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Preface

The field of n-dimensional sphere packings is elegant and mature in its mathematical development and cha-

racterization. However, it is still relatively limited in its practical applications, especially for n > 3. The

present text intends to open up two broad new areas for profitable application of this powerful body of mathe-

matical literature in science and engineering. Towards this end, Part I reviews the essential results available

in this field (reconciling the theoretical literature for dense and rare sphere packings, which are today largely

disjoint), catalogs the key properties of the principle dense and rare sphere packings and corresponding nets

available up to n = 24 (including hundreds of values not previously known), and extends the study of regular

rare sphere packings and nets to n > 3 dimensions (an area which up to now has been largely unexplored).

Part II then builds from the presentation in Part I to develop three new algorithms (LABDOGS, αDOGS,

and latticeMADS) for performing efficient derivative-free optimization in non-differentiable problems with

expensive function evaluations, leveraging the lattices derivd from dense sphere packings as an alternati-

ve to Cartesian grids to coordinate the search. We pay particular attention to the improved uniformity and

nearest-neighbor configuration of the lattices used over their Cartesian alternatives, and the improvements in



efficiency of optimization algorithms coordinated by such lattices that follow as a direct consequence.

Finally, Part III builds from the presentation in Part I to develop new interconnect strategies for switchless

multiprocessor computer systems, leveraging the nets derived from rare sphere packings as alternatives to

Cartesian grids to establish structured, fast, and inexpensive interconnects. We pay particular attention to the

improved coordination sequences facilitated by such nets over their Cartesian alternatives, and the improve-

ments in the rate of spread of information across the computer system that follow as a direct consequence.

In the applications discussed in Parts II and III, Cartesian grids are used as the default choice today in

almost all related realizations. A primary goal of this text is to subvert this dominant Cartesian paradigm and

to establish, via the examples we have chosen to highlight, that significant performance gains may be realized

in practical engineering applications by leveraging n-dimensional sphere packings appropriately.

A gentle introduction to sphere packing theory

An n-dimensional infinite sphere packing is simply an array of nodal points in Rn obtained via the packing

of identical n-dimensional spheres. By packing, we mean an equilibrium configuration of spheres, each with

at least 2 nearest neighbors, against which a repellant force is applied. Many packings investigated in the

literature are stable packings, meaning that there is a restoring force associated with any small movement

of any node of the packing; this requires each sphere in the (n-dimensional) packing to have at least n + 1

neighbors. Unstable packings with lower nearest-neighbor counts are also of interest. By replacing each

sphere in an n-dimensional packing with a nodal point (representing, e.g., a computer), and connecting those

nodal points which are nearest neighbors, a net (a.k.a. interconnect or contact graph) is formed1.

1As mentioned in the second-to-last paragraph of §2.3, it is natural with certain sphere packings (for example, D∗
n, Ar

n, and the

packings associated with the T 90
n and T 60

n nets) to define nets which are not contact graphs of the corresponding sphere packings by



An n-dimensional real lattice (a.k.a. lattice packing) is a sphere packing which is shift invariant (that is,

which looks identical upon shifting any nodal point to the origin); this shift invariance generally makes lattice

packings simpler to describe and enumerate than their nonlattice alternatives. Note that there are many regu-

lar2 sphere packings which are not shift invariant [the nonlattice packings corresponding to the honeycomb

net in 2D and the diamond and quartz nets in 3D are some well-known examples]. We will focus our attention

in this text on those packings and nets which are at least uninodal (that is, which look identical upon shifting

any nodal point to the origin and rotating and reflecting appropriately). For dense sphere packings, from a

practical perspective, lattice packings are essentially3 as good a choice as their more cumbersome nonlattice

alternatives for n≤ 24 in terms of the four metrics defined below (that is, for maximizing packing density and

kissing number and minimizing covering thickness and quantization error). However, the best rare sphere

packings (with small kissing number) are all nonlattice packings.

As illustrated in Table P.1 and Figure P.1, we may introduce the subject of n-dimensional sphere packings

by focusing our attention first on the n = 2 case: specifically, on the triangular4 lattice (A2), the square

lattice (Z2), and the honeycomb nonlattice packing (A+
2 ). The characteristics of such sphere packings may be

quantified by the following measures:

• The packing radius (a.k.a. error-correction radius) of a packing, ρ, is the maximal radius of the spheres in

a set of identical nonoverlapping spheres centered at each nodal point.

connecting non-nearest-neighbor points.
2The regularity of a nonlattice packing is quantified precisely in §??.
3For n = 10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denoted P10c, P11a, P13a, B ∗18, B ∗20, A ∗22) that are 8.3%, 9.6%,

9.6%, 4.0%, 5.2%, and 15.2% denser then the corresponding best known lattice packings (Conway & Sloane 1998, p. xix); to put this

into perspective, the density of Λ22 is over 106 times the density of Z22.
4Note that many in this field refer to the A2 lattice (Figure P.1a,b) as “hexagonal”. We prefer the unambiguous name “triangular” to

avoid confusion with the honeycomb nonlattice packing (Figure P.1e,f).



n packing name ∆ Θ G τ td10

A2 triangular 0.9069 1.2092 0.08019 6 331

2 Z2 square 0.7854 1.5708 0.08333 4 221

A+
2 honeycomb 0.6046 2.4184 0.09623 3 166

E8 Gosset 0.2537 4.059 0.07168 240 1,006,201,681

8

Z8 Cartesian 0.01585 64.94 0.08333 16 1,256,465

V
90
8 5.590e-4 49.89 0.09206 4 37,009

(unstable)
Y

90
8 2.327e-4 87.31 0.09266 3 2290

Λ24 Leech 0.001930 7.904 0.06577 196560 > 1015

24
Z24 Cartesian 1.150e-10 4,200,263 0.08333 48 24,680,949,041

Table P.1. Characteristics of selected lattice and uninodal nonlattice packings and nets. Note that n = 24 is a

natural stopping point in this study. It is special because it is the only integer n > 1 that satisfies the equation

12 + 22 + . . .+ n2 = m2 where m is itself an integer; as a consequence, a particularly uniform lattice with a

large number of symmetries is available in this dimension.

• The packing density of a packing, ∆, is the fraction of the volume of the domain included within a set

of identical non-overlapping spheres of radius ρ centered at each nodal point on the packing. Packings that

maximize this metric are referred to as close-packed.

• The covering radius of a packing, R, is the maximum distance between any point in the domain and its



nearest nodal point on the packing. The deep holes of a packing are those points which are at a distance R

from all of their nearest neighbors. Typical vectors from a nodal point to the nearest deep holes in a lattice

packing are often denoted [1], [2], etc.

• The covering thickness of a packing, Θ, is the number of spheres of radius R centered at each nodal point

containing an arbitrary point in the domain, averaged over the domain.

• The Voronoı̈ cell of a nodal point in a packing, Ω(Pi), consists of all points in the domain that are at least

as close to the nodal point Pi as they are to any other nodal point Pj.

• The mean squared quantization error per dimension of a lattice or uninodal nonlattice packing, G, is the

average mean square distance of any point in the domain to its nearest nodal point, normalized by n times the

appropriate power of the volume, V , of the Voronoı̈ cell. Shifting the origin to be at the centroid of a Voronoı̈

cell Ω(Pi), it is given by

G =
S

nV
n+2

n

where S =
Z

Ω(Pi)
|x|2 dx, V =

Z

Ω(Pi)
dx. (1)

• The kissing number (a.k.a. error coefficient) of a lattice or uninodal nonlattice packing, τ, is the number

of nearest neighbors to any given nodal point in the packing. That is, it is the number of spheres of radius ρ
centered at the nodal points of the packing that touch, or “kiss”, the sphere of radius ρ at the origin.

• The coordination number of a net (derived from a sphere packing, as discussed previously) is the first

number of the net’s coordination sequence, the k’th element of which is given by tdk − tdk−1, where tdk,

which quantifies the net’s local topological density, is the total number of nodes reached via k hops or less

from the origin in the net5.

5In most cases, the natural net to form from a sphere packing is the contact graph; in such cases, the kissing number, τ, and the



Certain applications, such as those explored in Part II, require dense lattices. There are two key drawbacks

with Cartesian approaches for such applications. First, the discretization of space is significantly less uniform

when using the Cartesian grid as opposed to the available alternatives, as measured by the packing density ∆,

the covering thickness Θ, and the mean-squared quantization error per dimension, G (see Table P.1). Second,

the configuration of nearest-neighbor gridpoints is significantly more limited when using the Cartesian grid,

as measured by the kissing number τ, which is an indicator of the degree of flexibility available when selecting

from nearest-neighbor points. As seen by comparing the n = 2, n = 8, and n = 24 cases in Table P.1, these

drawbacks become increasingly substantial as the dimension n is increased; by the dimension n = 24, the

Cartesian grid has

• a factor of 0.001930/1.1501e−10≈ 17,000,000 worse (lower) packing density,

• a factor of 4,200,263/7.9035≈ 530,000 worse (higher) covering thickness,

• a factor of 0.08333/0.0658≈ 1.27 worse (higher) mean-squared quantization error, and

• a factor of 196560/48≈ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus, the selection of the Cartesian grid, by default, for applica-

tions requiring dense (that is, uniform) lattices with n > 3 is simply untenable.

Other applications, such as those explored in Part III, require regular nets which, with low coordination

number, connect to a large number of nodes with each successive hop from the origin, as quantified by the

net’s coordination sequence. As mentioned previously, a useful measure of a net’s topological density is given,

e.g., by td10, which is the number of distinct nodes within 10 hops of the origin. Note that the coordination

coordination number are equal. As mentioned previously, it is natural with certain sphere packings to define nets which are not contact

graphs by connecting non-nearest-neighbor points; in such cases, the kissing number (a property of the sphere packing) and the coordi-

nation number (as defined here, a property of a corresponding net) are, in general, not equal. We find this clear semantical distinction to

be useful to prevent confusion between these two distinct concepts; note that some authors (e.g., Conway & Sloane 1998) do not make

this distinction.



number of the n-dimensional Cartesian grid is 2n; the coordination number of the alternative n-dimensional

constructions introduced in §?? are as small as 3 or 4, while the topological density increases rapidly as n is

increased (compare, e.g., the values of td10 for A+
2 and Z2, with τ = 3 and τ = 4 respectively, to those for

Y
90
8 and V

90
8 in Table P.1); it is thus seen that, for applications requiring graphs with low coordination number

and high topological density, the selection of the Cartesian grid, by default, is also untenable.

We are thus motivated to make the fundamental results of both dense and rare n-dimensional sphere

packing theory more broadly accessible to the science and engineering community, and to illustrate how this

powerful body of theory may be put to use in important new applications of practical relevance. Towards

this end, Part I succinctly reviews and extends several significant results in this mature and sophisticated

field, inter-relating the literature on dense and rare packings, which is today largely disjoint. These results are

leveraged heavily in the applications described in Parts II and III. We note that, beyond providing an up-to-

date and synthetic review of this otherwise difficult subject in a (hopefully) accessible language, a significant

number of new computations, constructions, algorithms, metrics, and codes are also reported in Part I [the

reader is referred specifically to §??, §?? through §??, §??, and §??].



(a) (b)

(c) (d)

(e) (f)



Part I

Fundamental concepts & constructions,
from dense to rare

1 Historical retrospective 3



2 Dense lattice packings for n ≤ 24 15



Chapter 1

Historical retrospective

Contents

1.1 Finite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Infinite packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The mathematical characterization of sphere packings has a long and rich history. Some recent articles

and popular books recount this history in detail, including Zong (1999), Szpiro (2003), Hales (2006), and Aste

& Weaire (2008). The purpose of the present Part I is not to repeat these historical retrospectives, which these
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sources do quite adequately, but to characterize, catalog, and extend the infinite packings available today to

facilitate their practical application in new fields. Nonetheless, we would remiss if we didn’t at least provide

a brief historical context to this field, which we attempt in this short chapter.

1.1 Finite packings

Mystic marbles. We begin by defining, for m ≥ 1, a notation to build from:

T0,m , 1, T1,m ,
m

∑
k=1

T0,k = m (the positive integers).

In the sixth century BC, Pythagoras and his secret society of numerologists, the Pythagoreans, discovered

geometrically (see Figure 1.1, and pp. 43-50 of Heath 1931) the formula for the number of marbles placed in

a (2D) triangle (that is, the “triangular numbers”):

T2,m ,
m

∑
k=1

T1,k = m(m + 1)/2.

Stacked spheres. The earliest known mathematical work to discuss the (3D) stacking of objects is a Sanskrit

document The Aryabhatiya of Aryabhata (499 AD; see Clark 1930, p. 37), which states:

“In the case of an upaciti [lit., ‘pile’] which has ... the product of three terms, having the number of terms

for the first term and one as the common difference, divided by six, is the citighana [lit., ‘cubic contents of

the pile’]. Or, the cube of the number of terms plus one, minus the cube root of this cube, divided by six.”



1.1. FINITE PACKINGS

Figure 1.1: (left) Ten marbles placed in a triangle [referred to by the Pythagoreans as a τετρακτυ′ ς, and

upon which they placed a particular mystic significance], and (right) the Pythagoreans’ placement of two

triangular groups of marbles into an “oblong” m× (m+1) rectangle, from which the formula for T2,m follows

immediately.

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of objects (“cubic con-

tents”) in a (3D) triangular-based pyramid (“pile”) with m objects on each edge:

T3,m =
m(m + 1)(m + 2)

3!
=

(m + 1)3− (m + 1)

6
;

note also that T3,m , ∑m
k=1 T2,k.

Thomas Harriot was apparently the first to frame the problem of sphere packing mathematically in modern

times (see, e.g., the biography of Harriot by Rukeyser 1972). At the request of Sir Walter Raleigh, for whom
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Harriot served, among other capacities, as an instructor of astronomical navigational and on various problems

related to gunnery, Harriot (on December 12, 1591) computed, but did not publish, the number of cannonballs

in a pile with a triangular, square [m×m], and rectangular [m× (m + 1), a.k.a. “oblong”] base, as illustrated

in Figure 1.2, obtaining T3,m, Sm, and Rm respectively, where

Sm =
m

∑
k=1

k2 =
m(m + 1)(2m + 1)

6
, Rm =

m

∑
k=1

k(k + 1) = Sm + T2,m =
m(m + 1)(2m + 4)

6
.

In 1614, Harriot wrote De Numeris Triangularibus Et inde De Progressionibus Artithmeticis: Magisteria

magna (On triangular numbers and thence on arithmetic progressions: the great doctrine)1. Looking closely

at the triangular table of binomial coefficients2 on pp. 1-3 (folios 108-110) of this remarkable document, it

is seen that Harriot understood the geometric relationship between the positive integers T1,m, the “triangular

numbers” T2,m [that is, the number of spheres in a (2D) triangle with m spheres on each edge], the “pyramidal

numbers” T3,m [that is, the number of spheres in a (3D) trianglar-based pyramid with m spheres on each edge],

and the next logical steps in this arithmetic progression, given by:

T4,m ,
m

∑
k=1

T3,k =
m(m + 1)(m + 2)(m + 3)

4!
, T5,m ,

m

∑
k=1

T4,k =
m(m + 1)(m + 2)(m + 3)(m+ 4)

5!
,

etc. In particular, Harriot noticed that the (n + 1)’th element of the (n + m)’th row of this triangular table

is Tn,m. Accordingly, we may think of Tn,m as the number of spheres in an “n-dimensional pyramid” with m

spheres on each edge, with Tn,2 representing n+1 spheres configured at the corners of a regular n-dimensional

1Harriot (1614) passed through several hands before finally being published in 2009, almost 4 centuries later.
2This famous triangular table of binomial coefficients is incorrectly attributed by many in the west to Blaise Pascal (b. 1623), though

it dates back to several earlier sources, the earliest being Pingala’s Sanskrit work Chandas Shastra, written in the fifth century BC.



1.1. FINITE PACKINGS

Figure 1.2: Pyramidal stacks of spheres with triangular, square, and “oblong” (rectangular) bases. All three

stacks are subsets of the face-centered cubic lattice, discussed further in §2.3.

simplex. It is thus natural to credit Harriot (1614) with the first important steps towards the discovery of

laminated lattices, discussed further in §2.4 and §2.6.

Harriot also introduced the packing problem to Johannes Kepler, ultimately leading Kepler (1611), in

another remarkable document Strena seu de nive sexangula (The six-cornered snowflake), which also hypo-

thesized about a related atomistic physical basis for hexagonal symmetry in crystal structures of water, to

conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no other arrangement can

more spheres be packed into the same container.”

Kepler’s conjecture is patently false if considered in a finite container of a specified shape. For instance, a

2d × 2d × 2d cubic container can fit 8 spheres of diameter d if arranged in Cartesian configuration, but can
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only fit 5 spheres if arranged in a “close-packed” configuration3. It is presumed that Kepler in fact recognized

this, and thus Kepler’s conjecture is commonly understood as a conjecture regarding the densest packing

possible in the limit that the size of the container is taken to infinity (for further discusssion, see §1.2).

Permuted planets. Note in Figure 1.2 that any sphere (referred to as a “sun”) on the interior of the piles has

12 nearest neighbors (referred to as its “planets”). Considering this sun and its 12 planets in isolation, there

is in fact adequate room to permute the planets to different positions while keeping them in contact with the

sun, something like a 12-cornered Rubik’s cube with spherical pieces (see Figure 1.3). Due to the extra space

available in this configuration, it is unclear upon first inspection whether or not there is sufficient room to fit

a 13’th planet in to touch the sun while keeping all of the other 12 planets in contact with it. In 1694, Isaac

Newton conjectured this could not be done, in a famous disagreement with David Gregory, who thought it

could. Newton turned out to be right, with a complete proof first given in Schütte & van der Waerden (1953),

and a substantially simplified proof given in Leech (1956).

Cartoned cans. Moving from 16th-century stacks of cannonballs to 21st-century commerce, the question

of dense finite packings of circles and spheres finds practical relevance in a variety of packaging problems.

For example, to form a rectangular cardboard carton for 12 fl oz soda cans, 164 cm2 of cardboard per can is

needed if 18 cans are placed in a cartesian configuration with 3 rows of 6 cans per row, whereas 3.3% less

cardboard per can is needed if 18 cans are placed in a triangular configuration (within a rectangular box) with

5 rows of {4,3,4,3,4} cans per row. If an eye-catching (stackable, strong, “green”...) hexagonal cardboard

carton for the soda cans is used, with 19 cans (described in marketing terms as “18 plus 1 free”) again placed

in a triangular configuration, 17.7% less cardboard per can is required.

3For larger containers, the arrangements which pack in the greatest number of spheres (or other objects) must in general be found

numerically (see Gensane 2004, Schürmann 2006, and Friedman 2009).



1.1. FINITE PACKINGS

⇒ ⇒

Figure 1.3: Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and planetary permutations. Con-

figuration (a) is 13 of the spheres taken from the second, third, and fourth layers of the stack in the orientation

shown in Figure 1.2b, whereas configuration (c) is 13 of the spheres taken from the third, fourth, and fifth

layers of the stack in the orientation shown in Figure 1.2a [extended by one additional layer]. In both configu-

rations, the 12 “planets” (positioned around the central “sun”) are centered at the vertices of a cuboctahedron.

The planets can be permuted by “pinching” together two of the four planets on the corners of each square

face, in an alternating fashion, to form a symmetric icosahedral configuration with significant space between

each pair of planets [configuration (b)], then “pushing” apart pairs of planets in an analogous fashion to form

a different cuboctahedron. Alternatively, starting from configuration (b), identifying any pair of opposite pla-

nets as “poles”, and slightly shifting the five planets in each of the “tropics” as close as possible to their

nearest respective poles, the resulting northern and southern groupings of planets can be rotated in relation to

each other along the equator. Repeated application of these two fundamental motions can be used to permute

the planets arbitrarily.
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Catastrophic sausages. Two new questions arise when one “shrink-wraps” a number (m) of n-dimensional

spheres (resulting in a convex, fitted container), namely: what configuration of the spheres minimizes the sur-

face area of the resulting container, and what configuration minimizes the volume of the resulting container?

Both questions remain open, and are reviewed in Zong (1999). Regarding the minimim surface area question,

it was conjectured by Croft, Falconer, & Guy (1991) that the minimum surface area, for n ≥ 2 and large

m, is achieved with a roughly spherical arrangement. In contrast, regarding the minimim volume question,

it was conjectured by L. Fejes Tóth (1975) that the minimum volume, for n ≥ 5 and any m, is achieved by

placing the spheres in a line, leading to a shrink-wrapped container in the shape of a “sausage”. For n = 3, it

has been shown that a roughly spherical arrangement minimizes the volume for m = 56, m = 59 to 62, and

m ≥ 65, and it is conjectured that a sausage configuration minimizes the volume for all other m (see Gandini

& Willis 1992); for n = 4, there appears to be a similar “catastrophe” in the volume-minimizing solution,

from a sausage configuration to a roughly spherical configuration, as m is increased beyond a critical value

(Willis 1983 conjectures this critical value to be m ≈ 75000, whereas Gandini & Zucco 1992 conjectures it

to be m = 375769).

Concealed origins. Finally, L. Fejes Tóth (1959) presents a curious set of questions that arise when consi-

dering the blocking of light with a finite number of opaque unit spheres packed around the origin. The first

such question, known as Hornich’s Problem, seeks the smallest number of opaque unit spheres that comple-

tely conceal light rays emanating from a point source at the center of a transparent unit sphere at the origin.

A related question, known as L. Fejes Tóth’s Problem, seeks the smallest number of opaque spheres that

completely conceal light rays emanating from the surface of a unit sphere at the origin (e.g., in Figure 1.3,

adding additional outer planets to completely conceal the view of the sun from all angles). In 2D, the (trivial)

answer to both problems is 6, via the triangular packing indicated in Figure P.1a. In higher dimensions, both

questions remain open, and the answer differs depending on whether or not the sphere centers are restricted to



1.2. INFINITE PACKINGS

the nodal points of a lattice. For the L. Fejes Tóth’s Problem, for n ≥ 3, the answer is unbounded if restricted

to lattice points, and bounded if not. For Hornich’s Problem, the answer is bounded in both cases, with the

number of spheres, h, required in the 3D case, when not restricted to lattice points, being somewhere in the

range 30 ≤ h ≤ 42. Zong (1999) derives several of the known bounds available in both problems.

1.2 Infinite packings

In the last 300 years, many different constructions of infinite lattice and nonlattice packings have been propo-

sed in each dimension. These packings each have different packing density, covering thickness, mean-squared

quantization error, and kissing number, and their corresponding nets each have different topological density;

knowledge of these properties is essential when selecting a packing or net for any given application. We have

thus attempted to catalog these constructions and their properties thoroughly in this review (see §??).

In the characterization of density, amongst all lattice packings of a given dimension, the A2, A3, D4, D5,

E6, E7, E8, and Λ24 constructions given in §2 have been proven to be of maximum density, in Lagrange

(1773) for n = 2, Gauss (1831) for n = 3, Korkine & Zolotareff (1873, 1877) for n = 4 and 5, Blichfeldt

(1935) for n = 6 through 8, and Cohn & Kumar (2009) for n = 24. There are no such proofs of optimality

for other values of n, though the lattices Λn and Kn introduced in §2.6 are likely candidates in the range

9 ≤ n ≤ 23.

Remarkably, if one considers both lattice and nonlattice packings, proof of which packing is of maximum

density in a given dimension is still open for n > 3. It was established in Thue (1892) that A2 has the maximum

density amongst all lattice and nonlattice packings for n = 2. Considerable attention has been focused over

the centuries on the corresponding question for A3 in dimension n = 3, that is, on Kepler’s conjecture (posed

in 1611) in the limit that the container size is taken to infinity. Indeed, David Hilbert, in his celebrated list
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Figure 1.4: (a) A regular truncated octahedron, used to tile R
3 in Kelvin’s conjecture; (b) an irregular tetra-

kaidecahedron and dodecahedron, used to tile R3 in the Weaire-Phelan structure.

of 23 significant open problems in mathematics in 1900, included a generalization of Kepler’s conjecture as

part of his 18th problem (see, e.g., Milnor 1976).

Note that it is not at all obvious that an infinite packing as regular as A3 would necessarily be the packing

that maximizes density. Indeed, as mentioned in footnote 3 on page vii, nonlattice packings are known in

dimensions n = 10, 11, 13, 18, 20, and 22 that are each slightly denser than the densest known lattice packings

in these dimensions.

In three dimensions, physiologist Stephen Hales (1727), in his groundbreaking work Vegetable Staticks,

reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot, . . . by the great incumbent of weight, pressed

into the interstices of the Pease, which they adequately filled up, being therefore formed into pretty regular

dodecahedrons.”
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This report implied that many of the dilated peas in this experiment had 12 nearest neighbors and/or pen-

tagonal faces. However, the “pretty regular” qualification left a certain ambiguity, and this experiment left

mathematicians puzzled, as it is patently impossible to tile R3 with regular dodecahedra. Kelvin (1887) for-

malized the question inherent in Hales’ dilated pea experiment by asking how R
3 could be divided into

regions of equal volume while minimizing the partitional area. He conjectured the answer to be a regular

tiling of R3 with truncated octahedra, which are in fact the Voronoı̈ cells of the A∗
3 lattice (see §??). [Note

that the Voronoı̈ cell of the A3 lattice is the (face-transitive) rhombic dodecahedron, which is dual to the

cuboctahedron illustrated in Figures 1.3a,c and tiles R3 with slightly greater partitional area than does the

tiling with truncated octahedra.] Kelvin’s conjecture stood for over 100 years, until Weaire & Phelan (1994)

discovered a tiling of R3 based on irregular tetrakaidecahedra (with 2 hexagonal faces and 12 pentagonal

faces) and irregular dodecahedra (with 12 pentagonal faces); this tiling has 0.3% less partitional area than the

much more regular tiling with truncated octahedra considered by Kelvin (see Figure 1.4). In hindsight, it is

quite possible that Hales might have in fact stumbled upon the Weaire-Phelan structure in his cooking pot (in

1727!) and, seeing all of those pentagonal faces and 12-sided (as well as 14-sided) dilated peas, asserted that

what he was looking at was a culinary approximation to a tiling of R3 with regular dodecahedra, even though

such a tiling is impossible.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (no relation to Stephen) announced a long-

sought-after proof, in a remarkably difficult analysis making extensive use of computer calculations. This

proof was spread over a sequence of papers published in the years that followed (see Hales 2005). An exten-

sive discussion of this proof, which is still under mathematical scrutiny, is given in Szpiro (2003). Inspiration

for this proof was based, in part, on a strategy to prove Kepler’s conjecture proposed by L. Fejes Tóth (1953),

the first step of which is a quantitative version of the Newton-Gregory problem discussed in §1.1.
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Dense lattice packings for n ≤ 24
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There are many dense lattices more complex than the Cartesian lattice that offer superior uniformity

and nearest-neighbor configuration, as quantified by the standard metrics introduced in the Preface (namely,

packing density, covering thickness, mean-square quantization error, and kissing number). This section pro-

vides an overview of many of these lattices; the definitive comprehensive reference for this subject is Conway

& Sloane (1998), to which the reader is referred for much more detailed discussion and further references

on many of the topics discussed in this chapter. The subject of coding theory, reviewed in §??, is closely

related to the subject of such dense lattice packings (see also §??). As mentioned in the Preface, the practical

applications explored in Part II of this text leverage these constructions heavily.

2.1 Lattice terminology

The notation Ln
∼= Mn means that the lattices Ln and Mn are equivalent (when appropriately rotated and

scaled) at the specified dimension n. Also note that the four most basic families of lattices introduced in this

chapter, denoted Z
n, An, Dn, and En, are often referred to as root lattices due to their relation to the root

systems of Lie algebra.

There are three primary methods1 to define any given n-dimensional real lattice:

1A convenient alternative method for building a cloud of lattice points near the origin is based on the stencil of nearest-neighbor

points to the origin in the lattice, repeatedly shifting this stencil to each of the lattice points near the origin determined thus far in order

to create additional lattice points in the cloud. Unfortunately, this simple alternative method does not work for all lattices, such as D∗
n

and Ar
n (see §2.3 and 2.4).
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• As an explicit description of the points included in the lattice.

• As an integer linear combination (that is, a linear combination with integer coefficients) of a set of n basis

vectors bi defined in Rn+m for m ≥ 0; for convenience, we arrange these basis vectors as the columns2 of

a basis matrix3 B.

• As a union of cosets, or sets of nodal points, which themselves may or may not be lattices.

The standard forms of these definitions, as used throughout this chapter, make it straightforward to generalize

application codes that can build easily upon any of the lattices so described.

Any real (or complex) lattice Ln has associated with it a dual lattice L∗
n defined such that

L∗
n =

{

x ∈ R
n (or C

n) : x · ū ∈ Z for all u ∈ Ln

}

, (2.1)

where Z denotes the set of all integers, dot denotes the usual scalar product, and overbar denotes the usual

complex conjugate. If B is a square basis matrix for Ln, then B−T is a square basis matrix for L∗
n.

Unless specified otherwise, the word lattice in this paper implies a real lattice, defined in Rn. However,

note that it is straightforward to extend this work to complex lattices, defined in Cn. To accomplish this

extension, it is necessary to extend the concept of the integers, which are used to construct a lattice via the

“integer” linear combination of the basis vectors in a basis matrix B, as described above. There are two

primary such extensions:

2In the literature on this subject, it is more common to use a generator matrix M to describe the construction of lattices. The basis

matrix convention B used here is related simply to the corresponding generator matrix such that B = MT ; we find the basis matrix

convention to be more natural in terms of its linear algebraic interpretation.
3Note that integer linear combinations of the columns of most matrices do not produce lattices (as defined in the second paragraph

of the “gentle introduction” of the Preface). The matrices listed in §2 as basis matrices are special in this regard. Note also that basis

matrices are not at all unique, but the lattices constructed from alternative forms of them are equivalent; the forms of the basis matrices

listed in §2 were selected based on their simplicity.
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• The Gaussian integers, defined as G = {a +bi : a,b ∈ Z} where i =
√
−1, which lie on a square array in

the complex plane C.

• The Eisenstein integers, defined as E = {a+bω : a,b∈ Z} where ω = (−1+ i
√

3)/2 [note that ω3 = 1],

which lie on a triangular array in the complex plane C.

We may thus define three types of lattices from a basis matrix B:

• a real lattice, defined as a linear combination of the columns of B with integers as weights;

• a (complex) G lattice, defined as a linear combination of the columns of B with Gaussian integers as

weights; and

• a (complex) E lattice, defined as a linear combination of the columns of B with Eisenstein integers as

weights.

The special n-dimensional real, G , and E lattices formed by taking B = In×n are denoted Zn, Z[i]n, and

Z[ω]n respectively. Note also that, for any complex lattice with elements z̃ ∈ C
n, there is a corresponding

real lattice with elements x̃ ∈ R2n such that

x̃ =
(

ℜ{z̃1} ℑ{z̃1} . . . ℜ{z̃n} ℑ{z̃n}
)T

. (2.2)

The present sequence of papers focuses on the practical use of real lattice and nonlattice packings with n > 3.

Thus, in the present Part I, we only make brief use of complex lattices to simplify certain constructions.

2.2 The Cartesian lattice Zn

The Cartesian lattice, Zn, is defined Zn =
{

(x1, . . . ,xn) : xi ∈ Z
}

, and is constructed via integer linear

combination of the columns of the basis matrix B = In×n. The Cartesian lattice is self dual [(Zn)∗ ∼= Zn].
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2.3 The checkerboard lattice Dn and its dual D∗
n

The checkerboard lattice, Dn, is an n-dimensional extension of the 3-dimensional face-centered cubic (FCC,

a.k.a. cubic close packed) lattice. It is defined

Dn =
{

(x1, . . . ,xn) ∈ Z
n : x1 + . . .+ xn = even

}

, (2.3a)

and may be constructed via integer linear combination of the columns of the n×n basis matrix

BDn
=















−1 1 0

−1 −1 1

.
.
.

.
.
.

−1 1

0 −1















. (2.3b)

The dual of the checkerboard lattice, denoted D∗
n and reasonably identified as the offset Cartesian lattice,

is an n-dimensional extension of the 3-dimensional body-centered cubic (BCC) lattice. It may be written as

D∗
n = Dn ∪ ([1] + Dn)∪ ([2] + Dn)∪ ([3] + Dn) ∼= Z

n ∪ ([1] + Z
n), (2.4a)

where the coset representatives [1], [2], and [3] are defined in this case such that
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[1] =











1/2
.
.
.

1/2

1/2











, [2] =











0
.
.
.

0

1











, [3] =











1/2
.
.
.

1/2

−1/2











.

The D∗
n lattice may also be constructed via integer linear combination of the columns of the n×n basis matrix

BD∗
n
=















1 0 0.5

1 0.5

.
.
.

.

.

.

1 0.5

0 0.5















. (2.4b)

It is important to recognize that, for n ≥ 5, the contact graph of the D∗
n lattice is simply two disjoint nets

given by the contact graphs of the Zn and shifted Zn sets of lattice points upon which D∗
n may be built [see

(2.4a)]. Thus, as suggested by Conway & Sloane (1997), we introduce, for n ≥ 4, a generalized net formed by

connecting each node of the unshifted Zn set to the 2n nearest nodes on the shifted Zn set, and each node on

the shifted Zn set to the 2n nearest nodes on the unshifted Zn set. The resulting net, of coordination number

2n, is uninodal, but is not a contact graph of the corresponding sphere packing.

2.3.1 The offset checkerboard packing D+
n

The packing D+
n , reasonably identified as the offset checkerboard packing, is an n-dimensional extension of

the 3-dimensional diamond packing, and is defined simply as
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D+
n = Dn ∪ ([1] + Dn); (2.5)

note that D+
n is a lattice packing only for even n, and that D+

3 is the diamond packing (for further discussion,

see §??).

2.4 The zero-sum lattice An and its dual A∗
n

The zero-sum lattice, An, may be thought of as an n-dimensional extension of the 2-dimensional triangular

lattice; in 3 dimensions, A3
∼= D3. It is defined

An =
{

(x0, . . . ,xn) ∈ Z
n+1 : x0 + . . .+ xn = 0

}

, (2.6a)

and may be constructed via integer linear combination of the columns of the (n + 1)×n basis matrix

BAn
=















−1 0

1 −1

.
.
.

.
.
.

1 −1

0 1















, with nAn
=















1

1
.
.
.

1

1















. (2.6b)

Notice that An is constructed here via n basis vectors in n + 1 dimensions. The resulting lattice lies in an

n-dimensional subspace in Rn+1; this subspace is normal to the vector nAn . An illustrative example is A2, the

triangular 2D lattice, which may conveniently be constructed on a plane in R
3 (see Figure 2.1).



CHAPTER 2. DENSE LATTICE PACKINGS FOR N ≤ 24

Note that, starting from a (2D) triangular configuration of oranges or cannonballs (see Figure P.1a), one

can stack additional layers of oranges in a trangular configuration on top, appropriately offset from the base

layer, to build up the (3D) FCC configuration mentioned previously (see Figure 1.2a). This idea is referred to

as lamination, and will be extended further in §2.6 when considering the Λn and Kn families of lattices.

Also note that, in the special case of n = 2, the A2 lattice may also be written as

A2
∼= R2 ∪ (a+ R2), where a =

(

1/2√
3/2

)

(2.6c)

and R2 is the rectangular grid (not a lattice, nor even a nonlattice packing) obtained by stretching the Z2

lattice in the second element by a factor of
√

3.

The dual of the zero-sum lattice, denoted A∗
n, may be written as

A∗
n =

n
[

s=0

([s] + An), (2.7a)

where the n + 1 coset representatives [s], for s = 0, . . . ,n, are defined such that the k’th component of the

vector [s] is

[s]k =

{

s
n+1 k ≤ n+ 1− s,
s−n−1

n+1 otherwise.
(2.7b)

The A∗
n lattice may be constructed via integer linear combination of the columns of the (n + 1)× n basis

matrix
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Figure 2.1: A cloud of points on the A2 lattice, defined on a plane in R
3. Note that the normal vector nA2

=
(

1 1 1
)T

points directly out of the page in this view.

BA∗
n
=





















1 1 · · · 1 −n
n+1

−1 0 1
n+1

−1 1
n+1

.
.
.

.

.

.

−1 1
n+1

0 1
n+1





















, with nA∗
n
= nAn

. (2.7c)
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2.4.1 The glued zero-sum lattices Ar
n

A related family of lattice packings, developed in §12 of Coxeter (1951) and reasonably identified as the

glued zero-sum lattices Ar
n, is a family of lattices somewhere between An and A∗

n [as given in (2.7a)] defined

via the union of r translates of An for n ≥ 5:

Ar
n = An ∪ ([s] + An)∪ ([2s] + An)∪ ...∪ ([(r−1)s] + An), where r · s = n + 1, (2.8)

where the components of the “glue” vectors [s] are specified in (2.7b), and where r and s are integer divisors

of (n +1) with 1 < s < n +1 and 1 < r < n +1, excluding the case {r = 2,s = 3} for n = 5. The lattices A5
9,

A4
11, A7

13, A5
14, A8

15, A9
17, A10

19, A7
20, and A11

21 are found to have especially good covering thickness, with the last

four currently the thinnest coverings available in their respective dimensions (see Baranovskii 1994, Anzin

2002, and Sikirić, Schürmann, & Vallentin 2008). Note also that A2
7
∼= E7, A4

7
∼= E∗

7 , and A3
8
∼= E8, each of

which is discussed further below.

Note finally that the contact graphs of some of the Ar
n lattices, such as A5

9 and A4
11, are disjoint nets given

by the contact graphs of the An and shifted An sets of lattice points upon which these glued zero-sum lattices

are built [see (2.8)]. Thus, as in the case of D∗
n for n > 4 as discussed in §2.3, a generalized net may be formed

by connecting each node of the unshifted An set to the nearest nodes on the shifted An set. Again, the resulting

net is uninodal, but is not a contact graph of the corresponding sphere packing.

2.5 The E8 (Gosset), E7, & E6 lattices and their duals

The Gosset lattice E8
∼= E∗

8 , which has a (remarkable) kissing number of τ = 240, may be defined simply as

E8 = D+
8 , (2.9a)
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and may be constructed via integer linear combination of the columns of the 8×8 basis matrix

BE8
=

























2 −1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2

























. (2.9b)

The lattice E7 is defined by restricting E8, as constructed above, to a 7-dimensional subspace,

E7 = {(x1, . . . ,x8) ∈ E8 : x1 + . . .+ x8 = 0}, (2.10a)

and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE7
=

























−1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2

























, with nE7
=

























1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

























. (2.10b)
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The dual of the E7 lattice may be written as

E∗
7 = E7 ∪ ([1] + E7), where [1] =















1/4
.
.
.

1/4

−3/4

−3/4















, (2.11a)

and may be constructed directly via integer linear combination of the columns of the 8×7 basis matrix

BE∗
7
=

























−1 0 −3/4

1 −1 −3/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 1/4

0 1/4

























, with nE∗
7
= nE7

. (2.11b)

The lattice E6 is defined by further restricting E7, as defined in (2.10), to a 6-dimensional subspace,

E6 = {(x1, . . . ,x8) ∈ E7 : x1 + x8 = 0}, (2.12a)

and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix
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BE6
=

























0 1/2

−1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2

























, with NE =

























1 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

1 1/2

























=





| |
nE6

nE7

| |



 . (2.12b)

The dual of the E6 lattice may be written as

E∗
6 = E6 ∪ ([1] + E6)∪ ([2] + E6), where [1] =























0

−2/3

−2/3

1/4
.
.
.

1/4

0























, [2] = −[1], (2.13a)

and may be constructed directly via integer linear combination of the columns of the 8×6 basis matrix
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BE∗
6
=

























0 0 1/2

−1 2/3 1/2

1 −1 2/3 1/2

1 −1 −1/3 1/2

1 −1 −1/3 −1/2

1 −1/3 −1/2

−1/3 −1/2

0 0 −1/2

























, with NE∗ = NE . (2.13b)

2.6 The laminated lattices Λn and the closely-related Kn lattices

The lattices in the Λn and Kn families can be built up one dimension, or “laminate”, at a time, starting from

the integer lattice (Z ∼= Λ1
∼= K1), to triangular (A2

∼= Λ2
∼= K2), to FCC (A3

∼= D3
∼= Λ3

∼= K3), all the way

up (one layer at a time) to the remarkable Leech lattice (Λ24
∼= K24). Both families of lattices may in fact be

extended (but not uniquely) to at least n = 48.

The Leech lattice, Λ24, is the unique lattice in n = 24 dimensions with a (remarkable) kissing number

of τ = 196,560. It may be constructed via integer linear combination of the columns of the 24× 24 basis

matrix BΛ24
, which is depicted below in the celebrated Miracle Octad Generator (MOG) coordinates (see

Curtis 1976 and Conway & Sloane 1998). Further, as in the E8 → E7 → E6 progression described in §2.5, the

Λn lattices for n = 23,22, . . . ,1 may all be constructed by restricting the Λ24 lattice to smaller and smaller

subspaces via the normal vectors assembled in the matrix NΛ depicted below4.

4There are, of course, many equivalent constructions of Λ1 through Λ23 via restriction of Λ24, and the available literature on the
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subject considers these symmetries at length. The convenient form of NΛ depicted here was deduced, with some effort, from Figure 6.2

of Conway & Sloane (1998).
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BΛ24
=

1√
8





















































































































8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 −3

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 2 2 2 1

4 2 2 2 1

4 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 2 2 2 2 1

4 2 2 2 2 1

4 2 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

2 2 2 1

2 1

2 1

1





























































































































1

1











2.6. THE LAMINATED LATTICES ΛN AND THE CLOSELY-RELATED KN LATTICES

Thus, the Λ23 lattice is obtained from the points of the Λ24 lattice in R
24 (which themselves are ge-

nerated via integer linear combination of the columns of BΛ24
) which lie in the 23-dimensional subspace

orthogonal to nΛ23
. Similarly, the Λ22 lattice is obtained from the points of the Λ24 lattice which lie in

the 22-dimensional subspace orthogonal to both nΛ23
and nΛ22

, etc. Noting the block diagonal structure of

NΛ, it follows that Λn may be constructed using the basis matrix, denoted BΛn
, given by the n× n subma-

trix in the upper-left corner of BΛ24
for any n ∈ N1 = {21,20,16,9,8,5,4}. For the remaining dimensions,

n ∈ N2 = {19,18,17,15,14,13,12,11,10,7,6,3,2,1}, Λn may be constructed via the appropriate restriction

of the lattice generated by the next larger basis matrix in the set N1; for example, Λ14 may be constructed in

R
16 via restriction of the lattice generated by the basis matrix BΛ16

to the subspace normal to the vectors (in

R16) given by the first 16 elements of nΛ15
and nΛ14

.

A similar sequence of lattices, denoted Kn, may be constructed via restriction of the Leech lattice (gene-

rated via BΛ24
) in a similar fashion (for details, see Figure 6.3 of Conway & Sloane 1998). Lattices from the

Λn and/or Kn families have the maximal packing densities and kissing numbers amongst all lattices for the

entire range considered here, 1 ≤ n ≤ 24. Note that the Λn and Kn families are not equivalent in the range

7 ≤ n ≤ 17, with Λn being superior to Kn by all four metrics introduced in the Preface at most values of n

in this range, except for the narrow range 11 ≤ n ≤ 13, where in fact Kn has a slight advantage. Note also

that there is some flexibility in the definition of the lattices Λ11, Λ12, and Λ13; the branch of the Λn family

considered here is that which maximizes the kissing number τ in this range of n, and thus the corresponding

lattices are denoted Λmax
11 , Λmax

12 , and Λmax
13 . Note that K12 is referred to as the Coxeter-Todd lattice and Λ16

is referred to as the Barnes-Wall lattice.
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2.7 Numerically-generated lattices with thin coverings for n = 6 to 15

Recall from §2.1 that an n-dimensional real lattice may be defined as an integer linear combination of a set

of n basis vectors bi defined in Rn+m for m ≥ 0; that is, any lattice point may be written as

x = y1b1 + y2b2 + . . .+ ynbn = By,

where the elements {y1, . . . ,yn} of the vector y are taken as integers. The square of the distance of any

lattice point from the origin is thus given by f (y) = yT Ay, where A , BT B is known as the Gram matrix

associated with the lattice in question, and the function f (y) is referred to as the corresponding quadratic

form [note that each term of f (y) is quadratic in the elements of y]. All of the lattices studied thus far, when

scaled appropriately, are characterized by Gram matrices with integer elements, and thus their corresponding

quadratic forms f (y) have integer coefficients (and are thus referred to as integral quadratic forms).

There is particular mathematical interest in discovering (or generating numerically) both lattice and non-

lattice packings which minimize covering thickness and/or packing density. The numerical approach to this

problem studied in Schürmann & Vallentin (2006) and Sikirić, Schürmann, & Vallentin (2008) has generated

new lattices in dimensions n = 6 to 15 with the thinnest covering thicknesses known amongst all lattices5.

The lattice so generated in dimension 7 happens to correspond to an integral quadratic form, but the others,

apparently, do not.

5Gram matrices A corresponding to these 10 lattices (denoted Lc1
6 , Lc

7, Lc
8, . . . , Lc

15) are available at

http://fma2.math.uni-magdeburg.de/∼latgeo/covering table.html

(nonunique) basis matrices B corresponding to each of these lattices may be generated simply by taking the Cholesky decomposition of

the corresponding Gram matrix, as A = BT B.

http://fma2.math.uni-magdeburg.de/~latgeo/covering_table.html
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