any

lattice point from the origin is thus given by f (y) = yT Ay, where A , BT B is known as the Gram matrix

associated with the lattice in question, and the function f (y) is referred to as the corresponding quadratic

form [note that each term of f (y) is quadratic in the elements of y]. All of the lattices studied thus far, when

scaled appropriately, are characterized by Gram matrices with integer elements, and thus their corresponding

quadratic forms f (y) have integer coefficients (and are thus referred to as integral quadratic forms).

There is particular mathematical interest in discovering (or generating numerically) both lattice and non-

lattice packings which minimize covering thickness and/or packing density. The numerical approach to this

problem studied in Schürmann & Vallentin (2006) and Sikirić, Schürmann, & Vallentin (2008) has generated

new lattices in dimensions n = 6 to 15 with the thinnest covering thicknesses known amongst all lattices5.

The lattice so generated in dimension 7 happens to correspond to an integral quadratic form, but the others,

apparently, do not.

5Gram matrices A corresponding to these 10 lattices (denoted Lc1
6 , Lc

7, Lc
8, . . . , Lc

15) are available at

http://fma2.math.uni-magdeburg.de/∼latgeo/covering table.html

(nonunique) basis matrices B corresponding to each of these lattices may be generated simply by taking the Cholesky decomposition of

the corresponding Gram matrix, as A = BT B.

http://fma2.math.uni-magdeburg.de/~latgeo/covering_table.html
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Chapter 3

Characteristics of exemplary lattice and

nonlattice packings and nets

For all of the dense lattices described in §2, as well as for all of the rare packings and nets described in

§4, Tables 3.1-3.2 list the known values of the packing density ∆, the covering thickness Θ, and the mean

squared quantization error per dimension, G. Table 3.1 also lists the coordination sequence through k = 10

of the corresponding net, as well as its local topological density td10. If this net is a contact graph, the

coordination number (that is, the first element of the coordination sequence) is equal to the kissing number

of the corresponding packing; if this net is not a contact graph, it is marked with a G, and the kissing number

τ of the corresponding sphere packing is listed in parentheses.
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The other information appearing in Table 3.1 is described further in §4. Note that Table 3.1 alone has 8

columns and over 100 rows, with those results which we believe to be new denoted in italics. The original

source of each of the several hundred existing results reported can not feasibly be spelled out here. Suffice it to

say that the vast majority of those existing results related to lattices are discussed in Conway & Sloane (1998)

and in the On-Line Encyclopedia of Integer Sequences1, where a large number of the original references

are listed in detail. The vast majority of those existing results related to 3D nets (see §4), including clear

drawings of each as well as detailed lists of original references, are given in the Reticular Chemistry Structure

Resource2; for further discussion of this database and others, see O’Keeffe et al. (2008), Treacy et al. (2004),

Blatov (2006), and Hyde et al. (2006). Note also that there are hundreds of new results reported in Tables 3.1

and 3.2, as denoted in italics; most of these are the result of painstaking numerical simulation, some of which

tooks weeks of CPU time (on a quad-core 3GHz Intel Xeon server) to complete.

Note finally that there are a variety of (lattice-specific) ways to quantize to the nearest lattice point; for an

introduction, see §6.

1Available on the web at http://www.research.att.com/∼njas/sequences/.
2Available on the web at, e.g., http://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced by any of the lowercase boldface

three-letter identifiers given in Table 3.1 and §4.

http://www.research.att.com/~njas/sequences/
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/fcu
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Chapter 4

Rare nonlattice packings & nets for n ≤ 8
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4.4.4 Extending nbo: the Sn construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.5 Extending ths and bto: the Y90
n and Y60

n constructions . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.6 Extending dia and qtz: the V90
n and V60
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4.4.7 Extending cds and qzd: the T90
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We now turn our attention to the problem of infinite rare sphere packings, with packing density lower

than that of the corresponding Cartesian packing, and the closely related problem of infinite nets. For n = 2,

this problem is essentially trivial. For n = 3, the richness of solutions to this problem is fascinating and,

due to the intense interest in crystallographic structures with various desirable chemical properties, has been

exhaustively studied and catalogued. For n > 3, relatively few regular constructions are known, and it appears

as if what academic interest there has been has not yet led to any applications of significance in science and

engineering; Part III of this text intends to change this, thus motivating the present chapter.

Interest in n-dimensional space groups and symmetries dates back to the nineteenth century, with the

work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Rodrigues, Möbius, Jordan, Sohncke, Fedorov,

Schönflies, Fricke, and Klein. Historical accounts of this early work, as well as several follow-on mathema-

tical developments related to space groups and symmetries, are available in Brown et al. (1978) and Schwar-

zenberger (1980). Much of the related work in the field of geometry was developed by Coxeter (1970, 1973,

1974, 1987, 1989). Despite this intense interest, there are very few explicit constructions of regular rare sphe-

re packings for n > 3 available today, outside of very short treatments of the subject by O’Keeffe (1991b) and

Beukemann & Klee (1992), discussed below.

http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/qzd
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As mentioned in the abstract and explored in depth in Part III, certain emerging engineering applications

now motivate the further development and deployment of quasi-infinite n-dimensional nets, with a particular

focus on structured nets with low coordination number and high topological density. Such nets are well suited

for the rapid spread of information in switchless computational interconnect systems with a reduced number

of wires and, thus, reduced cost. In such systems, a logical network with n > 3 may easily be designed and

built1 and, as we will see, there are significant potential benefits for so doing. We are thus motivated to revisit

the problem of the design of structured nets with low coordination number. Note that none of the lattices

discussed in §2 have a coordination number lower than that of the corresponding Cartesian lattice, τ = 2n.

However, for n = 3, there is a wide range of stable and unstable nonlattice packings that lead to such nets; as

shown below, many of these packings and nets generalize naturally to higher dimensions.

4.1 Net terminology

The terminology used to discuss 3D nets, most of which generalizes readily to the discussion of n-dimensional

nets, has been clarified significantly over the last decade, and is now quite precise.

Recall first the measures defined in the Preface, including the coordination number, the coordination se-

quence, and a k-hop measure of local topological density given by the cumulative sum of all nodes reached

within k hops from origin, denoted tdk (Tables 3.1 and 3.2 list this quantity for k = 10). O’Keeffe (1991a)

defines another, sometimes preferred (see, e.g., Grosse-Kunstleve et al. 1996) measure of global topological

density, td = limk→∞ tdk/kn, which reveals the rate of growth of tdk with k in the limit of large k. [For a

uninodal n-dimensional net, td may be found by representing2 the coordination sequence as an (n− 1)’th-

1Recall, e.g., the “hypercube” computational interconnect system introduced several years ago; though designed with a logical net-

work with n > 3, the hypercube, like most computational interconnect strategies deployed today, is significantly hampered by its inherent

dependence on a Cartesian topology.
2Or by approximating the coordination sequence as an (n−1)’th-order polynomial for large k, if a polynomial does not fit exactly.
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order polynomial in the number of hops k, then taking the leading coefficient of this polynomial and dividing

by n.] Despite some impressive efforts in representing coordination sequences with such polynomials (see,

e.g., Conway & Sloane 1997, and the references contained therein), the measure td is currently unknown for

most of the nets discussed here. As a matter of computational tractability, we thus resort in §3 to the tabulation

of the local topological density measure, td10, as this measure is much easier to compute.

Our attention in this text is focused almost exclusively on equilibrium packings (that is, on sphere packings

which, if unperturbed, can bear compressive loads applied at the edges of a packing that is built out to fill a

finite convex domain) and their corresponding equilibrium nets (which are constructed with tensile members

connecting nearest-neighbor nodes, and can bear tensile loads applied at the edges of a finite convex do-

main)3,4. Equilibrium packings fall into two catagories: stable (that is, sphere packings which, if perturbed,

oscillate about their equilibrium configurations, and return to these configurations if there is damping present)

and unstable (that is, sphere packings which depart from equilibrium if perturbed); we consider both.

After years of conflicting terminology in the literature on nets, the concepts of cycles, rings, strong rings,

tilings, natural tilings, point symbols, and vertex symbols have, in 3D, finally crystallized. The reader is

referred to Blatov et al. (2009) for description of this modern terminology, as well as numerous cautions

concerning the conflicting nomenclatures adopted elsewhere in the published literature. In short:

3A family of structures with both tensile and compressive members, known as tensegrity, might be said to cover the gap between

purely compressive sphere packings and purely tensile nets. The mathematical characterization of tensegrity systems in 3D is now

precise, due largely to the work of Skelton & de Oliveira (2009). An interesting extension of the present study would be to generalize

such tensegrity systems to n > 3 dimensions.
4For the purpose of the applications studied in Parts II and III, we do not actually use the property of mechanical equilibrium of the

corresponding structure; this property may rather be considered as a convenient means to an end when designing a regular packing or

net. Several nets discussed in the literature (see, e.g., Wells 1977, page 80) are not equilibrium sphere packings, and might be interesting

to consider further.
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• A cycle is a sequence of nodes in a net, connected by edges, such that the first and last nodes of the sequence

coincide, while none of the other nodes in the sequence appears more than once.

• A cycle sum, of cycles A and B, is the union of those edges in either A or B but not both.

• A ring is a cycle that is not the sum of two smaller cycles.

• A strong ring is a cycle that is not the sum of any number of smaller cycles.

• A tiling of R3 by a 3D net is simply the dissection of 3D space into volumes whose faces, which in general

may be curved (as minimal surfaces, like soap bubbles; see, e.g., Sadoc & Rivier 1999), are bounded by

cycles of the net. A 3D net generally admits many tilings.

• The dual of a tiling is the unique new tiling obtained by placing a new vertex inside each original tile and

connecting the vertices of adjacent tiles (that is, with shared faces) in the original tiling with edges. If a

tiling and its dual are identical, the tiling is said to be self-dual. The dual of a dual is the original tiling.

• A natural tiling of R
3 by a 3D net is a tiling with the smallest possible tiles such that the tiles have the

maximum combinatorial symmetry and all the faces of the tiles are strong rings. A 3D net often5 admits

a unique natural tiling. If a tiling and its dual are both natural, the pair is referred to as natural duals. If a

natural tiling is self-dual, it is said to be naturally self-dual.

• The point symbol of a uninodal net, of the form Aa.Bb.Cc . . ., indicates that there are a pairs of edges

touching the node at the origin with shortest cycles of length A, b pairs of edges touching the node at the

origin with shortest cycles of length B (with B > A), etc. Note that the sum of the superscripts in a point

symbol totals τ(τ−1)/2.

• The vertex symbol of a uninodal net, of the form Aa.Bb.Cc . . ., indicates that the first pair of edges touching

the node at the origin has a shortest rings of length A, the second pair of edges touching the node at the

origin has b shortest rings of length B, etc. If for any entry there is only 1 such shortest ring, the subscript

5Not all 3D nets have natural tilings, and some have multiple natural tilings; §3 of Blatov et al. (2007) discusses this issue further.
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is suppressed; if for any entry there is no ring, a subscript ∗ is used. The entries are sorted such that smaller

rings are listed first, and when two rings of the same size appear, the entry with the smaller subscript is

listed first. In the special case of τ = 4, the six entries of the vertex symbol are listed as three pairs of

entries, with each pair of entries corresponding to opposite pairs of edges, and are otherwise again sorted

from smallest to largest. Note that the number of entries in a vertex symbol is τ(τ−1)/2.

The concepts of cycles, rings, strong rings, point symbols, and vertex symbols extend immediately to n di-

mensions; for practical considerations (specifically, because the number of entries in a vertex symbol gets

unmanageable for large τ), we list the point symbol in Table 3.1 wherever τ ≥ 5, and the vertex symbol where

τ ≤ 4. The extension of the tiling concept to n dimensions is more delicate, and is discussed further in §4.5.

Following Delgado-Friedrichs et al. (2003a,b), the regularity of a 3D net may now be characterized.

Consider a 3D net with p kinds of vertex and q kinds of edge and whose natural tiling is characterized by r

kinds of face and s kinds of tile. Delgado-Friedrichs & Huson (2000) introduced a method for characterizing

the regularity of such a net simply by forming the array pqrs: examining the 4-digit number so formed, known

as the transitivity of the net, the most “regular” 3D nets are generally those with the smallest transitivity.

Finally, a minimal net is a net with the minimum possible number of vertices and edges in its primitive

cell6; that is, upon deletion of any further edges in the primitive cell, the resulting net breaks into multiple

disconnected structures. Beukemann & Klee (1992) establish that there are only 15 such minimal nets in 3D.

Delgado-Friedrichs & O’Keeffe (2003) define a 3D net as barycentric if every vertex is placed in the center

of gravity of its neighbors (to which it is connected by edges). Bonneau et al. (2004), in turn, establish that 7

of the 15 such minimal nets in 3D have collisions; that is, when arranged in barycentric fashion, the location

of two or more vertices coincide (and, thus, the net is in a sense degenerate). Of the 8 remaining minimal nets

without collision, five are uninodal.

6A primitive cell of a net is the smallest fundamental volume (e.g., hypercube) that, when repeated as an infinite array in all directions

with zero spacing, generates the net.
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4.2 2D nets

Consider first the development of uninodal 2D nets with low coordination number. Start from the triangular

(A∗
2
∼= A2) lattice (see Figure P.1a), the corresponding net of which is an array of hexagons, and perform a

red/black/blue coloring of the nodes such that no two nearest-neighbor nodes are the same color. If we retain

only the red and black nodes, we are left with the honeycomb packing (see Figure P.1e), and the corresponding

net is an array of hexagons. The coordination number of this stable sphere packing is τ = 3, which is less

than that of the 2D square packing (τ = 4); this implies fewer wires in the corresponding computational

interconnect application. Unfortunately, the topological density of this net is quite poor, with td10 = 166 (that

is, with information spreading from one node to only 165 others after a message progresses 10 hops in the

network application). We are thus motivated to explore other ways of constructing structured (that is, easy-

to-build and easy-to-navigate) nets with low coordination number (that is, with low cost) but high topological

density (that is, with a fast spread of information).

Note that the honeycomb packing has a packing density which is less than that of the corresponding

triangular and square lattices discussed previously (see Table P.1). If minimization of packing density is the

goal7, then the honeycomb packing may be augmented by replacing every sphere with a set of three spheres

in contact, each such set forming an equilateral triangle which touches the neighbors in exactly the same

locations as the single sphere which it replaces in the original (unaugmented) packing (see, e.g., Heesch &

Laves 1933, Figure 13). The packing density of the resulting stable augmented honeycomb packing is less

than 2/3 that of the original honeycomb packing (see Table 3.1), and is the rarest uninodal sphere packing

available in 2D.

7Note that, for n > 3, the authors are actually unaware of any practical application, other than mathematical curiosity, for which

minimization of packing density is a significant goal.
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4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We thus identify a List of Twelve highly “regular”

(as defined in §4.1, via their transitivity) uninodal 3D nets upon which we will focus our attention and which,

following Delgado-Friedrichs et al. (2003a,b), we denote (listing from dense to rare):

1. fcu: face-centered cubic (FCC),

2. bcu: body-centered cubic (BCC),

3. pcu: cubic,

4. qtz: quartz,

5. nbo: NbO,

6. dia: diamond,

7. sod: sodalite,

8. qzd: quartz dual,

9. cds: CdSO4,

10. bto: B2O3,

11. ths: ThSi2,

12. srs: SrSi2.

See Table 3.1 for the common names, associated packings, and key characteristics of each8. These twelve

nets have been studied thoroughly in the literature, including the landmark work of Wells (1977, 1979, 1983,

1984) and scores of important publications since, including Koch & Fischer (1995, 2006) and the numerous

references contained therein; space does not allow a comprehensive review of this broad body of literature

here, nor even a comprehensive analysis of these twelve well-studied nets. Suffice it to say here that included

in our List of Twelve are the 5 regular nets (that is, of transitivity 1111), bcu, pcu, nbo, dia, and srs, and the

1 quasiregular net (of transitivity 1112), fcu, as well as 2 of the 14 semiregular nets (of transitivity 11rs), qtz

and sod (both of which have transitivity 1121), as discussed in O’Keeffe et al. (2000) and Delgado-Friedrichs

et al. (2003a,b). Also included in this list are the 5 uninodal minimal nets without collision, pcu, dia, cds,

srs, and ths, the first 4 of which are naturally self-dual, as discussed in Bonneau et al. (2004, Table 1); note

that cds is of transitivity 1221, and ths is of transitivity 12119. The remaining 2 nets on our List of Twelve,

8Again, clear drawings of each of these nets are available at http://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced

by any of the lowercase boldface three-letter identifiers given here.
9As illustrated in Bonneau et al. (2004, Figure 3), a self-dual tiling of ths may in fact be constructed; this tiling has transitivity 1221.
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qzd (transitivity 1211; see Delgado-Friedrichs et al. 2003c) and bto (transitivity 1221; see Blatov 2007), are

included because of their close structural relationship to the others, as discussed further in §4.4. We also note

that four on our List of Twelve, qtz, qzd, bto, and srs, are chiral (that is, these nets twist in such a way that

the nets and their reflections are not superposable).

The 12 remaining semiregular nets (of transitivity 11rs) of Delgado-Friedrichs et al. (2003b, Table 1) are

the next natural candidates in this taxonomy (hxg, crs, reo, and rhr might be of particular interest), perhaps

followed by the 28 binodal edge-transitive nets (of transitivity 21rs) of Delgado-Friedrichs et al. (2006, Table

1) and the 3 binodal minimal nets without collision (of transitivity 2222, 2211, and 2321) of Bonneau et

al. (2004, Table 1) [see also Delgado-Friedrichs & O’Keeffe (2007)]. Note that just half of the List of Twelve

considered here (specifically, in order of frequency, dia, pcu, srs, ths, nbo, and cds) account for 66% of

the 774 uninodal metal-organic frameworks (MOFs) tabulated in the Cambridge Structural Database (CSD),

as reviewed by Ockwig et al. (2005), thus indicating the prevalence in nature of several of the structures

considered here.

The idea of augmentation, introduced in §4.2, extends directly to many 3D nets in order to reduce packing

density. For example, in the (stable) packings related to the dia and sod nets (discussed further in §4.4.1 and

§4.4.3 respectively), both of which have coordination number 4, we may replace each sphere with a set of

four spheres in contact, each such set of spheres forming a tetrahedron, creating what is referred to as the

augmented diamond (dia-a) and augmented sodalite (sod-a) nets. In the case of the augmentation of the

packing related to the dia net, each tetrahedral set touches the neighbors in exactly the same locations as the

single sphere which it replaces in the original (unaugmented) packing (see Heesch & Laves 1933, Figure 12).

In the case of the augmentation of the packing related to the sod net, as the angles between the 4 nearest

neighbors of any node are not uniform in the sod net, each tetrahedral set is slightly larger than the single

sphere which they replace in the original (unaugmented) packing, and the contact points are slightly shifted

(O’Keeffe 1991b); note that the packing associated with the sod-a net is the rarest uninodal stable 3D packing
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currently known. On the other hand, in the augmentation of the (unstable) packing related to the srs net, which

has coordination number 3, we may replace each sphere with a set of three spheres in contact, each such set of

spheres, as in the augmentation of the honeycomb packing, forming an equilateral triangle and touching the

neighbors in exactly the same locations as the single sphere which it replaces in the original (unaugmented)

packing (see Heesch & Laves 1933, Figure 10); note that the packing associated with the resulting srs-a net

is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycomb, dia-a (transitivity 1222) to dia, sod-a (transitivity

1332) to sod, and srs-a (transitivity 1221) to srs, it is seen that augmentation, while reducing the packing

density ∆ (see Table 3.1), also significantly reduces both the topological density, td10, and the regularity of the

resulting net. Thus, the process of augmentation appears to be of little interest for the purpose of developing

efficient computational interconnects. Note that Fischer (2005) and Dorozinski & Fischer (2006) show that

the process of augmentation can be repeated indefinitely in order to obtain (non-uninodal) sphere packings of

arbitrarily low packing density.

Finally, there are two other 3D nets which, though less regular than our List of Twelve, are worthy of “ho-

norable mention”: hexagonal close packing (hcp, transitivity 1232) and lonsdaleite (lon, transitivity 1222).

As hinted by their identical packing densities (see Table 3.1), hcp is closely related to fcu, and lon is closely

related to dia; curiously, both have slightly higher values of td10 than do their more regular cousins. The re-

lations between these two pairs of packings is readily evident when they are considered as built up in layers,

as introduced in the second paragraph of §2.4 and discussed further below.

The A3 lattice (a.k.a. FCC, corresponding to the fcu net) may be built up as an alternating series of three

2D triangular (A2) layers, offset from each other in the form abcabc . . ., with the nodes in one layer over the

holes in the layer below; hcp is built up similarly, but with two alternating layers, offset from each other in

the form abab . . .

Similarly, the sphere packings corresponding to the dia and lon nets may be built up as alternating series
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of approximately 2D honeycomb layers offset from each other. These honeycomb “layers” are in fact not

quite 2D; if the nodes in a single layer are marked with an alternate red/black coloring, the red nodes are

raised a bit and the black nodes lowered a bit. In both packings, the layers are offset from each other, with

the lowered nodes in one layer directly over the raised nodes in the other. In the packing corresponding to the

dia net, there are three such alternating layers stacked in the form abcabc . . .; in the packing corresponding

to the lon net, there are two such alternating layers stacked in the form abab . . .

4.4 Uninodal extension of some regular 3D nets to higher dimensions

The fcu net is based on the D3
∼= A3 lattice, and thus may be extended to n dimensions in two obvious ways

(that is, via An or Dn). The bcu net is based on the D∗
3
∼= A∗

3 lattice, and thus may also be extended to n

dimensions in two obvious ways (via A∗
n or D∗

n). The pcu net is based on the Z3 lattice, and thus extends to

n dimension via Zn. This section explores how most of the other nets on the List of Twelve described above

extend naturally to higher dimensions.

It is important to recall that the nets in the D∗
n case for n > 4 turn out to be a bit peculiar, as discussed

further in §2.3; the T90
n and T60

n nets encountered in §4.4.7 are similar.

4.4.1 Extending dia: the A+
n and D+

n packings

The dia net may be obtained from the well-known D+
3 packing defined in (2.5) (see also Sloane 1987), and

thus extends naturally to n dimensions as D+
n . However, there is an alternative construction of the dia net,

described below and denoted A+
n , which is equivalent to D+

n for n = 3 but extends to n dimensions differently.

In fact, a third extension of the dia net to n dimensions, the V90
n construction, is introduced in §4.4.6. These

alternative extensions of the dia net to n dimensions, with low coordination number, are perhaps better suited

than D+
n for many practical applications. We thus stress that names such as “n-dimensional diamond” are

parochial, as there are sometimes multiple “natural” n-dimensional extensions of a net related to a given

http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/fcu
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three-dimensional crystalline structure (e.g., D+
n , A+

n , and V90
n ). For n-dimensional nets in general, we thus

strongly prefer names derived from a corresponding well-defined n-dimensional lattice or, when such a name

is not available, names evocative of their n-dimensional construction; this preference is in sharp contrast with

the names suggested by O’Keeffe (1991b).

Recall the first paragraph of §4.2. Now start from a BCC (A∗
3
∼= D∗

3) lattice and perform a red/black/blue/yellow

coloring of the points such that no two nearest-neighbor points are the same color. If we retain only the red

and black points, we are left with the diamond packing. The coordination number of this packing is τ = 4,

which is less than that of the 3D cubic packing (τ = 6), but also has a reduced topological density, as quan-

tified by td10 (see Table 3.1). The diamond packing also has a packing density which is less than that of the

corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.7a)] that A∗
n may be defined as the union of n + 1 shifted An lattices, which is

analogous to the property [see (2.4a)] that D∗
n may be defined as the union of 4 shifted Dn lattices. Recall from

(2.5) that D+
n , which we referred to the offset checkerboard packing, was defined as the union of just 2 shifted

Dn lattices, and generates the diamond packing in 3D (where D3
∼= A3). Motivated by the previous paragraph

and the first paragraph of §4.2, we are thus also keenly interested in the nonlattice packing considered in

Table 1 of O’Keeffe (1991b), denoted here A+
n and referred to as the offset zero-sum packing, and which is

defined as the union of just 2 shifted An lattices [cf. (2.5), (2.7)]:

A+
n = An ∪ ([1]+ An), where [1]k =

{
1

n+1
k ≤ n,

−n
n+1

k = n + 1.
(4.1)

The coordination number of the regular uninodal nonlattice packing A+
n is n + 1, with these n + 1 nearest

neighbors forming a regular n-dimensional simplex [that is, a regular n-dimensional polytope with n + 1

vertices—e.g., in n = 3 dimensions, a tetrahedron]. The generalization of the honeycomb and diamond

packings to higher dimensions given by A+
n is significant, as it illustrates how a highly regular stable packing
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with coordination number lower than that of the corresponding Cartesian lattice may be extended to dimensi-

on n > 3. Note also that the nonlattice packings A+
n are distinct from the lattice packings Ar

n defined in (2.8),

which are generated in a similar manner.

4.4.2 Augmenting A+
n : the Â+

n packing

The third paragraph of §4.3 discusses the augmentation of the A+
3 packing, replacing each sphere with a

tetrahedral set of 4 smaller spheres. This idea extends immediately to the augmentation, in n dimensions, of

the A+
n packing discussed above, replacing each (n-dimensional) sphere with a regular n-dimensional simplex

of n + 1 smaller spheres.

4.4.3 Extending sod: the TA∗
n packing

The familiar sod net is formed by the edges of the Voronoı̈ tesselation of space formed by the A∗
3 (that is,

BCC) packing, with the nodes of the net located at the holes of the packing rather than at the centers of

the spheres of the packing. As noted by O’Keeffe (1991b), this construction extends immediately to the n-

dimensional net formed by the Voronoı̈ tesselation of space via the A∗
n packing. Constructing the A∗

n packing

as defined in §2.4, the holes of this packing that are nearest to the origin (that is, in its Voronoı̈ tesselation,

the corners of the Voronoı̈ cell which contains the origin) are given by the (n+1)! permutations of the vector

(see Conway & Sloane, 1999, page 474):

1

2(n + 1)

(
−n −n + 2 −n + 4 . . . n

)T
.

These nodal points [which, like the lattice points of A∗
n itself, are defined in an (n + 1)-dimensional space,

but all lie in the n-dimensional subspace orthogonal to the vector nAn defined in (2.6b)] are equidistant from

their n+1 nearest neighbors, and form permutohedra (in 3D, truncated octahedra) which tile n-dimensional

http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/sod
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space. Note that these nodal points themselves form a uninodal sphere packing with coordination number

τ = n+1; due to its relationship to the tesselation of space via the points of the A∗
n packing, we thus introduce

the notation TA∗
n for this packing.

4.4.4 Extending nbo: the Sn construction

The nbo net, a subset of the pcu net, has an obvious uninodal extension to n dimensions with τ = 4, which
may be visualized as the contact graph formed by repeating a unit hypercube pattern as an infinite array with
unit spacing (see Figure 5.3), where each hypercube itself has two paths which “snake” along the edges from
the (0,0, · · · ,0,0) node to the (1,1, · · · ,1,1) node, one coordinate direction at a time; we thus suggest the
symbol Sn to denote this construction. These two paths touch at the opposite corners of the unit hypercube:

path A : (0,0, · · · ,0,0), (0,0, · · · ,0,1), (0,0, · · · ,1,1), . . . , (0,1, · · · ,1,1), (1,1, · · · ,1,1), and

path B : (0,0, · · · ,0,0), (1,0, · · · ,0,0), (1,1, · · · ,0,0), . . . , (1,1, · · · ,1,0), (1,1, · · · ,1,1).

4.4.5 Extending ths and bto: the Y90
n and Y60

n constructions

The honeycomb packing A+
2 , of coordination number τ = 3, contains a fundamental Y-shaped stencil. As

illustrated in Figure 4.1a, starting with this Y stencil and adjoining translates of itself, tip to tip, builds up

the honeycomb packing in 2D. Extending this idea to 3D, as illustrated in Figure 4.1b, we may “twist” the Y

stencil by 90◦ at each level: starting with the basic Y stencil in, say, the e1-e2 plane, we can shift to the right

(in e1) and adjoin Y stencils twisted by 90◦ (that is, aligned in the e1-e3 plane), then shift to the right again

and adjoin Y stencils twisted again (aligned in the e1-e2 plane), etc. This construction forms the ths net in

3D, and extends immediately to dimension n > 3; we thus denote this construction Y
90
n .

Instead of twisting the Y stencil by 90◦ at each step, we may instead twist it by 60◦. This forms the bto

net in 3D. As with the hcp versus fcu and lon versus dia nets in 3D, as described at the end of §4.3, there is

a bit of flexibility in terms of the ordering of the the successive twists for n > 3. A highly regular net for odd

http://rcsr.anu.edu.au/nets/nbo
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Figure 4.1: Construction of three rare packings: (left) the Y2 (honeycomb) net, (center) the Y
90
3 (ths) net, and

(right) the V90
3 (dia) net. All three constructions build from left to right in the above figures from a basic “Y”

or “V” stencil, and have obvious extensions to higher dimensions.

n, which we denote Y60
n , is formed by pairing off the dimensions after the first and alternating the twists as

follows: starting with the basic Y stencil in, say, the e1-e2 plane, we continue by adjoining Y stencils in the

e1-e4 plane, then in the e1-e6 plane, etc. We then adjoin Y stencils in the e1-z60
23 plane, where z60

23 is the vector

formed by rotating the e2 unit vector 60◦ in the direction towards e3; we continue by adjoining Y stencils in

the e1-z60
45 plane, then in the e1-z60

67 plane, etc. Next, we adjoin Y stencils in the e1-z120
23 plane, where z120

23 is the

vector formed by rotating the z60
23 vector 60◦ further in the e2-e3 plane; we continue by adjoining Y stencils

in the e1-z120
45 plane, then in the e1-z120

67 plane, etc., and repeat (that is, with stencils again aligned in the e1-e2

plane).

The Y90
n and Y60

n constructions have a parameter, denoted α and defined as half of the angle between the

http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/dia
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two top branches of the Y stencil (thus, α → 0◦ closes down the Y to an I, whereas α → 90◦ opens up the

Y to a T). The Voronoı̈ volume of the Y
90
n and Y

60
n constructions may be written as simple functions of α as

follows:

VY90
n

(α) = fYn
(α)VY90

n
(ᾱ)

V
Y60

n
(α) = fYn

(α)V
Y60

n
(ᾱ)

}
with ᾱ = 45◦, fYn

(α) = (2−
√

2)(1 + cosα)(
√

2 sinα)n−1.

This relation is plotted in Figure 4.2a. The characteristics of Y
90
n and Y

60
n reported in Table 3.1 are compu-

ted for α = cos−1(1/n), as marked with circles in Figure 4.2a, which maximizes the Voronoı̈ volume and,

thus, minimizes the packing density. An alternative natural choice is α = 60, which results in barycentric

constructions of Y90
n and Y60

n .

4.4.6 Extending dia and qtz: the V90
n and V60

n constructions

The V90
n and V60

n constructions are defined in an identical manner as their Y90
n and Y60

n counterparts, with a V

stencil replacing the Y stencil (see, e.g., Figure 4.1c), thus resulting in nets with coordination number τ = 4

instead of τ = 3. These constructions lead to the dia and qtz nets in 3D.

As with the Y
90
n and Y

60
n construction, the V

90
n and V

60
n constructions have a parameter, denoted α and

defined as half of the angle between the two top branches of the V stencil. The Voronoı̈ volume of the V90
n

and V60
n constructions may be written as simple functions of α as follows:

VV90
n

(α) = fVn
(α)VV90

n
(ᾱ)

V
V60

n
(α) = fVn

(α)V
V60

n
(ᾱ)

}
with ᾱ = 45◦, fVn

(α) = 2n/2 cosα(sin α)n−1.

This relation is plotted in Figure 4.2b. The characteristics of V90
n and V60

n reported in Table 3.1 are computed

for α = cos−1(1/
√

n), as marked with circles in Figure 4.2a, which maximize the Voronoı̈ volumes and, thus,

http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/qtz
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Figure 4.2: Variation of the Voronoı̈ volume of the (left) Y
90
n & Y

60
n and (right) V

90
n & V

60
n packings as a

function of α for n = 2 to n = 8.

minimize the packing density. Note that the V90
n and V60

n constructions are barycentric for any α in the range

0 < α < 90◦.

4.4.7 Extending cds and qzd: the T90
n and T60

n constructions

The T90
n and T60

n constructions are defined in an analogous manner as their Y90
n , V90

n , Y60
n , and V60

n counter-

parts, and lead to the cds and qzd nets in 3D. The only difference now is that, instead of adjoining two new Y

or V symbols on the tips of each Y or V symbol in the previous layer, we now adjoin a single new T symbol

centered atop each T symbol in the previous layer, appropriately twisted; these constructions thus result in

http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/qzd
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nets with coordination number τ = 4. Note that the “horizontal” and “vertical” distances between nodes in

these constructions are equal, and that these constructions are parameter free and barycentric.

Note that the x1 direction is special in the Y90
n , Y60

n , V90
n , V60

n , T90
n , and T60

n constructions. These con-

structions are configured in this way intentionally, in order to construct equilibrium packings; however, other

variations are certainly possible. Note also that the Y60
n , V60

n , and T60
n constructions involve pairing off the

dimensions after the first and rotating in each pair of dimensions 60◦ at a time, in the manner described in

§4.4.5. If we follow the same procedure but rotate 90◦ at a time, we recover nets equivalent to the correspon-

ding Y
90
n , V

90
n , and T

90
n nets, respectively, as defined previously.

Note also that the Y90
n , V90

n , and T90
n constructions form square layers in the e2-e3 plane, the e4-e5 plane,

the e6-e7 plane, etc., whereas the Y60
n , V60

n , and T60
n constructions form triangular layers in these planes. In

the resulting Y90
n , Y60

n , V90
n , and V60

n nets, there are, in fact, no edges of the net within these layers (that is,

all of the edges connect nodes in different layers). On the other hand, in the resulting T90
n and T60

n nets, each

node is connected via edges of the net to exactly two others (note: not four or six) within these layers. As

with the peculiar D∗
n net discussed previously, the T

90
n and T

60
n constructions are, in fact, not contact graphs

of the corresponding sphere packings10; some bonds must be cut in the corresponding contact graphs (which,

in the case of T90
n , is simply Zn) in order to form the T90

n and T60
n nets.

4.4.8 Other extensions

Sections 4.4.1 through 4.4.7 summarize several uninodal families of n-dimensional extrapolations of some

common 3D nets; most of these (unless indicated otherwise, via references to existing literature) are new.

Note that O’Keeffe (1991b) mentions two other such extensions, one corresponding to the lon net and one

10Note that there is a lower-symmetry form of cds in 3D with four nearest neighbors per node whose contact graph does generate the

cds net; see Delgado-Friedrichs (2005, Figure 1). Lower symmetry forms of other T90
n and T60

n constructions, whose nets are contact

graphs, might also exist.

http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/cds
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corresponding to the sod-a, the latter of which is currently the rarest uninodal stable packing known for n > 3

(and which, consistent with the above developed naming conventions, we might suggest to identify as TÂ∗
n).

Beukemann & Klee (1992, page 50) mentions two extensions of their own (at least, to n = 4), both related to

the dia net. Judging from the vast assortment of distinct rare sphere packings and related nets available in 3D,

there are certainly many more uninodal extensions to higher dimensions of regular rare 3D packings that are

still awaiting discovery; we have focused our attention here on what appear to be several of the most regular.

The regularity of n-dimensional nets for n > 3 is discussed further below.

4.5 Regularity and transitivity of n-dimensional nets for n > 3

As reviewed in §4.1, the regularity of a 3D net is defined by its transitivity, which is based on the natural tiling

of the 3D net. The natural tiles of 3D nets have been thoroughly characterized in the literature for all of the

most regular 3D nets available. In §4.4, we described uninodal extensions of several regular 3D nets to higher

dimensions, and mentioned that many more such uninodal nets with n > 3 most certainly exist. The natural

question to ask, then, is how the concepts of regularity and transitivity can be extended to higher dimensions,

so that we may differentiate between these nets and identify those which are the most regular.

This question is difficult to visualize in dimensions higher than three, and requires a symbolic/numerical

description of the net to proceed. The net arising from the Z
n lattice for n = 4,5, . . ., which is naturally tiled

by n-dimensional hypercubes, is by far the easiest starting point. Denote first the symbols {v,w,x,y,z} as

variables that range from 0 to 1. The 3D unit cube, denoted {xyz}, has six faces, {xy0,xy1,x0z,x1z,0yz,1yz}.

Each face, in turn, has four edges; e.g., {0yz} has edges {0y0,0y1,00z,01z}. Finally, each edge connects two

nodes; e.g., {00z} connects nodes {000,001}. The 4D unit hypercube, {wxyz}, has eight 3-faces, which we

identify as {wxy0,wxy1,wx0z,wx1z,w0yz,w1yz,0xyz,1xyz}, each 3-face has six 2-faces, each 2-face has four

edges, and each edge connects two nodes. The 5D unit hypercube, {vwxyz}, has ten 4-faces, each 4-face has

eight 3-faces, each 3-face has six 2-faces, each 2-face has four edges, and each edge connects two nodes; etc.

http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/dia
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In 3D, as reviewed in §4.1, the transitivity is based on the number of distinct nodes, edges, (2D) faces,

and (3D) tiles. By analogy, then, in 4D we may define the transitivity of a net based on the number of

distinct nodes, edges, 2-faces, 3-faces, and (4D) tiles in the natural tiling. Similarly, in 5D, we may define the

transitivity based on the number of distinct nodes, edges, 2-faces, 3-faces, 4-faces and (5D) tiles in the natural

tiling; etc. Via this definition, the net derived from the Z4 lattice has transitivity 11111, the net derived from

the Z5 lattice has transitivity 111111, etc.

For all of the other nets with n > 3 listed in Table 3.1, the computation of the transitivity remains an

important unsolved problem. Note that, in a tiling corresponding to a 3D net, the (2D) faces of the (3D) tiles

are, in general, minimal surfaces stretched over non-planar frames built from (1D) edges between several

nodal points defined in 3D. In a tiling corresponding to an n-dimensional net for n > 3, the 2-faces of the

tiles are, in general, minimal surfaces stretched over nonplanar frames between several nodes defined in n

dimensions. [Note that the computation of such minimal surfaces in n dimensions is straightforward using

standard level set methods; see, e.g., Cecil (2005).] Several of these nonplanar 2-faces combine to form the

boundaries of each 3-face, which itself is not confined to lie within a 3D subspace of the n-dimensional

domain. Several of these 3-faces then combine to form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilings is apparently a task that could be readily accom-

plished numerically, but is, in general, expected to be difficult to visualize.
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5.1 Introduction

Though the lattices that arise from n-dimensional sphere packings have connections that permeate many

foundational concepts in number theory and pure geometry, the list of successful direct applications in science

and engineering of n-dimensional sphere packings with n > 3 is currently surprisingly short1; this list includes

• the numerical evaluation of integrals (Sloan & Kachoyan 1987),

• the solution of the linear Diophantine inequalities that arise in integer linear programming (Schrijver 1986),

• the characterization of crystals with curious five-fold symmetries (Janssen 1986),

• attempts at unifying the 4 fundamental forces (in 10, 11, or 26 dimensions) via superstring theory (Kaku

1999), and

• the development of maximally effective numerical schemes to address an information-theoretic interfe-

rence suppression problem known as the Witsenhausen counterexample (Grover, Sahai, & Park 2010).

Far and away the most elegant and practical application of n-dimensional sphere packings, however, is in

the framing and understanding of error correcting codes (ECCs). The reader is referred to MacWilliams &

Sloane (1977), Thompson (1983), Pless (1998), Conway & Sloane (1998), and Morelos-Zaragoza (2006)

for some comprehensive reviews of this fascinating subject. A brief overview of this field is given here to

emphasize the existing practical relevance of n-dimensional sphere packings with n > 3; we aim to augment

this list of practical applications significantly in Parts II and III of this text, based heavily on the various

aspects of n-dimensional sphere packing theory reviewed and extended in Part I.

To proceed, define Fq [also denoted GF(q)] as the set of symbols in a finite field (a.k.a. Galois field)

of order q, where q = pa with p prime, and define Fn
q as the set of all vectors of order n with elements

1Notably, Conway & Sloane (1998, page 12) state: “A related application that has not yet received much attention is the use of these

packings for solving n-dimensional search or approximation problems”; this is exactly the problem focused on in our Part II.
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selected from Fq. The cases of particular interest in this work are the binary field F2 = {0,1}, the ternary

field F3 = {0,1,2}, and the quaternary field2 F4 = {0,1,ω, ω̄}, where, as in §2.1, ω = (−1 + i
√

3)/2 [note

that ω2 = ω̄, ω̄2 = ω, and ω̄ ·ω = 1]. In a finite field Fq, addition (+) and multiplication (·) are closed (that

is, they map to elements within the field) and satisfy the usual rules: they are associative, commutative, and

distributive, there is a 0 element such that a + 0 = a, there is a 1 element such that a ·1 = a, for each a there

is an element (−a) such that a +(−a) = 0, and for each a 6= 0 there is an element a−1 such that a ·a−1 = 1.

If q is itself prime (e.g., if q = 2 or q = 3), then standard integer addition and multiplication mod q forms a

finite field. If not (e.g., if q = 4), a bit more care is required in order to obtain closure within the finite field

while respecting these necessary rules on addition and multiplication. For the cases considered in this section

(specifically, F2, F3, and F4), addition and multiplication on Fq are thus defined as follows:

F2:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

F3:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

F4:

+ 0 1 ω ω̄

0 0 1 ω ω̄

1 1 0 ω̄ ω

ω ω ω̄ 0 1

ω̄ ω̄ ω 1 0

· 0 1 ω ω̄

0 0 0 0 0

1 0 1 ω ω̄

ω 0 ω ω̄ 1

ω̄ 0 ω̄ 1 ω

A vector in Fn
q is a vector of length n with each element in Fq. The Hamming distance between two such

vectors is the number of elements that differ between them.

2We limit our attention in the quaternary case to codes designed over the finite field F4; though there is some attention in the literature

to codes defined over Z4 [that is, over the integers mod 4], codes defined over finite fields turn out to be, in a sense, more natural.
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An [n,k]q (if d is specified, [n,k,d]q) q-ary linear3 code (LC) is defined via a set of k < n independent

basis vectors vi ∈ Fn
q. The qk distinct codewords wi ∈ Fn

q of the LC are given by all q-ary linear combinations

of the basis vectors vi (that is, by all linear combinations with coefficients selected from Fq, with addition

and multiplication defined elementwise on Fq). The basis vectors vi are generally selected such the minimum

distance d of the LC (that is, the minimum Hamming distance between any two resulting codewords) is

maximized.

This work focuses on cases with q = 2 [termed a linear binary code (LBC)], q = 3 [termed a linear ternary

code (LTC)], and q = 4 [termed a linear quaternary code (LQC)]. In cases with q = 2, which are common, we

frequently write simply [n,k] or [n,k,d], dropping the q subscript. We denote by V[n,k]q (or V[n,k,d]q) the n× k

basis matrix with the k basis vectors vi as columns, and by W[n,k]q (or W[n,k,d]q) the n× qk codeword matrix

with the qk codewords wi as columns. Without loss of generality, we write V[n,k]q and a companion (n−k)×n

parity-check matrix H[n,k]q in the standard (a.k.a. systematic) form4

H[n,k]q =
[
−P(n−k)×k I(n−k)×(n−k)

]
, V[n,k]q =

[
Ik×k

P(n−k)×k

]
, wi =

[
di

bi

]
. (5.1)

3Nonlinear q-ary codes also appear in the literature, in which the valid codewords are not simply linear combinations of a set of basis

vectors and must be enumerated differently. Such codes, which are related to nonlattice packings, are in general more difficult to decode

than LCs, and are not considered further here.
4In the literature on this subject, it is more common to use a “generator matrix” G to describe the construction of linear codes. The

“basis matrix” convention V used here is related simply to the corresponding generator matrix such that V = GT ; we find the basis matrix

convention to be more natural in terms of its linear algebraic interpretation.
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When written in systematic form, each of the data vectors wi block decomposes into its k data symbols5 di

and its r = n− k parity symbols bi; note that r is sometimes called the redundancy of the code. Note also

that H[n,k]qV[n,k]q = 0 (on Fq)6, which establishes that the basis vectors vi so constructed [and, thus, all of the

resulting codewords wi] each satisfy the parity-check equations, H[n,k]qwi = 0 (on Fq), as implied by the rows

of H[n,k]q and illustrated by the several examples given in systematic form in §5.2, §5.3, and §5.4. Note further

that, for LBCs and LQCs, P = −P.

The key to designing a “good” [n,k]q LC is to construct the parity submatrix P(n−k)×k in (5.1) in such a

way that the minimum distance d of the resulting code is maximized for given values of n, k, and q. Indeed,

the problem of designing a good binary error correcting code is essentially a finite sphere packing problem

on F2; thus the very close relationship between the design of error-correcting codes and the design of infinite

dense sphere packings in Rn, as discussed in §2.

For q = pa with p prime, conjugation in Fq (that is, for a scalar v ∈ Fq) is defined such that v̄ = vp;

conjugation in Fn
q (that is, for vectors v ∈ Fn

q), as well as for matrices formed with a number of such vectors

as columns, is performed elementwise. Any [n,k]q linear code C has associated with it an [n,n−k]q dual code

C⊥ defined [cf. (2.1)] such that

C⊥ =
{

w ∈ Fn
q : w · ū = 0 for all u ∈C

}
. (5.2)

The parity-check and codeword matrices of C⊥ may be written in systematic form as

H⊥
[n,n−k]q

=
[
P̄T I(n−k)×(n−k)

]
, V⊥

[n,n−k]q
=

[
I(n−k)×(n−k)

−P̄T

]
. (5.3)

5The word “bit”, a portmanteau word for “binary digit”, is generally reserved for the case with q = 2; in the general case, we use the

word “symbol” in its place.
6The qualifiers “(on Fq)” and “(mod q)” are used, as appropriate, to remind the reader that multiplication and addition in the equation

indicated are performed elementwise on the finite field Fq, as discussed above.
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where P̄ denotes conjugation in Fq of each element of the parity submatrix P of the original [n,k]q linear code

C. Note that P̄T is of order k× (n− k), and, of course, that H⊥
[n,n−k]q

V⊥
[n,n−k]q

= 0 (on Fq). Note further that,

for LBCs and LTCs, u = ū and P = P̄.

A self-dual code C is a code for which the the transpose of the codeword matrix V results in a new matrix

H which is itself the parity-check matrix of a code which is equivalent to C, albeit not in systematic form.

Graphically, the codewords of an [n,k,d]2 LBC may be thought of as a carefully chosen subset of 2k of

the 2n corners on a single n-dimensional unit hypercube, as illustrated for n = 3 in Figure 5.1, whereas an

[n,k,d]3 LTC may be thought of as a subset of 3k of the 3n gridpoints in a cluster of 2n unit hypercubes in

n-dimensions, as illustrated for n = 3 in Figure 5.2. For any q, d quantifies the minimum number of symbols

which differ between any two codewords. It follows that:

• An LC with d = 2 is single error detecting (SED) [see, e.g., Figures 5.1a and 5.2a]. In this case, the sum (on

Fq) of the symbols in each transmitted codeword is zero, so if it is assumed that at most one symbol error

occured and this sum is nonzero, then a symbol error in transmission occurred, whereas if it is zero, then

a symbol error did not occur. However, if a symbol error in transmission occured, the received (invalid)

message is generally equidistant from multiple codewords, so it is not possible to correct the symbol error.

Two or more symbol errors can cause the codeword to be misinterpreted.

• An LC with d = 3 is single error correcting (SEC) [see, e.g., Figures 5.1b and 5.2b]. In this case, if it is

again assumed that at most one symbol error in transmission occured, then if the received codeword is not

a codeword, there is only one codeword that is unit Hamming distance away, so the single symbol error

may in fact be corrected. Again, 2 or more symbol errors can cause the codeword to be misinterpreted.

• An LC with d = 4 is single error correcting and double error detecting (SECDED). In this case, if a single

symbol error occurs, the received codeword will be unit Hamming distance away from a single codeword,

and thus single symbol errors can be corrected. On the other hand, if two symbol errors occur, the received
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Figure 5.1: Valid codewords of (left) the (SED) [3,2,2]2 LBC, and (right) its dual, the (perfect, SEC) [3,1,3]2
LBC. The blue sphere denotes the origin, and d specifies the number of edges between any two codewords.

Figure 5.2: Valid codewords of (left) the (SED) [3,2,2]3 LTC, and (right) its dual, the (SEC) [3,1,3]3 LTC.

codeword is generally Hamming distance 2 away from multiple codewords, so double symbol errors can

be detected but not corrected. Now, 3 or more symbol errors can cause the codewords to be misinterpreted.
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• An LC with d = 5 is double error correcting (DEC), with 3 or more symbol errors causing misinterpreta-

tion.

• An LC with d = 6 is double error correcting and triple error detecting (DECTED), with 4 or more symbol

errors causing misinterpretation.

• An LC with d = 7 is triple error correcting (TEC), with 4 or more symbol errors causing misinterpretation.

• An LC with d = 8 is triple error correcting and quadruple error detecting (TECQED), with 5 or symbol

errors causing misinterpretation.

• An LC with d = 9 is quadruple error correcting (QEC), with 5 or more symbol errors causing misinter-

pretation.

The labels defined above are frequently used to quantify the error correction capability of an LC. Alternative-

ly, if error correction is not attempted, then:

• An LC with d = 2 is single error detecting, with 2 or more symbol errors causing misinterpretation.

• An LC with d = 3 is double error detecting, with 3 or more symbol errors causing misinterpretation.

• An LC with d = 4 is triple error detecting, with 4 or more symbol errors causing misinterpretation.

• An LC with d = 5 is quadruple error detecting, with 5 or more symbol errors causing misinterpretation.

Error correcting algorithms are useful for a broad range of data transmission or data storage applications in

which it is difficult or impossible to request that a corrupted codeword be retransmitted; algorithms which

use such LCs for error detection only, on the other hand, may be used only when efficient handshaking is

incorporated in a manner which makes it easy to request and resend any messages that might be corrupted

during transmission.

An [n,k,d]q LC is perfect if, for some integer t > 0, each possible n-dimensional q-ary codeword is

of Hamming distance t or less from a single codeword (that is, there are no “wasted” codewords that are

Hamming distance t +1 or more from the codewords, and thus may not be corrected under the assumption that
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at most t symbol errors have occured); note that a perfect code has odd d = 2t +1 > 1. A remarkable proof by

Tietäväinen (1973), which was based on related work by Van Lint, establishes that the only nontrivial perfect

LCs are the [(qm−1)/(q−1),(qm−1)/(q−1)−m,3]q perfect q-ary Hamming codes and the [23,12,7]2 and

[11,6,5]3 binary and ternary Golay codes, described further in §5.2 and §5.3.

An [n,k,d] LC is quasi-perfect if, for some integer t > 1, each possible n-dimensional q-ary codeword is

either (a) of Hamming distance t−1 or less from a single codeword, and thus up to t−1 symbol errors may be

corrected, or (b) of Hamming distance t from at least one codeword, and thus codewords with t symbol errors

may be detected but not necessarily corrected (that is, there are no “wasted” codewords that are Hamming

distance t + 1 or more from a codeword, and thus may not be reconciled under the assumption that at most t

symbol errors have occured); note that a quasi-perfect code has even d = 2t > 2.

Note finally, as illustrated for n = 3 in Figure 5.3, that a real lattice corresponding to an [n,k,d]2 LBC

may often be constructed by forming a union of 2k cosets:

Construction A :

2k
[

i=1

(wi
[n,k,d]2

+ 2Z
n), (5.4a)

where the coset representatives in this construction, wi
[n,k,d]2

for i = 1, . . . ,2k, are the codewords of the [n,k,d]2

LBC under consideration and (w + 2Zn) denotes a Zn lattice scaled by a factor of 2 with all nodal points

shifted by the vector w; thus, Construction A denotes the union of the nodal points in several such scaled and

shifted Zn lattices. An alternative real lattice may sometimes be constructed via:

Construction B :

2k
[

i=1

(wi
[n,k,d]2

+ 2J) where J =

{
x ∈ Z

n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ 2Z

}
, (5.4b)

where (2Z) denotes the even integers, and thus the last condition is sometimes written ∑n
i=1 xi = 0 (mod 2).
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Figure 5.3: The lattice corresponding to an [n,k,d] LBC is formed by repeating the unit hypercube pattern

given by the LBC (see, e.g., Figure 5.1) as an infinite array with unit spacing. In the above example, we

illustrate this extension for (left) the face-centered cubic (FCC) lattice generated by the [3,2,2] LBC, D3 =
S4

i=1 (wi
[3,2,2] + 2Z3), and (right) the body-centered cubic (BCC) lattice generated by the [3,1,3] LBC, D∗

3 =
S2

i=1 (wi
[3,1,3] +2Z

3). The blue spheres, taken together, form a primitive cell that, repeated as an infinite array

with zero spacing, tile (that is, fill) the domain.

In an analogous fashion, a complex lattice corresponding to an [n,k,d]q LC may often be constructed by

forming a union of qk shifted and scaled n-dimensional E lattices Z[ω]n (see §2.1) such that

Construction Aπ
E

:

qk
[

i=1

(wi
[n,k,d]q

+ πZ[ω]n), (5.5a)
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where, in the sequel, the multiplicative factor π takes two possible values (2 and θ = ω− ω̄ = i
√

3) and the

coset representatives in this construction, wi
[n,k,d]q

for i = 1, . . . ,qk, are the codewords of the [n,k,d]q LC under

consideration. An alternative complex lattice may sometimes be constructed via:

Construction Bπ
E

:

qk
[

i=1

(wi
[n,k,d]q

+ πJ) where J =

{
x ∈ Z[ω]n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ πE

}
, (5.5b)

where (πE ) denotes the lattice of Eisenstein integers in the complex plane multiplied (that is, rotated and

scaled) by the (possibly complex) factor π. Note the remarkable similarity in structure between the real

constructions in (5.4a)-(5.4b) and the complex constructions in (5.5a)-(5.5b). Note also that real lattices

corresponding to any of the complex lattices so constructed may easily be generated via (2.2).

5.2 Exemplary linear binary codes (LBCs)

We now summarize some of the families of LBCs available, presenting each in systematic form (5.1).

5.2.1 Binary single parity-check codes

The simple7 [n,n− 1,2] binary single parity-check codes are SED, and include [2,1,2] (self-dual), [3,2,2],
[4,3,2], [5,4,2], etc. Using such a code, for each (n−1) data bits to be transmitted, a parity bit is generated

such that the sum (mod 2) of the data bits plus the parity bit is 0; when decoding, an error is flagged if this

sum (mod 2) is 1. The [3,2,2] code illustrated in Figure 5.1a is given by

H[3,2,2] =
(
1 1 1

)
, V[3,2,2] =




1 0

0 1

1 1



 , W[3,2,2] =




0 1 0 1

0 0 1 1

0 1 1 0



 . (5.6)

7As mentioned previously, when q = 2, we suppress the q subscript for notational clarity; we thus do this throughout §5.2.
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Other binary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 1’s).

As seen for n = 3 in Figure 5.3a, via Construction A, the [n,n−1,2] binary single parity-check code generates

the Dn lattice (see §2.3), which for n = 3 is FCC.

A single parity-check code (binary or otherwise), with d = 2, can detect but not correct an error in an

unknown position. However, it can correct an erasure; that is, the loss of data from a known position. A

common application of this capability is in a RAID 5 system, a popular configuration for a relatively small

Redundant Array of Independent Disks. In such a system, data is striped across n drives using a single parity

check code; if any single drive fails, it can be recovered simply by achieving parity with the other disks.

5.2.2 Binary repetition codes

The dual of the binary single parity-check codes are the simple [n,1,n] binary repetition codes, which include

[2,1,2] (SED, self-dual), [3,1,3] (SEC, perfect), [4,1,4] (SECDED), [5,1,5] (DEC), etc. This family of codes

just repeats any given data bit n times; when decoding, one simply needs to determine which of the two

codewords that the received code is nearest to. The [3,1,3] code illustrated in Figure 5.1b is given by

H[3,1,3] =

(
1 1 0

1 0 1

)
, V[3,1,3] =




1

1

1



 , W[3,1,3] =




0 1

0 1

0 1



 . (5.7)

Other binary repetition codes have a partity submatrix of similar form (a column of 1’s). As seen for n = 3 in

Figure 5.3b, via Construction A, the [n,1,n] binary repetition code generates the D∗
n lattice (see §2.3), which

for n = 3 is BCC. Via Construction B, on the other hand, the [8,1,8] binary repetition code generates the

E8 lattice (see §2.5). Note also that the [3,2,2] binary single parity-check code with each bit in V repeated

vertically m times leads to a [3m,2,2m] code, which may subsequently be rearranged into systematic form;

taking m = 4 and applying Construction B, the resulting [12,2,8] code, which is TECQED, generates the

Λmax
12 lattice (see §2.6).
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5.2.3 Binary Hamming codes

The [2m−1,2m−1−m,3] binary Hamming codes are perfect and SEC, and include [3,1,3], [7,4,3], [15,11,3],
[31,26,3], [63,57,3], [127,120,3], etc. For a given (2m − 1−m) data bits to be transmitted, each parity bit

is generated such that the sum (mod 2) of a particular subset of the data bits plus that parity bit is 0. Note

that, when decoding, the m parity bits may be used in a simple fashion to determine not only whether or not

a single bit error occured (which is true if one or more of these parity bits is nonzero), but if it did, which bit

contains the error, as discussed further in §5.5. To illustrate, the venerable [7,4,3] code, with four data bits

{d1,d2,d3,d4} and three parity bits {b1,b2,b3}, is given by

H[7,4,3] =




0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



 , V[7,4,3] =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1





, w =





d1

d2

d3

d4

b1

b2

b3





, (5.8a)

W[7,4,3] =





0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1




. (5.8b)

The parity-check matrix H of the [7,4,3] code has as columns all nonzero binary vectors of length (n−k) = 3;

when expressed in systematic form, the (n−k) columns of H corresponding to the identity matrix are shifted

to the end, and the remaining k columns of H, in arbitrary order, make up the partity submatrix P. Other

binary Hamming codes may be built up similarly. Via Construction A, the [7,4,3] binary Hamming code

generates the E∗
7 lattice (see §2.5).
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A Hamming code (binary or otherwise), with d = 3, can only correct a single error in an unknown position.

However, it can correct up to two erasures (cf. §5.2.1). A common application of this capability is in a RAID 6

system, a popular RAID configuration for large storage systems in data critical applications. In such a system,

data may be striped across n drives using a Hamming code; if any single drive fails, it can be recovered using

an appropriate parity check equation (that is, one of the parity check equations that takes that bit into account).

If (while rebuilding the information on that disk, which might take a while if the disk is large) a second drive

fails, then two useful equations may be derived from the (n− k) parity check equations: one that takes failed

disk A into account but not failed disk B, and one that takes failed disk B into account but not failed disk A.

By restoring parity in these two derived equations, the information on both drives may be rebuilt.

5.2.4 Binary simplex codes

The dual of the binary Hamming codes are the [2m − 1,m,2m−1] binary simplex codes [a.k.a. the binary

maximum-length-sequence (MLS) codes], which include [3,2,2] (SED), [7,3,4] (SECDED), [15,4,8] (TEC-

QED), etc. These codes are remarkable geometrically, as their codewords form a regular simplex. The [3,2,2]
code is illustrated in Figure 5.1a; the [7,3,4] code is given by

H[7,3,4] =





0 1 1 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1



 , V[7,3,4] =





1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

1 1 1





. (5.9)

Other binary simplex codes have a partity submatrix given similarly by the transpose of the corresponding

binary Hamming code. Via Construction A, the [7,3,4] binary simplex code generates the E7 lattice (see

§2.5). Via Construction B, the [15,4,8] binary simplex code generates the Λ15 lattice (see §2.6).
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5.2.5 Extended binary Hamming codes

The [2m,2m−1−m,4] extended binary Hamming codes are quasi-perfect and SECDED, and include [4,1,4],
[8,4,4] (self-dual), [16,11,4], etc. These codes are just binary Hamming codes (see §5.2.3) with an additional

overall parity bit (see §5.2.1), and thus, assuming no more than 2 bit errors have occured, may be decoded

similarly, as discussed further in §5.5. To illustrate, the venerable [8,4,4] code is given by

H[8,4,4] =





0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1



 , V[8,4,4] =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0





. (5.10)

Other extended binary Hamming codes have a partity submatrix that may similarly be constructed by adding

an overall parity bit to the corresponding binary Hamming code. Via Construction A, the [8,4,4] extended

binary Hamming code again generates the E8 lattice.

5.2.6 Binary biorthogonal codes

The dual of the extended binary Hamming codes are the [2m,m+1,2m−1] binary biorthogonal codes (a.k.a. Ha-

damard codes), and include [4,3,2] (SED), [8,4,4] (SECDED, self-dual), [16,5,8] (TECQED), [32,6,16], etc.

The [32,6,16] code was used on the Mariner 9 spacecraft. These codes are distinguished by the characteristic

that their codewords are mutually orthogonal [that is, wi ·w j = 0 (mod 2) for i 6= j]. Note that the [4,3,2] and

[8,4,4] codes have already been discussed above. The binary biorthogonal codes each have a partity subma-

trix that is simply the transpose of the parity submatrix of the corresponding extended binary Hamming code,

the construction of which is described in §5.2.5. Via Construction B, the [16,5,8] binary biorthogonal code
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generates the Λ16 lattice.

5.2.7 Binary quadratic residue codes

The [n,(n + 1)/2,d] binary quadratic residue codes are defined for all prime n for which there exists an

integer 1 < x < n such that x2 = 2 (mod n) [equivalently, for all prime n of the form n = 8m±1 where m is an

integer], and include [7,4,3] (SEC, perfect, as introduced in §5.2.3), [17,9,5] (DEC), [23,12,7] (TEC, perfect,

a.k.a. the binary Golay code), [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc. Adding an overall parity bit

to these codes, the [n+1,(n+1)/2,d +1] extended binary quadratic residue codes include [8,4,4] (SECDED,

quasi-perfect, self-dual, as introduced in §5.2.5), [18,9,6] (DECTED), [24,12,8] (TECQED, quasi-perfect,

self-dual, a.k.a. the extended binary Golay code), [32,16,8] (TECQED), [42,21,10], [48,24,12], etc. The

venerable [24,12,8] extended binary Golay code, used by the Voyager 1 & 2 spacecraft, is given by

H[24,12,8] =
[
P12×12 I12×12

]
, V[24,12,8] =

[
I12×12

P12×12

]
,

P12×12 =





0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1





.

(5.11)

Note that P is symmetric. The [23,12,7] binary Golay code may be obtained by puncturing the [24,12,8]
code listed above; that is, by eliminating any row of P (typically, the last).
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Via Construction B, the [24,12,8] extended binary Golay code generates the Leech half-lattice H24, which

may be joined with a translate of itself [that is, H24 + a where a1 = −3/2 and ak = 1/2 for k = 2, . . . ,24] to

construct the Λ24 lattice.

Note that many of the binary codes introduced above fall within a larger family of codes collectively

referred to as Reed-Muller codes, as illustrated in Figure 5.4.

5.2.8 Extending, puncturing, and shortening

The (perfect) binary Hamming and binary Golay codes may be extended to quasi-perfect codes by adding

an overall parity bit, thereby increasing n by 1 and, in the case of these specific codes, increasing d by 1. A

code obtained by essentially the reverse of this process, removing a parity bit and thus reducing both n and

d by 1, is sometimes said to be punctured. In contrast, a code obtained by removing ℓ ≥ 1 data bits, thus

reducing both n and k by ℓ, is said to be shortened. A typical and common application is in error-correcting

memory systems for computers, in which the data often comes naturally in blocks of 64 bits. Starting from

the [127,120,3] binary Hamming code, one may eliminate 56 data bits to create a shortened [71,64,3] SEC

code; alternatively, starting from the [128,120,4] extended binary Hamming code, one may eliminate 56 data

bits to create a shortened [72,64,4] SECDED code. Many ECC Memory and RAID 6 storage systems are

based on variants of such shortened binary Hamming codes, which are simple and fast to use. Note also that,

via Construction B, the [21,9,8] code obtained by shortening the [24,12,8] extended binary Golay code by 3

data bits generates directly the Λ21 lattice.

5.3 Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available, presenting each in systematic form (5.1), noting

that all have analogs in the binary setting.
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[1,1,1]

[2,1,2]

[2,2,1]

[4,1,4]

[4,3,2]

[4,4,1]

[8,1,8]

[8,4,4]

[8,7,2]

[8,8,1]

[16,1,16]

[16,5,8]

[16,11,4]

[16,15,2]

[16,16,1]

[32,1,32]

[32,6,16]

[32,16,8]

[32,26,4]

[32,31,2]

[32,32,1]

k = 1, d = 2m

repetition codes

k = m+1, d = 2m−1

biorthogonal codes

k = 2m−1, d = 2(m+1)/2

self-dual codes

k = 2m−1−m, d = 4
extended Hamming codes

k = 2m−1, d = 2
single parity-check codes

k = 2m, d = 1
universe codes

Figure 5.4: The family of [2m,k,d] Reed-Muller binary codes for m = 0 to 5.

5.3.1 Ternary single parity-check codes

The [n,n−1,2]3 ternary single parity-check codes are SED, and include [2,1,2]3 (self-dual), [3,2,2]3, [4,3,2]3,

etc. As illustrated for n = 3 in Figure 5.2a, the [3,2,2]3 code is given by
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H[3,2,2]3 =
(
1 1 1

)
, V[3,2,2]3 =




1 0

0 1

2 2



 , W[3,2,2]3 =




0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2

0 2 1 2 1 0 1 0 2



 . (5.12)

Other ternary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 2’s).

Via Construction Aθ
E

, the [3,2,2]3 ternary single parity-check code generates the E∗
6 lattice.

5.3.2 Ternary repetition codes

The dual of the ternary single parity-check codes are the [n,1,n]3 ternary repetition codes, which include

[2,1,2]3 (SED, self-dual), [3,1,3]3 (SEC), [4,1,4]3 (SECDED), etc. As illustrated for n = 3 in Figure 5.2b,

the [3,1,3]3 code is given by

H[3,1,3]3 =

(
2 1 0

2 0 1

)
, V[3,1,3]3 =




1

1

1



 , W[3,1,3]3 =




0 1 2

0 1 2

0 1 2



 . (5.13)

Other ternary repetition codes have a partity submatrix of similar form (a column of 1’s). Via Construction

Aθ
E

, the [3,1,3]3 ternary repetition code generates the E6 lattice. Via Construction Bθ
E

, on the other hand, the

[6,1,6]3 ternary repetition code generates the K12 lattice.

5.3.3 Ternary Hamming codes

The [(3m−1)/2,(3m−1)/2−m,3]3 ternary Hamming codes are perfect and SEC, and include [4,2,3]3 (self-

dual, a.k.a. the tetracode), [13,10,3]3, [40,36,3]3, etc. To illustrate, the venerable [4,2,3]3 tetracode is given

by

H[4,2,3]3 =

(
1 1 1 0

1 2 0 1

)
, V[4,2,3]3 =





1 0

0 1

2 2

2 1



 . (5.14)
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The parity-check matrix H of the [4,2,3]3 code has as columns those nonzero ternary vectors of length

(n− k) = 2 whose first nonzero entry is 1; when expressed in systematic form, the (n− k) columns of H

corresponding to the identity matrix are shifted to the end, and the remaining k columns of H, in arbitrary

order, make up the entries of −P. Other ternary Hamming codes may be built up similarly; for example, the

[13,10,3]3 code is given by

H[13,10,3]3 =

(
0 0 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 2 2 2

1 2 1 2 0 1 2 0 1 2
︸ ︷︷ ︸

,−P3×10

1 0 0

0 1 0

0 0 1

)

, V[13,10,3]3 =

[
I10×10

P3×10

]
. (5.15)

Via Construction Aθ
E

, the [4,2,3]3 tetracode again generates the E8 lattice.

5.3.4 Ternary simplex codes

The dual of the ternary Hamming codes are the [(3m −1)/2,m,3m−1]3 ternary simplex codes, which include

[4,2,3]3 (SEC, perfect, self-dual), [13,3,9]3 (QEC), [40,4,27]3, etc. These codes are remarkable geometri-

cally, as their codewords are all equidistant from one another. Ternary simplex codes have a partity submatrix

given by the negative transpose of the corresponding ternary Hamming code.

5.3.5 Ternary quadratic residue codes

The [n,(n+1)/2,d]3 ternary quadratic residue codes are defined for all prime n for which there exists an inte-

ger 1 < x < n such that x2 = 3 (mod n) [equivalently, for all prime n of the form n = 12m±1 where m is an inte-

ger], and include [11,6,5]3 (DEC, perfect, a.k.a. the ternary Golay code), [13,7,5]3 (DEC), [23,12,8]3 (TEC-

QED), [37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these codes, the [n+1,(n+1)/2,d+1]3
extended ternary quadratic residue codes include [12,6,6]3 (DECTED, quasi-perfect, self-dual, a.k.a. the

extended ternary Golay code), [14,7,6]3 (DECTED), [24,12,9]3 (QEC), [38,19,11]3, [48,24,15]3, etc. The
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venerable [12,6,6]3 extended ternary Golay code is given by

H[12,6,6]3 =
[
−P6×6 I6×6

]
, V[12,6,6]3 =

[
I6×6

P6×6

]
, P6×6 =





0 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0




. (5.16)

Note that P is symmetric. The [11,6,5]3 ternary Golay code may be obtained by puncturing the [12,6,6]3
code listed above.

Via Construction Bθ
E

, the [12,6,6]3 extended ternary Golay code generates an intermediate lattice which

may be joined with two translates of itself to generate the Λ24 lattice.

5.4 Exemplary linear quaternary codes (LQCs)

We now summarize some of the families of LQCs available, presenting each in systematic form (5.1).

5.4.1 Quaternary single parity-check codes

The [n,n− 1,2]4 quaternary single parity-check codes are SED, and include [2,1,2]4 (self-dual), [3,2,2]4,

[4,3,2]4, etc. The [3,2,2]4 code is given by

H[3,2,2]4 =
(
1 1 1

)
, V[3,2,2]4 =




1 0

0 1

1 1



 ,

W[3,2,2]4 =




0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄
0 0 0 0 1 1 1 1 ω ω ω ω ω̄ ω̄ ω̄ ω̄
0 1 ω ω̄ 1 0 ω̄ ω ω ω̄ 0 1 ω̄ ω 1 0



 .

(5.17)
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5.4.2 Quaternary repetition codes

The dual of the quaternary single parity-check codes are the [n,1,n]4 quaternary repetition codes, which

include [2,1,2]4 (SED, self-dual), [3,1,3]4 (SEC), [4,1,4]4 (SECDED), etc. The [3,1,3]4 code is given by

H[3,1,3]4 =

(
1 1 0

1 0 1

)
, V[3,1,3]4 =




1

1

1



 , W[3,1,3]4 =




0 1 ω ω̄
0 1 ω ω̄
0 1 ω ω̄



 . (5.18)

Other quaternary repetition codes have a partity submatrix of similar form.

5.4.3 Quaternary Hamming codes

The [(4m −1)/3,(4m−1)/3−m,3]4 quaternary Hamming codes are perfect and SEC, and include [5,3,3]4,

[21,18,3]4, [85,81,3]4, etc. To illustrate, the [5,3,3]4 code is given by

H[5,3,3]4 =

(
1 1 1 1 0

1 ω ω̄ 0 1

)
, V[5,3,3]4 =





1 0 0

0 1 0

0 0 1

1 1 1

1 ω ω̄




. (5.19)

The parity-check matrix H of the [5,3,3]4 code has as columns those nonzero quaternary vectors of length

(n− k) = 2 whose first nonzero entry is 1; when expressed in systematic form, the (n− k) columns of H

corresponding to the identity matrix are shifted to the end, and the remaining k columns of H, in arbitrary

order, make up the entries of P. Other quaternary Hamming codes may be built up similarly.

5.4.4 Quaternary simplex codes

The dual of the quaternary Hamming codes are the [(4m −1)/3,m,4m−1]4 quaternary simplex codes, which

include [5,2,4]4 (SECDED), [21,3,16]4, [85,4,64]4, etc. These codes are remarkable geometrically, as their

codewords are all equidistant from one another. Quaternary simplex codes have a partity submatrix given by

the conjugate transpose of the corresponding quaternary Hamming code.
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5.4.5 Quaternary quadratic residue codes

The [n,(n + 1)/2,d]4 quaternary quadratic residue codes are defined for all prime n of the form n = 8m±3

where m is an integer, and include [5,3,3]4 (SEC, perfect, see §5.4.3), [11,6,5]4 (DEC), [13,7,5]4 (DEC),

[19,10,7]4 (TEC), [29,15,11]4, [37,19,11]4, etc. The related [n + 1,(n + 1)/2,d + 1]4 extended quaternary

quadratic residue codes include [6,3,4]4 (SECDED, quasi-perfect, self-dual, a.k.a. the hexacode), [12,6,6]4
(DECTED), [14,7,6]4 (DECTED, self-dual), [20,10,8]4 (TECQED), [30,15,12]4 (self-dual), [38,19,12]4,

etc. The venerable [6,3,4]4 hexacode is given by

H[6,3,4]4 =




1 1 1 1 0 0

1 ω ω̄ 0 1 0

1 ω̄ ω 0 0 1



 , V[6,3,4]4 =





1 0 0

0 1 0

0 0 1

1 1 1

1 ω ω̄
1 ω̄ ω




. (5.20)

Note that P is symmetric. The [5,3,3]4 quaternary quadratic residue code may be obtained by puncturing the

[6,3,4]4 code listed above.

Via Construction A2
E

, the [6,3,4]4 hexacode generates the K12 lattice.

The [6,3,4]4 hexacode, with 43 = 64 codewords, is of particular importance due to the structured role

it plays in some convenient constructions of the [24,12,8] extended binary Golay code (see §5.2.7), with

212 = 4096 codewords w, and the corresponding Λ24 lattice. To construct the extended binary Golay code in

this manner (see §11 of Conway & Sloane 1998), we may first arrange binary vectors of length 24 into 4×6

arrays with binary entries. The sum of the bits (mod 2) in any row or column of this array gives its parity,

which is said to be even if the bits sum to 0 and odd if the bits sum to 1. We then define the projection of

any binary vector d ∈ F4
2 onto a symbol x ∈ F4 via the product x =

(
0 1 ω ω̄

)
d (on F4). The [24,12,8]

extended binary Golay code is then given by the set of all w ∈ F24
2 such that, in the corresponding 4×6 array,
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A000

B000

A110

B110

B100

A010

B010

A100

A111

B111

A001

B001

B011

A101

B101

A011

Figure 5.5: A labelling of 16 points of the D2 lattice (due to Ungerboeck 1982). The Ai jk points have coor-

dinates which are both even integers [e.g., A000 =
(

0 0
)
], and the Bi jk points have coordinates which are

both odd integers [e.g., B000 =
(

1 1
)
]. The complete D2 lattice is formed by repeating this 2D pattern as

an infinite array with unit spacing, as in Figure 5.3; note that each of the subsets of D2 corresponding to a

particular label is itself an appropriate shift of a 4D2 lattice (that is, the D2 lattice with the spacing quadrupled

between the points).

• the parity of all of the columns matches the parity of the top row, and

• the projection of the six columns of the array forms a codeword of the [6,3,4]4 hexacode.

An alternative construction of the Λ24 lattice, due to Vardy & Be’ery (1993) and which also leverages

cleverly the [6,3,4]4 hexacode, is based on the Ungerboeck (1982) partitioning of the D2 lattice (see §2.3)

into Ai jk and Bi jk subsets, as depicted in Figure 5.5. Binary vectors of length 24 are now constructed as

2×6 arrays whose entries are points of D2, labelled as shown. When considering a pair of such points [say,

c =
(
Ai1, j1,k1

Ai2, j2,k2

)T
],

• the pair is said to be even or odd based on the sum (mod 2) of the indices {i1, j1, i2, j2},

• the index i1 is known as the h-parity of the pair,

• the sum (mod 2) of k1 and k2 is known as the k-parity of the pair, and

• the projection of the pair is defined as above, based on the vector d =
(
i1 j1 i2 j2

)T
.
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The Leech lattice Λ24 is then given by the set of all u ∈ Z24 such that, in the corresponding 2×6 array,

• all array entries are either points in the Ai jk subsets of D2 (referred to as a type-A array), or points in the

Bi jk subsets of D2 (referred to as a type-B array),

• the overall k parity of the array [that is, the sum (mod 2) of the k-parity of the 6 pairs of points] is even if

the array is type A and odd if the array is type B,

• the pairs of points in the 6 columns of the array are either all even (referred to as an even array) or all odd

(referred to as an odd array),

• the overall h parity of the array [that is, the sum (mod 2) of the h-parity of the 6 pairs of points] is even if

the array even and odd if the array is odd, and

• the projection of the six columns of the array forms a codeword of the [6,3,4]4 hexacode.

The union of all points corresponding to Type A arrays in this construction forms the Leech half lattice H24

mentioned in §5.2.7, whereas the union of all points corresponding to Type B arrays forms its translate,

H24 +a. The H24 lattice can be further decomposed into all points corresponding to even arrays, which forms

the Leech quarter lattice Q24, and all points corresponding to odd arrays, which forms its translate, Q24 + b.

The Λ24 lattice is then given by the union of Q24, Q24 + b, Q24 + a, and Q24 + a + b; this construction is

exploited in §6.1.5 when presenting a remarkably efficient algorithm for quantization from R24 to Λ24.

5.5 Decoding

The use of an [n,k,d]q linear code (a.k.a. linear block code) in practice to communicate data over a noisy

channel is straightforward:

• arrange the original data into blocks of length k over an alphabet of q symbols;

• code each resulting data vector d ∈ Fk
q into a longer codeword w ∈ Fn

q via w = V[n,k,d]qd;

• transmit the corresponding codeword w ∈ Fn
q over the noisy channel;
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• receive the (possibly corrupted) message ŵ ∈ Fn
q on the other end;

• decode the received message ŵ leveraging H[n,k,d]q ; that is, find the most likely codeword w corresponding

to the received message ŵ, and the data vector d that generated it.

The decoding problem is quite rich; many creative schemes have been proposed over the years for de-

coding the various LCs that have been introduced thus far, as well as many others. This subject goes a bit

beyond the scope of the present review, but we would be remiss if we didn’t at least briefly introduce a few

exemplary decoding strategies.

For the purpose of fast decoding of an LC, it is useful to consider convenient alternatives to the systematic

form. If H and V are the parity-check and basis matrices of an [n,k,d]q LC in systematic form, with HV = 0

(on Fq), then an equivalent LC, possibly not in systematic form, is given by taking

H̃ = HQ and Ṽ = Q−1V. (5.21)

It follows immediately that, again, H̃Ṽ = 0 (on Fq). In the simplest such transformation, Q is a permutation

matrix, and thus Q−1 = QT ; this transformation corresponds to reordering the rows of V and the corresponding

columns of H (that is, reordering the data bits and parity bits in the corresponding LC). Other equivalent LCs

may be constructed in this manner by relaxing the constraint that Q be a permutation matrix, effectively

taking linear combinations (on Fq) of the rows of V and the corresponding columns of H. Note further that

reordering the columns of V and/or the rows of H leaves an LC unchanged.

5.5.1 Algebraic decoding

Certain LBCs may be decoded quickly by arranging the columns of the parity-check matrix in a convenient

order and examining the binary number given by the product of the parity-check matrix and the (possibly,

corrupted) received message. To illustrate, consider the [7,4,3] binary Hamming code introduced in §5.2.3.

Transforming as described above with
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Q =





0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0





results in a modified basis matrix Ṽ , and a modified parity-check matrix H̃ arranged such that the columns of

H̃ appear in binary order:

H̃[7,4,3] =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1



 , Ṽ[7,4,3] =





1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1





, w̃ =





b3

b2

d1

b1

d2

d3

d4





. (5.22)

Taking the matrix H̃[2m−1,2m−1−m,3] of a binary Hamming code arranged in such a fashion (in the above

example, m = 3) times (mod 2) any of the codewords w̃ (generated via w̃ = Ṽ[2m−1,2m−1−m,3]d where d ∈
F2m−1−m

2 ) gives the zero vector. On the other hand, taking the matrix H̃[2m−1,2m−1−m,3] times (mod 2) any

invalid vector ˆ̃w gives the nonzero syndrome vector s, of order m = n− k, which may be interpreted as a

nonzero m-bit binary number called the syndrome, denoted s, of the received message. Conveniently, as a

direct result of the structure of H̃ used in this construction, the number s identifies precisely which bit of

the received message vector ˆ̃w, arranged as shown above, must be flipped in order to determine the nearest

codeword, thereby performing single error correction (SEC).

Consider now the class of [2m,2m − 1 −m,4] extended binary Hamming codes introduced in §5.2.5.
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Define the syndrome s as in the corresponding binary Hamming code of length (2m −1) as discussed above,

neglecting the overall parity bit, and define p as the sum (mod 2) over all the bits, including the overall parity

bit. There are zero bit errors if s = p = 0, there two bit errors (which may be detected but not uniquely

corrected) if s 6= 0 and p = 0, and there is a single bit error if p = 1 (in which case, if s = 0, this error is in the

overall parity bit, and, if s 6= 0, this error is in one of the other bits and may be corrected based on s just as

in the corresponding binary Hamming code). This strategy thus performs single error correction and double

error detection (SECDED).

The extended binary Golay code introduced in §5.2.7 may be decoded via syndrome computation in a

similar fashion, though several more checks are involved, as the procedure performs triple error correction and

quadruple error detection (TECQED) on the received message ŵ. Recall the definitions of H, V , and P = PT

for the [24,12,8] extended binary Golay code in systematic form, as listed in (5.11). Note that V TV = 0, and

thus V T serves as an alternative parity-check matrix for this code. Defining wH(s) as the Hamming weight

(that is, the number of nonzero elements) of the vector s, and defining pi as the i’th column of P, ei as the i’th

Cartesian unit vector, and 0 as the zero vector, we may decode ŵ as follows:

set s = V T ŵ, if wH(s) ≤ 3 then set c =
[
s; 0

]
, flag= 0, return, end if (case A)

set r = Ps, if wH(r) ≤ 3 then set c =
[
0; r

]
, flag= 0, return, end if (case B)

for i = 1 : 12

if wH(s+ pi) ≤ 2 then set c =
[
s+ pi; ei

]
, flag = 0, return, end if (case C)

if wH(r + pi) ≤ 2 then set c =
[
ei; r + pi

]
, flag = 0, return, end if (case D)

end for

flag=1; return (4 total errors, can not be uniquely corrected)

Upon return, assuming the received vector ŵ has 4 or less bit errors, if flag = 0, then 3 or fewer errors are

detected and the corrected vector is w = ŵ+ c, whereas if flag = 1, then 4 errors are detected and ŵ can not
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be uniquely corrected. To verify this algorithm, noting that V T w = 0 for any codeword w, it is sufficient to

analyze the algorithm for w = 0 only. Block partitioning ŵ =
[
x; y

]
, consider the following 4 correctable

cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to the structure of P, parity bit errors (that is,

wH(y) 6= 0) result in wH(s) ≥ 6; if wH(s) is less than this, then y = 0 and s = V T ŵ = Ix = x.

Case B (0 data bit errors, up to 3 parity bit errors): Note that PV T = H, and thus r = Hŵ. By an analogous

argument as that used in Case A, due to the structure of P, data bit errors (that is, wH(x) 6= 0) result in

wH(r) ≥ 6; if wH(s) is less than this, then x = 0 and r = Hŵ = Iy = y.

Case C (1 parity bit error, up to 2 data bit errors): In this case, we individually check each of the (12)

possible cases corresponding to a single parity bit error, essentially repeating the analysis of Case A, mutatis

mutandis. That is, for each i, we consider the possibility that y = ei, and thus s = x + pi, and check to see if

wH(x) = wH(s+ pi) ≤ 2.

Case D (1 data bit error, up to 2 parity bit errors): In this case, we individually check each of the (12) possible

cases corresponding to a single data bit error, essentially repeating the analysis of Case B, mutatis mutandis

(cf. Case C).

5.5.2 Cyclic form

A cyclic code is an LC that may be transformed [via (5.21)] into a form in which all cyclic shifts of codewords

are themselves also codewords. The basis matrix V = Vn×k and parity-check matrix H = H(n−k)×n of any

[n,k]q cyclic code may be written in the standard form
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H[n,k]q =





hk hk−1 . . . h0 0

hk hk−1 . . . h0

. . .
. . .

. . .
. . .

0 hk hk−1 . . . h0




, V[n,k]q =





v0 0

v1 v0

... v1

. . .

vn−k

...
. . . v0

vn−k

. . . v1

. . .
...

0 vn−k





. (5.23)

A convenient construction which simplifies the analysis of an [n,k]q cyclic code, as defined above, is the

cyclic shift operator z. The use of this operator as discussed here is akin to its use in the Z-transform analysis

of discrete-time linear systems, with the major difference being that it is used here in a cyclic context on

Fq: that is, arithmetic with polynomials in z and coefficients in Fq is performed as usual, except that the

coefficients of each power of z are combined via the arithmetic rules on Fq (see the second paragraph of

§5.1), and higher powers of zk are simplified via the cyclic condition

zn = 1. (5.24)
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In the deployment of an [n,k]q cyclic code, the operator z appears in

the data polynomial d(z) = d0 + d1z + . . .+ dk−1zk−1

the basis polynomial v(z) = v0 + v1z + . . .+ vn−kzn−k,

the codeword polynomial w(z) = w0 + w1z+ . . .+ wn−1zn−1,

the received-message polynomial ŵ(z) = ŵ0 + ŵ1z+ . . .+ ŵn−1zn−1, and

the parity-check polynomial h(z) = h0 + h1z + . . .+ hkzk.

The basis polynomial v(z) and parity-check polynomial h(z) are constructed in mutually-orthogonal manner

that, taken together, enforces the cyclic condition (5.24):

v(z)h(z) = (zn −1), (5.25a)

which may also be written

[v(z)h(z)] mod (zn −1) = 0; (5.25b)

note that the mod command used in (5.25b) means that the polynomial [v(z)h(z)] is divided by the polynomial

(zn −1) and the remainder is equal to 0. One such factorization of (zn −1) on Fq, which exists for any n and

q, is

zn −1 = (z−1)(zn−1 + zn−2 + . . .+ z+ 1); (5.26)

this leads to the single parity check code [n,n− 1,2]q if one takes v(z) = (z− 1) and h(z) equal to the rest,

and to the repetition code [n,1,n]q if one takes h(z) = (z− 1) and v(z) equal to the rest. Other cyclic codes

over Fq for prime q may be built from the unique irreducible factors of the polynomial (zn − 1), grouping

these factors appropriately to form v(z) and h(z); a few such factorizations for various values of n are listed
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in Table 5.1 for q = 2 (in which −1 = 1) and Table 5.2 for q = 3 (in which −1 = 2); others are easily found

using Mathematica. Factoring (zn −1) over F4 is more delicate, as the factorizations do not reduce to unique

irreducible forms; one such factorization is listed in Table 5.3. Based on (5.25a) and such factorizations,

a large number of cyclic codes may be constructed. However, only a few such codes have both favorable

minimum distance d and an available simple error dectection/correction scheme; some such codes are listed

in Table 5.4.

Given a data vector d ∈ Fk
q, the use of an LC in cyclic form is again straightforward:

• form a data polynomial d(z) with the k elements of d as coefficients;

• code d(z) into a codeword polynomial w(z) leveraging the basis polynomial v(z) [using nonsystematic

coding, one simply takes w(z) = d(z)v(z)];

• transmit the corresponding codeword w ∈ Fn
q over the noisy channel;

• receive the (possibly corrupted) message ŵ ∈ Fn
q on the other end;

• decode the corresponding ŵ(z) leveraging the parity-check polynomial h(z).

Cyclic coding. For the purpose of fast decoding, we now present two methods with which the basis poly-

nomial v(z) may be leveraged to generate a codeword polynomial w(z) in systematic form [that is, rather

than taking w(z) = d(z)v(z)]. By convention, the systematic form in the cyclic case usually shifts the k data

symbols in d(z) to the end of the codeword, that is:

w(z) = b(z)+ zn−kd(z)

= b0 + b1z+ . . .+ bn−k−1zn−k−1 + d0zn−k + d1zn−k+1 + . . .+ dk−1zn−1.
(5.27)

If k/n < 0.5, a recursive approach may be used to determine the parity symbols in b(z). By (5.25b) and

the fact that each valid codeword polynomial w(z) is itself a linear combination of the basis polynomials v(z),
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it is seen that

u(z) mod (zn −1) = 0 where u(z) , h(z)w(z) = u0 + u1z+ u2z2 + . . .

Initializing the last k symbols of w(z) as shown in (5.27), the remaining symbols of w(z) may thus be deter-

mined from the resulting convolution formulae for un−1 through uk as follows:

un−1 = h0wn−1 + . . .+ hkwn−k−1 = 0 ⇒ wn−k−1 = −[h0wn−1 + . . .+ hk−1wn−k−2]/hk,

un−2 = h0wn−2 + . . .+ hkwn−k−2 = 0 ⇒ wn−k−2 = −[h0wn−2 + . . .+ hk−1wn−k−3]/hk,

...

uk = h0wk + . . .+ hkw0 = 0 ⇒ w0 = −[h0wk + . . .+ hk−1w1 ]/hk.

If k/n > 0.5, a polynomial division approach to determine the parity symbols is more efficient. This is

accomplished by writing the shift of the data symbols as some multiple of the basis polynomial v(z) plus a

remainder r(z):

zn−kd(z) = q(z)v(z)+ r(z) ⇒ [zn−kd(z)] mod v(z) = r(z),

where the mod command is interpreted as in (5.25b). Since the degree of v(z) is (n− k), the maximum

degree of r(z) is (n−k−1). Calculating r(z) as shown above, taking b(z) =−r(z), and rearranging the above

equations, it is seen that

w(z) = b(z)+ zn−kd(z) = q(z)v(z),

thus verifying that the polynomial w(z) so generated is in fact a valid codeword polynomial, as it is a multiple

of the basis polynomial v(z).
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Cyclic decoding. In single parity-check codes, single symbol errors are flagged if h(z)ŵ(z) 6= 0. In repetition

codes, the symbols of ŵ(z) may be corrected by simple majority vote.

Decoding of the binary Hamming and the extended binary Golay codes is introduced in §5.5.1. Such syn-

drome decoding methods extend easily to codes in cyclic form, in which the required syndrome computations

are especially streamlined, as now shown. Note that any valid codeword polynomial w(z) is a multiple of the

basis polynomial v(z); the syndrome polynomial s(z) of the received-message polynomial ŵ(z) is thus given

by the remainder:

s(z) = ŵ(z) mod v(z).

Since the degree of v(z) is (n− k), the maximum degree of s(z) is (n− k− 1), and thus the corresponding

syndrome vector s is of order m = (n− k), as expected [see discussion after (5.22)].

The polynomial multiplications and divisions involved in the cyclic coding and decoding algorithms de-

scribed above are easy to code and efficient to calculate in either an application-specific integrated circuit

(ASIC) or a field-programmable gate array (FPGA), in which repeated computations with shifted data may

be performed quickly. The reduced storage associated with the vector representation of the basis matrix and

the parity-check matrix in cyclic form help to facilitate such implementations.

5.5.3 Shannon’s theorem and turbo codes

The low-dimensional LBC, LTC, and LQC constructions given above are now supplanted by the more com-

plex turbo codes for high performance coding applications such as 10GBase-T ethernet and deep space com-

munication. Though these codes are generally much longer than the simple codes discussed above, they are

built on the same fundamental principles, and achieve a coding efficiency over a noisy channel that is very

close to the celebrated Shannon limit (Shannon 1949). For more information on such codes, the reader is

referred to Gallager (1963), Berrou et al. (1993), and Moon (2005). Note also that the study of ternary and
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quaternary codes is far more than a mathematical curiosity; new memory storage technology concepts le-

veraging, for example, DNA-based storage, with a four-character alphabet {A,T,G,C}, directly motivate the

further development of non-binary error-correcting coding strategies.

5.5.4 Soft-decision decoding

The type of decoding discussed in §5.5.1-5.5.3, in which the received vector ŵ is assumed to be in Fn
q, is

known as hard-decision decoding.

Another formulation of the decoding problem assumes again that w ∈ Fn
q, but that ŵ ∈ R

n. The decoding

problem in this case, called soft-decision decoding, is similar to that considered before (again, to find the most

likely codeword w corresponding to ŵ, and the original data vector d that generated it), but is now based on

finding the codeword w that minimizes the Euclidian distance to ŵ rather than that which minimizes the

Hamming distance.

For example, consider the soft-decision decoding of a binary parity check code. Assume that the trans-

mitted codeword w ∈ Fn
2 (that is, the symbols being transmitted are binary, and in this case rescaled to be ±1)

but that the received message ŵ ∈ Rn (that is, the symbols received are real). In this case, we may decode the

received message by initially taking w = sign(ŵ). If the resulting decoded vector fails the parity check, we

simply take the decision that we were least certain about (that is, the element of ŵ that is closest to zero) and

round it the other direction; this is known as Wagner’s decoding rule (Silverman & Balser 1954).

Many soft-decision decoding algorithms are essentially generalizations of Wagner’s decoding rule. Fur-

ther, most soft-decision decoding algorithms may be framed as straightforward restrictions of a corresponding

lattice quantization algorithm (see §6) to the appropriate subset of the lattice in question.
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z5 −1 = (z+1)(z4 + z3 + z2 + z+1)

z7 −1 = (z+1)(z3 + z+1)(z3 + z2 +1)

z15 −1 = (z+1)(z2 + z+1)(z4 + z+1)(z4 + z3 +1)(z4 + z3 + z2 + z+1)

z23 −1 = (z+1)(z11 + z9 + z7 + z6 + z5 + z+1)(z11 + z10 + z6 + z5 + z4 + z2 +1)

Table 5.1. Unique irreducible factors of (zn −1) over F2 for various values of n.

z4 −1 = (z+2)(z+1)(z2 +1)

z11 −1 = (z+2)(z5 +2z3 + z2 +2z+2)(z5 + z4 +2z3 + z2 +2)

z13 −1 = (z+2)(z3 +2z+2)(z3 + z2 +2)(z3 + z2 + z+2)(z3 +2z2 +2z+2)

Table 5.2. Unique irreducible factors of (zn −1) over F3 for various values of n.

z5 −1 = (z2 +ωz+1)(z3 +ωz2 +ωz+1)

Table 5.3. A useful (though nonunique) factorization of (z5 − 1) over F4; note that Table 5.1 provides an

alternative factorization of (z5 −1) over F2 which is also valid over F4.

code description v(z) h(z)

[n,n−1,2]2 §5.2.1 z+1 zn−1 + zn−2 + . . .+ z+1

[n,1,n]2 §5.2.2 zn−1 + zn−2 + . . .+ z+1 z+1

[7,4,3]2 §5.2.3 z3 + z+1 z4 + z2 + z+1

[15,11,3]2 §5.2.3 z4 + z+1 z11 + z8 + z7 + z5 + z3 + z2 + z+1

[31,26,3]2 §5.2.3 z5 + z2 +1 (z31 −1)/(z5 + z2 +1) over F2

[63,57,3]2 §5.2.3 z6 + z+1 (z63 −1)/(z6 + z+1) over F2

[127,120,3]2 §5.2.3 z7 + z3 +1 (z127 −1)/(z7 + z3 +1) over F2
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Chapter 6

Further connections between lattice

theory and coding theory
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6.1 Quantization onto lattices

We now introduce some methods for quantization from an arbitrary point x in Rn onto a point x̃ on a discrete

lattice, which may be defined via integer linear combination of the columns of the corresponding basis matrix

B. The solution to this problem is lattice specific, and is thus treated lattice by lattice in the subsections below.

Note that §6.1.1 through §6.1.4 are adapted from Conway & Sloane (1998), and §6.1.5 is adapted from Vardy

& Be’ery (1993). Note also that we neglect the problem of scaling of the lattices in this discussion, which is

trivial to implement in code.

6.1.1 Quantization to Zn

Quantize to Zn simply by rounding each element of x to the nearest integer.

6.1.2 Quantization to Dn

Quantize to Dn by rounding x two different ways:

• Round each element of x to the nearest integer, and call the result x̂.

• Round each element of x to the nearest integer except that element of x which is furthest from an integer,

and round that element the wrong way (that is, round it down instead of up, or up instead of down); call
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the result ˆ̂x.

Compute the sum s of the individual elements of x̂; the desired quantiziation is x̃ = x̂ if is s is even, and x̃ = ˆ̂x

if s is odd.

6.1.3 Quantization to An

The An lattice is defined in an n-dimensional subspace C of Y = Rn+1. The subspace C is spanned by the n

columns of the corresponding basis matrix BAn , and the orthogonal complement of C is spanned by the vector

nAn . Thus, the nearest point in the subspace, yC ∈ C, to any given point y ∈ Y is given by

yC = y− (y,nAn) ·nAn .

An orthogonal basis B̂An of C may easily be determined from BAn via Gram Schmidt orthogonalization. With

this orthogonal basis, the vectors x∈Rn comprising the An lattice may be related to the corresponding vectors

yC ∈ C ⊂ Y (that is, on an n-dimensional subspace of R
n+1) via the equation

yC = B̂Anx. (6.1a)

Thus, starting from some point x ∈ Rn but not yet quantized onto the lattice, we can easily determine the

corresponding (n + 1)-dimensional vector yC which lies within the n-dimensional subspace C of R
n+1 via

(6.1a). Given this value of yC ∈ C, we now need to quantize onto the lattice. We may accomplish this with

the following simple steps:

• Round each component of yC to the nearest integer, and call the result ŷ. Define the deficiency ∆ = ∑i ŷi,

which quantifies the orthogonal distance of the point ŷ from the subspace C.

• If ∆ = 0, then ỹ = ŷ. If not, define d = yC− ŷ, and distribute the integers 0, . . . ,n among the indices i0, . . . , in
such that

−1/2 ≤ d(ŷi0) ≤ d(ŷi1) ≤ . . . ≤ d(ŷin) ≤ 1/2.
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If ∆ > 0, then nudge ŷ back onto the C subspace by defining ỹik =

{
ŷik −1 k < ∆,

ŷik otherwise.

If ∆ < 0, then nudge ŷ back onto the C subspace by defining ỹik =

{
ŷik + 1 k > n + ∆,

ŷik otherwise.

Back in n-dimensional parameter space, the quantized value ỹ ∈ C corresponds to

x̃ = B̂T
An

ỹ. (6.1b)

6.1.4 Quantization to the union of cosets

The dual lattices D∗
n and A∗

n, the triangular lattice A2, and the packing D+
n (including the lattice E8

∼= E∗
8
∼= D+

8 )

are described via the union of simple, real cosets in (2.4a), (2.7a), (2.6c), and (2.5), respectively. The lattices

E7 and E∗
7 may be built via the union of simple, real cosets via Construction A [see (5.4a)], with coset

representatives wi
[n,k,d] defined in (5.8) and (5.9) respectively. To quantize a lattice described in such a manner

(as a union of simple cosets), one may quantize to each coset independently, then select from these individual

quantizations that lattice point which is nearest to the original point x.

The lattices E6 and E∗
6 may be built via the union of complex cosets [which are scaled and shifted complex

E lattices Z[ω]3] via Construction Aπ
E

[see (5.5a)], with coset representatives wi
[n,k,d] given in (5.13) and (5.12)

respectively. Following Conway & Sloane (1984), to discretize a point x to coset i in these cases:

• Determine the complex vector z ∈ C
3 corresponding to x ∈ R

6. Shift and scale such that ẑ = (z−ai)/θ.

• Determine the real vector x̂ ∈ R6 corresponding to ẑ ∈ C3. Quantize the first, second, and third pairs of

elements of x̂ to the real triangular A2 lattice to create the quantized vector ˆ̃x.

• Determine the complex vector ˆ̃z ∈ C3 corresponding to ˆ̃x ∈ R6. Unscale and unshift such that z̃ = θ ˆ̃z + ai.

• Determine the real vector x̃ ∈ R6 corresponding to z̃ ∈ C3.
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6.1.5 Quantization to Λ24

We now jump to the Leech lattice in dimension n = 24. Recall from §2.6 that the best lattices in dimensions

n = 9 to n = 23 may all be determined as lower-dimensional cross-sections of Λ24; once the (difficult) n = 24

case is mastered, quantization to these intermediate dimensions is relatively straightforward.

Efficient quantization to Λ24 is a problem that received intense scrutiny in the 1980s and early 1990s.

The best algorithm described in the literature, due to Vardy & Be’ery (1993), is based on the construction

of Λ24 described in the last paragraph of §5.4.5, and essentially represents a culmination of the previous

efforts that led to it. This remarkable algorithm requires only about 3000 to 3600 floating-point operations

and comparisons, and a comparable number of integer operations and comparisons, to compute the point of

the Λ24 lattice that is closest to any given point r ∈ R24. The algorithm leverages effectively many of the

fundamental symmetries inherent in Λ24, including its close relationships with both carefully-chosen subsets

of the D2 lattice (Figure 5.5) as well as the [6,3,4]4 hexacode (§5.4.5).

Though it was proposed in 1993, the logic inherent to this algorithm is so intricate that, as of the writing

of this review, an executable version of it did not appear to be readily available in the literature. We have thus

written an efficient1 Fortran90 implementation of this algorithm, which is available online at:

http://renaissance.ucsd.edu/software/DecodeLeech.tgz

This implementation is thoroughly commented, and is written in a notation consistent with that of Vardy &

Be’ery (1993). Thus, in addition to being a useful code for new practical applications of the Leech lattice in

science and engineering, it is hoped that this executable code can itself be a helpful guide in the understanding

of this complex algorithm.

1Our implementation of this algorithm executes in about 0.3 milliseconds on a 2008 vintage laptop (2.53GHz Intel Core 2 Duo),

which is sufficiently fast for many applications. It is also trivial to parallelize this code efficiently over four separate computational

threads, as quantization to each Leech quarter lattice is handled independently.

http://renaissance.ucsd.edu/software/DecodeLeech.tgz
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In short, using the notation introduced at the end of §5.4.5, this algorithm first splits the problem of

quantizating a point r ∈ R
24 to the nearest Λ24 point into two subproblems:

• quantizing to H24; that is, when forming the original vector r ∈ R24 into a 2× 6 array of points rhn ∈ R2

for h = 0,1 and n = 0, . . . ,5, quantizing each rhn to the best Ai jk points in the Ungerboeck partitioning of

D2 such that the overall k parity of the array is even, while the projection of the 2×6 array of points forms

a codeword of the [6,3,4]4 hexacode; and

• quantizing to H24 + a; that is, quantizing to the best Bi jk points in the Ungerboeck partitioning of D2 such

that the overall k parity of the array is odd, while, again, the projection of the 2×6 array of points forms a

codeword of the [6,3,4]4 hexacode.

The best of the two lattice points selected by these subproblems is then returned.

During the execution of each of these two subproblems, the closest point to rhn in each Ai jk family (in

the even overall k parity case) or in each Bi jk family (in the odd overall k parity case) is first identified, and

the squared Euclidian distance (SED) to each of these points is calculated. For each i and j, the “preferred”

value of k (that is, the one that leads to the least SED for that point) is determined, and the SED penalty δ
for chosing the other value of k is computed. The algorithm then further splits the quantization to H24 (and,

similarly to H24 + a) into two smaller sub-subproblems:

• quantizing to Q24; that is, to arrays with the specified overall k parity such that, additionally, the overall h

parity is even; and

• quantizing to Q24 +b; that is, to arrays with the specified overall k parity such that, additionally, the overall

h parity is odd.

The best of the two lattice points selected by these sub-subproblems is then returned.

The quantization to Q24 and its 3 translates is, in turn, decomposed into 5 distinct steps:

1. Only two sets of indices {i0, j0, i1, j1} project to each symbol p∈ F4; in this step, for each symbol p and for
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each column n of the 2×6 array, we identify the “preferred representation” as that set which, when taken

together with their corresponding preferred values of k0 and k1, minimize the SED of the column, and the

other set, referred to as the “non-preferred representation”; we also calculate the SED penalty associated

with chosing the non-preferred representation. Conveniently, it turns out that the preferred representation

and the non-preferred representation necessarily have opposite h parity.

2. The three lists of penalties associated with changing the column-wise k parities (case 0), the column-wise

h parities (case 1), or both (case 2) are then sorted (our implementation uses mergesorts, due to their cache

efficiency; heapsorts or quicksorts are viable alternatives).

3. The SED for each preferred “block” (that is, each pair of columns) is then computed.

4. For each of the 64 codewords of the hexacode [see (5.20)], we then find the smallest possible correction(s)

to the set of preferred representations such that the total k parity and the total h parity match the specified

values required for the particular translate of Q24 being considered (of 4 possible cases). This step leverages

the sorted lists computed in step 2.

5. For each of 16 sets of symbols [given by w0 ∈ F4 and w1 ∈ F4], calculate the total SED of corrected

representations, determined in step 4, corresponding to the 4 valid codewords of the hexacode [given by

w2 ∈ F4 and {w3,w4,w5} selected according to V[6,3,4]4 defined in (5.20)]. We then find the minimum total

SED amongst these 16 corrected representations, and return the corresponding lattice point.

6.2 Enumerating nearest-neighbor lattice points

In the practical use of lattices in engineering applications, one occasionally needs to generate a list of all

lattice points that are nearest neighbors to a given lattice point. It is sufficient to generate a list of all lattice

points that are nearest neighbors of the origin, then to shift these points as necessary to the vicinity of any

other lattice point. The present section describes two methods to generate such lists of nearest neighbors on a
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lattice.

6.2.1 Cases with n ≤ 8

Noting first (see §2.1) that a basis matrix B of an n-dimensional lattice might itself have more than n rows,

the following algorithm is found to be effective for all lattices up to about n = 8:

0. Initialize p = 1.

1. Define a distribution of points z̃i such that each element of each of these vectors is selected from the set of

integers {−p, . . . ,0, . . . , p}, and that all possible vectors that can be created in such a fashion, except the

origin, are present (without duplication) in this distribution.

2. Compute the distance of each transformed point ỹi = Bz̃i in this distribution from the origin, and eliminate

those points in the distribution that are farther from the origin than the minimum distance computed in the

set.

3. Count the number of points remaining in the distribution. If this number equals the (known) kissing number

of the lattice under consideration, as listed in Tables 3.1-3.2, then determine an orthogonal B̂ from B via

Gram Schmidt orthogonalization, set x̃i = B̂T ỹi for all i, and exit; otherwise, increment p and repeat from

step 1.

Though this simple algorithm is not at all efficient, for n ≤ 8 it really need not be, as the nearest neighbor

distribution is identical around every lattice point, and thus this algorithm need only be run once for any given

lattice.

6.2.2 Cases with n > 8

For n > 8, the algorithm described above is prohibitively expensive. We thus focus here on an efficient manner

of obtaining the 196,560 nearest neighbors to the origin of the Leech lattice Λ24, then on the restriction of

this set of neighbors, one dimension at a time, down to n = 9.
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To proceed, it is first necessary to enumerate the codewords of the binary Golay code following the

approach described in §5.2.7. Recall that the basis matrix of the binary Golay code has dimension 24× 12;

thus, the 212 = 4096 codewords of the binary Golay code follow immediately as a binary linear combination

(that is, as a linear combination, mod 2, with binary coefficients) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors of the Leech lattice, we may proceed (following

Conway & Sloane 1998) by constructing three distinct sets of points:

• The first set, consisting of 98,304 points, is obtained using the binary Golay codewords discussed above.

Construct first a 24×24 matrix A with −3 everywhere along the main diagonal and 1 everywhere else. Then,

take each codeword of the binary Golay code, one at a time, replace each 0 with −1, and perform elementwise

multiplication of this modified codeword to each column of A, thereby generating 24 points for each of the

212 binary Golay codewords, or 212 ·24 = 98,304 points.

• The next set, consisting of 1,104 points, is composed of vectors with 22 zero elements and two elements

that are either 4 or −4. As there are 276 ways to select the locations of the nonzero elements, and 22 = 4 valid

ways to populate them, we obtain 22 ·276 = 1,104 points.

• The third set, consisting of 97,152 points, is obtained using the 759 vectors of the Witt design, which are

just the 759 binary Golay codewords (discussed above) of weight 8. Note that each of these vectors has 8

ones and 16 zeros. Construct an 8×128 matrix C such that each element of each column is either a 2 or −2,

with an even number of minus signs in each column (note that there are 27 = 128 such columns possible).

We then distribute the elements in each of the 128 columns of C into each of 8 positions where the ones sit in

each of the 759 vectors of the Witt design, thereby obtaining the remaining 128 ·759 = 97,152 points.

The 98,304 + 1,104 + 97,152 = 196,560 points so generated are the nearest neighbors to the origin of

Λ24. Then, throwing out those points z for which z ·nΛ23
6= 0 (see §2.6) leaves the 93,150 neighbors of Λ23;

additionally throwing out those points z for which z ·nΛ22
6= 0 leaves the 49,896 neighbors of Λ22; etc.
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7.1 Introduction to derivative-free optimization

The minimization of computationally expensive, high-dimensional functions is often most efficiently per-

formed via gradient-based optimization algorithms such as nonlinear conjugate gradients and L-BFGS-B.

In complex systems for which an accurate computer model is available, the gradient required by such algo-

rithms may often be found via adjoint analysis. However, when the function in question is not sufficiently

smooth to leverage gradient information effectively during its optimization (see, e.g., Figure 7.1), a derivative-

free approach is necessary. Such a scenario is evident, for example, when optimizing a finite-time-average

approximation of an infinite-time-average statistic of a chaotic system such as a turbulent flow. Such an ap-

proximation may be determined via simulation or experiment. The truncation of the averaging window used

to determine this approximation renders derivative-based optimization strategies ill suited, as the truncation

error, though small, is effectively decorrelated from one flow simulation/experiment to the next. This effective

decorrelation of the truncation error is reflected by the exponential growth, over the entire finite time horizon

considered, of the adjoint field related to the optimization problem of interest in the simulation-based setting.

As a result, derivative-free algorithms are often required for the optimization of nonsmooth scalar func-

tions in n dimensions. The core idea of all efficient algorithms for problems of this type is to keep function
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Figure 7.1: Prototypical nonsmooth optimization problem for which local gradient information is ill suited to

accelerate the optimization algorithm.

evaluations far apart until convergence is approached. Generalized pattern search (GPS) algorithms, a mo-

dern class of methods particularly well suited to such problems, accomplish this by coordinating the search

with an underlying grid which is refined, and coarsened, as appropriate.

One of the most efficient subclasses of GPS algorithms, known as the surrogate management framework

(SMF; see Booker et al. 1999), alternates between an exploratory search over an interpolating function which

summarizes the trends exhibited by existing function evaluations, and an exhaustive poll which checks the

function on neighboring points to confirm or confute the local optimality of any given candidate minimum

point (CMP) on the underlying grid. The original SMF algorithm implemented a GPS step on an underly-

ing Cartesian grid, augmented with a Kriging-based surrogate search. Rather than using the n-dimensional

Cartesian grid (the typical choice), Part II of this text suggests the use of lattices derived from n-dimensional
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sphere packings. As reviewed in Part I, such lattices are significantly more uniform and have many more

nearest neighbors than their Cartesian counterparts. Both of these facts make them far better suited for coor-

dinating GPS algorithms1, as demonstrated in a variety of numerical tests presented later in Part II.

7.1.1 The inherent role of uniform simplexes in derivative-free optimization

One of the earliest derivative-free optimization approaches to appear in the literature is the downhill simplex

method (see Spendley, Hext, & Himsworth 1962 and Nelder & Mead 1965). The downhill simplex method

is inherently based on an iterative, amoeba-like evolution (moving one point at a time) of a set of n + 1

points in n dimensions towards the minimum of a (possibly, nonsmooth) function. A large body of literature

appeared after the original introduction of this method, much of which was aimed at heuristic strategies

designed to keep the evolving simplex as regular as possible as the iteration proceeds, while expanding

or contracting as appropriate. The grid-based methods considered in the present work are fundamentally

different, so we will not dwell on such grid-free methods in this introduction. However, it is worth noting the

inherent dependence on the regularity an evolving simplex (that is, on an n-dimensional polytope with n + 1

vertices) in this classical method, and an analogous focus in the present work on the identification (see §7.3)

and characterization (see §7.2 and 7.5) of a maximally-uniform simplex (referred to in the present work as

a minimum positive basis) around the best point encountered thus far as the iteration proceeds, referred to in

the present work as a candidate minimum point. The role of the simplex in both cases is essentially identical:

to identify the best direction to move next using a minimum number of new function evaluations.

1In fact, as mentioned previously, Conway & Sloane (1998, p. 12) state: “A related application that has not yet received much attention

is the use of these packings for solving n-dimensional search or approximation problems”; this is exactly the focus of Part II.
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7.1.2 Global convergence via a dumb method: exhaustive sampling (ES)

Due to the often significant expense associated with performing repeated function evaluations (for example, as

discussed above, turbulent flow simulations or experiments), a derivative-free optimization algorithm which

converges to within an accurate tolerance of the global minimum of a nonconvex function of interest with a

minimum number of function evaluations is desired. It is noted that, in the general case, proof of convergence

of an optimization algorithm to a global minimum is possible only when, in the limit of a large number

of function evaluations N, the function evaluations become dense in the feasible region of parameter space

(Torn & Zilinskas, 1987). Though the algorithms developed in the present work, when implemented properly,

satisfy this condition, so do far inferior approaches, such as a rather unintelligent algorithm which we call

exhaustive sampling (ES), which simply covers the feasible parameter space with a grid, evaluates the function

at every gridpoint, refines the grid by a factor of two, and repeats until terminated. Thus, a guarantee of global

convergence is not sufficient to establish the efficiency of an optimization algorithm. If function evaluations

are relatively expensive, and thus only a relatively small number of function evaluations can ultimately be

afforded, effective heuristics for rapid convergence are perhaps even more important than rigorous proofs of

the behavior of the optimization algorithm in the limit of large N, a limit that might actually be argued to

be of limited relevance when function evaluations are expensive. Given that such algorithms are often used

in applications in which only a few hundred function evaluations can be afforded, careful attention to such

heuristics forms an important foundation for the present study.

7.1.3 Successive polling (SP) and generalized pattern search (GPS) algorithms

If, for the moment, we give up on the goal of global convergence, the perhaps simplest grid-based derivative-

free optimization algorithm, which we call successive polling (SP), proceeds as follows:

• Start with a coarse grid and evaluate the function at some starting point on this grid, identified as the first

candidate minimum point (CMP).
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• Then, poll (that is, evaluate) the function values on gridpoints which neighbor the CMP in parameter space,

at a sufficient number of gridpoints to positively span2 the feasible neighborhood of the CMP [this step

ensures convergence, as discussed further in Torczon 1997, Booker et al. 1999, and Coope & Price 2001].

When polling:

(a) If any poll point is found to have a function value less than that of the CMP, immediately consider this

new point the new CMP and terminate the present poll step.

(b) If no poll points are found to have function values less than that of the CMP, refine the grid by a factor

of two.

• Initiate a new poll step, either (a) around the new CMP or (b) around the old CMP on the refined grid, and

repeat until terminated.

Though the basic SP algorithm described above, on its own, is not very efficient, there are a variety of

effective techniques for accelerating it. All grid-based schemes which effectively build on this basic SP idea

are classified as generalized pattern search (GPS) algorithms.

7.1.4 The surrogate management framework (SMF)

The most efficient subclass of GPS algorithms, known as the Surrogate Management Framework (SMF; see

Booker et al., 1999), leverages inexpensive interpolating “surrogate” functions (often, Kriging interpolations

are used) to summarize the trends of the existing function evaluations, and to provide suggested new regions

of parameter space in which to perform one or more additional function evaluation(s) between each poll step.

SMF algorithms thus alternate beween two steps:

2That is, such that any feasible point in the neighborhood of the CMP can be reached via a linear combination with non-negative

coefficients of the vectors from the CMP to the poll points.
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(i) Search over the inexpensive interpolating function to identify, based on the existing function evaluations,

the most promising gridpoint at which to perform a new function evaluation. Perform a function evaluation

at this point, update the interpolating function, and repeat. The search step may be terminated either when it

returns a gridpoint at which the function has already been evaluated, or when the function, once evaluated,

has a value greater than that of the CMP.

(ii) Poll the neighborhood of the new CMP identified by the search algorithm, following rules (a) and (b)

above.

There is substantial flexibility during the search step described above. An effective search is essential for

an efficient SMF algorithm. In the case that the search behaves poorly and fails to return improved function

values, the SMF algorithm essentially reduces to the SP algorithm. If, however, the surrogate-based search is

effective, the SMF algorithm will converge to a minimum far faster than a simple SP-based minimization. As

the search and poll steps are essentially independent of each other, we will discuss them each in turn in the

chapters that follow, then discuss how they may be combined.

Note that if the search produces a new CMP which is several gridpoints away from the previous function

evaluations, which occasionally happens when exploring functions with multiple minima, the grid may be

coarsened appropriately in order to explore the vicinity of this new CMP efficiently (that is, with a coarse

grid first, then refined as necessary). Note also that the interpolating surrogate function of the SMF may be

used to order the function evaluations of the poll step, such that those poll points which are most likely to

have a function value lower than that of the CMP are evaluated first. By so doing, the poll steps will, on

average, terminate sooner, and the computational cost of the overall algorithm may be reduced further.

To the best of our knowledge, all previous GPS and SMF implementations have been coordinated using

Cartesian grids. However, like in the game of checkers (contrast “American” checkers with “Chinese” checkers),

Cartesian grids are not the only choice for discretizing parameter space. Other structured choices arising from
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n-dimensional sphere packing theory (see Tables 7.1 and 7.2, and further characterizations in §3) are signifi-

cantly more uniform and have many more nearest neighbors, especially as the dimension of the problem in

question is increased; both of these properties suit these alternative lattices well for coordinating grid-based

optimization algorithms.

Part I of this study consisely summarizes n-dimensional sphere packing theory, describing almost every-

thing one needs to know about lattices up to dimension n = 24 in order to use them effectively in practical

engineering applications. To extend the lattice theory described in Part I of this text in order to coordina-

te a derivative-free optimization, a few additional component algorithms are needed, which are described

in the remainder of §7. For simplicity, Part II focuses on the use of just two such lattices, the zero-sum

lattice An, which is an n-dimensional analog of the 2-dimensional hexagonal lattice and the 3-dimensional

face-centered-cubic lattice, and the Gosset lattice E8, which is an 8-dimensional analog of the 3-dimensional

diamond packing, and is especially uniform; both of these lattices are described completely in §2. The utility

of other lattices in this setting will be explored in future work.

7.1.5 Framing the search for a uniform simplex as a discrete Thomson problem

Thomson (1904), in his study of the structure of the atom, is credited with being the first to address the

problem3: “Where should k inimical dictators settle on a planet in order to be as far away from each other

as possible?” This question extends naturally to n-dimensional planets, and has received significant attention

in the years since Thomson’s original paper. The question is readily answered numerically by assigning an

identical “charge” to each of n identical “particles”, restricting particle motion to the surface of the sphere,

and iteratively moving each particle (with some damping applied) in the direction of the force caused by

the other particles (projected onto the sphere) until all particles come to equilibrium. The precise solution

3This curious problem, articulated by Meschkowski (1960) in terms of inimical dictators (see also L. Fejes Toth 1971), assumes that

all locations on the planet’s surface are equally desirable, and that the inimical dictators all cooperate.
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reached is a function of the distance metric and power law used when computing the force between any two

particles; in the electrostatic setting, Thomson used the Euclidian distance between the particles, and a force

which is proportional to the inverse square of this distance. The setting based on other distance measures

(e.g., measured along the surface of the sphere instead of along a straight line) and other power laws are

referred to as generalized Thomson problems; in particular, the case based on the p’th power in the limit that

p → ∞ (that is, the max value) was studied in Tammes (1930), in his study of the boundaries of pollen grains.

In this chapter, we generalize this classical question in two ways, and introduce a new metric to characte-

rize the solution found:

• First, the locations where the particles are allowed to settle are restricted to a discrete set of points on a

sphere, which are specified as the nearest-neighbor lattice points to the CMP.

• Next, we allow some the particles’ locations on the sphere to be specified (that is, fixed) in advance, and

only move the remaining (free) particles to arrive at the best solution possible.

• Finally, the new metric we introduce is a check of whether or not the distribution produced by numerical

solution of the resulting “discrete Thomson problem” forms a positive basis of the feasible neighborhood

of the CMP; that is, in the case with no active constraints (cf. §7.4), whether or not all points on the

unit sphere around the CMP can be reached via a linear combination with non-negative coefficients of the

vectors from the CMP to the optimized particle locations.

After developing a method to test for a positive basis, the remainder of this section develops three efficient

algorithms to iterate on this “discrete Thomson problem” until a positive basis is found. To accomplish this,

these algorithms first solve the discrete Thomson problem numerically for n+m particles where m = 1. If the

optimization algorithm succeeds in producing a positive basis, the algorithm exits; otherwise, m is increased

by one and the process repeated until a positive basis is determined. The resulting algoroithm is leveraged

heavily during the poll step of the lattice-based SMF algorithms developed later in Part II.
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7.2 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, we will at times need an efficient test to determine

whether or not the vectors to these points from the CMP form a positive basis of the feasible domain around

the CMP. Without loss of generality, we will shift this problem so that the CMP corresponds to the origin in

the discussion that follows.

A set of vectors {x̃1, . . . , x̃k} for k ≥ n + 1 is said to positively span Rn if any point in Rn may be re-

ached via a linear combination of these vectors with non-negative coefficients. Since the 2n basis vectors

{e1, . . . ,en,−e1, . . . ,−en} positively span Rn, a convenient test for whether or not the vectors {x̃1, . . . , x̃k}
positively span Rn is to determine whether or not each vector in the set E = {e1, . . . ,en,−e1, . . . ,−en} can be

reached by a positive linear combination of the vectors {x̃1, . . . , x̃k}. That is, for each vector e ∈ E, a solution

z, with zi ≥ 0 for i = 1, . . . ,k, to the equation X̃z = e is sought, where X̃ =
(
x̃1 . . . x̃k

)
. If such a z exists

for each vector e ∈ E, then the vectors {x̃1, . . . , x̃k} positively span Rn; if such a z does not exist, then the

vectors {x̃1, . . . , x̃k} do not positively span Rn.

Thus, testing a set of vectors to determine whether or not it positively spans R
n reduces simply to testing

for the existence of a solution to 2n well-defined linear programs in standard form. Techniques to perform

such tests, such as Matlab’s linprog algorithm, are well developed and readily available. Further, if a set

of k vectors positiviely spans Rn, it is a simple matter to check whether or not this set of vectors is also a

positive basis of Rn, if such a check is necessary, simply by checking whether or not any subset of k − 1

vectors chosen from this set also positively span Rn. Note that a positive basis with k vectors will necessarily

have k in the range n + 1 ≤ k ≤ 2n; the case with k = n + 1 is referred to as a minimal positive basis, and the

case with k = 2n is referred to as a maximal positive basis.
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7.3 Selecting a positive basis from nearest-neighbor lattice points

In §6 of Part I, we described how to enumerate all points which are nearest neighbors of the origin of a lattice

(and thus, with the appropriate shift, all points which are nearest neighbors of any CMP on the lattice). In

§7.2 above, we described how to test a subset of such points to see if the vectors from the origin to these

points form a positive basis around the CMP. We now present a general algorithm to solve the problem of

selecting a positive basis from the nearest-neighbors of the CMP using a minimal number of new poll points,

while creating the maximum achievable angular uniformity between the vectors from the CMP to each of

these points (that is, while minimizing the skewness of the resulting poll set). Note in Figure 7.2 that, as

the number of nearest neighbors increases, the flexibility in solving this (apparently, NP-hard) problem also

increases, though a perfectly distributed minimal positive basis (using n + 1 points) is not always available.

Ideally, for m = 1, the solution to the discrete Thomson problem will produce a positive basis with good

angular uniformity; if it does not, we may successively increment m by one and try again until we succeed in

producing a positive basis. We have studied three algorithms for solving this problem:

Algorithm A. If the kissing number τ of the lattice under consideration is relatively large (that is, if τ ≫ n;

for example, for the Leech lattice Λ24), then a straightforward algorithm can first be used to solve Thomson’s

problem on a continuous sphere in n dimensions. This can be done simply and quickly by fixing q ≥ 0

repulsive particles at the prespecified lattice points, and initializing n + m− q free repulsive particles on the

sphere randomly. Then, at each iteration, a straightforward force-based algorithm may be used to move each

free particle along the surface of the sphere a small amount in the direction that the other particles are tending

to push it, and iterating until the set of particles approaches an equilibrium. The free particle that is nearest

to a nearest-neighbor lattice point around the CMP is then moved to said lattice point and fixed there, and

the remaining free particles adjusted until they reach a new equilibrium. This adjust/fix/adjust/fix sequence is

repeated until all particles are fixed at lattice points.
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Figure 7.2: Various minimal positive bases (shown in red) around the origin (shown in blue) in the (left)

triangular, (center) BCC, and (right) FCC lattices. Note that the triangular and BCC lattices each have two

perfectly distributed minimal positive bases. In contrast, there are several choices for selecting a minimal

positive basis in the FCC lattice, but none is perfectly distributed.

Algorithm B. If the kissing number τ of the lattice under consideration is relatively small (that is, if τ is not

well over an order of magnitude larger than n), then it turns out to be more expedient to solve the discrete

Thomson problem directly. To accomplish this, again taking the q presepecified repulsive particles as fixed,

we initialize n + m−q free repulsive particles randomly on n + m−q nearest-neighbor lattice points around

the CMP and then, at each iteration, move the two or three4 free particles that are furthest from equilibrium in

4Moving more than two or three particles at a time in this algorithm makes each iteration computationally intensive, and has little

impact on overall convergence of the algorithm, whereas moving only one at a time is found to significantly impede convergence to the

optimal solution.



CHAPTER 7. EXTENDING LATTICE THEORY FOR DERIVATIVE-FREE OPTIMIZATION 68

the force-based model described above (that is, those free particles which have the highest force component

projected onto the surface of the sphere) into new positions selected from the available locations in such a

way as to minimize the maximum force (projected onto the sphere) over the entire set of (fixed and free)

particles. Though each iteration of this algorithm involves an exhaustive search for placing the two or three

free particles in question, it converges quickly when τ is O(100) or less.

Algorithm C. For intermediate kissing numbers τ, a hybrid approach may be used: a “good” initial distribution

may be found using Algorithm A, then this distribution may be refined using Algorithm B.

In each of these algorithms, to minimize the number of new function evaluations required at each poll step,

a check is first made to determine whether any previous function evaluations have already been performed on

the nearest-neighbor lattice points around the CMP. If so, then particles are fixed at these locations, while the

remaining particles are adjusted via one of the three algorithms described above. By so doing, previously-

calculated function values may be used with maximum effectiveness during the polling procedure. When

performing the poll step of a surrogate-based search, in order to orient the new poll set favorably (and, on

average, exit the poll step quickly), a particle may also be fixed at the nearest neighbor point with the lowest

value of the surrogate function; when polling, this poll point is thus evaluated first.

The iterative algorithms described above, though in practice quite effective, are not guaranteed to converge

from arbitrary initial conditions to a positive basis for a given value of m, even if such a positive basis exists.

To address this issue, if the algorithm used fails to produce a positive basis, the algorithm may be repeated

using a new random starting distribution. Our numerical tests indicate that this repeated random initialization

scheme usually generates a positive basis within a few initializations when such a positive basis indeed exists.

Since at times, for a given m, there exists no configuration of the free particles on the nearest-neighbor lattice

points that produces a positive basis, particularly when the previous function evaluations being leveraged are

poorly configured, the number of new random initializations is limited to a prespecified value. Once this value
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is reached, m is increased by one and the process repeated. As the cost of each function evaluation increases,

the user can increase the number of random initializations attempted using one of the above algorithms for

each value of m in order to avoid the computation of extraneous poll points that might in fact be unnecessary

if sufficient exploration by the discrete Thomson algorithm described above is performed.

Numerical tests have demonstrated the efficacy of this rather simple strategy, which reliably generates

a positive basis while keeping computational costs to a minimum even when leveraging a relatively poor

configuration of previous function evaluations and when working in relatively high dimension n. Additionally,

the algorithm itself is independent of the lattice being used; the only inputs to the algorithm are the dimension

of the problem, the locations of the nearest-neighbor lattice points, and the identification of those nearest-

neighbor lattice points for which previous function evaluations are available.

7.4 Implementation of feasible domain boundaries

When implementing a global search in n dimensions, or even when implementing a local search on a function

which is ill-defined for certain nonphysical values of the parameters (such as negative concentrations of

chemicals), it is important to restrict the optimization algorithm to look only over a prespecified “feasible”

region of parameter space. For simplicity, the present work assumes rectangular constraints on this feasible

domain (that is, simple upper and lower bounds on each parameter value). An efficient n-dimensional lattice

with packing radius ρn is used to quantize the interior of the feasible domain, efficient (n− 1)-dimensional

lattices with packing radius ρn−1 = ρn/2 are used to quantize the portions of the boundary of the feasible

domain with one active constraint (that is, the “faces”), efficient (n− 2)-dimensional lattices with packing

radius ρn−2 = ρn/4 are used to quantize the portions of the boundary of the feasible domain with two active

constraints (that is, the “edges”), etc. The present section describes how to search over the boundaries of the

feasible domain, and how to move on and off of these boundaries as appropriate, while carefully restricting

all function evaluations to the interior and boundary lattices in order to coordinate an efficient search.
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We distinguish between two scenarios in which the polling algorithm as described thus far must be adju-

sted to avoid violating the (n− 1)-dimensional boundaries5 of the feasible domain. In the first scenario, the

CMP is relatively far (that is, greater than ρn but less than 2ρn) from the boundary of the feasible domain,

and thus one or more of the poll points as determined by one of the algorithms proposed in §7.3 might land

slightly outside this boundary. In this scenario, an effective remedy is simply to eliminate all lattice points

which land outside of the feasible domain from the list of potential poll points, and then to augment this re-

stricted list of potential poll points with all lattice points on the nearby (n−1)-dimensional constraint surface

which are less than 2ρn from the CMP. From this modified list of potential poll points, the poll set may be

selected in the usual fashion using one of the algorithms described in §7.3.

In the second scenario, the CMP is relatively close (that is, less than ρn) to the boundary of the feasible

domain. In this scenario, it is most effective simply to shift the CMP onto the nearest lattice point on the (n−
1)-dimensional constraint surface. With the CMP on the feasible domain boundary, each poll step explores a

minimum positive basis selected on the lattice quantizing the (n−1)-dimensional boundary and, in addition,

polls an additional lattice point on the interior of the feasible domain to allow the algorithm to move back off

this constraint boundary. Ideally, this additional point would be located on a inward-facing vector normal to

the (n−1)-dimensional feasible domain boundary a distance ρn from the CMP; we thus choose the interior

lattice point closest to this location.

Multiple active constraints are handled in an analogous manner (see Figure 7.3). In an n-dimensional

optimization problem with p ≥ 2 active constraints, the CMP is located on an active constraint “surface”

of dimension n− p. An efficient (n− p)-dimensional lattice with packing radius ρn−p = ρn/2p is used to

quantize this active constraint surface, and a poll set is constructed by creating a positive basis selected from

the points neighboring the CMP within the (n− p)-dimensional active constraint surface, together with p

additional points located on the (n− p + 1)-dimensional constraint surfaces neighboring the CMP. Ideally,

5That is, the portions of the boundary with a single active constraint.
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Figure 7.3: A scenario in which a CMP at x =
(
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sits on an (n−2) = 1-dimensional edge of an n = 3-

dimensional feasible region with bounds x1 ≥ 0 and x2 ≥ 0. Note that the feasible neighborhood of this edge

is positively spanned by the nearest neighbors on the integer lattice, and that two additional vectors are added

to the poll set to facilitate moving off of each of these active constraint boundaries.
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these p additional points would be located on vectors normal to the (n− p)-dimensional active constraint

surface a distance ρn−p+1 = ρn/2p−1 from the CMP; we thus choose the lattice points on the (n− p + 1)-
dimensional feasible domain boundaries closest to these locations.

In practice, it is found that, once an optimization routine moves onto p ≥ 1 feasible domain boundaries,

it only somewhat infrequently moves back off. To account for this, the p additional poll points mentioned in

the previous paragraph are polled after the other poll points forming the positive basis within the (n− p)-
dimensional active constraint surface.

7.5 Quantifying the skewness of minimal positive bases

A final relevant metric of a lattice that relates to the performance of the corresponding lattice-based optimiza-

tion is the deviation from perfect uniformity of the best minimal positive basis available on nearest-neighbor

lattice points. The best nearest-neighbor minimal positive basis skewness of a lattice, s, is thus now defined

as the ratio between the largest and the smallest angles between any two vectors in the best minimal positive

basis available on nearest-neighbor lattice points, minus one. Therefore, s = 0 indicates a perfectly uniform

minimal positive basis on nearest-neighbor lattice points, as exhibited by A2 (see Figure 7.2a) and A∗
3 (Figure

7.2b). In constrast, A3 through A8 all have s = 0.3333 (see, e.g., A3 in Figure 7.2c).

Surprisingly, the best nearest-neighbor minimal positive basis skewness of E8 is s = 1; one might initially

expect it to be much smaller than this (indeed, one might hope that it would be fairly close to s = 0) due to the

relatively large kissing number (τ = 240) of this n = 8 lattice. Interestingly, the best nearest-neighbor positive

basis of E8 when using n+2 points (that is, instead of a minimal positive basis with n+1 points) is perfectly

uniform. The tests reported later in Part II thus use n + 2 points instead of n + 1 points when polling on the

E8 lattice.

A minimal positive basis on nearest-neighbor lattice points doesn’t even exist on the Zn lattice (indeed,

a positive basis on nearest neighbors of the Zn lattice requires a full 2n points). This was, in fact, a matter
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of significant inconvenience in previous work when using the Cartesian lattice as the default choice for such

problems, as using a maximal positive basis rather than a minimal positive basis essentially doubles the cost

of each complete poll step for large n. When developing a minimal positive basis for the Zn lattice, it is thus

common (see, e.g., Booker et al. 1999) to select the Cartesian unit vectors e1 through en and one additional

“oddball” vector in the (−1,−1, . . . ,−1) direction which is
√

n longer. Note the “clustering” of the Cartesian

unit vectors in directions generally opposite to the oddball vector. To quantify, the skewness of this minimal

positive basis is cos−1(−1/
√

n)/(π/2)− 1, which in dimensions n = 2 through 8 is given by 0.5, 0.3918,

0.3333, 0.2952, 0.2677, 0.2468, and 0.2301. Note that, while the skewness of the angular distribution of this

minimal positive basis actually decreases gradually as the dimension of the problem increases, the ratio in

lengths of the vectors to the nearest-neighbor lattice points and the oddball vector in this basis increases

like
√

n (that is, from 1.4142 in n = 2 to 2.8284 in n = 8). This is quite unfortunate, as it leads to a peculiar

nonisotropic behavior of the optimization algorithm over parameter space (for further discussion on this point,

see the sixth paragraph of §10.1). The tests reported later in Part II use this peculiar minimum positive basis,

with a long oddball vector, when polling on the Zn lattice.

We now have all of the ingredients necessary to coordinate SMF algorithms, as introduced in §7.1, with

any of the lattices listed in Tables 3.1-3.2 of Part I, while both reusing previous function evaluations as

effecieintly as possible as well as respecting sharp bounds on the feasible region of parameter space.
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n lattice name ∆ Θ G τ

A2 hexagonal 0.90690 1.2092 0.080188 6

2
Z2 square 0.78540 1.5708 0.083333 4

A3 face-centered cubic (FCC) 0.74048 2.0944 0.078745 12

3 A∗
3 body-centered cubic (BCC) 0.68017 1.4635 0.078543 8

Z
3 cubic 0.52360 2.7207 0.083333 6

E8 Gosset 0.25367 4.0587 0.071682 240

D8 0.12683 32.470 0.075914 112

A8 zero-sum 0.08456 32.993 0.077391 72

8
D∗

8 0.03171 8.1174 0.074735 16

A∗
8 0.02969 3.6658 0.075972 18

Z8 Cartesian 0.01585 64.939 0.083333 16

Table 7.1. Characteristics of select distinct lattices in dimensions 2, 3, and 8, ordered from dense to rare

(for a more complete characterization, see Tables 3.1 and 3.2 of Part I). Listed (see Part I) are the packing

density, ∆, covering thickness, Θ, mean squared quantization error per dimension, G, and kissing number, τ.

Note that Zn is significantly outperformed in every standard metric in every dimension n > 1 by the available

alternatives.
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A2 A3 D4 D5 E6 E7 E8 K12 Λ16 Λ24

f∆ 1.155 1.414 2 2.83 4.62 8 16 152 4096 1.68e7

fτ 1.5 2 3 4 6 9 15 31.5 135 4095

Table 7.2. The densest, most uniform lattices available in several dimensions, and two factors quantifying

the degree to which these lattices are better than the corresponding Cartesian grid in the same dimension; f∆

denotes the factor of improvement in the packing density, an indication of the uniformity of the lattice, and fτ

denotes the factor of improvement in the kissing number, an indication of the flexibility available in selecting

a positive basis from the nearest neighbors on the lattice. Note that the improvements becoming especially

pronounced as the dimension n is increased.



CHAPTER 7. EXTENDING LATTICE THEORY FOR DERIVATIVE-FREE OPTIMIZATION 72



73

Chapter 8

Kriging interpolation
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8.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm (see §7.1) is to interpolate, and extrapolate, the trends

exhibited by the existing function evaluations in order to suggest new regions of parameter space, perhaps

far from the CMP, where the function value is anticipated, with some reasonable degree of probability, to be

lower than that of the CMP. There are a variety of possibile ways of accomplishing this; we leverage here the

Kriging interpolation strategy (Krige 1951; Matheron 1963; Jones 2001; Rasmussen & Williams 2006).

The problem of interpolation is the problem of drawing a smooth curve through data points in order to

estimate the function values in regions where the function itself has not yet been computed. The problem

of interpolation, thus, necessarily builds on some hypothesis that models the function behavior in order to

“connect the dots”. The most common such model is a mechanical one, based on a thin piece of wood,

or “spline”, that is “bent” in order to touch all the data points; this mechanical model leads directly to the

mathematical algorithm known as cubic spline interpolation. A perhaps equally valid hypothesis, which forms

the foundation for the Kriging interpolation strategy, is to model the underlying function as a realization, with

maximum likelihood, of some stochastic process. The stochastic model used in this approach is selected to

be general enough to model a broad range of functions reasonably well, yet simple enough to be fairly

inexpensive to tune appropriately based on the measured data. There are many such stochastic models which

one can select; the simple stochastic model considered here leads to the easy-to-use interpolation strategy

commonly referred to as ordinary Kriging.
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8.2 Notation of statistical description

To begin, consider N points {x1, . . . ,xN}, at which the function will ultimately be evaluated, and model the

function’s value at these N points with the random vector

f =




f (x1)

...
f (xN)



=




f1

...
fN



 .

To proceed further, we need a clear statistical framework to describe this random vector.

The cumulative distribution function (CDF) of the random vector f, denoted df(f), is a mapping from

f ∈ Rn to the real interval [0,1] that monotonically increases in each of the components of f, and is defined

df(f) = P( f1 ≤ f
1
, f2 ≤ f

2
, . . . , fn ≤ f

n
),

where f is some particular value of the random vector f and P(S) denotes a probability measure that the

conditions stated in S are true. In the scalar case, for example, d f (1) = 0.6 means that it is 60% likely that

the random variable f satisfies the condition f ≤ 1. For a random vector f whose CDF is modelled as being

differentiable everywhere, the probability density function (PDF) pf(f
′) ≥ 0 is a scalar function of f ′ defined

such that

df(f) =

Z f
1

−∞

Z f
2

−∞
· · ·

Z f
n

−∞
pf(f

′)d f ′1 d f ′2 · · ·d f ′n ⇔ pf(f
′) =

∂ndf(f)

∂ f
1

∂ f
2
· · ·∂ f

n

∣∣∣
f=f ′

.

For small |∆f ′|, the quantity pf(f
′)∆ f ′1 ∆ f ′2 · · ·∆ f ′n represents the probability that the random vector f takes

some value within a small rectangular region centered at the value f ′ and of width ∆ f ′i in each coordinate
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direction ei. Note that the integral of pf(f
′) over all possible values of f ′ is unity, that is

Z

Rn
pf(f

′)df ′ = 1.

The expected value of a function g(f) of a random vector f is given by

E {g(f)} =

Z

Rn
g(f ′) pf(f

′)dx′.

The expected value may be interpreted as the average of the quantity in question over many realizations. In

particular, the mean f̄ and covariance Pf of the random vector f are defined as

f̄ , E {f} =

Z

Rn
f ′ pf(f

′)df ′, Pf , E {(f− f̄)(f− f̄)T} =

Z

Rn
(f ′− f̄)(f ′− f̄)T pf(f

′)df ′.

8.3 Statistical modeling assumptions of the ordinary Kriging model

The PDF of the random vector f = fn×1 in this analysis is modelled as Gaussian, and is thus restricted to the

generic form

pf(f
′) =

1

(2π)n/2|Pf|1/2
exp

−(f ′− f̄)T P−1
f (f ′− f̄)

2
, (8.1a)

where the covariance Pf is modelled as a constant σ2, referred to as the variance, times a correlation matrix R

whose {i, j}’th component ri j is given by a model of the correlation of the random function f between points

xi and x j, where this correlation model r(·, ·) itself decays exponentially with the distance between points xi
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and x j; that is,

Pf , σ2R, where ri j , r(xi,x j) and r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ− yℓ|pℓ

)
(8.1b)

for some yet-to-be-determined constants σ2, θℓ > 0, and 0 < pℓ ≤ 2 for ℓ = 1, . . . ,n. The mean f̄ in the

Gaussian model (8.1a) is itself modelled as uniform over all of its components:

f̄ , µ1 (8.1c)

for some yet-to-be-determined constant µ. There is extensive debate in the recent literature (see, e.g., Isaaks

& Srivastava 1989; Rasmussen & Williams 2006) on the statistical modeling assumptions one should use

in a Kriging model of this sort. It is straightforward to extend the present investigation to incorporate less

restrictive Kriging models; the ordinary Kriging model is used here primarily due to its simplicity.

8.4 Adjusting the coefficients of the model based on the data

If the vector of observed function values is

fo =




f o
1
...

f o
N



 ,

then the PDF corresponding to this observation in the statistical model proposed in (8.1) can be written as

pf(f
o) =

1

(2π)n/2(σ2)n/2|R|1/2
exp

−(fo −µ1)T R−1(fo −µ1)

2σ2
. (8.2)
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The process of Kriging modeling boils down to selecting the parameters σ2, θℓ, pℓ, and µ in the statistical

model proposed in (8.1) to maximize the PDF evaluated for the function values actually observed, f = fo, as

given in (8.2).

Maximizing pf(f
o) is equivalent to minimizing the negative of its log. Thus, for simplicity, consider

J = − log[pf(f
o)] =

n

2
log(2π)+

n

2
log(σ2)+

1

2
log(|R|)+

(fo −µ1)T R−1(fo −µ1)

2σ2
. (8.3)

Setting the derivatives of J with respect to µ and σ2 equal to zero and solving, the optimal values of µ and σ2

are determined immediately:

µ =
1T R−1fo

1T R−11
, σ2 =

(fo −µ1)T R−1(fo −µ1)

n
. (8.4)

With these optimal values of µ and σ2 applied, noting that the last term in (8.3) is now constant, what remains

to be done is to minimize

J1 =
n

2
log(σ2)+

1

2
log(|R|) (8.5)

with respect to the remaining free parameters1 θℓ and pℓ, where σ2 is given as a function of R in (8.4) and R,

in turn, is given as a function of the free parameters θℓ and pℓ in (8.1b). This minimization must, in general, be

performed numerically. However, the function J1 is smooth in the parameters θℓ and pℓ, so this optimization

1To simplify this optimization, pℓ may be specified by the user instead of being determined via optimization; this is especially

appropriate to do when the number of function evaluations N is relatively small, and thus there is not yet enough data to determine

both the θℓ and pℓ uniquely. If this approach is followed, pℓ = 1 or 2 are natural choices; the case with pℓ = 1 is referred to as an

Ornstein-Uhlenbeck process, whereas the case with pℓ = 2 is infinitely differentiable everywhere.
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may be performed efficiently with a standard gradient-based algorithm, such as the nonquadratic conjugate

gradient algorithm, where the gradient itself, for simplicity, may easily be determined via a simple finite

difference or complex-step derivative approach.

Note that, after each new function evaluation, the Kriging parameters adjust only slightly, and thus the

previously-converged values of these parameters form an excellent initial guess for this gradient-based op-

timization algorithm. Note also that, while performing this optimization, the determinant of the correlation

matrix occasionally reaches machine zero. To avoid the numerical difficulty that taking the log of zero would

otherwise induce, a small [O(10−6)] term may be added to the diagonal elements of R. By so doing, the Kri-

ging predictor does not quite have the value of the sampled data at each sampled point; however, it remains

quite close, and the algorithm is made numerically robust [Booker et al, 1999].

8.5 Using the tuned statistical model to predict new function values

Once the parameters of the stochastic model have been tuned as described above, the tuned Kriging model

facilitates the computationally inexpensive prediction of the function value at any new location x̄. To perform

this prediction, consider now the N + 1 points {x1, . . . ,xN , x̄}, and model the function’s value at these N + 1

points with the vector

f̄ =

(
f

f (x̄)

)
=

(
f

f̄

)
,

where f is the N ×1 random vector considered previously and f̄ is the random scalar modeling the function

at the new point. Analogous statistical assumptions as laid out in (8.1) are again applied, with the correlation

matrix now written as

R̄ =

[
R r̄

r̄T 1

]
, Pf̄ , σ2R̄, (8.6)
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where R is the N ×N correlation matrix considered previously and, consistent with this definition, the vector

r̄ is constructed with components

r̄i = r(xi, x̄), where r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ− yℓ|pℓ

)
.

Following Jones (2001), note by the matrix inversion lemma that R̄−1 may be written

R̄−1 =

[
R r̄

r̄T 1

]−1

=

[
R−1 + R−1r̄(1− r̄T R−1r̄)−1r̄T R−1 −R−1r̄(1− r̄T R−1r̄)−1

−(1− r̄T R−1r̄)−1r̄T R−1 (1− r̄T R−1r̄)−1

]
. (8.7)

Keeping the paramter values σ2, θℓ, pℓ, and µ as tuned previously, we now examine the variation of the

PDF in the remaining unknown random variable, f̄ . Substituting (8.6) and (8.7) into a PDF of the form (8.1a),

we may write

pf̄(f̄
′) = C1 · exp

−(f̄ ′−µ1)T R̄−1(f̄ ′−µ1)

2σ2
= C1 · exp

−
[

f ′−µ1

f̄ ′−µ

]T

R̄−1

[
f ′−µ1

f̄ ′−µ

]

2σ2

= . . . = C2 · exp
−[ f̄ ′− f̂ ]T [ f̄ ′− f̂ ]

2s2
,

(8.8)
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where, with a minor amount of algebraic rearrangement, the mean and variance of this scalar Gaussian dis-

tribution modeling the random scalar f̄ work out to be2

f̂ (x̄) = E { f (x̄)} = E { f̄} = µ + rT R−1(fo −µ1), (8.9a)

s2(x̄) = E {[ f (x̄)− f̂ ]2} = E {[ f̄ − f̂ ]2} = σ2(1− rT R−1r). (8.9b)

Equations (8.9a)-(8.9b) give the final formulae for the Kriging predictor, f̂ (x̄), and its associated uncertainty,

s2(x̄).
When applied numerically to a representative test problem, as expected, the Kriging predictor function,

which we denote f̂ (x̄), interpolates [that is, it goes through every observed function value at points x̄ = x1

to x̄ = xN], whereas the uncertainty function, denoted s2(x̄), is zero at each sampled point, and resembles a

Gaussian “bump” between these sampled points, as seen in Figure 8.1. Note that, once the parameters of the

statistical model have been determined, as described in §8.4, the formula (8.9a)-(8.9b) for the Kriging pre-

dictor f̂ (x̄) and its corresponding uncertainty s2(x̄) at any test point x̄ is computationally quite inexpensive3.

2An alternative interpretation of this process models the constant µ itself as a stochastic variable rather than as a constant. Following

this line of reasoning ultimately gives the same formula for the predictor f̂ (x̄) as given in (8.9a), and a slightly modified formula for its

associated uncertainty,

s2(x̄) = σ2
(

1− rT R−1r+
(1− rT R−1r)2

1T R−11

)
. (8.9b’)

Which formula [(8.9b) or (8.9b’)] is used in the present model is ultimately a matter of little consequence as far as the overall derivative-

free optimization algorithm is concerned; we thus prefer the form given in (8.9b) due to its computational simplicity.
3Note that, for maximum efficiency, R−1 should be saved between function evaluations and reused for every new computation of f̂

and s2 required.
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Figure 8.1: (a) The Kriging predictor, f̂ (x), and (b) its associated uncertainty, s2(x), for a perturbed quadratic

bowl sampled on a square grid of 7×7 points. (c) The corresponding J(x) = f̂ (x)− c · s2(x) search function

used for a global search in two dimensions (see §9).
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Chapter 9

Global optimization leveraging

Kriging-based interpolation

The previous chapter reviewed the Kriging interpolation strategy which, based on a sparse set of observed

function values f o(xi) for i = 1, . . . ,N, develops a function predictor f̂ (x) and a model of the uncertainty

s2(x) associated with this prediction for any given set of parameter values x. Leveraging this Kriging model,

an efficient search algorithm can now be developed for the derivative-free optimization algorithm summarized

in §7.1.

The effectiveness of the various Kriging-based search strategies which one might propose may be tested

by applying them repeatedly to simple test problems via the following procedure:
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• a search function J(x) is first developed based on a Kriging model fit to the existing function evaluati-

ons,

• a gradient-based search is used to minimize this (computationally inexpensive, smoothly-varying)

search function,

• the function f (x) is sampled at the point x̃ which minimizes the search function1,

• the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem with multiple minima, f (x) = sin(x) + x2, on the

interval x ∈ [−10,10], and use four starting points to initialize the search x = −10, x = −5.2, x = 6, and

x = 10. Ineffective search strategies will not converge to the global minimum of f (x) in this test, and may not

even converge to a local minimum. More effective search strategies converge to the global minimum following

this approach, and the number of function evaluations required for convergence indicates the effectiveness of

the search strategy used.

Perhaps the most “obvious” strategy to use in such problems is simply fitting a Kriging model to the

known data, then searching the Kriging predictor itself, J(x) = f̂ (x), for its minimum value. This simple

approach has been implemented in a variety of examples with reasonably good results (see Booker et al,

1999). However, as shown clearly in Figure 9.1, this approach can easily break down. The Kriging predictor

does not necessarily model the function accurately, and its minimization fails to guarantee convergence to

even a local minimum of the function f (x). This observed fact can be motivated informally by identifying the

Kriging predictor as an interpolating function which only under extraördinary conditions predicts a function

value significantly lower than all of the previously-computed function values; under ordinary conditions, a

strategy of minimizing the predictor will thus often stall in the vicinity of the previously-evaluated points.

To avoid the shortcomings of a search defined solely by the minimization of the predictor, another strategy

1For the moment, to focus our attention on the behavior of the search algorithm itself, no underlying grid is used to coordinate the

search in order to keep function evaluations far apart.
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explored by Booker et al (1999) is to evaluate the function at two points in parameter space during the search:

one point chosen to minimize the predictor, and the other point chosen to maximize the predictor uncertainty.

Such a heuristic provides a guarantee of global convergence, as the seach becomes dense in the parameter

space as the total number of function evaluations, N, approaches infinity (see §7.1.2). However, this approach

generally does not converge quickly as compared with the improved methods described below, as the extra

search point has no component associated with the predictor, and is thus often evaluated in relatively “poor”

regions of parameter space.

We are thus motivated to develop a more flexible strategy to explore slightly away from the minima of

the predictor. To achieve this, consider the minimization of J(x) = f̂ (x)− c · s2(x), where c is some constant

(see Cox & John 1997 and Jones 2001). A search coordinated by this function will tend to explore regions

of parameter space where both the predictor of the function value is relatively low and the uncertainty of this

prediction in the Kriging model is relatively high. With this strategy, the search is driven to regions of higher

uncertainty, with the −c · s2(x) term in J(x) tending to cause the algorithm to explore away from previously

evaluated points. Additionally, minimizing f̂ (x)− c · s2(x) allows the algorithm to explore the vicinity of

multiple local minima in successive iterations in order to determine, with an increasing degree of certainty,

which local “bowl” in fact has the deepest minimum. The parameter c provides a natural means to “tune”

the degree to which the search is driven to regions of higher uncertainty, with smaller values of c focusing

the search more on refining the vicinity of the lowest function value(s) already found, and larger values of c

focusing the search more on exploring regions of parameter space which are still relatively poorly sampled.

This parameter may tuned based on knowledge of the function being minimized: if the function is suspected

to have multiple minima, c can be made relatively large to ensure a more exploratory search, whereas if the

function is suspected of having a single minimum, c can be made relatively small to ensure a more focused

search in the vicinity of the CMP. For an appropriate intermediate value of c, the resulting algorithm is often

quite effective at both global exploration and local refinement of the minimum, as illustrated in Figure 9.2.
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The strategy of searching J(x) = f̂ (x)− c · s2(x) also extends naturally to multiple dimensions, as illustrated

for a two-dimensional problem in Figure 8.1c. Note also that, in the spirit of Booker et al (1999) [who

effectively suggested, in the present notation, exploring based on both c = 0 and c → ∞ at each search step],

one can perform a search using multiple but finite values of c at each search step, returning a set of points

designed to focus, to varying degrees, on the competing objectives of global exploration and local refinement.

If at each search step k at least one point is included which minimizes f̂ (x)−ck · s2(x) for a value of ck which

itself approaches ∞ as k → ∞, then the search drives at least some new function evaluations sufficiently far

from the existing points that the function evaluations eventually become dense over the feasible domain, thus

guaranteeing global convergence. Thus, an f̂ (x)− c · s2(x) search, when used properly, can indeed be used in

a globally convergent manner.

Minimizing J(x) = f̂ (x)− c · s2(x) is not the only strategy to take advantage of the estimate of the uncer-

tainty of the predictor provided by the Kriging model. Another effective search strategy involves maximizing

the probability of achieving a target level of improvement below the current CMP; this is called the maximum

likelihood of improvement (MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen 1991, Elder 1992,

and Mockus 1994]. If the current CMP has a function value fmin, then this search strategy seeks that x for

which the probability of finding a function value f (x) less than some prespecified target value ftarget [that

is, for which f (x) ≤ ftarget < fmin] is maximized in the Kriging model. If f (x) is known to be a positive

function, a typical target value in this approach is ftarget = (1− δ) fmin, where δ may be selected somewhere

in the range of 0.01 to 0.2. As for the parameter c discussed in the previous paragraph, the parameter δ in this

strategy tunes the degree to which the search is driven to regions of higher uncertainty, with smaller values of

δ focusing the search more on refining the vicinity of the lowest function value(s) already found, and larger

values of δ focusing the search more on exploring regions of parameter space which are still relatively poorly

sampled. As seen in Figure 9.3, the MLI search offers performance similar to the f̂ (x)− c · s2(x) method dis-

cussed previously. In contrast with the f̂ (x)− c · s2(x) approach, even for a fixed (finite) value of δ, the MLI
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approach eventually drives the function evaluations far enough away from existing points that the function

evaluations eventually become dense over the feasible domain, thus guaranteeing global convergence. Thus,

the MLI approach is inherently globally convergent.

Even more sophisticated search strategies can also be proposed, as reviewed elegantly by Jones (2001).

However, the simplicity, flexibility, and performance given by the strategy of minimizing J(x) = f̂ (x)− c ·
s2(x) renders this approach as adequate for our testing purposes here.

Since both the J(x) = f̂ (x)− c · s2(x) search function and the MLI search function are inexpensive to

compute, continuous, and smooth, but in general have multiple minima, an efficient gradient-based search,

initialized from several well-selected points in parameter space, may be used to to minimize them. As the

uncertainty s2(x) goes to zero at each sample point, J(x) will tend to dip between each sample point. Thus,

a search is initialized on 2n ·N total points forming a positive basis near (say, at a distance of ρn/2) to each

of the N sample points, and each of these starting points is marched to a local minima of the search function

using an efficient gradient-based search (which is constrained to remain within the feasible domain of x).

The lowest point of the paths so generated will very likely be the global minima of the search function. For

simplicity, the necessary gradients for this search may be computed via a simple second-order central finite

difference scheme applied to the Kriging model, though more sophisticated and efficient approaches are also

possible.
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Figure 9.1: Convergence of a search algorithm based on minimizing the Kriging predictor, J(x) = f̂ (x), at

each iteration. This algorithm does not necessarily converge to even a local minimum, and in this example

has stalled, far from the global minimum, after six iterations.
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Figure 9.2: Convergence of a search algorithm based on minimizing the search function J(x)= f̂ (x)−c ·s2(x)
at each iteration, taking c = 1. Note that the global minimum is found after just a few iterations. However,

global convergence is not guaranteed.
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Figure 9.3: MLI search with a target T = 10%. Note convergence to global minimum, as well as exploratory

nature of the search which guarantees global convergence.
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Putting everything together, we now develop and test what we identify as the Lattice Based Derivative-

free Optimization via Global Surrogates (LABDOGS) algorithm. This algorithm consists of an SMF-based

optimization (see §7.1) coordinated by uniform n-dimensional lattices (see Part I and further extensions in

§7) while leveraging a Kriging interpolant (see §8) to perform an efficient global search based on the search

function J(x) = f̂ (x)− c · s2(x) (see §9). The full algorithm has been implemented in an efficient numerical

code, dubbed Checkers, and is tested in this section in n = 2 to n = 8 dimensions using the Zn, An, and E8

lattices to coordinate the search, and is applied here to:

• randomly shifted quadratic bowls

fQ(x) = (x−xo)T A(x−xo)

• randomly shifted Rosenbrock functions:

fR(x) = ∑n−1
i=0 {[1− (xi− xo

i )]
2 +(−1)n500[(xi+1− xo

i+1)− (xi − xo
i )

2]2},

• the Branin function:

fB(x) = [1−2x2 + 0.05sin(4πx2)− x1]
2 +[x2 −0.5sin(2πx1)]

2,

• and the “T1” function:

fM(x) = sin(5x1)+ sin(5x2)+ 0.02[(5x1 + 1.5)2 +(5x2 + 1.5)2].

Note that the first two test functions are n-dimensional and have unique minima, whereas the last two test

functions are 2-dimensional and have multiple minima. Much further testing remains to be done, and will be

reported in future work.
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10.1 SP applied to randomly-shifted quadratic bowls

To test the hypothesis that the efficiency of a pattern search is significantly affected by the packing efficiency

and/or the nearest-neighbor distribution of the lattices which coordinate it, a large number of SP optimizati-

ons were first performed on randomly-shifted quadratic bowls to gather and compare statistical data on the

performance of Zn-based, An-based, and E8-based SP optimizations. The positive-definite matrices A > 0 and

offsets xo defining the quadratic bowls to be minimized, as well as the starting points used in the searches,

were selected at random for every set of tests, and the initial Zn, An, and E8 lattices were scaled such that the

initial number of points per unit volume of parameter space was identical.

The Zn-based, An-based, and E8-based SP algorithms were run from the same starting points on the

same quadratic test functions to the same level of convergence. Note that several of the significant built-in

acceleration features of the full Checkers code were in fact turned off for this baseline comparison. Most

notably, complete polls were performed (that is, the poll steps were not terminated immediately upon finding

a lower CMP), and no attempt was made to reuse previously-computed points when forming each successive

poll set, or to orient optimally any given poll set. In fact, the angular distribution of the poll set around the

CMP was fixed from one step to the next in these initial tests.

Two quantitative measures of the relative efficiency of the optimization algorithms to be tested are now

defined. The metric p is defined as the percentage of runs in which the lattice-based algorithm requires fewer

function evaluations than does the Z
n-based algorithm to converge 99.99% of the way from the initial value

of J(x) to the optimal value of J(x) [which, in these test problems, is easy to compute analytically]. The

metric r is defined as the ratio of the average number of function evaluations required for the lattice-based

algorithm to converge 99.99% of the way from the initial value of J(x) to the optimal value of J(x) divided by

the average number of function evaluations needed for the Zn-based algorithm to converge the same amount.

The p and r measures described above (averaged over 5000 runs for each value of n) were calculated in
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n 2 3 4 5 6 7 8

p 74.77 81.32 84.03 84.53 84.43 84.56 85.28

r 0.4290 0.4161 0.3273 0.3585 0.3150 0.3345 0.3060

Table 10.1. Performance comparison between the An-based SP algorithm and the Zn-based SP algorithm app-

lied to randomly shifted quadratic bowls for n = 2 to 8. It is seen that the A8-based SP algorithm outperformed

the Z8-based SP algorithm 85% of the time, and on average required 30% as many function evaluations to

reach the same level of convergence.

n 8

p 90.65

r 0.1554

Table 10.2. Performance comparison between the E8-based SP algorithm and the Z8-based SP algorithm

applied to randomly shifted quadratic bowls. It is seen that the E8-based SP algorithm outperformed the Z8-

based SP algorithm 91% of the time, and on average required 17% as many function evaluations to reach the

same level of convergence, thus offering nearly twice the performance of An.

the case of the An lattice (for n = 2 to n = 8) and the E8 lattice, and are reported in Tables 10.1 and 10.2. Note

that values of p over 50% and values of r less than 1 indicate that, on average, the lattice-based SP algorithm

outperforms the Zn-based SP algorithm, with p quantifying how often and r quantifying how much.

Note in Table 3.1 that the “best” lattice in n = 2 and n = 3, accoring to several standard metrics, is An;

however, as the dimension of the problem increases, several other lattices become available, and that by n = 8

the E8 lattice appears to be the best choice. This observation is consistent with the numerical results reported
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Figure 10.1: Typical paths taken by the A2-based SP algorithm (dots) and the Z
2-based SP algorithm (+) on a

randomly-shifted quadratic bowl.

in Tables 10.1 and 10.2, which indicates that the An-based optimizations provided a consistent and substantial

improvement over the Z
n-based optimizations over the entire range n = 2 to 8, and that, in n = 8, the E8-based

optimization significantly outperformed the A8-based optimization.

The mechanism by which the lattice-based SP algorithms outperform the Zn-based SP algorithm on qua-

dratic test problems is now examined in detail. As described previously, the Zn minimal positive basis vectors

are distributed with poor angular uniformity and can not be selected on nearest-neighbor lattice points. When
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the optimal descent direction is poorly approximated by these n+1 vectors (such as when the optimal descent

direction is configured somewhere approximately midway between the oddball vector and one of the Cartesi-

an unit vectors), the search path must “zig-zag” to move towards the actual minimum. If the local curvature of

the function is small compared to the current lattice spacing, then the search algorithm must take several steps

in a rather poor direction before it must eventually turn back down the “valley floor”, as illustrated by the path

of the Zn-based SP algorithm in Figure 10.1. Once in this valley, the lattice spacing must be diminished such

that each step of the “zig-zag” path required to proceed down the valley floor in fact decreases the function;

this leads to otherwise unnecessary lattice refinement and thus very slow progress by the SP algorithm. This

effect is exacerbated when the vectors of the poll set are of substantially different length, as the entire set

of vectors must be scaled down until movement along the direction of the longest poll vector during this

zig-zagging motion still decreases the function. This leads to the poor convergence behavior demonstrated by

the Zn-based SP algorithm along the narrow valley floor of the quadratic bowl indicated in Figure 10.1. Of

course, the present arguments are statistical in nature, and in specific cases either the An-based SP algorithm

or the Zn-based SP algorithm will sometimes get “lucky” and converge remarkably quickly. However, it is

clear that the optimal descent direction at any given iteration is more likely to be “far” from the poll vectors

when the poll set is distributed with poor angular uniformity.

10.2 SP applied to randomly-shifted Rosenbrock functions

The An-based and Zn-based SP algorithms were also applied to a randomly-shifted Rosenbrock function in

a similar fashion. Figure 10.2 demonstrates a typical case, indicating the respective rates of convergence of

the two SP algorithms. The An-based SP algorithm demonstrates a substantially improved convergence rate

compared to the Zn-based SP algorithm.

These results demonstrate that the efficiency of the SP portion of a pattern search can be substantially

improved simply by implementing a more efficient lattice to discretize parameter space.
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Figure 10.2: A sample SP minimization comparing the An-based case (dash-dot line at left and black +
at center) with the Zn-based case (solid line at left and blue ∗ at right) on a randomly shifted Rosenbrock

function. Note the superior convergence rate of the An-based approach (as illustrated in the convergence plot

at left), resulting in further progress toward the minimum at [1,−1] (as illustrated in the subfigures at center

and right).

10.3 LABDOGS applied to randomly shifted Rosenbrock functions

To test the hypothesis that the efficiency of the full LABDOGS algorithm is significantly affected by the

choice of the lattices which coordinate it, a more demanding test than a quadratic bowl is required. We thus

consider here the application of the full LABDOGS algorithm to randomly shifted Rosenbrock functions.

The “valley” in which the minimum of the Rosenbrock function lies is narrow, curved, and relatively flat
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(that is, with a vanishing second derivative) along the bottom. This makes it a difficult test case for any SMF-

like algorithm to approximate with a surrogate function of sufficient accuracy to be particularly useful along

the valley floor, other than simply to indicate where the function evaluations are currently relatively sparse.

In other words, both the search and poll components of the LABDOGS algorithm are put to the test when

searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of the An-based and Z
n-based LABDOGS algorithms (using c = 5)

applied to randomly shifted Rosenbrock functions are reported here. As in the SP tests described previously,

the initial An and Zn lattices were scaled appropriately so as to be of the same initial density.

Recall in the SP tests the metric p, which quantified how often the lattice-based method outperformed

the Cartesian-based method, and the metric r, which quantifying how much the lattice-based method outper-

formed the Cartesian-based method. In this section, we use two similar metrics, p̄ and r̄, but now terminate

each optimization after a particular number of iterations rather than after convergence to a given percenta-

ge of the (known) optimal solution. Specifically, the metric p̄ is defined as the percentage of runs in which

the An-based LABDOGS algorithm converged further than did the Zn-based LABDOGS algorithm after 300

function evaluations, whereas the metric r̄ is defined as the ratio of the average function value to which the

An-based LABDOGS algorithm converged after 300 function evaluations divided by the average function

value to which the Zn-based LABDOGS algorithm converged after 300 function evaluations. The results for

n = 2 to 5 (averaged over 200 runs for n = 2, 3, and 4, and 100 runs for n = 5) are reported in Table 10.3. Note

that values of p̄ over 50% and values of r̄ less than 1 indicate that, on average, the lattice-based LABDOGS

algorithm outperforms the Zn-based LABDOGS algorithm, with p̄ quantifying how often and r̄ quantifying

how much. It is seen that the An-based LABDOGS algorithm consistently and significantly outperforms the

Zn-based LABDOGS algorithm.

Figure 10.3 compares the convergence of the An-based and Zn-based LABDOGS algorithms on a repre-

sentative realization of the Rosenbrock function in n = 6. The convergence of the two algorithms are similar in
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Figure 10.3: Convergence of the Checkers code using An (red) vs Z
n (green), on an n = 6 Rosenbrock func-

tion.

behavior during the first 20 iterations, during which they share a nearly identical search, with the differences

between the two becoming more and more apparent as convergence is approached. Initially, the poll steps

return much smaller improvements than the search steps. Once the surrogate model adequately represents the

walls of the Rosenbrock function, thereby identifying the “valley floor”, the search becomes less effective,

and both algorithms rely more heavily on the polling algorithm to identify the minimum.
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n 2 3 4 5

p̄ 64.0 56.0 63.0 68.0

r̄ 0.651 0.699 0.773 0.758

Table 10.3. Performance comparison between the An-based LABDOGS algorithm and the Zn-based LAB-

DOGS algorithm applied to randomly shifted Rosenbrock functions. For n = 2, it is seen that the An-based

SP algorithm outperformed the Zn-based SP algorithm about 64% of the time, and on average converged to a

function value 65% better using the same number of function evaluations.

10.4 LABDOGS applied to Branin and T1

Thus far, only functions with unique minima have been explored. As the LABDOGS algorithm has the ca-

pability to locate and explore multiple local minima in an attempt to identify and refine an estimate of the

global minimum, some searches were performed on two test functions with multiple minima, Branin and T1,

to demonstrate this capability.

On the interval −2 < x < 2,−2 < y < 2, the Branin function has five local minima. As seen in Figure 10.4,

with the search parameter c = 2, the LABDOGS algorithm does an excellent job of locating and exploring all

of these local minima, eventually converging to an accurate estimate of the global minimum. With c = 10000,

the search tends to be more “space-filling”, acting at each step to reduce the maximum uncertainty of the

Kriging surrogate. It is clearly evident that, as the number of function evaluations gets large in the c = 10000

case, this search will tend to explore nearly uniformly over the entire feasible domain. [In the limit that c is

infinite, the function evaluations become dense as N →∞, thereby assuring global convergence.] However, for

a small number of total function evaluations N [which should be the primary problem of interest if function

evaluations are expensive!], the strategy with smaller c in fact identifies and refines the estimate of the global
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Figure 10.4: Points evaluated by the LABDOGS algorithm when exploring the Branin function (with multiple

minima), with (left) c = 2 and (right) c = 10000. Note the more “focused” sampling when c is small and the

more “exploratory” sampling when c is large.

minimum point much sooner, as the case with large c wastes a lot of computational effort reducing the

uncertainty of the surrogate in areas predicted to have poor function values.

Similar behavior can be seen for the T1 test function in Figure 10.5. Initially, the algorithm happens upon
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Figure 10.5: Points evaluated by the LABDOGS algorithm when exploring the T1 function (with multiple

minima) with c = 1000 after (left) 30 function evaluations, (center) 60 function evaluations, and (right) 100

function evaluations. Note (after 30 function evaluations) that the LABDOGS algorithm initially identifies

and converges to a local minimum near the lower-left corner. Ultimately (after 100 function evaluations), the

LABDOGS algorithm successfully identifies a refined estimate of the global minimum.

the local minimum in the lower-left corner of the feasible domain. With its exploratory function evaluations,

however, the algorithm ultimately identifies and refines its estimate of the global minimum.

While these results indicate encouraging global exploration, further testing of the LABDOGS algorithm
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on nonconvex functions is certainly warranted, particularly in high-dimensional problems. In particular, fur-

ther refinement of the algorithm to provide the most robust combination of “focused” and “exploratory” samp-

ling remains to be performed; however, the present results clearly demonstrate the capability and flexibility

of the LABDOGS algorithm to strike this balance while maintaining maximum computational efficiency.

10.5 LABDOGS Performance Summary

This chapter proposes a new algorithm, dubbed LABDOGS, for derivative-free optimization formed via the

tight integration of

• the efficient SMF algorithm (see §7.1) for a surrogate-based search coordinated by an underlying grid,

in order to keep function evaluations far apart until convergence is approached,

• a uniform “grid” selected from those available in lattice theory (see Part I and further extensions in §7)

to coordinate such an optimization algorithm, in order to reduce the average quantization error of a grid

of a given density and to better distribute the poll points during the poll step, and

• a highly effective search algorithm, leveraging a Kriging interpolant (see §8) to construct the search

function J(x) = f̂ (x)− c · s2(x) combining both the function predictor and a model of its associated

uncertainty, in order to provide a flexible combination of global exploration and local refinement during

the search (see §9).

The numerical results achieved via this algorithm, as reported in this chapter, indicate effective convergence

of the resulting algorithm on a range of benchmark optimization problems, and reveal a clear advantage for

using an efficient lattice derived from an n-dimensional sphere packing to coordinate such a search, rather

than the heretofore default choice, Zn, which is simply untenable in light of the clear advantages of using

alternative lattices which are, quantifiably, both more uniform and have a more favorable distribution of

nearest neighbors, especially as the dimension of the optimization problem is increased.
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The flexible numerical code we have developed which implements this algorithm, dubbed Checkers, has

been written from scratch, and each subroutine of the code has been scrutinized to maximize its overall

efficiency for systems with expensive function evaluations.
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Schürmann, A (2006) On packing spheres into containers; about Kepler’s finite sphere packing problem. Documenta

Mathematica 11, 393406.



REFERENCES (PART I) 101.5
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