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Preface

The field of n-dimensional sphere packings is elegant and mature in its mathematical development and cha-
racterization. However, it is still relatively limited in its practical applications, especially for n > 3. The
present text intends to open up two broad new areas for profitable application of this powerful body of mathe-
matical literature in science and engineering. Towards this end, Part I reviews the essential results available
in this field (reconciling the theoretical literature for dense and rare sphere packings, which are today largely
disjoint), catalogs the key properties of the principle dense and rare sphere packings and corresponding nets
available up to n = 24 (including hundreds of values not previously known), and extends the study of regular
rare sphere packings and nets to n > 3 dimensions (an area which up to now has been largely unexplored).

Part II then builds from the presentation in Part I to develop three new algorithms (LABDOGS, aDOGS,
and latticeMADS) for performing efficient derivative-free optimization in non-differentiable problems with
expensive function evaluations, leveraging the lattices derivd from dense sphere packings as an alternati-
ve to Cartesian grids to coordinate the search. We pay particular attention to the improved uniformity and
nearest-neighbor configuration of the lattices used over their Cartesian alternatives, and the improvements in



efficiency of optimization algorithms coordinated by such lattices that follow as a direct consequence.

Finally, Part IIT builds from the presentation in Part I to develop new interconnect strategies for switchless
multiprocessor computer systems, leveraging the nets derived from rare sphere packings as alternatives to
Cartesian grids to establish structured, fast, and inexpensive interconnects. We pay particular attention to the
improved coordination sequences facilitated by such nets over their Cartesian alternatives, and the improve-
ments in the rate of spread of information across the computer system that follow as a direct consequence.

In the applications discussed in Parts II and III, Cartesian grids are used as the default choice today in
almost all related realizations. A primary goal of this text is to subvert this dominant Cartesian paradigm and
to establish, via the examples we have chosen to highlight, that significant performance gains may be realized
in practical engineering applications by leveraging n-dimensional sphere packings appropriately.

A gentle introduction to sphere packing theory

An n-dimensional infinite sphere packing is simply an array of nodal points in IR" obtained via the packing
of identical n-dimensional spheres. By packing, we mean an equilibrium configuration of spheres, each with
at least 2 nearest neighbors, against which a repellant force is applied. Many packings investigated in the
literature are stable packings, meaning that there is a restoring force associated with any small movement
of any node of the packing; this requires each sphere in the (n-dimensional) packing to have at least n 4 1
neighbors. Unstable packings with lower nearest-neighbor counts are also of interest. By replacing each
sphere in an n-dimensional packing with a nodal point (representing, e.g., a computer), and connecting those
nodal points which are nearest neighbors, a net (a.k.a. interconnect or contact graph) is formed'.

'As mentioned in the second-to-last paragraph of §2.3, it is natural with certain sphere packings (for example, D}, A%, and the

packings associated with the 7,70 and T;%° nets) to define nets which are not contact graphs of the corresponding sphere packings by



An n-dimensional real lattice (a.k.a. lattice packing) is a sphere packing which is shift invariant (that is,
which looks identical upon shifting any nodal point to the origin); this shift invariance generally makes lattice
packings simpler to describe and enumerate than their nonlattice alternatives. Note that there are many regu-
lar” sphere packings which are not shift invariant [the nonlattice packings corresponding to the honeycomb
net in 2D and the diamond and quartz nets in 3D are some well-known examples]. We will focus our attention
in this text on those packings and nets which are at least uninodal (that is, which look identical upon shifting
any nodal point to the origin and rotating and reflecting appropriately). For dense sphere packings, from a
practical perspective, lattice packings are essentially® as good a choice as their more cumbersome nonlattice
alternatives for n < 24 in terms of the four metrics defined below (that is, for maximizing packing density and
kissing number and minimizing covering thickness and quantization error). However, the best rare sphere
packings (with small kissing number) are all nonlattice packings.

As illustrated in Table P.1 and Figure P.1, we may introduce the subject of n-dimensional sphere packings
by focusing our attention first on the n = 2 case: specifically, on the triangular* lattice (A5), the square
lattice (Z?), and the honeycomb nonlattice packing (A;r ). The characteristics of such sphere packings may be
quantified by the following measures:

e The packing radius (a.k.a. error-correction radius) of a packing, p, is the maximal radius of the spheres in
a set of identical nonoverlapping spheres centered at each nodal point.

connecting non-nearest-neighbor points.

2The regularity of a nonlattice packing is quantified precisely in §4.1.

3For n =10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denoted Pioc, Piia> Pi3a» Big> By» A3,) that are 8.3%, 9.6%,
9.6%, 4.0%, 5.2%, and 15.2% denser then the corresponding best known lattice packings (Conway & Sloane 1998, p. xix); to put this
into perspective, the density of Ayp is over 10° times the density of 423

#Note that many in this field refer to the A, lattice (Figure P.1a,b) as “hexagonal”. We prefer the unambiguous name “triangular” to
avoid confusion with the honeycomb nonlattice packing (Figure P.1e,f).



‘ n ‘ packing ‘ name H A ‘ ® ‘ G H T ‘ tdio
A triangular 0.9069 12092 | 0.08019 6 331
2 z? square 0.7854 1.5708 | 0.08333 4 221
A;r honeycomb 0.6046 2.4184 0.09623 3 166
Eg Gosset 0.2537 4.059 | 0.07168 240 1,006,201,681
z$ Cartesian 0.01585 64.94 | 0.08333 16 1,256,465
8 & 5.590e-4 49.89 0.09206 4 37,009
(anstabic) Y0 23274 | 8731 | 0.09266 3 2290
A Leech 0.001930 7.904 | 0.06577 || 196560 > 101
Mg Cartesian || 1.150e-10 | 4,200,263 | 0.08333 48 24,680,949,041

Table P.1. Characteristics of selected lattice and uninodal nonlattice packings and nets. Note that n = 24 is a
natural stopping point in this study. It is special because it is the only integer n > 1 that satisfies the equation
12422 + ... +n®> = m? where m is itself an integer; as a consequence, a particularly uniform lattice with a
large number of symmetries is available in this dimension.

e The packing density of a packing, A, is the fraction of the volume of the domain included within a set
of identical non-overlapping spheres of radius p centered at each nodal point on the packing. Packings that
maximize this metric are referred to as close-packed.

e The covering radius of a packing, R, is the maximum distance between any point in the domain and its



nearest nodal point on the packing. The deep holes of a packing are those points which are at a distance R
from all of their nearest neighbors. Typical vectors from a nodal point to the nearest deep holes in a lattice
packing are often denoted [1], [2], etc.

e The covering thickness of a packing, @, is the number of spheres of radius R centered at each nodal point
containing an arbitrary point in the domain, averaged over the domain.

e The Voronoi cell of a nodal point in a packing, Q(P;), consists of all points in the domain that are at least
as close to the nodal point P; as they are to any other nodal point P;.

e The mean squared quantization error per dimension of a lattice or uninodal nonlattice packing, G, is the
average mean square distance of any point in the domain to its nearest nodal point, normalized by n times the
appropriate power of the volume, V, of the Voronoi cell. Shifting the origin to be at the centroid of a Voronot
cell A(P,), it is given by

S

G=—— where S:/ x|?dx, v:/ dx. (1)
nVor () ()

e The kissing number (a.k.a. error coefficient) of a lattice or uninodal nonlattice packing, T, is the number
of nearest neighbors to any given nodal point in the packing. That is, it is the number of spheres of radius p
centered at the nodal points of the packing that touch, or “kiss”, the sphere of radius p at the origin.

e The coordination number of a net (derived from a sphere packing, as discussed previously) is the first
number of the net’s coordination sequence, the k’th element of which is given by tdy —tdy_1, where td,
which quantifies the net’s local topological density, is the total number of nodes reached via k hops or less
from the origin in the net’.

5In most cases, the natural net to form from a sphere packing is the contact graph; in such cases, the kissing number, T, and the



Certain applications, such as those explored in Part II, require dense lattices. There are two key drawbacks
with Cartesian approaches for such applications. First, the discretization of space is significantly less uniform
when using the Cartesian grid as opposed to the available alternatives, as measured by the packing density A,
the covering thickness ®, and the mean-squared quantization error per dimension, G (see Table P.1). Second,
the configuration of nearest-neighbor gridpoints is significantly more limited when using the Cartesian grid,
as measured by the kissing number T, which is an indicator of the degree of flexibility available when selecting
from nearest-neighbor points. As seen by comparing the n = 2, n = 8, and n = 24 cases in Table P.1, these
drawbacks become increasingly substantial as the dimension # is increased; by the dimension n = 24, the
Cartesian grid has

a factor of 0.001930/1.1501e — 10~ 17,000,000 worse (lower) packing density,

a factor of 4,200,263 /7.9035 = 530,000 worse (higher) covering thickness,

a factor of 0.08333/0.0658 = 1.27 worse (higher) mean-squared quantization error, and
a factor of 196560/48 ~ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus, the selection of the Cartesian grid, by default, for applica-
tions requiring dense (that is, uniform) lattices with n > 3 is simply untenable.

Other applications, such as those explored in Part III, require regular nets which, with low coordination
number, connect to a large number of nodes with each successive hop from the origin, as quantified by the
net’s coordination sequence. As mentioned previously, a useful measure of a net’s topological density is given,
e.g., by tdjp, which is the number of distinct nodes within 10 hops of the origin. Note that the coordination

coordination number are equal. As mentioned previously, it is natural with certain sphere packings to define nets which are not contact
graphs by connecting non-nearest-neighbor points; in such cases, the kissing number (a property of the sphere packing) and the coordi-
nation number (as defined here, a property of a corresponding net) are, in general, not equal. We find this clear semantical distinction to
be useful to prevent confusion between these two distinct concepts; note that some authors (e.g., Conway & Sloane 1998) do not make
this distinction.



number of the n-dimensional Cartesian grid is 2n; the coordination number of the alternative n-dimensional
constructions introduced in §4 are as small as 3 or 4, while the topological density increases rapidly as 7 is
increased (compare, e.g., the values of tdj¢ for A;‘ and Z2, with T = 3 and T = 4 respectively, to those for
Ygo and Vgo in Table P.1); it is thus seen that, for applications requiring graphs with low coordination number
and high topological density, the selection of the Cartesian grid, by default, is also untenable.

We are thus motivated to make the fundamental results of both dense and rare n-dimensional sphere
packing theory more broadly accessible to the science and engineering community, and to illustrate how this
powerful body of theory may be put to use in important new applications of practical relevance. Towards
this end, Part I succinctly reviews and extends several significant results in this mature and sophisticated
field, inter-relating the literature on dense and rare packings, which is today largely disjoint. These results are
leveraged heavily in the applications described in Parts II and III. We note that, beyond providing an up-to-
date and synthetic review of this otherwise difficult subject in a (hopefully) accessible language, a significant
number of new computations, constructions, algorithms, metrics, and codes are also reported in Part I [the
reader is referred specifically to §3, §4.4.1 through §4.4.7, §4.5, and §6.1.5].
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Chapter 1

Historical retrospective

Contents
1.1 Finitepackings . . . o v v v v v i it i i i it e e e e e e e e e e e e 4
1.2 Infinite packings . . . . o ¢ o v i i i i i i it i e e e e e e e e e e e e e 11

The mathematical characterization of sphere packings has a long and rich history. Some recent articles
and popular books recount this history in detail, including Zong (1999), Szpiro (2003), Hales (2006), and Aste
& Weaire (2008). The purpose of the present Part I is not to repeat these historical retrospectives, which these



CHAPTER 1. HISTORICAL RETROSPECTIVE

sources do quite adequately, but to characterize, catalog, and extend the infinite packings available today to
facilitate their practical application in new fields. Nonetheless, we would remiss if we didn’t at least provide
a brief historical context to this field, which we attempt in this short chapter.

1.1 Finite packings

Mystic marbles. We begin by defining, for m > 1, a notation to build from:

m
To.m £1, Ty m £ Z Tox = m (the positive integers).
k=1

In the sixth century BC, Pythagoras and his secret society of numerologists, the Pythagoreans, discovered
geometrically (see Figure 1.1, and pp. 43-50 of Heath 1931) the formula for the number of marbles placed in
a (2D) triangle (that is, the “triangular numbers”):

m
Tom = Z Tiy=m(m+1)/2.
k=1

Stacked spheres. The earliest known mathematical work to discuss the (3D) stacking of objects is a Sanskrit
document The Aryabhatiya of Aryabhata (499 AD; see Clark 1930, p. 37), which states:

“In the case of an upaciti [lit., ‘pile’] which has ... the product of three terms, having the number of terms
for the first term and one as the common difference, divided by six, is the citighana [lit., ‘cubic contents of
the pile’]. Or, the cube of the number of terms plus one, minus the cube root of this cube, divided by six.”



1.1. FINITE PACKINGS

Figure 1.1: (left) Ten marbles placed in a triangle [referred to by the Pythagoreans as a teTpaktic, and
upon which they placed a particular mystic significance], and (right) the Pythagoreans’ placement of two
triangular groups of marbles into an “oblong” m x (m+ 1) rectangle, from which the formula for 75, follows
immediately.

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of objects (“cubic con-
tents”) in a (3D) triangular-based pyramid (“pile”) with m objects on each edge:

e mm+1)(m+2)  (m+1)°—(m+1)
3m = 3l = 3 ;

note also that 73, £ Yir i Dok
Thomas Harriot was apparently the first to frame the problem of sphere packing mathematically in modern
times (see, e.g., the biography of Harriot by Rukeyser 1972). At the request of Sir Walter Raleigh, for whom
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Harriot served, among other capacities, as an instructor of astronomical navigational and on various problems
related to gunnery, Harriot (on December 12, 1591) computed, but did not publish, the number of cannonballs
in a pile with a triangular, square [m X m], and rectangular [m x (m +1),ak.a. “oblong”] base, as illustrated
in Figure 1.2, obtaining 73 ,,, S,,, and R,, respectively, where

m 1)(2m+ 1 m 1)(2m + 4
Su= 3 2= Mt )6( M) Ry = Yk 1) = Syt T = M )6( mt4)
k=1 k=1

In 1614, Harriot wrote De Numeris Triangularibus Et inde De Progressionibus Artithmeticis: Magisteria
magna (On triangular numbers and thence on arithmetic progressions: the great doctrine)'. Looking closely
at the triangular table of binomial coefficients> on pp. 1-3 (folios 108-110) of this remarkable document, it
is seen that Harriot understood the geometric relationship between the positive integers 77 ,, the “triangular
numbers” 15, [that is, the number of spheres in a (2D) triangle with m spheres on each edge], the “pyramidal
numbers” 73 ,, [that is, the number of spheres in a (3D) trianglar-based pyramid with m spheres on each edge],
and the next logical steps in this arithmetic progression, given by:

i m(m+1)(m+2)(m+3) i m(m+1)(m+2)(m+3)(m+4)

Tam = k; Ty = 1 , Tsp = /;1 Ty = 5 ,

etc. In particular, Harriot noticed that the (n 4+ 1)’th element of the (n 4 m)’th row of this triangular table
is T, m. Accordingly, we may think of 7,,,, as the number of spheres in an “n-dimensional pyramid” with m
spheres on each edge, with T}, » representing n + 1 spheres configured at the corners of a regular n-dimensional

"Harriot (1614) passed through several hands before finally being published in 2009, almost 4 centuries later.
2This famous triangular table of binomial coefficients is incorrectly attributed by many in the west to Blaise Pascal (b. 1623), though
it dates back to several earlier sources, the earliest being Pingala’s Sanskrit work Chandas Shastra, written in the fifth century BC.



1.1. FINITE PACKINGS

Figure 1.2: Pyramidal stacks of spheres with triangular, square, and “oblong” (rectangular) bases. All three
stacks are subsets of the face-centered cubic lattice, discussed further in §2.3.

simplex. It is thus natural to credit Harriot (1614) with the first important steps towards the discovery of
laminated lattices, discussed further in §2.4 and §2.6.

Harriot also introduced the packing problem to Johannes Kepler, ultimately leading Kepler (1611), in
another remarkable document Strena seu de nive sexangula (The six-cornered snowflake), which also hypo-
thesized about a related atomistic physical basis for hexagonal symmetry in crystal structures of water, to
conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no other arrangement can
more spheres be packed into the same container.”

Kepler’s conjecture is patently false if considered in a finite container of a specified shape. For instance, a
2d x 2d x 2d cubic container can fit 8 spheres of diameter d if arranged in Cartesian configuration, but can
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only fit 5 spheres if arranged in a “close-packed” configuration®. It is presumed that Kepler in fact recognized
this, and thus Kepler’s conjecture is commonly understood as a conjecture regarding the densest packing
possible in the limit that the size of the container is taken to infinity (for further discusssion, see §1.2).

Permuted planets. Note in Figure 1.2 that any sphere (referred to as a “sun”) on the interior of the piles has
12 nearest neighbors (referred to as its “planets”). Considering this sun and its 12 planets in isolation, there
is in fact adequate room to permute the planets to different positions while keeping them in contact with the
sun, something like a 12-cornered Rubik’s cube with spherical pieces (see Figure 1.3). Due to the extra space
available in this configuration, it is unclear upon first inspection whether or not there is sufficient room to fit
a 13’th planet in to touch the sun while keeping all of the other 12 planets in contact with it. In 1694, Isaac
Newton conjectured this could not be done, in a famous disagreement with David Gregory, who thought it
could. Newton turned out to be right, with a complete proof first given in Schiitte & van der Waerden (1953),
and a substantially simplified proof given in Leech (1956).

Cartoned cans. Moving from 16th-century stacks of cannonballs to 21st-century commerce, the question
of dense finite packings of circles and spheres finds practical relevance in a variety of packaging problems.
For example, to form a rectangular cardboard carton for 12 fl 0z soda cans, 164 cm? of cardboard per can is
needed if 18 cans are placed in a cartesian configuration with 3 rows of 6 cans per row, whereas 3.3% less
cardboard per can is needed if 18 cans are placed in a triangular configuration (within a rectangular box) with
5 rows of {4,3,4,3,4} cans per row. If an eye-catching (stackable, strong, “green”...) hexagonal cardboard
carton for the soda cans is used, with 19 cans (described in marketing terms as “18 plus 1 free”) again placed
in a triangular configuration, 17.7% less cardboard per can is required.

3For larger containers, the arrangements which pack in the greatest number of spheres (or other objects) must in general be found
numerically (see Gensane 2004, Schiirmann 2006, and Friedman 2009).
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Figure 1.3: Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and planetary permutations. Con-
figuration (a) is 13 of the spheres taken from the second, third, and fourth layers of the stack in the orientation
shown in Figure 1.2b, whereas configuration (c) is 13 of the spheres taken from the third, fourth, and fifth
layers of the stack in the orientation shown in Figure 1.2a [extended by one additional layer]. In both configu-
rations, the 12 “planets” (positioned around the central “sun”) are centered at the vertices of a cuboctahedron.
The planets can be permuted by “pinching” together two of the four planets on the corners of each square
face, in an alternating fashion, to form a symmetric icosahedral configuration with significant space between
each pair of planets [configuration (b)], then “pushing” apart pairs of planets in an analogous fashion to form
a different cuboctahedron. Alternatively, starting from configuration (b), identifying any pair of opposite pla-
nets as “poles”, and slightly shifting the five planets in each of the “tropics” as close as possible to their
nearest respective poles, the resulting northern and southern groupings of planets can be rotated in relation to
each other along the equator. Repeated application of these two fundamental motions can be used to permute
the planets arbitrarily.
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Catastrophic sausages. Two new questions arise when one “shrink-wraps” a number () of n-dimensional
spheres (resulting in a convex, fitted container), namely: what configuration of the spheres minimizes the sur-
face area of the resulting container, and what configuration minimizes the volume of the resulting container?
Both questions remain open, and are reviewed in Zong (1999). Regarding the minimim surface area question,
it was conjectured by Croft, Falconer, & Guy (1991) that the minimum surface area, for n > 2 and large
m, is achieved with a roughly spherical arrangement. In contrast, regarding the minimim volume question,
it was conjectured by L. Fejes Té6th (1975) that the minimum volume, for n > 5 and any m, is achieved by
placing the spheres in a line, leading to a shrink-wrapped container in the shape of a “sausage”. For n = 3, it
has been shown that a roughly spherical arrangement minimizes the volume for m = 56, m = 59 to 62, and
m > 65, and it is conjectured that a sausage configuration minimizes the volume for all other m (see Gandini
& Willis 1992); for n = 4, there appears to be a similar “catastrophe” in the volume-minimizing solution,
from a sausage configuration to a roughly spherical configuration, as m is increased beyond a critical value
(Willis 1983 conjectures this critical value to be m ~ 75000, whereas Gandini & Zucco 1992 conjectures it
to be m = 375769).

Concealed origins. Finally, L. Fejes T6th (1959) presents a curious set of questions that arise when consi-
dering the blocking of light with a finite number of opaque unit spheres packed around the origin. The first
such question, known as Hornich’s Problem, seeks the smallest number of opaque unit spheres that comple-
tely conceal light rays emanating from a point source at the center of a transparent unit sphere at the origin.
A related question, known as L. Fejes T6th’s Problem, seeks the smallest number of opaque spheres that
completely conceal light rays emanating from the surface of a unit sphere at the origin (e.g., in Figure 1.3,
adding additional outer planets to completely conceal the view of the sun from all angles). In 2D, the (trivial)
answer to both problems is 6, via the triangular packing indicated in Figure P.1a. In higher dimensions, both
questions remain open, and the answer differs depending on whether or not the sphere centers are restricted to
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the nodal points of a lattice. For the L. Fejes T6th’s Problem, for n > 3, the answer is unbounded if restricted
to lattice points, and bounded if not. For Hornich’s Problem, the answer is bounded in both cases, with the
number of spheres, A, required in the 3D case, when not restricted to lattice points, being somewhere in the
range 30 < h < 42. Zong (1999) derives several of the known bounds available in both problems.

1.2 Infinite packings

In the last 300 years, many different constructions of infinite lattice and nonlattice packings have been propo-
sed in each dimension. These packings each have different packing density, covering thickness, mean-squared
quantization error, and kissing number, and their corresponding nets each have different topological density;
knowledge of these properties is essential when selecting a packing or net for any given application. We have
thus attempted to catalog these constructions and their properties thoroughly in this review (see §3).

In the characterization of density, amongst all lattice packings of a given dimension, the Ay, A3, D4, Ds,
Eg, E7, Eg, and A4 constructions given in §2 have been proven to be of maximum density, in Lagrange
(1773) for n = 2, Gauss (1831) for n = 3, Korkine & Zolotareff (1873, 1877) for n = 4 and 5, Blichfeldt
(1935) for n = 6 through 8, and Cohn & Kumar (2009) for n = 24. There are no such proofs of optimality
for other values of n, though the lattices A, and K,, introduced in §2.6 are likely candidates in the range
9 <n<23.

Remarkably, if one considers both lattice and nonlattice packings, proof of which packing is of maximum
density in a given dimension is still open for n > 3. It was established in Thue (1892) that A, has the maximum
density amongst all lattice and nonlattice packings for n = 2. Considerable attention has been focused over
the centuries on the corresponding question for Az in dimension n = 3, that is, on Kepler’s conjecture (posed
in 1611) in the limit that the container size is taken to infinity. Indeed, David Hilbert, in his celebrated list
of 23 significant open problems in mathematics in 1900, included a generalization of Kepler’s conjecture as
part of his 18th problem (see, e.g., Milnor 1976).
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Figure 1.4: (a) A regular truncated octahedron, used to tile R? in Kelvin’s conjecture; (b) an irregular tetra-
kaidecahedron and dodecahedron, used to tile IR? in the Weaire-Phelan structure.

Note that it is not at all obvious that an infinite packing as regular as A3 would necessarily be the packing
that maximizes density. Indeed, as mentioned in footnote 3 on page vii, nonlattice packings are known in
dimensions n = 10, 11, 13, 18, 20, and 22 that are each slightly denser than the densest known lattice packings
in these dimensions.

In three dimensions, physiologist Stephen Hales (1727), in his groundbreaking work Vegetable Staticks,
reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot, . . . by the great incumbent of weight, pressed
into the interstices of the Pease, which they adequately filled up, being therefore formed into pretty regular
dodecahedrons.”

This report implied that many of the dilated peas in this experiment had 12 nearest neighbors and/or pen-
tagonal faces. However, the “pretty regular” qualification left a certain ambiguity, and this experiment left
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mathematicians puzzled, as it is patently impossible to tile R?> with regular dodecahedra. Kelvin (1887) for-
malized the question inherent in Hales’ dilated pea experiment by asking how IR? could be divided into
regions of equal volume while minimizing the partitional area. He conjectured the answer to be a regular
tiling of R? with truncated octahedra, which are in fact the Voronoi cells of the A3 lattice (see §4.4.3). [No-
te that the Voronoi cell of the A3 lattice is the (face-transitive) rhombic dodecahedron, which is dual to the
cuboctahedron illustrated in Figures 1.3a,c and tiles IR® with slightly greater partitional area than does the
tiling with truncated octahedra.] Kelvin’s conjecture stood for over 100 years, until Weaire & Phelan (1994)
discovered a tiling of IR? based on irregular tetrakaidecahedra (with 2 hexagonal faces and 12 pentagonal
faces) and irregular dodecahedra (with 12 pentagonal faces); this tiling has 0.3% less partitional area than the
much more regular tiling with truncated octahedra considered by Kelvin (see Figure 1.4). In hindsight, it is
quite possible that Hales might have in fact stumbled upon the Weaire-Phelan structure in his cooking pot (in
1727!) and, seeing all of those pentagonal faces and 12-sided (as well as 14-sided) dilated peas, asserted that
what he was looking at was a culinary approximation to a tiling of R with regular dodecahedra, even though
such a tiling is impossible.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (no relation to Stephen) announced a long-
sought-after proof, in a remarkably difficult analysis making extensive use of computer calculations. This
proof was spread over a sequence of papers published in the years that followed (see Hales 2005). An exten-
sive discussion of this proof, which is still under mathematical scrutiny, is given in Szpiro (2003). Inspiration
for this proof was based, in part, on a strategy to prove Kepler’s conjecture proposed by L. Fejes T6th (1953),
the first step of which is a quantitative version of the Newton-Gregory problem discussed in §1.1.
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Dense lattice packings for n < 24
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There are many dense lattices more complex than the Cartesian lattice that offer superior uniformity
and nearest-neighbor configuration, as quantified by the standard metrics introduced in the Preface (namely,
packing density, covering thickness, mean-square quantization error, and kissing number). This section pro-
vides an overview of many of these lattices; the definitive comprehensive reference for this subject is Conway
& Sloane (1998), to which the reader is referred for much more detailed discussion and further references on
many of the topics discussed in this chapter. The subject of coding theory, reviewed in §5, is closely related to
the subject of such dense lattice packings (see also §6). As mentioned in the Preface, the practical applications
explored in Part IT of this text leverage these constructions heavily.

2.1 Lattice terminology

The notation L, = M, means that the lattices L, and M,, are equivalent (when appropriately rotated and
scaled) at the specified dimension n. Also note that the four most basic families of lattices introduced in this
chapter, denoted Z", A,, D,, and E,, are often referred to as root lattices due to their relation to the root
systems of Lie algebra.

There are three primary methods' to define any given n-dimensional real lattice:

e As an explicit description of the points included in the lattice.

'A convenient alternative method for building a cloud of lattice points near the origin is based on the stencil of nearest-neighbor
points to the origin in the lattice, repeatedly shifting this stencil to each of the lattice points near the origin determined thus far in order
to create additional lattice points in the cloud. Unfortunately, this simple alternative method does not work for all lattices, such as Dj;
and A, (see §2.3 and 2.4).
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e As an integer linear combination (that is, a linear combination with integer coefficients) of a set of n basis
vectors b’ defined in R*1” for m > 0; for convenience, we arrange these basis vectors as the columns? of
a basis matrix® B.
e As a union of cosets, or sets of nodal points, which themselves may or may not be lattices.
The standard forms of these definitions, as used throughout this chapter, make it straightforward to generalize
application codes that can build easily upon any of the lattices so described.
Any real (or complex) lattice L, has associated with it a dual lattice L, defined such that

Ly={xeR"(orC") : x-0e€Z forall ueL,}, (2.1

where Z denotes the set of all integers, dot denotes the usual scalar product, and overbar denotes the usual
complex conjugate. If B is a square basis matrix for L,, then B~ is a square basis matrix for L.

Unless specified otherwise, the word lattice in this paper implies a real lattice, defined in IR”. However,
note that it is straightforward to extend this work to complex lattices, defined in C". To accomplish this
extension, it is necessary to extend the concept of the integers, which are used to construct a lattice via the
“integer” linear combination of the basis vectors in a basis matrix B, as described above. There are two
primary such extensions:

e The Gaussian integers, defined as ¢ = {a+bi : a,b € Z} where i = \/—1, which lie on a square array in
the complex plane C.

’In the literature on this subject, it is more common to use a generator matrix M to describe the construction of lattices. The basis
matrix convention B used here is related simply to the corresponding generator matrix such that B = M”; we find the basis matrix
convention to be more natural in terms of its linear algebraic interpretation.

3Note that integer linear combinations of the columns of most matrices do not produce lattices (as defined in the second paragraph
of the “gentle introduction” of the Preface). The matrices listed in §2 as basis matrices are special in this regard. Note also that basis
matrices are not at all unique, but the lattices constructed from alternative forms of them are equivalent; the forms of the basis matrices
listed in §2 were selected based on their simplicity.
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e The Eisenstein integers, defined as & = {a+bw : a,b € Z} where ® = (—1+4iv/3) /2 [note that ®* = 1],
which lie on a triangular array in the complex plane C.

‘We may thus define three types of lattices from a basis matrix B:

e areal lattice, defined as a linear combination of the columns of B with integers as weights;

e a (complex) ¥ lattice, defined as a linear combination of the columns of B with Gaussian integers as
weights; and

e a (complex) & lattice, defined as a linear combination of the columns of B with Eisenstein integers as
weights.

The special n-dimensional real, ¢, and & lattices formed by taking B = I,x, are denoted Z", Z[i]", and

Z|w]" respectively. Note also that, for any complex lattice with elements Z € C", there is a corresponding

real lattice with elements % € IR?" such that

=%z} S{ar .. Rar @) 2.2)

The present sequence of papers focuses on the practical use of real lattice and nonlattice packings with n > 3.
Thus, in the present Part I, we only make brief use of complex lattices to simplify certain constructions.

2.2 The Cartesian lattice Z"

The Cartesian lattice, Z"", is defined Z" = {(xi,...,x,) : xi € Z}, and is constructed via integer linear
combination of the columns of the basis matrix B = I,,x,. The Cartesian lattice is self dual [(Z")* = Z"].
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2.3 The checkerboard lattice D, and its dual D},

The checkerboard lattice, D,,, is an n-dimensional extension of the 3-dimensional face-centered cubic (FCC,
a.k.a. cubic close packed) lattice. It is defined

Dy ={(x1.....xn) €Z" : x1 +...+x, = even}, (2.3a)

and may be constructed via integer linear combination of the columns of the n x n basis matrix

-1 1 0
-1 -1 1

Bp, = . (2.3b)

The dual of the checkerboard lattice, denoted D}, and reasonably identified as the offset Cartesian lattice,
is an n-dimensional extension of the 3-dimensional body-centered cubic (BCC) lattice. It may be written as

D} = Dy U([1]4+D,) U([2] + D) U (3] + D) 2 2" U (1] + 2Z7), (2.42)

where the coset representatives 1], [2], and [3] are defined in this case such that
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1/2 0 1/2
1l = s 2] = , 3] =
[1] 1 2] 0 3] U

1/2 1 —-1/2

The D; lattice may also be constructed via integer linear combination of the columns of the n x n basis matrix

1 0 0.5
1 0.5
Bp: = . . (2.4b)
1 05
0 0.5

It is important to recognize that, for n > 5, the contact graph of the D} lattice is simply two disjoint nets
given by the contact graphs of the Z" and shifted Z" sets of lattice points upon which D} may be built [see
(2.4a)]. Thus, as suggested by Conway & Sloane (1997), we introduce, for n > 4, a generalized net formed by
connecting each node of the unshifted Z" set to the 2" nearest nodes on the shifted Z" set, and each node on
the shifted Z" set to the 2" nearest nodes on the unshifted Z" set. The resulting net, of coordination number
2", is uninodal, but is not a contact graph of the corresponding sphere packing.

2.3.1 The offset checkerboard packing D;"

The packing D;', reasonably identified as the offset checkerboard packing, is an n-dimensional extension of
the 3-dimensional diamond packing, and is defined simply as

D, =D, U([1]+Dy); (2.5)
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note that D, is a lattice packing only for even n, and that D;r is the diamond packing (for further discussion,
see §4.4.1).

2.4 The zero-sum lattice A, and its dual A},

The zero-sum lattice, A,, may be thought of as an n-dimensional extension of the 2-dimensional triangular
lattice; in 3 dimensions, A3 =2 Ds. It is defined

An = {(x05--%0) €Z" i xg+ .. 42, =0}, (2.62)

and may be constructed via integer linear combination of the columns of the (n+ 1) x n basis matrix

~1 0 1
- 1

By, = SO . owith  my, =] (2.6b)
1 -1 1
0 1 1

Notice that A, is constructed here via n basis vectors in n 4 1 dimensions. The resulting lattice lies in an
n-dimensional subspace in IR”*!; this subspace is normal to the vector ny,. An illustrative example is A2, the
triangular 2D lattice, which may conveniently be constructed on a plane in IR? (see Figure 2.1).

Note that, starting from a (2D) triangular configuration of oranges or cannonballs (see Figure P.1a), one
can stack additional layers of oranges in a trangular configuration on top, appropriately offset from the base
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layer, to build up the (3D) FCC configuration mentioned previously (see Figure 1.2a). This idea is referred to
as lamination, and will be extended further in §2.6 when considering the A, and K,, families of lattices.

Also note that, in the special case of n = 2, the A, lattice may also be written as
1/2
Ay 2 RyU(a+R;), where a= V3/2 (2.6¢)

and R, is the rectangular grid (not a lattice, nor even a nonlattice packing) obtained by stretching the Z>
lattice in the second element by a factor of \/§ .

The dual of the zero-sum lattice, denoted A}, may be written as

n

Ay = ([s]+An), (2.7a)
s=0

where the n 4 1 coset representatives [s}, for s = 0,...,n, are defined such that the k’th component of the
vector [s] is

- k<n+1-s,
e = 9 Et o er (2.7b)
T otherwise.

The A} lattice may be constructed via integer linear combination of the columns of the (n+ 1) X n basis
matrix
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Figure 2.1: A cloud of points on the A» lattice, defined on a plane in R3. Note that the normal vector ny, =

( 111 )T points directly out of the page in this view.

BA; = . s with Ny =My, . (2.7¢)
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2.4.1 The glued zero-sum lattices A;,

A related family of lattice packings, developed in §12 of Coxeter (1951) and reasonably identified as the
glued zero-sum lattices A}, is a family of lattices somewhere between A, and A;, [as given in (2.7a)] defined
via the union of r translates of A,, forn > 5:

Al =A,U([s] +An) U([2s] +A,) U..U([(r—1)s] +A,), where r-s=n+1, (2.8)

where the components of the “glue” vectors [s] are specified in (2.7b), and where r and s are integer divisors
of (n+1) with1 <s<n+1and1<r<n+1,excluding the case {r = 2,5 = 3} for n = 5. The lattices A3,
Ay, Al A3, ASS, AD, ALY, AT, and AL} are found to have especially good covering thickness, with the last
four currently the thinnest coverings available in their respective dimensions (see Baranovskii 1994, Anzin
2002, and Sikiri¢, Schiirmann, & Vallentin 2008). Note also that A2 = E7, A3 = EZ, and A3 = Es, each of
which is discussed further below.

Note finally that the contact graphs of some of the A, lattices, such as A3 and A{,, are disjoint nets given
by the contact graphs of the A,, and shifted A, sets of lattice points upon which these glued zero-sum lattices
are built [see (2.8)]. Thus, as in the case of D}, for n > 4 as discussed in §2.3, a generalized net may be formed
by connecting each node of the unshifted A, set to the nearest nodes on the shifted A, set. Again, the resulting
net is uninodal, but is not a contact graph of the corresponding sphere packing.

2.5 The Eg (Gosset), E7, & Eg lattices and their duals

The Gosset lattice Eg = Eg, which has a (remarkable) kissing number of T = 240, may be defined simply as

Eg =Dy, (2.9a)
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and may be constructed via integer linear combination of the columns of the 8 x 8 basis matrix

-1

1/2
1/2
1/2
1/2
—1/2
-1/2
-1/2
—1/2

(2.9b)

The lattice E7 is defined by restricting Eg, as constructed above, to a 7-dimensional subspace,

E7:{(X],...

,x8)€E8 tx)+...+xg =0},

(2.10a)

and may be constructed directly via integer linear combination of the columns of the 8 x 7 basis matrix

-1 0 1/2
1 -1 1/2
1 -1 1/2

with

ng, =

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

(2.10b)
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The dual of the E7 lattice may be written as
1/4

B =EU(1]+E),  where [1]=| 174 |, 2.11a)
~3/4
—-3/4

and may be constructed directly via integer linear combination of the columns of the 8 x 7 basis matrix

1 0 —3/4
T —3/4
-1 1/4

Bp: = l 1] y :;i . with  ng =ng,. (2.11b)
1 —1 1/4
1174
0 1/4

The lattice E¢ is defined by further restricting E7, as defined in (2.10), to a 6-dimensional subspace,

Eg = {(x1,...,x3) € E7 : x] +xg = 0}, (2.12a)

and may be constructed directly via integer linear combination of the columns of the 8 x 6 basis matrix
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0 1/2

—1 1/2

1 -1 1/2

1 1 1/2

Be, = 1 -1 ~1/2
1 -1 —1/2

1 —1/2

0 ~1/2

The dual of the Ej lattice may be written as

Eg = EsU([1]+Es) U([2] +Es),

1/2

1/2

el

1;; —(nE6 nE7). (2.12b)
1/2 |

1/2

1/2

with Ng =

—_— 0 o000 oo~

0
-2/3
-2/3

where [1]=| /4 |, [21=-01]. (2.13a)

1/4
0

and may be constructed directly via integer linear combination of the columns of the 8 x 6 basis matrix
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0 0 1/2

~1 2/3  1/2
1 -1 2/3  1/2
B - ~1/3 12 , _
Bp; = L S0 U3 _ipp|e with o Ne=Ng (2.13b)
1 —1/3 —1/2
-1/3 -1/2
0 0 —1/2

2.6 The laminated lattices /\,, and the closely-related K, lattices

The lattices in the A, and K,, families can be built up one dimension, or “laminate”, at a time, starting from
the integer lattice (Z = A| =2 K}), to triangular (A, = Ay = Kj5), to FCC (A3 =2 D3 = A3 = K3), all the way
up (one layer at a time) to the remarkable Leech lattice (A4 = K>4). Both families of lattices may in fact be
extended (but not uniquely) to at least n = 48.

The Leech lattice, A4, is the unique lattice in n = 24 dimensions with a (remarkable) kissing number
of T = 196,560. It may be constructed via integer linear combination of the columns of the 24 x 24 basis
matrix By,,, which is depicted below in the celebrated Miracle Octad Generator (MOG) coordinates (see
Curtis 1976 and Conway & Sloane 1998). Further, as in the Eg — E7 — E¢ progression described in §2.5, the
A, lattices for n = 23,22,...,1 may all be constructed by restricting the A4 lattice to smaller and smaller
subspaces via the normal vectors assembled in the matrix N depicted below®.

4There are, of course, many equivalent constructions of A through A3 via restriction of A4, and the available literature on the
subject considers these symmetries at length. The convenient form of N depicted here was deduced, with some effort, from Figure 6.2
of Conway & Sloane (1998).
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8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2
4 2 2 2 2 2
4 2 2 2 2 2
4 2 2 2 2 2
4 2 2 2 2 2 2 2 2
4 2 2 2
4 2 2 2
2 2 2
4 2 2 2 2 2 2 2 2 2
4 2 2 2 2
4 2 2 2
1 2 2 2
Bp,, = —
Au\/g 4 2 2 2 2 2
2 2
2
2
4 2 2 2 2 2
2 2
2
2
2 2
2
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Thus, the A3 lattice is obtained from the points of the A4 lattice in R* (which themselves are ge-
nerated via integer linear combination of the columns of By,,) which lie in the 23-dimensional subspace
orthogonal to np,,. Similarly, the A lattice is obtained from the points of the A4 lattice which lie in
the 22-dimensional subspace orthogonal to both np,, and ny,,, etc. Noting the block diagonal structure of
Np, it follows that A, may be constructed using the basis matrix, denoted B, given by the n X n subma-
trix in the upper-left corner of Bp,, for any n € N; = {21,20,16,9,8,5,4}. For the remaining dimensions,
ne Ny ={19,18,17,15,14,13,12,11,10,7,6,3,2,1}, A,, may be constructed via the appropriate restriction
of the lattice generated by the next larger basis matrix in the set Ny; for example, A4 may be constructed in
R'® via restriction of the lattice generated by the basis matrix B Ay O the subspace normal to the vectors (in
R'%) given by the first 16 elements of np ; and ny,,.

A similar sequence of lattices, denoted Kj,, may be constructed via restriction of the Leech lattice (gene-
rated via B,,) in a similar fashion (for details, see Figure 6.3 of Conway & Sloane 1998). Lattices from the
A, and/or K, families have the maximal packing densities and kissing numbers amongst all lattices for the
entire range considered here, 1 < n < 24. Note that the A, and K,, families are not equivalent in the range
7 <n <17, with A, being superior to K, by all four metrics introduced in the Preface at most values of n
in this range, except for the narrow range 11 < n < 13, where in fact K,, has a slight advantage. Note also
that there is some flexibility in the definition of the lattices A1, A2, and Aj3; the branch of the A, family
considered here is that which maximizes the kissing number 7 in this range of n, and thus the corresponding
lattices are denoted AT/, AT5™, and AJ¥™. Note that K\ is referred to as the Coxeter-Todd lattice and A
is referred to as the Barnes-Wall lattice.
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2.7 Numerically-generated lattices with thin coverings for n = 6 to 15

Recall from §2.1 that an n-dimensional real lattice may be defined as an integer linear combination of a set
of n basis vectors b’ defined in IR" ™ for m > 0; that is, any lattice point may be written as

x =y;b! +y,b?> + ... 4+y,b" =By,

where the elements {yi,...,y,} of the vector y are taken as integers. The square of the distance of any
lattice point from the origin is thus given by f(y) = y’ Ay, where A £ B B is known as the Gram matrix
associated with the lattice in question, and the function f(y) is referred to as the corresponding quadratic
Jform [note that each term of f(y) is quadratic in the elements of y]. All of the lattices studied thus far, when
scaled appropriately, are characterized by Gram matrices with integer elements, and thus their corresponding
quadratic forms f(y) have integer coefficients (and are thus referred to as integral quadratic forms).

There is particular mathematical interest in discovering (or generating numerically) both lattice and non-
lattice packings which minimize covering thickness and/or packing density. The numerical approach to this
problem studied in Schiirmann & Vallentin (2006) and Sikiri¢, Schiirmann, & Vallentin (2008) has generated
new lattices in dimensions n = 6 to 15 with the thinnest covering thicknesses known amongst all lattices’.
The lattice so generated in dimension 7 happens to correspond to an integral quadratic form, but the others,
apparently, do not.

5Gram matrices A corresponding to these 10 lattices (denoted Lg‘ LIS, L, .., L{s) are available at
http://fma2.math.uni-magdeburg.de/~latgeo/covering-table.html
(nonunique) basis matrices B corresponding to each of these lattices may be generated simply by taking the Cholesky decomposition of
the corresponding Gram matrix, as A = BT B.


http://fma2.math.uni-magdeburg.de/~latgeo/covering_table.html
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Chapter 3

Characteristics of exemplary lattice and
nonlattice packings and nets

For all of the dense lattices described in §2, as well as for all of the rare packings and nets described in
§4, Tables 3.1-3.2 list the known values of the packing density A, the covering thickness ®, and the mean
squared quantization error per dimension, G. Table 3.1 also lists the coordination sequence through k = 10
of the corresponding net, as well as its local topological density 7djo. If this net is a contact graph, the
coordination number (that is, the first element of the coordination sequence) is equal to the kissing number
of the corresponding packing; if this net is not a contact graph, it is marked with a G, and the kissing number
7T of the corresponding sphere packing is listed in parentheses.
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The other information appearing in Table 3.1 is described further in §4. Note that Table 3.1 alone has 8
columns and over 100 rows, with those results which we believe to be new denoted in italics. The original
source of each of the several hundred existing results reported can not feasibly be spelled out here. Suffice it to
say that the vast majority of those existing results related to lattices are discussed in Conway & Sloane (1998)
and in the On-Line Encyclopedia of Integer Sequences', where a large number of the original references
are listed in detail. The vast majority of those existing results related to 3D nets (see §4), including clear
drawings of each as well as detailed lists of original references, are given in the Reticular Chemistry Structure
Resource?; for further discussion of this database and others, see O’Keeffe et al. (2008), Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that there are hundreds of new results reported in Tables 3.1
and 3.2, as denoted in italics; most of these are the result of painstaking numerical simulation, some of which
tooks weeks of CPU time (on a quad-core 3GHz Intel Xeon server) to complete.

Note finally that there are a variety of (lattice-specific) ways to quantize to the nearest lattice point; for an
introduction, see §6.

! Available on the web at http://www.research.att.com/~njas/sequences/.
2 Available on the web at, e.g., http://rcsr.anu.edu.au/nets/fcu, where “feu” may be replaced by any of the lowercase boldface
three-letter identifiers given in Table 3.1 and §4.


http://www.research.att.com/~njas/sequences/
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/fcu
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Chapter 4

Rare nonlattice packings & nets for n < 8
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We now turn our attention to the problem of infinite rare sphere packings, with packing density lower
than that of the corresponding Cartesian packing, and the closely related problem of infinite nets. For n = 2,
this problem is essentially trivial. For n = 3, the richness of solutions to this problem is fascinating and,
due to the intense interest in crystallographic structures with various desirable chemical properties, has been
exhaustively studied and catalogued. For n > 3, relatively few regular constructions are known, and it appears
as if what academic interest there has been has not yet led to any applications of significance in science and
engineering; Part III of this text intends to change this, thus motivating the present chapter.

Interest in n-dimensional space groups and symmetries dates back to the nineteenth century, with the
work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Rodrigues, Mobius, Jordan, Sohncke, Fedorov,
Schonflies, Fricke, and Klein. Historical accounts of this early work, as well as several follow-on mathema-
tical developments related to space groups and symmetries, are available in Brown et al. (1978) and Schwar-
zenberger (1980). Much of the related work in the field of geometry was developed by Coxeter (1970, 1973,
1974, 1987, 1989). Despite this intense interest, there are very few explicit constructions of regular rare sphe-
re packings for n > 3 available today, outside of very short treatments of the subject by O’Keeffe (1991b) and
Beukemann & Klee (1992), discussed below.

As mentioned in the abstract and explored in depth in Part III, certain emerging engineering applications
now motivate the further development and deployment of quasi-infinite n-dimensional nets, with a particular
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4.1. NET TERMINOLOGY

focus on structured nets with low coordination number and high topological density. Such nets are well suited
for the rapid spread of information in switchless computational interconnect systems with a reduced number
of wires and, thus, reduced cost. In such systems, a logical network with n > 3 may easily be designed and
built' and, as we will see, there are significant potential benefits for so doing. We are thus motivated to revisit
the problem of the design of structured nets with low coordination number. Note that none of the lattices
discussed in §2 have a coordination number lower than that of the corresponding Cartesian lattice, T = 2n.
However, for n = 3, there is a wide range of stable and unstable nonlattice packings that lead to such nets; as
shown below, many of these packings and nets generalize naturally to higher dimensions.

4.1 Net terminology

The terminology used to discuss 3D nets, most of which generalizes readily to the discussion of n-dimensional
nets, has been clarified significantly over the last decade, and is now quite precise.

Recall first the measures defined in the Preface, including the coordination number, the coordination
sequence, and a k-hop measure of local topological density given by the cumulative sum of all nodes reached
within k hops from origin, denoted ¢dj (Tables 3.1 and 3.2 list this quantity for k = 10). O’Keeffe (1991a)
defines another, sometimes preferred (see, e.g., Grosse-Kunstleve et al. 1996) measure of global topological
density, td = limy_,..tdy/ k", which reveals the rate of growth of ¢dj with k in the limit of large k. [For a
uninodal n-dimensional net, 7d may be found by representing’ the coordination sequence as an (n—1)’th-
order polynomial in the number of hops &, then taking the leading coefficient of this polynomial and dividing

IRecall, e.g., the “hypercube” computational interconnect system introduced several years ago; though designed with a logical net-
work with n > 3, the hypercube, like most computational interconnect strategies deployed today, is significantly hampered by its inherent
dependence on a Cartesian topology.

20r by approximating this coordination sequence as an (n — 1)’th-order polynomial for large %, if such a polynomial does not fit
exactly.
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by n.] Despite some impressive efforts in representing coordination sequences with such polynomials (see,
e.g., Conway & Sloane 1997, and the references contained therein), the measure ¢d is currently unknown for
most of the nets discussed here. As a matter of computational tractability, we thus resort in §3 to the tabulation
of the local topological density measure, tdjo, as this measure is much easier to compute.

Our attention in this text is focused almost exclusively on equilibrium packings (that is, on sphere packings
which, if unperturbed, can bear compressive loads applied at the edges of a packing that is built out to fill a
finite convex domain) and their corresponding equilibrium nets (which are constructed with tensile members
connecting nearest-neighbor nodes, and can bear tensile loads applied at the edges of a finite convex do-
main)>*. Equilibrium packings fall into two catagories: stable (that is, sphere packings which, if perturbed,
oscillate about their equilibrium configurations, and return to these configurations if there is damping present)
and unstable (that is, sphere packings which depart from equilibrium if perturbed); we consider both.

After years of conflicting terminology in the literature on nets, the concepts of cycles, rings, strong rings,
tilings, natural tilings, point symbols, and vertex symbols have, in 3D, finally crystallized. The reader is re-
ferred to Blatov et al. (2009) and the references contained therein for description of this modern terminology,
as well as numerous cautions concerning the conflicting nomenclatures adopted elsewhere in the published
literature. In short:

e A cycleis a sequence of nodes in a net, connected by edges, such that the first and last nodes of the sequence

3 A family of structures with both tensile and compressive members, known as fensegrity, might be said to cover the gap between
purely compressive sphere packings and purely tensile nets. The mathematical characterization of tensegrity systems in 3D is now
precise, due largely to the work of Skelton & de Oliveira (2009). An interesting extension of the present study would be to generalize
such tensegrity systems to n > 3 dimensions.

“#For the purpose of the applications studied in Parts IT and III, we do not actually use the property of mechanical equilibrium of the
corresponding structure; this property may rather be considered as a convenient means to an end when designing a regular packing or
net. Several nets discussed in the literature (see, e.g., Wells 1977, page 80) are not equilibrium sphere packings, and might be interesting
to consider further.
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coincide, while none of the other nodes in the sequence appears more than once.

A cycle sum, of cycles A and B, is the union of those edges in either A or B but not both.

A ring is a cycle that is not the sum of two smaller cycles.

A strong ring is a cycle that is not the sum of any number of smaller cycles.

A tiling of IR? by a 3D net is simply the dissection of 3D space into volumes whose faces, which in general
may be curved (as minimal surfaces, like soap bubbles; see, e.g., Sadoc & Rivier 1999), are bounded by
cycles of the net. A 3D net generally admits many tilings.

The dual of a tiling is the unique new tiling obtained by placing a new vertex inside each original tile and
connecting the vertices of adjacent tiles (that is, with shared faces) in the original tiling with edges. If a
tiling and its dual are identical, the tiling is said to be self-dual. The dual of a dual is the original tiling.

A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles such that the tiles have the
maximum combinatorial symmetry and all the faces of the tiles are strong rings. A 3D net often® admits
a unique natural tiling. If a tiling and its dual are both natural, the pair is referred to as natural duals. If a
natural tiling is self-dual, it is said to be naturally self-dual.

The point symbol of a uninodal net, of the form A%.B?.C¢..., indicates that there are a pairs of edges
touching the node at the origin with shortest cycles of length A, b pairs of edges touching the node at the
origin with shortest cycles of length B (with B > A), etc. Note that the sum of the superscripts in a point
symbol totals T(t—1) /2.

The vertex symbol of a uninodal net, of the form A,.B,.C, .. ., indicates that the first pair of edges touching
the node at the origin has a shortest rings of length A, the second pair of edges touching the node at the
origin has b shortest rings of length B, etc. If for any entry there is only 1 such shortest ring, the subscript

SUnfortunately, not all 3D nets have natural tilings, and some have multiple natural tilings; §3 of Blatov et al. (2007) discusses this

issue further.
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is suppressed; if for any entry there is no ring, a subscript * is used. The entries are sorted such that smaller
rings are listed first, and when two rings of the same size appear, the entry with the smaller subscript is
listed first. In the special case of T = 4, the six entries of the vertex symbol are listed as three pairs of
entries, with each pair of entries corresponding to opposite pairs of edges, and are otherwise again sorted
from smallest to largest. Note that the number of entries in a vertex symbol is T(t— 1) /2.
The concepts of cycles, rings, strong rings, point symbols, and vertex symbols extend immediately to n di-
mensions; for practical considerations (specifically, because the number of entries in a vertex symbol gets
unmanageable for large T), we list the point symbol in Table 3.1 wherever T > 5, and the vertex symbol where
T < 4. The extension of the tiling concept to n dimensions is more delicate, and is discussed further in §4.5.

Following Delgado-Friedrichs et al. (2003a,b), the regularity of a 3D net may now be characterized pre-
cisely. In short, consider a 3D net with p kinds of vertex and ¢ kinds of edge and whose natural tiling is
characterized by r kinds of face and s kinds of tile. Delgado-Friedrichs & Huson (2000) introduced a clear
and self-consistent method for characterizing the regularity of such a net simply by forming the array pgrs:
examining the 4-digit number so formed, referred to as the transitivity of the net, the most “regular” 3D nets
are generally those with the smallest transitivity.

Finally, a minimal net is a net with the minimum possible number of vertices and edges in its primitive
cell®; that is, upon deletion of any further edges in the primitive cell, the resulting net breaks into multiple
disconnected structures. Beukemann & Klee (1992) establish that there are only 15 such minimal nets in 3D.
Delgado-Friedrichs & O’Keeffe (2003) define a 3D net as barycentric if every vertex is placed in the center
of gravity of its neighbors (to which it is connected by edges). Bonneau et al. (2004), in turn, establish that 7
of the 15 such minimal nets in 3D have collisions; that is, when arranged in barycentric fashion, the location
of two or more vertices coincide (and, thus, the net is in a sense degenerate). Of the 8 remaining minimal nets

A primitive cell of a net is the smallest fundamental volume (e.g., hypercube) that, when repeated as an infinite array in all directions
with zero spacing, generates the net.
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without collision, five are uninodal.

4.2 2D nets

Consider first the development of uninodal 2D nets with low coordination number. Start from the triangular
(A3 = A) lattice (see Figure P.1a), the corresponding net of which is an array of hexagons, and perform a
red/black/blue coloring of the nodes such that no two nearest-neighbor nodes are the same color. If we retain
only the red and black nodes, we are left with the honeycomb packing (see Figure P.1e), and the corresponding
net is an array of hexagons. The coordination number of this stable sphere packing is T = 3, which is less
than that of the 2D square packing (T = 4); this implies fewer wires in the corresponding computational
interconnect application. Unfortunately, the topological density of this net is quite poor, with tdjp = 166 (that
is, with information spreading from one node to only 165 others after a message progresses 10 hops in the
network application). We are thus motivated to explore other ways of constructing structured (that is, easy-
to-build and easy-to-navigate) nets with low coordination number (that is, with low cost) but high topological
density (that is, with a fast spread of information).

Note that the honeycomb packing has a packing density which is less than that of the corresponding
triangular and square lattices discussed previously (see Table P.1). If minimization of packing density is the
goal’, then the honeycomb packing may be augmented by replacing every sphere with a set of three spheres
in contact, each such set forming an equilateral triangle which touches the neighbors in exactly the same
locations as the single sphere which it replaces in the original (unaugmented) packing (see, e.g., Heesch &
Laves 1933, Figure 13). The packing density of the resulting stable augmented honeycomb packing is less
than 2/3 that of the original honeycomb packing (see Table 3.1), and is the rarest uninodal sphere packing
available in 2D.

7N0te that, for n > 3, the authors are actually unaware of any practical application, other than mathematical curiosity, for which
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4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We thus identify a List of Twelve highly “regular”
(as defined in §4.1, via their transitivity) uninodal 3D nets upon which we will focus our attention and which,
following Delgado-Friedrichs et al. (2003a,b), we denote (listing from dense to rare):

1. fecu: face-centered cubic (FCC), 5. nbo: NbO, 9. cds: CdSOyqy,
2. beu: body-centered cubic (BCC), 6. dia: diamond, 10. bto: B,O3,
3. pcu: cubic, 7. sod: sodalite, 11. ths: ThSi,,
4. qtz: quartz, 8. qzd: quartz dual, 12. srs: SrSis.

See Table 3.1 for the common names, associated packings, and key characteristics of each®. These twelve
nets have been studied thoroughly in the literature, including the landmark work of Wells (1977, 1979, 1983,
1984) and scores of important publications since, including Koch & Fischer (1995, 2006) and the numerous
references contained therein; space does not allow a comprehensive review of this broad body of literature
here, nor even a comprehensive analysis of these twelve well-studied nets. Suffice it to say here that included
in our List of Twelve are the 5 regular nets (that is, of transitivity 1111), beu, pcu, nbo, dia, and srs, and the
1 quasiregular net (of transitivity 1112), feu, as well as 2 of the 14 semiregular nets (of transitivity 11rs), qtz
and sod (both of which have transitivity 1121), as discussed in O’Keeffe et al. (2000) and Delgado-Friedrichs
et al. (2003a,b). Also included in this list are the 5 uninodal minimal nets without collision, pcu, dia, cds,
srs, and ths, the first 4 of which are naturally self-dual, as discussed in Bonneau et al. (2004, Table 1); note
that eds is of transitivity 1221, and ths is of transitivity 1211°. The remaining 2 nets on our List of Twelve,
qzd (transitivity 1211; see Delgado-Friedrichs et al. 2003c) and bto (transitivity 1221; see Blatov 2007), are
included because of their close structural relationship to the others, as discussed further in §4.4. We also note

8 Again, clear drawings of each of these nets are available at http://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced
by any of the lowercase boldface three-letter identifiers glven here
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that four on our List of Twelve, qtz, qzd, bto, and srs, are chiral (that is, these nets twist in such a way that
the nets and their reflections are not superposable).

The 12 remaining semiregular nets (of transitivity 11rs) of Delgado-Friedrichs et al. (2003b, Table 1) are
the next natural candidates in this taxonomy (hxg, crs, reo, and rhr might be of particular interest), perhaps
followed by the 28 binodal edge-transitive nets (of transitivity 21rs) of Delgado-Friedrichs et al. (2006, Table
1) and the 3 binodal minimal nets without collision (of transitivity 2222, 2211, and 2321) of Bonneau et
al. (2004, Table 1) [see also Delgado-Friedrichs & O’Keeffe (2007)]. Note that just half of the List of Twelve
considered here (specifically, in order of frequency, dia, pcu, srs, ths, nbo, and cds) account for 66% of
the 774 uninodal metal-organic frameworks (MOFs) tabulated in the Cambridge Structural Database (CSD),
as reviewed by Ockwig et al. (2005), thus indicating the prevalence in nature of several of the structures
considered here.

The idea of augmentation, introduced in §4.2, extends directly to many 3D nets in order to reduce packing
density. For example, in the (stable) packings related to the dia and sod nets (discussed further in §4.4.1 and
§4.4.3 respectively), both of which have coordination number 4, we may replace each sphere with a set of
four spheres in contact, each such set of spheres forming a tetrahedron, creating what is referred to as the
augmented diamond (dia-a) and augmented sodalite (sod-a) nets. In the case of the augmentation of the
packing related to the dia net, each tetrahedral set touches the neighbors in exactly the same locations as the
single sphere which it replaces in the original (unaugmented) packing (see Heesch & Laves 1933, Figure 12).
In the case of the augmentation of the packing related to the sod net, as the angles between the 4 nearest
neighbors of any node are not uniform in the sod net, each tetrahedral set is slightly larger than the single
sphere which they replace in the original (unaugmented) packing, and the contact points are slightly shifted
(O’Keeffe 1991b); note that the packing associated with the sod-a net is the rarest uninodal stable 3D packing
currently known. On the other hand, in the augmentation of the (unstable) packing related to the srs net, which
has coordination number 3, we may replace each sphere with a set of three spheres in contact, each such set of
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spheres, as in the augmentation of the honeycomb packing, forming an equilateral triangle and touching the
neighbors in exactly the same locations as the single sphere which it replaces in the original (unaugmented)
packing (see Heesch & Laves 1933, Figure 10); note that the packing associated with the resulting srs-a net
is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycomb, dia-a (transitivity 1222) to dia, sod-a (transitivity
1332) to sod, and srs-a (transitivity 1221) to srs, it is seen that augmentation, while reducing the packing
density A (see Table 3.1), also significantly reduces both the topological density, ¢d}0, and the regularity of the
resulting net. Thus, the process of augmentation appears to be of little interest for the purpose of developing
efficient computational interconnects. Note that Fischer (2005) and Dorozinski & Fischer (2006) show that
the process of augmentation can be repeated indefinitely in order to obtain (non-uninodal) sphere packings of
arbitrarily low packing density.

Finally, there are two other 3D nets which, though less regular than our List of Twelve, are worthy of “ho-
norable mention”: hexagonal close packing (hep, transitivity 1232) and lonsdaleite (lon, transitivity 1222).
As hinted by their identical packing densities (see Table 3.1), hep is closely related to fcu, and lon is closely
related to dia; curiously, both have slightly higher values of td;( than do their more regular cousins. The re-
lations between these two pairs of packings is readily evident when they are considered as built up in layers,
as introduced in the second paragraph of §2.4 and discussed further below.

The A3 lattice (a.k.a. FCC, corresponding to the fcu net) may be built up as an alternating series of three
2D triangular (A;) layers, offset from each other in the form abcabc . .., with the nodes in one layer over the
holes in the layer below; hep is built up similarly, but with two alternating layers, offset from each other in
the form abab . ..

Similarly, the sphere packings corresponding to the dia and lon nets may be built up as alternating series
of approximately 2D honeycomb layers offset from each other. These honeycomb “layers” are in fact not
quite 2D; if the nodes in a single layer are marked with an alternate red/black coloring, the red nodes are
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raised a bit and the black nodes lowered a bit. In both packings, the layers are offset from each other, with
the lowered nodes in one layer directly over the raised nodes in the other. In the packing corresponding to the
dia net, there are three such alternating layers stacked in the form abcabc . . .; in the packing corresponding
to the lon net, there are two such alternating layers stacked in the form abab ...

4.4 Uninodal extension of some regular 3D nets to higher dimensions

The feu net is based on the D3 = A3 lattice, and thus may be extended to n dimensions in two obvious ways
(that is, via A, or D,). The beu net is based on the D3 = A3 lattice, and thus may also be extended to n
dimensions in two obvious ways (via A% or D}). The peu net is based on the Z? lattice, and thus extends to
n dimension via Z". This section explores how most of the other nets on the List of Twelve described above
extend naturally to higher dimensions.

It is important to recall that the nets in the D}, case for n > 4 turn out to be a bit peculiar, as discussed
further in §2.3; the T)° and T nets encountered in §4.4.7 are similar.

4.4.1 Extending dia: the A, and D, packings

The dia net may be obtained from the well-known D;r packing defined in (2.5) (see also Sloane 1987), and
thus extends naturally to n dimensions as D,J[. However, there is an alternative construction of the dia net,
described below and denoted A, which is equivalent to D, for n = 3 but extends to n dimensions differently.
In fact, a third extension of the dia net to n dimensions, the Vzo construction, is introduced in §4.4.6. These
alternative extensions of the dia net to n dimensions, with low coordination number, are perhaps better suited
than D, for many practical applications. We thus stress that names such as “n-dimensional diamond” are
parochial, as there are sometimes multiple “natural” n-dimensional extensions of a net related to a given
three-dimensional crystalline structure (e.g., D;:_’ A,J[, and V?lo). For n-dimensional nets in general, we thus
strongly prefer names derived from a corresponding well-defined n-dimensional lattice or, when such a name
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is not available, names evocative of their n-dimensional construction; this preference is in sharp contrast with
the names suggested by O’Keeffe (1991b).

Recall the first paragraph of §4.2. Now start from a BCC (A3 = Dj) lattice and perform a red/black/-
blue/yellow coloring of the points such that no two nearest-neighbor points are the same color. If we retain
only the red and black points, we are left with the diamond packing. The coordination number of this packing
is T = 4, which is less than that of the 3D cubic packing (T = 6), but also has a reduced topological density,
as quantified by tdo (see Table 3.1). The diamond packing also has a packing density which is less than that
of the corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.7a)] that A, may be defined as the union of n + 1 shifted A, lattices, which is
analogous to the property [see (2.4a)] that D may be defined as the union of 4 shifted D,, lattices. Recall from
(2.5) that D;, which we referred to the offset checkerboard packing, was defined as the union of just 2 shifted
D, lattices, and generates the diamond packing in 3D (where D3 = A3). Motivated by the previous paragraph
and the first paragraph of §4.2, we are thus also keenly interested in the nonlattice packing considered in
Table 1 of O’Keeffe (1991b), denoted here A,J[ and referred to as the offset zero-sum packing, and which is
defined as the union of just 2 shifted A, lattices [cf. (2.5), (2.7)]:

I
— k<
A =A,U([1]+A,), where [1] =4 "] =" 4.1)

The coordination number of the regular uninodal nonlattice packing A, is n+ 1, with these n + 1 nearest
neighbors forming a regular n-dimensional simplex [that is, a regular n-dimensional polytope with n + 1
vertices—e.g., in n = 3 dimensions, a tetrahedron]. The generalization of the honeycomb and diamond
packings to higher dimensions given by A, is significant, as it illustrates how a highly regular stable packing
with coordination number lower than that of the corresponding Cartesian lattice may be extended to dimensi-
on n > 3. Note also that the nonlattice packings A, are distinct from the lattice packings A’ defined in (2.8),
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which are generated in a similar manner.

4.4.2 Augmenting A, : the A packing

The third paragraph of §4.3 discusses the augmentation of the A;r packing, replacing each sphere with a
tetrahedral set of 4 smaller spheres. This idea extends immediately to the augmentation, in n dimensions, of
the A, packing discussed above, replacing each (n-dimensional) sphere with a regular n-dimensional simplex
of n+ 1 smaller spheres.

4.4.3 Extending sod: the A} packing

The familiar sod net is formed by the edges of the Voronoi tesselation of space formed by the A% (that is, BCC)
packing, with the nodes of the net located at the holes of the packing rather than at the centers of the spheres
of the packing. As noted by O’Keeffe (1991b), this construction extends immediately to the n-dimensional
net formed by the Voronoi tesselation of space via the Ay packing. Constructing the A} packing as defined in
§2.4, the holes of this packing that are nearest to the origin (that is, in its Voronoi tesselation, the corners of
the Voronoi cell which contains the origin) are given by the (n+ 1)! permutations of the vector (see Conway
& Sloane, 1999, page 474):

1

T

These nodal points [which, like the lattice points of A}, itself, are defined in an (n + 1)-dimensi0nal space, but
all lie in the n-dimensional subspace orthogonal to the vector ng, defined in (2.6b)] are equidistant from their
n+ 1 nearest neighbors, and form permutohedra (in 3D, truncated octahedra) which tile n-dimensional space.
Note that these nodal points themselves form a uninodal sphere packing with coordination number T =n+ 1;
due to its relationship to the tesselation of space via the points of the A} packing, we thus introduce the
notation A’ for this packing.
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4.4.4 Extending nbo: the S, construction

The nbo net, a subset of the pcu net, has an obvious uninodal extension to n dimensions with T = 4, which
may be visualized as the contact graph formed by repeating a unit hypercube pattern as an infinite array with
unit spacing (see Figure 5.3), where each hypercube itself has two paths which “snake’” along the edges from
the (0,0,---,0,0) node to the (1,1,---,1,1) node, one coordinate direction at a time; we thus suggest the
symbol S,, to denote this construction. These two paths touch at the opposite corners of the unit hypercube:

pathA: (0,0,---,0,0), (0,0,---,0,1), (0,0,---,1,1), ..., (0,1,---,1,1), (L1,---,1,1), and
pathB: (0,0,---,0,0), (1,0,---,0,0), (1,1,---,0,0), ..., (L,1,---,1,0), (1, 1,--,1,1).
4.4.5 Extending ths and bto: the Y, and Y& constructions

The honeycomb packing A7, of coordination number T = 3, contains a fundamental Y-shaped stencil. As
illustrated in Figure 4.1a, starting with this Y stencil and adjoining translates of itself, tip to tip, builds up
the honeycomb packing in 2D. Extending this idea to 3D, as illustrated in Figure 4.1b, we may “twist” the Y
stencil by 90° at each level: starting with the basic Y stencil in, say, the el-¢? plane, we can shift to the right
(in e') and adjoin Y stencils twisted by 90° (that is, aligned in the el-&3 plane), then shift to the right again
and adjoin Y stencils twisted again (aligned in the e'-e? plane), etc. This construction forms the ths net in
3D, and extends immediately to dimension n > 3; we thus denote this construction Y?lo.

Instead of twisting the Y stencil by 90° at each step, we may instead twist it by 60°. This forms the bto
net in 3D. As with the hep versus fcu and lon versus dia nets in 3D, as described at the end of §4.3, there is
a bit of flexibility in terms of the ordering of the the successive twists for n > 3. A highly regular net for odd
n, which we denote Y&, is formed by pairing off the dimensions after the first and alternating the twists as
follows: starting with the basic Y stencil in, say, the e!-e” plane, we continue by adjoining Y stencils in the
e'-e* plane, then in the e'-e® plane, etc. We then adjoin Y stencils in the el-zgg plane, where zgg is the vector
formed by rotating the > unit vector 60° in the direction towards e*; we continue by adjoining Y stencils in
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Figure 4.1: Construction of three rare packings: (left) the Y, (honeycomb) net, (center) the Ygo (ths) net, and
(right) the Vgo (dia) net. All three constructions build from left to right in the above figures from a basic “Y”
or “V” stencil, and have obvious extensions to higher dimensions.

1 120

the e'-z82 plane, then in the e!-z%) plane, etc. Next, we adjoin Y stencils in the e!-z13 plane, where z}3° is the
vector formed by rotating the z33 vector 60° further in the e?-e® plane; we continue by adjoining Y stencils
in the e'-z}2° plane, then in the e'-z/2° plane, etc., and repeat (that is, with stencils again aligned in the e'-e

plane).

The Y)° and Y& constructions have a parameter, denoted o and defined as half of the angle between the
two top branches of the Y stencil (thus, & — 0° closes down the Y to an |, whereas oo — 90° opens up the
Y to a T). The Voronoi volume of the Y;° and Y& constructions may be written as simple functions of o as
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follows:
Vyo (@) = fy, (@) Vyso (@)
Vyeo (@) = fy, (&) Vyeo (O

} with & =45° fy, (o) = (2—v2) (1 +cosa) (V2 sina)" ",

This relation is plotted in Figure 4.2a. The characteristics of Y?lo and YSO reported in Table 3.1 are compu-
ted for o = cos™! (1/ n) as marked with circles in Figure 4.2a, which maximizes the Voronoi volume and,
thus, minimizes the packing density. An alternative natural choice is o = 60, which results in barycentric
constructions of Y;° and Y60,

4.4.6 Extending dia and qtz: the \V;° and V% constructions

The V;° and V& constructions are defined in an identical manner as their Y;° and Y$° counterparts, with a V
stencil replacing the Y stencil (see, e.g., Figure 4.1c), thus resulting in nets with coordination number T = 4
instead of T = 3. These constructions lead to the dia and qtz nets in 3D.

As with the Y;° and Y%° construction, the V)° and V& constructions have a parameter, denoted o and
defined as half of the angle between the two top branches of the V stencil. The Voronoi volume of the V)"
and V& constructions may be written as simple functions of o as follows:

Voo (o) = f, (o) V0 (1)

) with & =45° fy, (o) =2"% cosa(sina)" .

'vaﬂ(a) = fv, (@) 'va(’(a) }

This relation is plotted in Figure 4.2b. The characteristics of V;° and V% reported in Table 3.1 are computed
for o0 = cos™! (1 / \/ﬁ) as marked with circles in Figure 4.2a, which maximize the Voronoi volumes and,
thus, minimize the packing density. Note that the V?lo and VSO constructions are barycentric for any o in the
range 0 < o0 < 90°.
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Figure 4.2: Variation of the Voronoi volume of the (left) Y & Y% and (right) V)° & V9 packings as a
function of o forn =2 ton = 8.

4.4.7 Extending cds and qzd: the T " and T%° constructions

The T)° and T constructions are defined in an analogous manner as their Y;°, V0, Y60 and V& counter-
parts, and lead to the eds and qzd nets in 3D. The only difference now is that, instead of adjoining two new Y
or V symbols on the tips of each Y or V symbol in the previous layer, we now adjoin a single new T symbol
centered atop each T symbol in the previous layer, appropriately twisted; these constructions thus result in
nets with coordination number T = 4. Note that the “horizontal” and “vertical” distances between nodes in
these constructions are equal, and that these constructions are parameter free and barycentric.
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Note that the x; direction is special in the Y;°, Y0, V20 V0 T and TS constructions. These con-
structions are configured in this way intentionally, in order to construct equilibrium packings; however, other
variations are certainly possible. Note also that the Y&, V80, and T constructions involve pairing off the
dimensions after the first and rotating in each pair of dimensions 60° at a time, in the manner described in
§4.4.5. If we follow the same procedure but rotate 90° at a time, we recover nets equivalent to the correspon-
ding Y;°, V0, and T;? nets, respectively, as defined previously.

Note also that the Y?lo, V?,O, and T?lo constructions form square layers in the e;-e3 plane, the e4-es plane,
the eg-e7 plane, etc., whereas the Y60, V&0 and TS constructions form triangular layers in these planes. In
the resulting Y20, Y60, V%0 "and V0 nets, there are, in fact, no edges of the net within these layers (that is,
all of the edges connect nodes in different layers). On the other hand, in the resulting T, and T%" nets, each
node is connected via edges of the net to exactly two others (note: not four or six) within these layers. As
with the peculiar D} net discussed previously, the T?lo and Tflo constructions are, in fact, not contact graphs
of the corresponding sphere packings'’; some bonds must be cut in the corresponding contact graphs (which,
in the case of T ", is simply Z") in order to form the T, and T%" nets.

4.4.8 Other extensions

Sections 4.4.1 through 4.4.7 summarize several uninodal families of n-dimensional extrapolations of some
common 3D nets; most of these (unless indicated otherwise, via references to existing literature) are new.
Note that O’Keeffe (1991b) mentions two other such extensions, one corresponding to the lon net and one
corresponding to the sod-a, the latter of which is currently the rarest uninodal stable packing known forn >3
(and which, consistent with the above developed naming conventions, we might suggest to identify as 'A).

10Note that there is a lower-symmetry form of eds in 3D with four nearest neighbors per node whose contact graph does generate the
cds net; see Delgado-Friedrichs (2005, Figure 1). Lower symmetry forms of other T;° and T constructions, whose nets are contact
graphs, might also exist.
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Beukemann & Klee (1992, page 50) mentions two extensions of their own (at least, to n = 4), both related to
the dia net. Judging from the vast assortment of distinct rare sphere packings and related nets available in 3D,
there are certainly many more uninodal extensions to higher dimensions of regular rare 3D packings that are
still awaiting discovery; we have focused our attention here on what appear to be several of the most regular.
The regularity of n-dimensional nets for n > 3 is discussed further below.

4.5 Regularity and transitivity of n-dimensional nets for n > 3

As reviewed in §4.1, the regularity of a 3D net is defined based on its transitivity, which in turn is based on
the so-called natural tiling of the 3D net. The natural tiles of 3D nets have been thoroughly characterized
in the literature for all of the most regular 3D nets available. In §4.4, we described uninodal extensions of
several regular 3D nets to higher dimensions, and mentioned that many more such uninodal nets with n > 3
most certainly exist. The natural question to ask, then, is how the concepts of regularity and transitivity can
be extended to higher dimensions, so that we may differentiate between these nets and identify those which
are the most regular.

This question is difficult to visualize in dimensions higher than three, and requires a symbolic/numerical
description of the net to proceed. The net arising from the Z" lattice for n = 4,5, ..., which is naturally tiled
by n-dimensional hypercubes, is by far the easiest starting point. Denote first the symbols {v,w,x,y,z} as
variables that range from 0 to 1. The 3D unit cube, denoted {xyz}, has six faces, {xy0,xyl,x0z,x1z,0yz, lyz}.
Each face, in turn, has four edges; e.g., {Oyz} has edges {0y0,0y1,00z,01z}. Finally, each edge connects two
nodes; e.g., {00z} connects nodes {000,001}. The 4D unit hypercube, {wxyz}, has eight 3-faces, which we
identify as {wxy0, wxyl,wx0z,wx1z,w0yz,wlyz,Oxyz, Lxyz}, each 3-face has six 2-faces, each 2-face has four
edges, and each edge connects two nodes. The 5D unit hypercube, {vwxyz}, has ten 4-faces, each 4-face has
eight 3-faces, each 3-face has six 2-faces, each 2-face has four edges, and each edge connects two nodes; etc.

In 3D, as reviewed in §4.1, the transitivity is based on the number of distinct nodes, edges, (2D) faces,
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and (3D) tiles. By analogy, then, in 4D we may define the transitivity of a net based on the number of
distinct nodes, edges, 2-faces, 3-faces, and (4D) tiles in the natural tiling. Similarly, in 5D, we may define the
transitivity based on the number of distinct nodes, edges, 2-faces, 3-faces, 4-faces and (5D) tiles in the natural
tiling; etc. Via this definition, the net derived from the Z* lattice has transitivity 11111, the net derived from
the Z° lattice has transitivity 111111, etc.

For all of the other nets with n > 3 listed in Table 3.1, the computation of the transitivity remains an
important unsolved problem. Note that, in a tiling corresponding to a 3D net, the (2D) faces of the (3D) tiles
are, in general, minimal surfaces stretched over non-planar frames built from (1D) edges between several
nodal points defined in 3D. In a tiling corresponding to an n-dimensional net for n > 3, the 2-faces of the
tiles are, in general, minimal surfaces stretched over nonplanar frames between several nodes defined in n
dimensions. [Note that the computation of such minimal surfaces in n dimensions is straightforward using
standard level set methods; see, e.g., Cecil (2005).] Several of these nonplanar 2-faces combine to form the
boundaries of each 3-face, which itself is not confined to lie within a 3D subspace of the n-dimensional
domain. Several of these 3-faces then combine to form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilings is apparently a task that could be readily accom-
plished numerically, but is, in general, expected to be difficult to visualize.
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5.1. INTRODUCTION

5.1 Introduction

Though the lattices that arise from n-dimensional sphere packings have connections that permeate many
foundational concepts in number theory and pure geometry, the list of successful direct applications in science
and engineering of n-dimensional sphere packings with n > 3 is currently surprisingly short'; this list includes
e the numerical evaluation of integrals (Sloan & Kachoyan 1987),
o the solution of the linear Diophantine inequalities that arise in integer linear programming (Schrijver 1986),
e the characterization of crystals with curious five-fold symmetries (Janssen 1986),
e attempts at unifying the 4 fundamental forces (in 10, 11, or 26 dimensions) via superstring theory (Kaku
1999), and
e the development of maximally effective numerical schemes to address an information-theoretic interfe-
rence suppression problem known as the Witsenhausen counterexample (Grover, Sahai, & Park 2010).
Far and away the most elegant and practical application of n-dimensional sphere packings, however, is in
the framing and understanding of error correcting codes (ECCs). The reader is referred to MacWilliams &
Sloane (1977), Thompson (1983), Pless (1998), Conway & Sloane (1998), and Morelos-Zaragoza (2006)
for some comprehensive reviews of this fascinating subject. A brief overview of this field is given here to
emphasize the existing practical relevance of n-dimensional sphere packings with n > 3; we aim to augment
this list of practical applications significantly in Parts II and III of this text, based heavily on the various
aspects of n-dimensional sphere packing theory reviewed and extended in Part L.
To proceed, define F, [also denoted GF(g)] as the set of symbols in a finite field (a.k.a. Galois field)
of order g, where g = p“ with p prime, and define F7 as the set of all vectors of order n with elements

'Notably, Conway & Sloane (1998, page 12) state: “A related application that has not yet received much attention is the use of these
packings for solving n-dimensional search or approximation problems”; this is exactly the problem focused on in our Part II.
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selected from F,,. The cases of particular interest in this work are the binary field F» = {0, 1}, the ternary
field F3 = {0,1,2}, and the quaternary field> F4 = {0,1,®,®}, where, as in §2.1, ® = (-1 —|—i\/§)/2 [note
that ©*> = @, ®* = ®, and ®- ® = 1]. In a finite field F,, addition (+) and multiplication (-) are closed (that
is, they map to elements within the field) and satisfy the usual rules: they are associative, commutative, and
distributive, there is a 0 element such that a + 0 = a, there is a 1 element such that a- 1 = a, for each a there
is an element (—a) such that a + (—a) = 0, and for each a # 0 there is an element ™! such thata-a~! = 1.
If g is itself prime (e.g., if ¢ = 2 or g = 3), then standard integer addition and multiplication mod ¢ forms a
finite field. If not (e.g., if ¢ = 4), a bit more care is required in order to obtain closure within the finite field
while respecting these necessary rules on addition and multiplication. For the cases considered in this section
(specifically, F», F3, and F4), addition and multiplication on F, are thus defined as follows:

N o +of1]2 JJof1]2
Fy: 0 01 0 010 Fi: (1) ?;(2) (1) g?g
! Lo ! 011 2 21011 2 0211
+oll]o]o o]l |o|o
0 0|1 |o|® 0 o0 |O0]O
Fy: 1 1 0| ®| o 1 0|1 |o|®
o o|lo®|0 1 o 0| o | ® 1
® [0} 1 0 ® 0| ® |1 [0)

A vector in Fy is a vector of length n with each element in F,;. The Hamming distance between two such
vectors is the number of elements that differ between them.

2We limit our attention in the quaternary case to codes designed over the finite field F4; though there is some attention in the literature
to codes defined over Z4 [that is, over the integers mod 4], codes defined over finite fields turn out to be, in a sense, more natural.
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An [n,k|y (if d is spemﬁed [n.k,d)y) g-ary lmear code (LC) is defined via a set of k < n independent
basis vectors v' € Fy. The g~ distinct codewords w' € Fy of the LC are given by all g-ary linear combinations
of the basis Vectors vi (that is, by all linear comblnatlons with coefficients selected from F,, with addition
and multiplication defined elementwise on F,). The basis vectors v! are generally selected such the minimum
distance d of the LC (that is, the minimum Hamming distance between any two resulting codewords) is
maximized.

This work focuses on cases with ¢ = 2 [termed a linear binary code (LBC)], g = 3 [termed a linear ternary
code (LTC)], and g = 4 [termed a linear quaternary code (LQC)]. In cases with ¢ = 2, which are common,
we frequently write simply [n,k] or [n,k,d], dropping the g subscript. We denote by Vinkl, ©F Vipra),) the
n x k basis matrix with the k basis vectors v as columns, and by Wink), (of Wi q),) the nx g~ codeword
matrix with the ¢ codewords w' as columns. Without loss of generality, we write Vinx), and a companion
(n— k) x n parity-check matrix H, ;,, in the standard (a.k.a. systematic) form*

ik i [d
Hiuigy = [FPotpk - Lnt<nn)] V[n,qu:{P(nme’ W:M' oD

3Nonlinear g-ary codes also appear in the literature, in which the valid codewords are not simply linear combinations of a set of basis
vectors and must be enumerated differently. Such codes, which are related to nonlattice packings, are in general more difficult to decode
than LCs, and are not considered further here.

“In the literature on this subject, it is more common to use a “generator matrix” G to describe the construction of linear codes. The
“basis matrix” convention V used here is related simply to the corresponding generator matrix such that V = G”; we find the basis matrix
convention to be more natural in terms of its linear algebraic interpretation.
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When written in systematic form, each of the data vectors w! block decomposes into its k data symbols® d'
and its r = n — k parity symbols b'; note that r is sometimes called the redundancy of the code. Note also
that Hy, 4 Vipk), = 0 (on Fq)6, which establishes that the basis vectors v’ so constructed [and, thus, all of
the resulting codewords w'] each satisfy the parity-check equations, H[n’k]qw" =0 (on F,), as implied by the
rows of H[n’k] and illustrated by the several examples given in systematic form in §5.2, §5.3, and §5.4. Note
further that, for LBCs and LQCs, P = —P.

The key to designing a “good” [n, k], LC is to construct the parity submatrix P(y—g)xk in (5.1) in such a
way that the minimum distance d of the resulting code is maximized for given values of n, k, and ¢. Indeed,
the problem of designing a good binary error correcting code is essentially a finite sphere packing problem
on F»; thus the very close relationship between the design of error-correcting codes and the design of infinite
dense sphere packings in IR”, as discussed in §2.

For g = p® with p prime, conjugation in F, (that is, for a scalar v € F,) is defined such that v = v7;
conjugation in Fy (that s, for vectors v € Fp), as well as for matrices formed with a number of such vectors as
columns, is performed elementwise. Any [n, k], linear code C has associated with it an [n,n — k|, dual code
C*t defined [cf. (2.1)] such that

C'={weF) :w-u=0forallueC}. (5.2)

The parity-check and codeword matrices of C* may be written in systematic form as

1
H[n,nfk]

q

p I n—
[PT I(rsz)X(nfk)] s V[infk]q = [ ( ?E& k)] . (5.3)

5The word “bit”, a portmanteau word for “binary digit”, is generally reserved for the case with ¢ = 2; in the general case, we use the
word “symbol” in its place.

The qualifiers “(on F,)” and “(mod ¢)” are used, as appropriate, to remind the reader that multiplication and addition in the equation
indicated are performed elementwise on the finite field F,, as discussed above.
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where P denotes conjugation in F,, of each element of the parity submatrix P of the original [n, k], linear code
C. Note that P7 is of order k x (n — k), and, of course, that H V[L = 0 (on F,). Note further that,
q

[nn—k]g " [n.n—k
for LBCs and LTCs, u = and P = P.

A self-dual code C is a code for which the the transpose of the codeword matrix V results in a new matrix
H which is itself the parity-check matrix of a code which is equivalent to C, albeit not in systematic form.

Graphically, the codewords of an [n,k, d}z LBC may be thought of as a carefully chosen subset of 2k of
the 2" corners on a single n-dimensional unit hypercube, as illustrated for n = 3 in Figure 5.1, whereas an
[n,k,d]3 LTC may be thought of as a subset of 3K of the 3" gridpoints in a cluster of 2" unit hypercubes in
n-dimensions, as illustrated for n = 3 in Figure 5.2. For any ¢, d quantifies the minimum number of symbols
which differ between any two codewords. It follows that:

o An LC withd = 2 is single error detecting (SED) [see, e.g., Figures 5.1a and 5.2a]. In this case, the sum (on
F,) of the symbols in each transmitted codeword is zero, so if it is assumed that at most one symbol error
occured and this sum is nonzero, then a symbol error in transmission occurred, whereas if it is zero, then
a symbol error did not occur. However, if a symbol error in transmission occured, the received (invalid)
message is generally equidistant from multiple codewords, so it is not possible to correct the symbol error.
Two or more symbol errors can cause the codeword to be misinterpreted.

o An LC with d = 3 is single error correcting (SEC) [see, e.g., Figures 5.1b and 5.2b]. In this case, if it is
again assumed that at most one symbol error in transmission occured, then if the received codeword is not
a codeword, there is only one codeword that is unit Hamming distance away, so the single symbol error
may in fact be corrected. Again, 2 or more symbol errors can cause the codeword to be misinterpreted.

o An LC with d = 4 is single error correcting and double error detecting (SECDED). In this case, if a single
symbol error occurs, the received codeword will be unit Hamming distance away from a single codeword,
and thus single symbol errors can be corrected. On the other hand, if two symbol errors occur, the received
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Figure 5.1: Valid codewords of (left) the (SED) [3,2,2], LBC, and (right) its dual, the (perfect, SEC) [3,1,3]>
LBC. The blue sphere denotes the origin, and d specifies the number of edges between any two codewords.

. e —

] ]
Figure 5.2: Valid codewords of (left) the (SED) [3,2,2]3 LTC, and (right) its dual, the (SEC) [3,1,3]3 LTC.

codeword is generally Hamming distance 2 away from multiple codewords, so double symbol errors can
be detected but not corrected. Now, 3 or more symbol errors can cause the codewords to be misinterpreted.
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e An LC with d =5 is double error correcting (DEC), with 3 or more symbol errors causing misinterpreta-
tion.

o An LC with d = 6 is double error correcting and triple error detecting (DECTED), with 4 or more symbol
errors causing misinterpretation.

o An LC with d = 7 is triple error correcting (TEC), with 4 or more symbol errors causing misinterpretation.

o An LC with d = 8 is triple error correcting and quadruple error detecting (TECQED), with 5 or symbol
errors causing misinterpretation.

e An LC with d =9 is quadruple error correcting (QEC), with 5 or more symbol errors causing misinter-
pretation.

The labels defined above are frequently used to quantify the error correction capability of an LC. Alternative-

ly, if error correction is not attempted, then:

o An LC with d = 2 is single error detecting, with 2 or more symbol errors causing misinterpretation.

o An LC with d = 3 is double error detecting, with 3 or more symbol errors causing misinterpretation.

o An LC with d = 4 is triple error detecting, with 4 or more symbol errors causing misinterpretation.

e An LC with d = 5 is quadruple error detecting, with 5 or more symbol errors causing misinterpretation.

Error correcting algorithms are useful for a broad range of data transmission or data storage applications in
which it is difficult or impossible to request that a corrupted codeword be retransmitted; algorithms which
use such LCs for error detection only, on the other hand, may be used only when efficient handshaking is
incorporated in a manner which makes it easy to request and resend any messages that might be corrupted
during transmission.

An [n,k,d], LC is perfect if, for some integer 1 > 0, each possible n-dimensional g-ary codeword is
of Hamming distance ¢ or less from a single codeword (that is, there are no “wasted” codewords that are
Hamming distance ¢ 4 1 or more from the codewords, and thus may not be corrected under the assumption that
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at most # symbol errors have occured); note that a perfect code has odd d = 2t + 1 > 1. A remarkable proof by
Tietdviinen (1973), which was based on related work by Van Lint, establishes that the only nontrivial perfect
LCs are the [(¢" —1)/(¢—1),(¢"—1)/(g— 1) — m,3], perfect g-ary Hamming codes and the [23,12,7],
and [1 1,6,5]3 binary and ternary Golay codes, described further in §5.2 and §5.3.

An [n,k,d] LC is quasi-perfect if, for some integer t > 1, each possible n-dimensional g-ary codeword is
either (a) of Hamming distance r — 1 or less from a single codeword, and thus up to # — 1 symbol errors may be
corrected, or (b) of Hamming distance ¢ from at least one codeword, and thus codewords with ¢ symbol errors
may be detected but not necessarily corrected (that is, there are no “wasted” codewords that are Hamming
distance ¢ 4- 1 or more from a codeword, and thus may not be reconciled under the assumption that at most ¢
symbol errors have occured); note that a quasi-perfect code has even d = 2t > 2.

Note finally, as illustrated for n = 3 in Figure 5.3, that a real lattice corresponding to an [n,k,d], LBC
may often be constructed by forming a union of 2¥ cosets:

zk
Construction A : | J (w’[n’k’d]2 +27"), (5.4a)
i=1
where the coset representatives in this construction, w’tn k) fori=1,..., 2k are the codewords of the [n k, d] 2

LBC under consideration and (w4 2Z") denotes a Z" lattice scaled by a factor of 2 with all nodal points
shifted by the vector w; thus, Construction A denotes the union of the nodal points in several such scaled and
shifted Z" lattices. An alternative real lattice may sometimes be constructed via:

{ix,} e 22}, (5.4b)
i=1

where (22Z) denotes the even integers, and thus the last condition is sometimes written Y./, x; = 0 (mod 2).

ok
Construction B: | ] (w’b1 ka), T2J) where J= {x ez"

i=1
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Figure 5.3: The lattice corresponding to an [n,k,d| LBC is formed by repeating the unit hypercube pattern
given by the LBC (see, e.g., Figure 5.1) as an infinite array with unit spacing. In the above example, we
illustrate this extension for (left) the face-centered cubic (FCC) lattice generated by the [3,2,2] LBC, D3 =
UL, (wlt3,2,2] +227?), and (right) the body-centered cubic (BCC) lattice generated by the [3,1,3] LBC, D} =

,2:1 (w’t3 13] +273). The blue spheres, taken together, form a primitive cell that, repeated as an infinite array

with zero spacing, tile (that is, fill) the domain.

In an analogous fashion, a complex lattice corresponding to an [n,k,d], LC may often be constructed by
forming a union of ¢* shifted and scaled n-dimensional & lattices Z[w]" (see §2.1) such that

qk

Construction A% : | J (w’tn,k’d]q +nZlw]"), (5.5a)

i=1
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where, in the sequel, the multiplicative factor 7 takes two possible values (2 and 6 = ® — ® = iy/3) and

the coset representatives in this construction, w’[n ] fori=1,... ,qk , are the codewords of the [n,k,d]q LC
Kol g

under consideration. An alternative complex lattice may sometimes be constructed via:

[fx,} ew}, (5.5)
i=1

where (n&) denotes the lattice of Eisenstein integers in the complex plane multiplied (that is, rotated and
scaled) by the (possibly complex) factor w. Note the remarkable similarity in structure between the real
constructions in (5.4a)-(5.4b) and the complex constructions in (5.5a)-(5.5b). Note also that real lattices
corresponding to any of the complex lattices so constructed may easily be generated via (2.2).

5.2 Exemplary linear binary codes (LBCs)

qk

Construction B : U (Win,k,d]q +mnJ) where J= {x eZ[o]"

i=1

We now summarize some of the families of LBCs available, presenting each in systematic form (5.1).

5.2.1 Binary single parity-check codes

The simple’ [n,n — 1,2] binary single parity-check codes are SED, and include [2,1,2] (self-dual), [3,2,2],
[4,3,2], [5,4,2], etc. Using such a code, for each (n — 1) data bits to be transmitted, a parity bit is generated

such that the sum (mod 2) of the data bits plus the parity bit is O; when decoding, an error is flagged if this
sum (mod 2) is 1. The [3,2,2] code illustrated in Figure 5.1a is given by

10 01 0 1
Haoo=(1 1 1), Vaay=(0 1]. Waom=[(0 0 1 1]J. (5.6)
11 01 1 0

7 As mentioned previously, when g = 2, we suppress the ¢ subscript for notational clarity; we thus do this throughout §5.2.
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Other binary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 1°s). As
seen for n = 3 in Figure 5.3a, via Construction A, the [n,n — 1,2] binary single parity-check code generates
the D, lattice (see §2.3), which for n = 3 is FCC.

A single parity-check code (binary or otherwise), with d = 2, can detect but not correct an error in an
unknown position. However, it can correct an erasure; that is, the loss of data from a known position. A
common application of this capability is in a RAID 5 system, a popular configuration for a relatively small
Redundant Array of Independent Disks. In such a system, data is striped across n drives using a single parity
check code; if any single drive fails, it can be recovered simply by achieving parity with the other disks.

5.2.2 Binary repetition codes

The dual of the binary single parity-check codes are the simple [n, 1,n] binary repetition codes, which include
[2,1,2] (SED, self-dual), [3,1,3] (SEC, perfect), [4,1,4] (SECDED), [5, 1,5] (DEC), etc. This family of codes
just repeats any given data bit n times; when decoding, one simply needs to determine which of the two
codewords that the received code is nearest to. The [3,1,3] code illustrated in Figure 5.1b is given by

11 0 1 0 1
H, = , Vi =11, W =10 1]. 5.7
3.13] < > 3,1,3] 3.13]
1 0 1 1 0 1

Other binary repetition codes have a partity submatrix of similar form (a column of 1’s). As seen for n = 3 in
Figure 5.3b, via Construction A, the [n, 1,n} binary repetition code generates the D}, lattice (see §2.3), which
for n = 3 is BCC. Via Construction B, on the other hand, the [8, 1,8} binary repetition code generates the
Eg lattice (see §2.5). Note also that the [3,2,2] binary single parity-check code with each bit in V repeated
vertically m times leads to a [3m,2,2m| code, which may subsequently be rearranged into systematic form;
taking m = 4 and applying Construction B, the resulting [12,2,8] code, which is TECQED, generates the
A attice (see §2.6).
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5.2.3 Binary Hamming codes

The [2" —1,2" — 1 —m, 3] binary Hamming codes are perfect and SEC, and include [3,1,3],[7,4,3],[15,11,3],
[31,26,3], [63,57,3], [127,120,3], etc. For a given (2" — 1 —m) data bits to be transmitted, each parity bit
is generated such that the sum (mod 2) of a particular subset of the data bits plus that parity bit is 0. Note
that, when decoding, the m parity bits may be used in a simple fashion to determine not only whether or not
a single bit error occured (which is true if one or more of these parity bits is nonzero), but if it did, which bit
contains the error, as discussed further in §5.5. To illustrate, the venerable [7,4,3} code, with four data bits
{di,d>,ds,ds} and three parity bits {b;,b2,b3}, is given by

10 0 0 d
01 0 0 &
01 1 1 1 0 0 00 1 0 ds
Houy =1 0 1 1 0 1 0], Voay=|0 0 0 1], w=|al|. (5.82)
11 01 0 0 1 01 1 1 by
o1 by
110 1 by
01 01 0101010101 01
001 1001 1001100 1 1
0000 1 1 1 10000 1 1 1 1
Woasi=1o 0000000 0 1 1 1 1 1 1 1 1 (5.8b)
001 1 11007110000 1 1
01 01 1010101001 01

The parity-check matrix H of the [7,4,3] code has as columns all nonzero binary vectors of length (n—k) = 3;
when expressed in systematic form, the (n — k) columns of H corresponding to the identity matrix are shifted
to the end, and the remaining k columns of H, in arbitrary order, make up the partity submatrix P. Other
binary Hamming codes may be built up similarly. Via Construction A, the [7,4,3] binary Hamming code
generates the E7 lattice (see §2.5).
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A Hamming code (binary or otherwise), with d = 3, can only correct a single error in an unknown
position. However, it can correct up to two erasures (cf. §5.2.1). A common application of this capability is
in a RAID 6 system, a popular RAID configuration for large storage systems in data critical applications. In
such a system, data may be striped across n drives using a Hamming code; if any single drive fails, it can
be recovered using an appropriate parity check equation (that is, one of the parity check equations that takes
that bit into account). If (while rebuilding the information on that disk, which might take a while if the disk is
large) a second drive fails, then two useful equations may be derived from the (n — k) parity check equations:
one that takes failed disk A into account but not failed disk B, and one that takes failed disk B into account
but not failed disk A. By restoring parity in these two derived equations, the information on both drives may
be rebuilt.

5.2.4 Binary simplex codes

The dual of the binary Hamming codes are the [2” — 1,m,2"~!] binary simplex codes [ak.a. the binary
maximum-length-sequence (MLS) codes], which include [3,2, 2} (SED), [7,3,4] (SECDED), [15,4,8} (TEC-
QED), etc. These codes are remarkable geometrically, as their codewords form a regular simplex. The [3, 2, 2]
code is illustrated in Figure 5.1a; the [7,3,4] code is given by

10 0
01 1 1000 0o
101 01 00
Hoag =11 1 0 0 0 1 of Ypaa= |0 L) e
11100 0 1 e
1o

Other binary simplex codes have a partity submatrix given similarly by the transpose of the corresponding
binary Hamming code. Via Construction A, the [7,3,4] binary simplex code generates the E7 lattice (see
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§2.5). Via Construction B, the [15,4,8] binary simplex code generates the A5 lattice (see §2.6).
5.2.5 Extended binary Hamming codes

The [2™,2™ — 1 — m, 4] extended binary Hamming codes are quasi-perfect and SECDED, and include [4,1,4],
[8,4,4] (self-dual), [16,11,4], etc. These codes are just binary Hamming codes (see §5.2.3) with an additional
overall parity bit (see §5.2.1), and thus, assuming no more than 2 bit errors have occured, may be decoded
similarly, as discussed further in §5.5. To illustrate, the venerable [8,4,4] code is given by

1 0 0 0
01 0 0
01 1 1 1 0 0 0 00 1 0
1 01 1.0 1 0 0 0 0 0 1
Hsa)=11 1 0 1 0 0 1 0 VBadl = |0 1 1 1 (5.10)
1 1. 1.0 0 0 0 1 1 0o 1 1
1 1 0 1
1 1 1 0

Other extended binary Hamming codes have a partity submatrix that may similarly be constructed by adding
an overall parity bit to the corresponding binary Hamming code. Via Construction A, the [8,4,4] extended
binary Hamming code again generates the Eg lattice.

5.2.6 Binary biorthogonal codes

The dual of the extended binary Hamming codes are the [2",m+ 1,2~ 1] binary biorthogonal codes (a.k.a. Ha-
damard codes), and include [4,3,2] (SED), [8,4,4] (SECDED, self-dual), [16,5,8] (TECQED), [32,6,16],
etc. The [32,6, 16} code was used on the Mariner 9 spacecraft. These codes are distinguished by the charac-
teristic that their codewords are mutually orthogonal [that is, w' - w/ = 0 (mod 2) for i # j]. Note that the
[4,3,2] and [8,4,4] codes have already been discussed above. The binary biorthogonal codes each have a
partity submatrix that is simply the transpose of the parity submatrix of the corresponding extended binary
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Hamming code, the construction of which is described in §5.2.5. Via Construction B, the [16,5,8] binary
biorthogonal code generates the A ¢ lattice.

5.2.7 Binary quadratic residue codes

The [n,(n+ 1)/2,d] binary quadratic residue codes are defined for all prime n for which there exists an
integer 1 < x < n such that x> = 2 (mod n) [equivalently, for all prime 7 of the form n = 8m + 1 where m
is an integer], and include [7,4,3] (SEC, perfect, as introduced in §5.2.3), [17,9,5] (DEC), [23,12,7] (TEC,
perfect, a.k.a. the binary Golay code), [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc. Adding an over-
all parity bit to these codes, the [n+ 1,(n+ 1)/2,d + 1] extended binary quadratic residue codes include
[8,4,4] (SECDED, quasi-perfect, self-dual, as introduced in §5.2.5), [18,9,6] (DECTED), 24,12, 8] (TEC-
QED, quasi-perfect, self-dual, a.k.a. the extended binary Golay code), [32,16,8] (TECQED), [42,21,10],
[48,24,12], etc. The venerable [24,12, 8] extended binary Golay code, used by the Voyager 1 & 2 spacecraft,
is given by

Liox12
H[24,12,8] = [P]2><12 112><]2] R V[24,12,8] — |:P]2>><<12 .

o 1 1 1 1 1 1 1 1 1 1 1
1 11 01 1 10001 0
1 101 1 1 0 0 0 1 0 1
1 01 1 10 00 1 0 1 1
1 11 1 0 0 0 1 0 1 1 0 5.11)
» |/t 110 0 0 1 0 1 1 0 1
2x2=1y 1 0 0 0 1 0 1 1 0 1 1
1 000 1 0 1 1 0 1 1 1
1 00 1 01 1 01 1 10
1 01 01 1 0 1 1 1 0 0
1 10 1 101 1 1 0 0 0
1 01 1 0 1 1 1 0 0 0 1
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Note that P is symmetric. The [23,12,7] binary Golay code may be obtained by puncturing the [24,12,8]
code listed above; that is, by eliminating any row of P (typically, the last).

Via Construction B, the [24,12, 8] extended binary Golay code generates the Leech half-lattice Ha4, which
may be joined with a translate of itself [that is, Hy4 +a where a; = —3/2and ay = 1/2 fork = 2,...,24] to
construct the Ayy4 lattice.

Note that many of the binary codes introduced above fall within a larger family of codes collectively
referred to as Reed-Muller codes, as illustrated in Figure 5.4.

5.2.8 Extending, puncturing, and shortening

The (perfect) binary Hamming and binary Golay codes may be extended to quasi-perfect codes by adding
an overall parity bit, thereby increasing n by 1 and, in the case of these specific codes, increasing d by 1. A
code obtained by essentially the reverse of this process, removing a parity bit and thus reducing both n and
d by 1, is sometimes said to be punctured. In contrast, a code obtained by removing ¢ > 1 data bits, thus
reducing both n and & by /, is said to be shortened. A typical and common application is in error-correcting
memory systems for computers, in which the data often comes naturally in blocks of 64 bits. Starting from
the [127,120,3] binary Hamming code, one may eliminate 56 data bits to create a shortened [71,64,3] SEC
code; alternatively, starting from the [1 28, 120,4} extended binary Hamming code, one may eliminate 56 data
bits to create a shortened [72,64,4] SECDED code. Many ECC Memory and RAID 6 storage systems are
based on variants of such shortened binary Hamming codes, which are simple and fast to use. Note also that,
via Construction B, the [21,9,8] code obtained by shortening the [24, 12, 8] extended binary Golay code by 3
data bits generates directly the A, lattice.
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k=2"d=1

vy
universe codes

J132,32,1]
O[16,16,1] 5 k=2"-1,d=2
single parity-check codes
48,8, 1] O[32,31,2]
J441] [16,15,2] L k=2"—1-md=4
872 extended Hamming codes
2,2,1] J8.7.2] .[32.26,4]
O[1,1,1] J4.3,2] J[16,11,4]
Jzial Bad 3216, k=21 a =202
self-dual codes
O[4,1,4} O[16,5,8]
8,1,8] 1326, 16]
O[16,1,16] R k=m+1,d=2""
biorthogonal codes
132,1,32]

k=1,d=2"
repetition codes

Figure 5.4: The family of [2",k,d] Reed-Muller binary codes for m = 0 to 5.

A

5.3 [Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available, presenting each in systematic form (5.1), noting
that all have analogs in the binary setting.
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5.3.1 Ternary single parity-check codes

The [n,n—1,2]3 ternary single parity-check codes are SED, and include [2,1,2]3 (self-dual), [3,2,2]3, [4,3,2]3,
etc. As illustrated for n = 3 in Figure 5.2a, the [3,2,2]3 code is given by

1 0 o 1 2 0 1 2 0 1 2
H[3,2,2]3:(1 1 1), Voo, =0 1), Wappyy=(0 0 0 1 1 1 2 2 2/. (5.12)

2 2 0 2 1 2 1 0 1 0 2
Other ternary single parity-check codes have a partity submatrix P [see (5.3)] of similar form (a row of 2’s).
Via Construction Agg, the [3,2,2]3 ternary single parity-check code generates the E¢ lattice.

5.3.2 Ternary repetition codes

The dual of the ternary single parity-check codes are the [n, 1,n]3 ternary repetition codes, which include
[2,1,2]3 (SED, self-dual), [3,1,3]3 (SEC), [4,1,4]3 (SECDED), etc. As illustrated for n = 3 in Figure 5.2b,
the [3,1,3]3 code is given by

5 1o 1 0 1 2
Hpyy s, = (2 0 1), Voass = (1], Waag,=[0 1 2], (5.13)
1 0 1 2

Other ternary repetition codes have a partity submatrix of similar form (a column of 1’s). Via Construction
A%, the [3, 1,3]3 ternary repetition code generates the Eg lattice. Via Construction BY., on the other hand, the
[6,1,6]3 ternary repetition code generates the Kj lattice.

5.3.3 Ternary Hamming codes
The [(3™ —1)/2,(3™—1)/2 —m, 3|5 ternary Hamming codes are perfect and SEC, and include [4,2,3]3

(self-dual, a.k.a. the tetracode), [13,10,3]3, [40,36,3]3, etc. To illustrate, the venerable [4,2,3]3 tetracode is
given by
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1 0
Hiyns), = (} . ?) Vioa = o 4] (5.14)
2 1
The parity-check matrix H of the [4,2,3]3 code has as columns those nonzero ternary vectors of length
(n— k) = 2 whose first nonzero entry is 1; when expressed in systematic form, the (n— k) columns of H
corresponding to the identity matrix are shifted to the end, and the remaining k columns of H, in arbitrary
order, make up the entries of —P. Other ternary Hamming codes may be built up similarly; for example, the
[13,10,3]5 code is given by

1 1 1 1 1 0 O
122 2 01 0>’ Viiz03); = {IIOXIO} . (5.15)
2 0 1 2 0 0 1

0o 0 1 1
H =1 0 0
[13,10.3]3 ( 1 L P3x10

Via Construction Agg, the [4,2,3] tetracode again generates the Eg lattice.
5.3.4 Ternary simplex codes

The dual of the ternary Hamming codes are the [(3™ — 1) /2,m,3™~1]5 ternary simplex codes, which include
[4,2,3]3 (SEC, perfect, self-dual), [13,3,9]3 (QEC), [40,4,27]3, etc. These codes are remarkable geometri-
cally, as their codewords are all equidistant from one another. Ternary simplex codes have a partity submatrix
given by the negative transpose of the corresponding ternary Hamming code.

5.3.5 Ternary quadratic residue codes

The [n,(n+ 1)/2,d|s ternary quadratic residue codes are defined for all prime n for which there exists
an integer 1 < x < n such that x> = 3 (mod n) [equivalently, for all prime n of the form n = 12m =+ 1
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where m is an integer], and include [11,6,5]3 (DEC, perfect, ak.a. the ternary Golay code), [13,7,5]3
(DEC), [23,12,8]3 (TECQED), [37,19,10]3, [47,24,14]s, etc. Adding an overall parity bit to these co-
des, the [n +1, (n + 1)/2,d + 1]3 extended ternary quadratic residue codes include [12,6,6]3 (DECTED,
quasi-perfect, self-dual, a.k.a. the extended ternary Golay code), [14,7,6]3 (DECTED), [24,12,9]3 (QEC),
[38,19,11]3, [48,24,15]3, etc. The venerable [12,6,6]3 extended ternary Golay code is given by

o 1 1 1 1 1
1 0 1 2 2 1
I 1 1.0 1 2 2
Hpeg), = [~Poxc  loxs] Vies; = [PZXXG]’ Poxe =11 o | o 1 2 (5.16)
1 2 2 1 0 1
1 1 2 2 1 0

Note that P is symmetric. The [11,6,5]3 ternary Golay code may be obtained by puncturing the [12,6,6]3
code listed above.

Via Construction Beg, the [12,6,6]3 extended ternary Golay code generates an intermediate lattice which
may be joined with two translates of itself to generate the A4 lattice.

5.4 Exemplary linear quaternary codes (LQCs)

We now summarize some of the families of LQCs available, presenting each in systematic form (5.1).

5.4.1 Quaternary single parity-check codes

The (v 1 — 1 21, Auatornary cinole naritv-checl crodec are SED and incliude 2 1 21, (celfodiial) [ 2 91,
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(5.17)

e

Wi2), =

S e o
e e —

®
1

cgog
~ =

Other quaternary single parity-check codes have a partity submatrix P of similar form.
5.4.2 Quaternary repetition codes

The dual of the quaternary single parity-check codes are the [n,1,n]4 quaternary repetition codes, which
include [2,1,2]4 (SED, self-dual), [3,1,3]4 (SEC), [4,1,4]4 (SECDED), etc. The [3, 1,3]4 code is given by

) ) (5.18)

The [(4™—1)/3,(4™—1)/3 —m,3]4 quaternary Hamming codes are perfect and SEC, and include [5,3,3]4,
[21,18,3]4, [85,81,3]4, etc. To illustrate, the [5,3,3]4 code is given by

L1 0 1 01 o
H[3,1,3]4:<1 0 1>’ Vsl = } - Waag, = 8 } ®
(0]

Other quaternary repetition codes have a partity submatrix of similar form.
5.4.3 Quaternary Hamming codes

eee

1 1

1

0
1 1 0

H[5,3,3]4:<1 o ® 0 1>, Vissa), = (1) (5.19)

—_—0 = O
S — =00

1 o
The parity-check matrix H of the [5,3,3]4 code has as columns those nonzero quaternary vectors of length
(n— k) = 2 whose first nonzero entry is 1; when expressed in systematic form, the (n— k) columns of H



CHAPTER 5. CODING THEORY

corresponding to the identity matrix are shifted to the end, and the remaining k columns of H, in arbitrary
order, make up the entries of P. Other quaternary Hamming codes may be built up similarly.

5.4.4 Quaternary simplex codes

The dual of the quaternary Hamming codes are the [(4™ — 1) /3,m,4™~ !4 quaternary simplex codes, which
include [5,2,4]4 (SECDED), [21,3,16]4, [85,4,64]4, etc. These codes are remarkable geometrically, as their
codewords are all equidistant from one another. Quaternary simplex codes have a partity submatrix given by
the conjugate transpose of the corresponding quaternary Hamming code.

5.4.5 Quaternary quadratic residue codes

The [n,(n+ 1) /2,d]4 quaternary quadratic residue codes are defined for all prime n of the form n = 8m +3
where m is an integer, and include [5,3,3]4 (SEC, perfect, see §5.4.3), [11,6,5]4 (DEC), [13,7,5]4 (DEC),
[19, 10, 7}4 (TEC), [29, 15,1 1}4, [37, 19,1 1}4, etc. The related [n +1, (n + 1)/2,d—|— 1]4 extended quaternary
quadratic residue codes include [6,3,4]4 (SECDED, quasi-perfect, self-dual, a.k.a. the hexacode), [12,6,6]4
(DECTED), [14,7,6]4 (DECTED, self-dual), [20,10,8]4 (TECQED), [30,15,12]4 (self-dual), [38,19,12]s,
etc. The venerable [6,3,4]4 hexacode is given by

0 0

1 0) . Viead), =

0 1

1
Higz4, = | 1
1

1

Note that P is symmetric. The [5,3,3]4 quaternary quadratic residue code may be obtained by puncturing the
[6,3,4]4 code listed above.
Via Construction A%, the [6,3,4]4 hexacode generates the K|, lattice.

2 o T P B | R T P Y i Y, B DU PR e PSR I DE TS R P

1
0 (5.20)
0

ee -
e & -
_—0 O =

e —~o—=0o
ce——oco
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Biio
Ao Atoo
Booo  Boio  Boot

Ao Aoto Aocor  Aoii
Bioo  Biir Bio
Ar A
Boii
Figure 5.5: A labelling of 16 points of the D, lattice (due to Ungerboeck 1982). The A;j; points have coor-
dinates which are both even integers [e.g., Appp = (0 0)], and the B;j; points have coordinates which are
both odd integers [e.g., Booo = (1 1)]. The complete D; lattice is formed by repeating this 2D pattern as
an infinite array with unit spacing, as in Figure 5.3; note that each of the subsets of D, corresponding to a
particular label is itself an appropriate shift of a 4D; lattice (that is, the D, lattice with the spacing quadrupled
between the points).

it plays in some convenient constructions of the [24, 12,8} extended binary Golay code (see §5.2.7), with
212 = 4096 codewords w, and the corresponding A,y lattice. To construct the extended binary Golay code in
this manner (see §11 of Conway & Sloane 1998), we may first arrange binary vectors of length 24 into 4 X 6
arrays with binary entries. The sum of the bits (mod 2) in any row or column of this array gives its parity,
which is said to be even if the bits sum to 0 and odd if the bits sum to 1. We then define the projection of
any binary vector d € F} onto a symbol x € Fy via the productx= (0 1 ® ®)d (onF4). The [24,12,8]
extended binary Golay code is then given by the set of all w € F%“ such that, in the corresponding 4 x 6 array,
e the parity of all of the columns matches the parity of the top row, and

e the projection of the six columns of the array forms a codeword of the [6,3,4]4 hexacode.

An alternative construction of the A4 lattice, due to Vardy & Be’ery (1993) and which also leverages
e cde 4o~ [ 2 21 ) P PR D R EREE U G ST S PR ZE I @ 1 ¢ Lo B NPTV D SIS AR P o Y PRIy S (e T RN
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into A;jx and B;j; subsets, as depicted in Figure 5.5. Binary vectors of length 24 are now constructed as

2 x 6 arrays whose entries are points of D5, labelled as shown. When considering a pair of such points [say,

T
¢= (Ailsj]sk] Aiz,jz,kz) 1,

e the pair is said to be even or odd based on the sum (mod 2) of the indices {i1, ji,i2,j2},

e the index i1 is known as the h-parity of the pair,

e the sum (mod 2) of k; and k> is known as the k-parity of the pair, and

e the projection of the pair is defined as above, based on the vectord = (iy j1 @2 j2) r

The Leech lattice A4 is then given by the set of all u € Z>?* such that, in the corresponding 2 x 6 array,

e all array entries are either points in the A;j; subsets of D, (referred to as a fype-A array), or points in the
Biji subsets of D (referred to as a type-B array),

e the overall k parity of the array [that is, the sum (mod 2) of the k-parity of the 6 pairs of points] is even if
the array is type A and odd if the array is type B,

e the pairs of points in the 6 columns of the array are either all even (referred to as an even array) or all odd
(referred to as an odd array),

o the overall & parity of the array [that is, the sum (mod 2) of the A-parity of the 6 pairs of points] is even if
the array even and odd if the array is odd, and

e the projection of the six columns of the array forms a codeword of the [6,3,4]4 hexacode.

The union of all points corresponding to Type A arrays in this construction forms the Leech half lattice Haq

mentioned in §5.2.7, whereas the union of all points corresponding to Type B arrays forms its translate,

H>4 +a. The Hq4 lattice can be further decomposed into all points corresponding to even arrays, which forms

the Leech quarter lattice Q24, and all points corresponding to odd arrays, which forms its translate, Qx4 + b.

The Ay4 lattice is then given by the union of Qz4, Q24 +b, Q24 + a, and Q»4 + a + b; this construction is

exploited in §6.1.5 when presenting a remarkably efficient algorithm for quantization from IR?* to A,4.
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5.5 Decoding

The use of an [n,k, d}q linear code (a.k.a. linear block code) in practice to communicate data over a noisy
channel is straightforward:

e arrange the original data into blocks of length k over an alphabet of g symbols;

code each resulting data vector d € FZ into a longer codeword w € F viaw =V}, 1 41 d;

transmit the corresponding codeword w € F over the noisy channel;

receive the (possibly corrupted) message W € F/ on the other end;

decode the received message W leveraging H nkd]y> that is, find the most likely codeword w corresponding
to the received message W, and the data vector d that generated it.

The decoding problem is quite rich; many creative schemes have been proposed over the years for de-
coding the various LCs that have been introduced thus far, as well as many others. This subject goes a bit
beyond the scope of the present review, but we would be remiss if we didn’t at least briefly introduce a few
exemplary decoding strategies.

For the purpose of fast decoding of an LC, it is useful to consider convenient alternatives to the systematic
form. If H and V are the parity-check and basis matrices of an [n,k, d}q LC in systematic form, with HV =0
(on F,), then an equivalent LC, possibly not in systematic form, is given by taking

H=HQ and V=0 'V. (5.21)

It follows immediately that, again, HV = 0 (on F,). In the simplest such transformation, Q is a permutation
matrix, and thus Q! = QT'; this transformation corresponds to reordering the rows of V and the correspon-
ding columns of H (that is, reordering the data bits and parity bits in the corresponding LC). Other equivalent
LCs may be constructed in this manner by relaxing the constraint that Q be a permutation matrix, effectively
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taking linear combinations (on F,) of the rows of V and the corresponding columns of H. Note further that
reordering the columns of V and/or the rows of H leaves an LC unchanged.

5.5.1 Algebraic decoding

Certain LBCs may be decoded quickly by arranging the columns of the parity-check matrix in a convenient
order and examining the binary number given by the product of the parity-check matrix and the (possibly,
corrupted) received message. To illustrate, consider the [7,4,3} binary Hamming code introduced in §5.2.3.
Transforming as described above with

1

Il
= =N el el
—_—0 0o o0
S o oo O~
(=l =l )
[=NeleleNe)
[=NeReolollS -]
S oo~ O OO

0 0 O

results in a modified basis matrix V, and a modified parity-check matrix A arranged such that the columns of
H appear in binary order:

11 0 1 b3

10 1 1 by

00 0 1 1 1 1 10 0 0 d
Hopay={0 1 1 0 0 1 1|, Vguy=]0 1 1 1|, w=|b (5.22)

1 01 0 1 0 1 01 0 0 d

00 1 0 ds

00 0 1 dy

Taking the matrix I:I[zm,um,l,mﬁ] of a binary Hamming code arranged in such a fashion (in the above
example, m = 3) times (mod 2) any of the codewords W (generated via W = V[Zm,]’zm,],m’:;]d where d €
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F%'"*l’m) gives the zero vector. On the other hand, taking the matrix I:I[zmilyszlfmj] times (mod 2) any

invalid vector W gives the nonzero syndrome vector s, of order m = n — k, which may be interpreted as a
nonzero m-bit binary number called the syndrome, denoted s, of the received message. Conveniently, as a
direct result of the structure of A used in this construction, the number s identifies precisely which bit of
the received message vector W, arranged as shown above, must be flipped in order to determine the nearest
codeword, thereby performing single error correction (SEC).

Consider now the class of [2”’,2’" —1-— m,4} extended binary Hamming codes introduced in §5.2.5.
Define the syndrome s as in the corresponding binary Hamming code of length (2" — 1) as discussed above,
neglecting the overall parity bit, and define p as the sum (mod 2) over all the bits, including the overall parity
bit. There are zero bit errors if s = p = 0, there two bit errors (which may be detected but not uniquely
corrected) if s # 0 and p = 0, and there is a single bit error if p = 1 (in which case, if s = 0, this error is in
the overall parity bit, and, if s 7 0, this error is in one of the other bits and may be corrected based on s just as
in the corresponding binary Hamming code). This strategy thus performs single error correction and double
error detection (SECDED).

The extended binary Golay code introduced in §5.2.7 may be decoded via syndrome computation in a
similar fashion, though several more checks are involved, as the procedure performs triple error correction
and quadruple error detection (TECQED) on the received message Ww. Recall the definitions of H, V, and
P = PT for the [24,12,8] extended binary Golay code in systematic form, as listed in (5.11). Note that
VTV =0, and thus VT serves as an alternative parity-check matrix for this code. Defining wy (s) as the
Hamming weight (that is, the number of nonzero elements) of the vector s, and defining p as the i’th column
of P, e’ as the i’th Cartesian unit vector, and 0 as the zero vector, we may decode W as follows:

sets =VTw, if wy (s) <3thensetc= [s; O] , flag= 0, return, end if (case A)
setr=Ps, ifwy(r) <3thensetc= [0; r} , flag= 0, return, end if (case B)
fori=1:12
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if wy(s+p’) <2thensete= [s+p’; €], flag=0, return, endif (case C)
if wy(r+p’) <2thensete= [¢/; r+p], flag=0,return, endif (case D)
end for

flag=1; return (4 total errors, can not be uniquely corrected)

Upon return, assuming the received vector W has 4 or less bit errors, if flag = 0, then 3 or fewer errors are
detected and the corrected vector is w = W + ¢, whereas if flag = 1, then 4 errors are detected and W can not
be uniquely corrected. To verify this algorithm, noting that V7w = 0 for any codeword w, it is sufficient to
analyze the algorithm for w = 0 only. Block partitioning W = [x; y], consider the following 4 correctable
cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to the structure of P, parity bit errors (that is,
wi (y) # 0) result in wy (s) > 6; if wy (s) is less than this, theny =0 and s = VI'w = Ix = x.

Case B (0 data bit errors, up to 3 parity bit errors): Note that PV” = H, and thus r = HW. By an analogous
argument as that used in Case A, due to the structure of P, data bit errors (that is, wy(x) # 0) result in
wi (r) > 6;if wy(s) is less than this, thenx =0 andr = HW = Iy =y.

Case C (1 parity bit error, up to 2 data bit errors): In this case, we individually check each of the (12)
possible cases corresponding to a single parity bit error, essentially repeating the analysis of Case A, mutatis
mutandis. That is, for each i, we consider the possibility thaty = e, and thus s = x + pi, and check to see if
wi (x) = wy(s+p') <2.

Case D (1 data bit error, up to 2 parity bit errors): In this case, we individually check each of the (12) possible
cases corresponding to a single data bit error, essentially repeating the analysis of Case B, mutatis mutandis
(cf. Case C).
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5.5.2 Cyclic form

A cyclic code is an LC that may be transformed [via (5.21)] into a form in which all cyclic shifts of codewords
are themselves also codewords. The basis matrix V =V, and parity-check matrix H = H,, ), of any
[n,k]4 cyclic code may be written in the standard form

Vo 0
V1 Vo
b hey . ho 0 -
hy, hi—1 S ho . .
H[n,k]q = .. .. . . 5 V[n,k]q = | Vn—k : - Vo . (523)
0 e hier ... ho Vok - W
0 Vn—k

A convenient construction which simplifies the analysis of an [n,k], cyclic code, as defined above, is
the cyclic shift operator z. The use of this operator as discussed here is akin to its use in the Z-transform
analysis of discrete-time linear systems, with the major difference being that it is used here in a cyclic context
on F,: that is, arithmetic with polynomials in z and coefficients in F, is performed as usual, except that the
coefficients of each power of z are combined via the arithmetic rules on F,, (see the second paragraph of §5.1),
and higher powers of z¥ are simplified via the cyclic condition

=1 (5.24)
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In the deployment of an [n, k], cyclic code, the operator z appears in

the data polynomial d(z) =dy +diz + ... +dp 7!
the basis polynomial v(z) =vo +viz ... F v
the codeword polynomial w(z) =wo+wiz+...+we12"

the received-message polynomial Ww(z) = wo +Wiz+ ...+ Wy_12" !, and

the parity-check polynomial h(z) =hy +hiz+...+ i~

The basis polynomial v(z) and parity-check polynomial 4(z) are constructed in mutually-orthogonal manner
that, taken together, enforces the cyclic condition (5.24):

v(z)h(z) = ("= 1), (5.25a)

which may also be written
[v(z) h(z)] mod (" —1) = 0; (5.25b)

note that the mod command used in (5.25b) means that the polynomial [v(z) i(z)] is divided by the polynomial
(2" — 1) and the remainder is equal to 0. One such factorization of (" — 1) on F,, which exists for any n and
q,1s

1=+ 1), (5.26)
this leads to the single parity check code [n,n — 1,2], if one takes v(z) = (z— 1) and h(z) equal to the rest,
and to the repetition code [n, 1,n], if one takes h(z) = (z— 1) and v(z) equal to the rest. Other cyclic codes
over F, for prime ¢ may be built from the unique irreducible factors of the polynomial (z" — 1), grouping
these factors appropriately to form v(z) and h(z); a few such factorizations for various values of n are listed
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in Table 5.1 for ¢ = 2 (in which —1 = 1) and Table 5.2 for ¢ = 3 (in which —1 = 2); others are easily found
using Mathematica. Factoring (" — 1) over Fy4 is more delicate, as the factorizations do not reduce to unique
irreducible forms; one such factorization is listed in Table 5.3. Based on (5.25a) and such factorizations,
a large number of cyclic codes may be constructed. However, only a few such codes have both favorable
minimum distance d and an available simple error dectection/correction scheme; some such codes are listed
in Table 5.4.
Given a data vector d € F";, the use of an LC in cyclic form is again straightforward:

e form a data polynomial d(z) with the k elements of d as coefficients;
e code d(z) into a codeword polynomial w(z) leveraging the basis polynomial v(z) [using nonsystematic

coding, one simply takes w(z) = d(z)v(z)];
e transmit the corresponding codeword w € F/ over the noisy channel;
e receive the (possibly corrupted) message W € F' on the other end;
e decode the corresponding w(z) leveraging the parity-check polynomial A(z).
Cyclic coding. For the purpose of fast decoding, we now present two methods with which the basis poly-
nomial v(z) may be leveraged to generate a codeword polynomial w(z) in systematic form [that is, rather

than taking w(z) = d(z) v(z)]. By convention, the systematic form in the cyclic case usually shifts the k data
symbols in d(z) to the end of the codeword, that is:

w(z) = b(z) +7"*d(2)

(5.27)
=bo+biz4 ...+ by 1" do A di T a2

If k/n < 0.5, a recursive approach may be used to determine the parity symbols in b(z). By (5.25b) and
the fact that each valid codeword polynomial w(z) is itself a linear combination of the basis polynomials v(z),
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it is seen that
u(z) mod (" —1) =0 where u(z) 2 h(z)w(z) = uo+urz+uz>+...

Initializing the last k symbols of w(z) as shown in (5.27), the remaining symbols of w(z) may thus be deter-
mined from the resulting convolution formulae for u,,—| through u as follows:

Up—1=howp_1+...+hw,_1-1 =0 = w, 1= f[hown71 +...+ hklenfkfz] / hy,
Un—2 =hown2+ ...+ hwp_ k2 =0 = W2 =—[howp—2+ ...+l 1Wy_r-3]/ i,
up = howr  +...+ hwo =0 = wy = —[l’lowk + ...+ h_iwy ]/hk

If k/n > 0.5, a polynomial division approach to determine the parity symbols is more efficient. This is
accomplished by writing the shift of the data symbols as some multiple of the basis polynomial v(z) plus a
remainder r(z):

27Md(z) = q(2)v(z) +r(z) = [2""d(z)] mod v(z) = r(z).

where the mod command is interpreted as in (5.25b). Since the degree of v(z) is (n — k), the maximum
degree of r(z) is (n—k—1). Calculating r(z) as shown above, taking b(z) = —r(z), and rearranging the
above equations, it is seen that

w(z) = b(z) +2""d(z) = q(2)v(2).

thus verifying that the polynomial w(z) so generated is in fact a valid codeword polynomial, as it is a multiple
of the basis polynomial v(z).
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Cyclic decoding. In single parity-check codes, single symbol errors are flagged if £(z)W(z) # 0. In repetition
codes, the symbols of W(z) may be corrected by simple majority vote.

Decoding of the binary Hamming and the extended binary Golay codes is introduced in §5.5.1. Such syn-
drome decoding methods extend easily to codes in cyclic form, in which the required syndrome computations
are especially streamlined, as now shown. Note that any valid codeword polynomial w(z) is a multiple of the
basis polynomial v(z); the syndrome polynomial s(z) of the received-message polynomial #(z) is thus given
by the remainder:

s(z) = w(z) mod v(z).

Since the degree of v(z) is (n — k), the maximum degree of s(z) is (n —k— 1), and thus the corresponding
syndrome vector s is of order m = (n — k), as expected [see discussion after (5.22)].

The polynomial multiplications and divisions involved in the cyclic coding and decoding algorithms de-
scribed above are easy to code and efficient to calculate in either an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA), in which repeated computations with shifted data may
be performed quickly. The reduced storage associated with the vector representation of the basis matrix and
the parity-check matrix in cyclic form help to facilitate such implementations.

5.5.3 Shannon’s theorem and turbo codes

The low-dimensional LBC, LTC, and LQC constructions given above are now supplanted by the more com-
plex turbo codes for high performance coding applications such as 10GBase-T ethernet and deep space com-
munication. Though these codes are generally much longer than the simple codes discussed above, they are
built on the same fundamental principles, and achieve a coding efficiency over a noisy channel that is very
close to the celebrated Shannon limit (Shannon 1949). For more information on such codes, the reader is
referred to Gallager (1963), Berrou et al. (1993), and Moon (2005). Note also that the study of ternary and
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quaternary codes is far more than a mathematical curiosity; new memory storage technology concepts le-
veraging, for example, DNA-based storage, with a four-character alphabet {A,T,G,C}, directly motivate the
further development of non-binary error-correcting coding strategies.

5.5.4 Soft-decision decoding

The type of decoding discussed in §5.5.1-5.5.3, in which the received vector W is assumed to be in F7, is
known as hard-decision decoding.

Another formulation of the decoding problem assumes again that w € Fy, but that W € R". The decoding
problem in this case, called soft-decision decoding, is similar to that considered before (again, to find the most
likely codeword w corresponding to W, and the original data vector d that generated it), but is now based on
finding the codeword w that minimizes the Euclidian distance to W rather than that which minimizes the
Hamming distance.

For example, consider the soft-decision decoding of a binary parity check code. Assume that the trans-
mitted codeword w € F (that is, the symbols being transmitted are binary, and in this case rescaled to be +1)
but that the received message W € IR” (that is, the symbols received are real). In this case, we may decode the
received message by initially taking w = sign(W). If the resulting decoded vector fails the parity check, we
simply take the decision that we were least certain about (that is, the element of W that is closest to zero) and
round it the other direction; this is known as Wagner’s decoding rule (Silverman & Balser 1954).

Many soft-decision decoding algorithms are essentially generalizations of Wagner’s decoding rule. Fur-
ther, most soft-decision decoding algorithms may be framed as straightforward restrictions of a corresponding
lattice quantization algorithm (see §6) to the appropriate subset of the lattice in question.
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P —1=+)(F+2+2+z4+1)

1=+ )P +z+DEE+2+1)

15 4 _ 2 4 4,3 4,3, 2

27 —1=0z+D)(z+z+ 1) +z+ D)+ + 1) (" +27+27+z+1)

P 1=+ )"+ + T+ e+ ) 0+ S+ P+

Table 5.1. Unique irreducible factors of (2" — 1) over F, for various values of n.

Ho1=(+2)z+ D)2 +1)

T 5 ~3. 2 5. 4.3, 2

7 —1=0z+2) (2427 +77+2z4+2) (P 4+ +22+77 +2)

B ol=(+2) P+ 2+ 2) P+ 2+ (B Pz +2) (P 427 22 +2)

Table 5.2. Unique irreducible factors of (z* — 1) over F3 for various values of n.

‘ 2-1=(Z+oz+1)(Z +od+oz+1) ‘

Table 5.3. A useful (though nonunique) factorization of (z5 — 1) over Fy4; note that Table 5.1 provides an
alternative factorization of (z°> — 1) over F, which is also valid over F.

| code | description | v(z) | h(z)
[n,n—1,2]» §5.2.1 z+1 N 441
[n,1,1] §5.2.2 P2+ z+1
[7,4,3], §5.2.3 D4z+1 A2 +z+1
[15,11,3], §5.2.3 4z+1 M+ BT+ +3 424241
[31,26,3], §5.2.3 D42 +1 (B'=1)/ (5 +22+1) over Fy
[63,57,3]2 §5.2.3 B4z+1 (83 =1)/(+z+1) over F»
a7 12n 21 Qs AN 7 . .3 1 (127 0 AN 7027 0 23 0 1) e .
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Chapter 6

Further connections between lattice
theory and coding theory
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6.1 Quantization onto lattices

We now introduce some methods for quantization from an arbitrary point x in IR” onto a point X on a discrete
lattice, which may be defined via integer linear combination of the columns of the corresponding basis matrix
B. The solution to this problem is lattice specific, and is thus treated lattice by lattice in the subsections below.
Note that §6.1.1 through §6.1.4 are adapted from Conway & Sloane (1998), and §6.1.5 is adapted from Vardy
& Be’ery (1993). Note also that we neglect the problem of scaling of the lattices in this discussion, which is
trivial to implement in code.

6.1.1

Quantization to Z"

Quantize to Z" simply by rounding each element of x to the nearest integer.

6.1.2

Quantization to D,,

Quantize to D, by rounding x two different ways:

e Round each element of x to the nearest integer, and call the result X.
e Round each element of x to the nearest integer except that element of x which is furthest from an integer,
and round that element the wrong way (that is, round it down instead of up, or up instead of down); call



6.1. QUANTIZATION ONTO LATTICES

the result %.

Compute the sum s of the individual elements of X; the desired quantiziation is X = X if is s is even, and X = %
if s 1s odd.

6.1.3 Quantization to A,

The A, lattice is defined in an n-dimensional subspace C of Y = IR"*!. The subspace C is spanned by the n
columns of the corresponding basis matrix By, , and the orthogonal complement of C is spanned by the vector
n,,. Thus, the nearest point in the subspace, yc € C, to any given pointy € Y is given by

YC = y_ (y’nAn) .nAn'

An orthogonal basis B4, of C may easily be determined from By, via Gram Schmidt orthogonalization. With
this orthogonal basis, the vectors x € IR” comprising the A, lattice may be related to the corresponding vectors
yc € CC Y (that is, on an n-dimensional subspace of IR"*!) via the equation

yc = Ba,x. (6.1a)

Thus, starting from some point x € IR” but not yet quantized onto the lattice, we can easily determine the
corresponding (n + 1)-dimensional vector yc which lies within the n-dimensional subspace C of R"*! via
(6.1a). Given this value of yc € C, we now need to quantize onto the lattice. We may accomplish this with
the following simple steps:
e Round each component of y¢ to the nearest integer, and call the result §. Define the deficiency A =Y, §;,
which quantifies the orthogonal distance of the point § from the subspace C.
o If A =0,theny =7¥.If not, define d = yc — ¥, and distribute the integers 0, .. .,n among the indices iy, ..., i,
such that
~1/2<d($,) <d(y) <...<d(5;,) < 1/2.
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. yi, — 1 k<A,
If A > 0, then nudge § back onto the C subspace by defining y;, = )il" .
Vi otherwise.
vi, +1 k> A,
If A <0, then nudge § back onto the C subspace by defining 3;, = )jl" + " +
Vi otherwise.

Back in n-dimensional parameter space, the quantized value § € C corresponds to
x=5B}§. (6.1b)
6.1.4 Quantization to the union of cosets

The dual lattices D}, and A}, the triangular lattice A,, and the packing D, (including the lattice Es & Ef = DJ)
are described via the union of simple, real cosets in (2.4a), (2.7a), (2.6¢), and (2.5), respectively. The lattices
E;7 and E; may be built via the union of simple, real cosets via Construction A [see (5.4a)], with coset
representatives w’tn’k’ d defined in (5.8) and (5.9) respectively. To quantize a lattice described in such a manner
(as a union of simple cosets), one may quantize to each coset independently, then select from these individual
quantizations that lattice point which is nearest to the original point x.

The lattices Eg and E; may be built via the union of complex cosets [which are scaled and shifted complex
& lattices Z[co]3] via Construction A%, [see (5.5a)], with coset representatives w’tn’k’ d given in (5.13) and
(5.12) respectively. Following Conway & Sloane (1984), to discretize a point X to coset i in these cases:
e Determine the complex vector z € C? corresponding to x € IR®. Shift and scale such that 2 = (z—a;)/0.
e Determine the real vector % € IR® corresponding to Z € C>. Quantize the first, second, and third pairs of
elements of % to the real triangular A, lattice to create the quantized vector X.
Determine the complex vector Z € C> corresponding to X € IR®. Unscale and unshift such that Z = 07 + a;.
e Determine the real vector % € R® corresponding to z € C>.
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6.1.5 Quantization to Ay4

We now jump to the Leech lattice in dimension n = 24. Recall from §2.6 that the best lattices in dimensions
n =9 to n =23 may all be determined as lower-dimensional cross-sections of Ay4; once the (difficult) n = 24
case is mastered, quantization to these intermediate dimensions is relatively straightforward.

Efficient quantization to A4 is a problem that received intense scrutiny in the 1980s and early 1990s.
The best algorithm described in the literature, due to Vardy & Be’ery (1993), is based on the construction
of Aj4 described in the last paragraph of §5.4.5, and essentially represents a culmination of the previous
efforts that led to it. This remarkable algorithm requires only about 3000 to 3600 floating-point operations
and comparisons, and a comparable number of integer operations and comparisons, to compute the point of
the Aoq lattice that is closest to any given point r € IR**. The algorithm leverages effectively many of the
fundamental symmetries inherent in A4, including its close relationships with both carefully-chosen subsets
of the D5 lattice (Figure 5.5) as well as the [6,3,4]4 hexacode (§5.4.5).

Though it was proposed in 1993, the logic inherent to this algorithm is so intricate that, as of the writing
of this review, an executable version of it did not appear to be readily available in the literature. We have thus
written an efficient! Fortran90 implementation of this algorithm, which is available online at:

http://renaissance.ucsd.edu/software/DecodeLeech.tgz
This implementation is thoroughly commented, and is written in a notation consistent with that of Vardy &
Be’ery (1993). Thus, in addition to being a useful code for new practical applications of the Leech lattice in
science and engineering, it is hoped that this executable code can itself be a helpful guide in the understanding
of this complex algorithm.

'Our implementation of this algorithm executes in about 0.3 milliseconds on a 2008 vintage laptop (2.53GHz Intel Core 2 Duo),
which is sufficiently fast for many applications. It is also trivial to parallelize this code efficiently over four separate computational
threads, as quantization to each Leech quarter lattice is handled independently.


http://renaissance.ucsd.edu/software/DecodeLeech.tgz
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In short, using the notation introduced at the end of §5.4.5, this algorithm first splits the problem of
quantizating a point r € IR?* to the nearest A,4 point into two subproblems:

e quantizing to H»4; that is, when forming the original vector r € R*intoa2x6 array of points ry, € R?
forh=0,1and n =0,...,5, quantizing each ry, to the best A;;; points in the Ungerboeck partitioning of
D> such that the overall k parity of the array is even, while the projection of the 2 x 6 array of points forms
a codeword of the [6,3,4]4 hexacode; and

e quantizing to Hp4 + a; that is, quantizing to the best B points in the Ungerboeck partitioning of D; such
that the overall k parity of the array is odd, while, again, the projection of the 2 x 6 array of points forms a
codeword of the [6,3,4]4 hexacode.

The best of the two lattice points selected by these subproblems is then returned.

During the execution of each of these two subproblems, the closest point to ry, in each A;j family (in
the even overall k parity case) or in each B;j; family (in the odd overall k parity case) is first identified, and
the squared Euclidian distance (SED) to each of these points is calculated. For each i and j, the “preferred”
value of k (that is, the one that leads to the least SED for that point) is determined, and the SED penalty o
for chosing the other value of k is computed. The algorithm then further splits the quantization to Hp4 (and,
similarly to H4 + a) into two smaller sub-subproblems:

e quantizing to Q»q4; that is, to arrays with the specified overall k parity such that, additionally, the overall
parity is even; and

e quantizing to O»4 -+ b; that is, to arrays with the specified overall k parity such that, additionally, the overall
h parity is odd.

The best of the two lattice points selected by these sub-subproblems is then returned.

The quantization to Q4 and its 3 translates is, in turn, decomposed into 5 distinct steps:

1. Only two sets of indices {io, jo,i1, /1 } project to each symbol p € Fy; in this step, for each symbol p and for
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each column n of the 2 x 6 array, we identify the “preferred representation” as that set which, when taken
together with their corresponding preferred values of ky and k1, minimize the SED of the column, and the
other set, referred to as the “non-preferred representation”; we also calculate the SED penalty associated
with chosing the non-preferred representation. Conveniently, it turns out that the preferred representation
and the non-preferred representation necessarily have opposite & parity.

2. The three lists of penalties associated with changing the column-wise k parities (case 0), the column-wise
h parities (case 1), or both (case 2) are then sorted (our implementation uses mergesorts, due to their cache
efficiency; heapsorts or quicksorts are viable alternatives).

3. The SED for each preferred “block” (that is, each pair of columns) is then computed.

4. For each of the 64 codewords of the hexacode [see (5.20)], we then find the smallest possible correction(s)
to the set of preferred representations such that the total k parity and the total 4 parity match the specified
values required for the particular translate of 04 being considered (of 4 possible cases). This step leverages
the sorted lists computed in step 2.

5. For each of 16 sets of symbols [given by wy € F4 and w; € F4], calculate the total SED of corrected
representations, determined in step 4, corresponding to the 4 valid codewords of the hexacode [given by
wy € Fy and {w3,wa,ws} selected according to V[6’3’4] . defined in (5.20)]. We then find the minimum total
SED amongst these 16 corrected representations, and return the corresponding lattice point.

6.2 Enumerating nearest-neighbor lattice points

In the practical use of lattices in engineering applications, one occasionally needs to generate a list of all
lattice points that are nearest neighbors to a given lattice point. It is sufficient to generate a list of all lattice
points that are nearest neighbors of the origin, then to shift these points as necessary to the vicinity of any
other lattice point. The present section describes two methods to generate such lists of nearest neighbors on a
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lattice.

6.2.1 Cases withn <8

Noting first (see §2.1) that a basis matrix B of an n-dimensional lattice might itself have more than n rows,
the following algorithm is found to be effective for all lattices up to about n = 8:

0.
1.

Initialize p = 1.

Define a distribution of points ' such that each element of each of these vectors is selected from the set of
integers {—p,...,0,...,p}, and that all possible vectors that can be created in such a fashion, except the
origin, are present (without duplication) in this distribution.

Compute the distance of each transformed point § = BZ' in this distribution from the origin, and eliminate
those points in the distribution that are farther from the origin than the minimum distance computed in the
set.

. Count the number of points remaining in the distribution. If this number equals the (known) kissing number

of the lattice under consideration, as listed in Tables 3.1-3.2, then determine an orthogonal B from B via
Gram Schmidt orthogonalization, set X' = éTy' for all i, and exit; otherwise, increment p and repeat from
step 1.

Though this simple algorithm is not at all efficient, for n < 8 it really need not be, as the nearest neighbor
distribution is identical around every lattice point, and thus this algorithm need only be run once for any given
lattice.

6.2.2 Cases with n > &

For n > 8, the algorithm described above is prohibitively expensive. We thus focus here on an efficient manner
of obtaining the 196,560 nearest neighbors to the origin of the Leech lattice A4, then on the restriction of
this set of neighbors, one dimension at a time, down to n = 9.
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To proceed, it is first necessary to enumerate the codewords of the binary Golay code following the
approach described in §5.2.7. Recall that the basis matrix of the binary Golay code has dimension 24 x 12;
thus, the 22 = 4096 codewords of the binary Golay code follow immediately as a binary linear combination
(that is, as a linear combination, mod 2, with binary coefficients) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors of the Leech lattice, we may proceed (following
Conway & Sloane 1998) by constructing three distinct sets of points:

o The first set, consisting of 98,304 points, is obtained using the binary Golay codewords discussed above.
Construct first a 24 x 24 matrix A with —3 everywhere along the main diagonal and 1 everywhere else. Then,
take each codeword of the binary Golay code, one at a time, replace each O with —1, and perform elementwise
multiplication of this modified codeword to each column of A, thereby generating 24 points for each of the
212 binary Golay codewords, or 2'%- 24 = 98,304 points.

e The next set, consisting of 1, 104 points, is composed of vectors with 22 zero elements and two elements
that are either 4 or —4. As there are 276 ways to select the locations of the nonzero elements, and 2% = 4
valid ways to populate them, we obtain 2 - 276 = 1,104 points.

e The third set, consisting of 97,152 points, is obtained using the 759 vectors of the Witt design, which are
just the 759 binary Golay codewords (discussed above) of weight 8. Note that each of these vectors has 8
ones and 16 zeros. Construct an 8 x 128 matrix C such that each element of each column is either a 2 or —2,
with an even number of minus signs in each column (note that there are 27 = 128 such columns possible).
We then distribute the elements in each of the 128 columns of C into each of 8 positions where the ones sit in
each of the 759 vectors of the Witt design, thereby obtaining the remaining 128 - 759 = 97,152 points.

The 98,304 + 1,104 497,152 = 196,560 points so generated are the nearest neighbors to the origin of
Aaq4. Then, throwing out those points z for which z-na,, # 0 (see §2.6) leaves the 93,150 neighbors of Aj3;
additionally throwing out those points z for which z- nx,, # 0 leaves the 49,896 neighbors of Az; etc.
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7.1 Introduction to derivative-free optimization

The minimization of computationally expensive, high-dimensional functions is often most efficiently per-
formed via gradient-based optimization algorithms such as nonlinear conjugate gradients and L-BFGS-B.
In complex systems for which an accurate computer model is available, the gradient required by such algo-
rithms may often be found via adjoint analysis. However, when the function in question is not sufficiently
smooth to leverage gradient information effectively during its optimization (see, e.g., Figure 7.1), a derivative-
free approach is necessary. Such a scenario is evident, for example, when optimizing a finite-time-average
approximation of an infinite-time-average statistic of a chaotic system such as a turbulent flow. Such an ap-
proximation may be determined via simulation or experiment. The truncation of the averaging window used
to determine this approximation renders derivative-based optimization strategies ill suited, as the truncation
error, though small, is effectively decorrelated from one flow simulation/experiment to the next. This effective
decorrelation of the truncation error is reflected by the exponential growth, over the entire finite time horizon
considered, of the adjoint field related to the optimization problem of interest in the simulation-based setting.

As a result, derivative-free algorithms are often required for the optimization of nonsmooth scalar func-
tions in n dimensions. The core idea of all efficient algorithms for problems of this type is to keep function
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Figure 7.1: Prototypical nonsmooth optimization problem for which local gradient information is ill suited to
accelerate the optimization algorithm.

evaluations far apart until convergence is approached. Generalized pattern search (GPS) algorithms, a mo-
dern class of methods particularly well suited to such problems, accomplish this by coordinating the search
with an underlying grid which is refined, and coarsened, as appropriate.

One of the most efficient subclasses of GPS algorithms, known as the surrogate management framework
(SMF; see Booker et al. 1999), alternates between an exploratory search over an interpolating function which
summarizes the trends exhibited by existing function evaluations, and an exhaustive poll which checks the
function on neighboring points to confirm or confute the local optimality of any given candidate minimum
point (CMP) on the underlying grid. The original SMF algorithm implemented a GPS step on an underly-
ing Cartesian grid, augmented with a Kriging-based surrogate search. Rather than using the n-dimensional
Cartesian grid (the typical choice), Part II of this text suggests the use of lattices derived from n-dimensional
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sphere packings. As reviewed in Part I, such lattices are significantly more uniform and have many more
nearest neighbors than their Cartesian counterparts. Both of these facts make them far better suited for coor-
dinating GPS algorithms', as demonstrated in a variety of numerical tests presented later in Part II.

7.1.1 The inherent role of uniform simplexes in derivative-free optimization

One of the earliest derivative-free optimization approaches to appear in the literature is the downhill simplex
method (see Spendley, Hext, & Himsworth 1962 and Nelder & Mead 1965). The downhill simplex method
is inherently based on an iterative, amoeba-like evolution (moving one point at a time) of a set of n + 1
points in n dimensions towards the minimum of a (possibly, nonsmooth) function. A large body of literature
appeared after the original introduction of this method, much of which was aimed at heuristic strategies
designed to keep the evolving simplex as regular as possible as the iteration proceeds, while expanding
or contracting as appropriate. The grid-based methods considered in the present work are fundamentally
different, so we will not dwell on such grid-free methods in this introduction. However, it is worth noting the
inherent dependence on the regularity an evolving simplex (that is, on an n-dimensional polytope with n + 1
vertices) in this classical method, and an analogous focus in the present work on the identification (see §7.3)
and characterization (see §7.2 and 7.5) of a maximally-uniform simplex (referred to in the present work as
a minimum positive basis) around the best point encountered thus far as the iteration proceeds, referred to in
the present work as a candidate minimum point. The role of the simplex in both cases is essentially identical:
to identify the best direction to move next using a minimum number of new function evaluations.

'In fact, as mentioned previously, Conway & Sloane (1998, p. 12) state: “A related application that has not yet received much attention
is the use of these packings for solving n-dimensional search or approximation problems”; this is exactly the focus of Part II.
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7.1.2 Global convergence via a dumb method: exhaustive sampling (ES)

Due to the often significant expense associated with performing repeated function evaluations (for example, as
discussed above, turbulent flow simulations or experiments), a derivative-free optimization algorithm which
converges to within an accurate tolerance of the global minimum of a nonconvex function of interest with a
minimum number of function evaluations is desired. It is noted that, in the general case, proof of convergence
of an optimization algorithm to a global minimum is possible only when, in the limit of a large number
of function evaluations N, the function evaluations become dense in the feasible region of parameter space
(Torn & Zilinskas, 1987). Though the algorithms developed in the present work, when implemented properly,
satisfy this condition, so do far inferior approaches, such as a rather unintelligent algorithm which we call
exhaustive sampling (ES), which simply covers the feasible parameter space with a grid, evaluates the function
at every gridpoint, refines the grid by a factor of two, and repeats until terminated. Thus, a guarantee of global
convergence is not sufficient to establish the efficiency of an optimization algorithm. If function evaluations
are relatively expensive, and thus only a relatively small number of function evaluations can ultimately be
afforded, effective heuristics for rapid convergence are perhaps even more important than rigorous proofs of
the behavior of the optimization algorithm in the limit of large N, a limit that might actually be argued to
be of limited relevance when function evaluations are expensive. Given that such algorithms are often used
in applications in which only a few hundred function evaluations can be afforded, careful attention to such
heuristics forms an important foundation for the present study.

7.1.3 Successive polling (SP) and generalized pattern search (GPS) algorithms

If, for the moment, we give up on the goal of global convergence, the perhaps simplest grid-based derivative-

free optimization algorithm, which we call successive polling (SP), proceeds as follows:

e Start with a coarse grid and evaluate the function at some starting point on this grid, identified as the first
candidate minimum point (CMP).
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e Then, poll (that is, evaluate) the function values on gridpoints which neighbor the CMP in parameter space,
at a sufficient number of gridpoints to positively span’ the feasible neighborhood of the CMP [this step
ensures convergence, as discussed further in Torczon 1997, Booker et al. 1999, and Coope & Price 2001].
When polling:

(a) If any poll point is found to have a function value less than that of the CMP, immediately consider this
new point the new CMP and terminate the present poll step.

(b) If no poll points are found to have function values less than that of the CMP, refine the grid by a factor
of two.

e Initiate a new poll step, either (a) around the new CMP or (b) around the old CMP on the refined grid, and
repeat until terminated.

Though the basic SP algorithm described above, on its own, is not very efficient, there are a variety of
effective techniques for accelerating it. All grid-based schemes which effectively build on this basic SP idea
are classified as generalized pattern search (GPS) algorithms.

7.1.4 The surrogate management framework (SMF)

The most efficient subclass of GPS algorithms, known as the Surrogate Management Framework (SMF; see
Booker et al., 1999), leverages inexpensive interpolating “surrogate” functions (often, Kriging interpolations
are used) to summarize the trends of the existing function evaluations, and to provide suggested new regions
of parameter space in which to perform one or more additional function evaluation(s) between each poll step.
SMF algorithms thus alternate beween two steps:

2That is, such that any feasible point in the neighborhood of the CMP can be reached via a linear combination with non-negative
coefficients of the vectors from the CMP to the poll points.
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(i) Search over the inexpensive interpolating function to identify, based on the existing function evaluations,
the most promising gridpoint at which to perform a new function evaluation. Perform a function evaluation
at this point, update the interpolating function, and repeat. The search step may be terminated either when it
returns a gridpoint at which the function has already been evaluated, or when the function, once evaluated,
has a value greater than that of the CMP.

ii) Poll the neighborhood of the new CMP identified by the search algorithm, following rules (a) and (b)
above.

There is substantial flexibility during the search step described above. An effective search is essential for
an efficient SMF algorithm. In the case that the search behaves poorly and fails to return improved function
values, the SMF algorithm essentially reduces to the SP algorithm. If, however, the surrogate-based search is
effective, the SMF algorithm will converge to a minimum far faster than a simple SP-based minimization. As
the search and poll steps are essentially independent of each other, we will discuss them each in turn in the
chapters that follow, then discuss how they may be combined.

Note that if the search produces a new CMP which is several gridpoints away from the previous function
evaluations, which occasionally happens when exploring functions with multiple minima, the grid may be
coarsened appropriately in order to explore the vicinity of this new CMP efficiently (that is, with a coarse
grid first, then refined as necessary). Note also that the interpolating surrogate function of the SMF may be
used to order the function evaluations of the poll step, such that those poll points which are most likely to
have a function value lower than that of the CMP are evaluated first. By so doing, the poll steps will, on
average, terminate sooner, and the computational cost of the overall algorithm may be reduced further.

To the best of our knowledge, all previous GPS and SMF implementations have been coordinated using
Cartesian grids. However, like in the game of checkers (contrast “American” checkers with “Chinese” checkers),
Cartesian grids are not the only choice for discretizing parameter space. Other structured choices arising from
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n-dimensional sphere packing theory (see Tables 7.1 and 7.2, and further characterizations in §3) are signifi-
cantly more uniform and have many more nearest neighbors, especially as the dimension of the problem in
question is increased; both of these properties suit these alternative lattices well for coordinating grid-based
optimization algorithms.

Part I of this study consisely summarizes n-dimensional sphere packing theory, describing almost every-
thing one needs to know about lattices up to dimension n = 24 in order to use them effectively in practical
engineering applications. To extend the lattice theory described in Part I of this text in order to coordina-
te a derivative-free optimization, a few additional component algorithms are needed, which are described
in the remainder of §7. For simplicity, Part II focuses on the use of just two such lattices, the zero-sum
lattice A,, which is an n-dimensional analog of the 2-dimensional hexagonal lattice and the 3-dimensional
face-centered-cubic lattice, and the Gosset lattice Eg, which is an 8-dimensional analog of the 3-dimensional
diamond packing, and is especially uniform; both of these lattices are described completely in §2. The utility
of other lattices in this setting will be explored in future work.

7.1.5 Framing the search for a uniform simplex as a discrete Thomson problem

Thomson (1904), in his study of the structure of the atom, is credited with being the first to address the
problem?: “Where should k inimical dictators settle on a planet in order to be as far away from each other
as possible?” This question extends naturally to n-dimensional planets, and has received significant attention
in the years since Thomson’s original paper. The question is readily answered numerically by assigning an
identical “charge” to each of n identical “particles”, restricting particle motion to the surface of the sphere,
and iteratively moving each particle (with some damping applied) in the direction of the force caused by
the other particles (projected onto the sphere) until all particles come to equilibrium. The precise solution

3This curious problem, articulated by Meschkowski (1960) in terms of inimical dictators (see also L. Fejes Toth 1971), assumes that
all locations on the planet’s surface are equally desirable, and that the inimical dictators all cooperate.
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reached is a function of the distance metric and power law used when computing the force between any two
particles; in the electrostatic setting, Thomson used the Euclidian distance between the particles, and a force
which is proportional to the inverse square of this distance. The setting based on other distance measures
(e.g., measured along the surface of the sphere instead of along a straight line) and other power laws are
referred to as generalized Thomson problems; in particular, the case based on the p’th power in the limit that
p — oo (that is, the max value) was studied in Tammes (1930), in his study of the boundaries of pollen grains.

In this chapter, we generalize this classical question in two ways, and introduce a new metric to characte-
rize the solution found:

e First, the locations where the particles are allowed to settle are restricted to a discrete set of points on a
sphere, which are specified as the nearest-neighbor lattice points to the CMP.

e Next, we allow some the particles’ locations on the sphere to be specified (that is, fixed) in advance, and
only move the remaining (free) particles to arrive at the best solution possible.

e Finally, the new metric we introduce is a check of whether or not the distribution produced by numerical
solution of the resulting “discrete Thomson problem” forms a positive basis of the feasible neighborhood
of the CMP; that is, in the case with no active constraints (cf. §7.4), whether or not all points on the
unit sphere around the CMP can be reached via a linear combination with non-negative coefficients of the
vectors from the CMP to the optimized particle locations.

After developing a method to test for a positive basis, the remainder of this section develops three efficient
algorithms to iterate on this “discrete Thomson problem” until a positive basis is found. To accomplish this,
these algorithms first solve the discrete Thomson problem numerically for n + m particles where m = 1. If the
optimization algorithm succeeds in producing a positive basis, the algorithm exits; otherwise, m is increased
by one and the process repeated until a positive basis is determined. The resulting algoroithm is leveraged
heavily during the poll step of the lattice-based SMF algorithms developed later in Part II.
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7.2 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, we will at times need an efficient test to determine
whether or not the vectors to these points from the CMP form a positive basis of the feasible domain around
the CMP. Without loss of generality, we will shift this problem so that the CMP corresponds to the origin in
the discussion that follows.

A set of vectors {X',...,%*} for k > n+ 1 is said to positively span R" if any point in IR” may be
reached via a linear combination of these vectors with non-negative coefficients. Since the 2n basis vectors
{e!,...,e", —e!,...,—€"} positively span IR", a convenient test for whether or not the vectors {X',...,%*}
positively span IR” is to determine whether or not each vector in the set E = {e' ,oet —el L, —e"} can be
reached by a positive linear combination of the vectors {Xl e ,X"}. That is, for each vector e € E, a solution
z, with z; > O fori = 1,...,k, to the equation Xz=eis sought, where X = (f(l f("). If such a z exists
for each vector e € E, then the vectors {i',...,ik} positively span IR”; if such a z does not exist, then the
vectors {%',...,%*} do not positively span R".

Thus, testing a set of vectors to determine whether or not it positively spans IR” reduces simply to testing
for the existence of a solution to 2n well-defined linear programs in standard form. Techniques to perform
such tests, such as Matlab’s 1inprog algorithm, are well developed and readily available. Further, if a set
of k vectors positiviely spans IR”, it is a simple matter to check whether or not this set of vectors is also a
positive basis of IR”, if such a check is necessary, simply by checking whether or not any subset of k — 1
vectors chosen from this set also positively span IR”. Note that a positive basis with k vectors will necessarily
have k in the range n 4 1 < k < 2n; the case with k = n + 1 is referred to as a minimal positive basis, and the
case with k = 2n is referred to as a maximal positive basis.
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7.3 Selecting a positive basis from nearest-neighbor lattice points

In §6 of Part I, we described how to enumerate all points which are nearest neighbors of the origin of a lattice
(and thus, with the appropriate shift, all points which are nearest neighbors of any CMP on the lattice). In
§7.2 above, we described how to test a subset of such points to see if the vectors from the origin to these
points form a positive basis around the CMP. We now present a general algorithm to solve the problem of
selecting a positive basis from the nearest-neighbors of the CMP using a minimal number of new poll points,
while creating the maximum achievable angular uniformity between the vectors from the CMP to each of
these points (that is, while minimizing the skewness of the resulting poll set). Note in Figure 7.2 that, as
the number of nearest neighbors increases, the flexibility in solving this (apparently, NP-hard) problem also
increases, though a perfectly distributed minimal positive basis (using n + 1 points) is not always available.
Ideally, for m = 1, the solution to the discrete Thomson problem will produce a positive basis with good
angular uniformity; if it does not, we may successively increment m by one and try again until we succeed in
producing a positive basis. We have studied three algorithms for solving this problem:

Algorithm A. If the kissing number 7 of the lattice under consideration is relatively large (that is, if T > n; for
example, for the Leech lattice Ay4), then a straightforward algorithm can first be used to solve Thomson’s
problem on a continuous sphere in n dimensions. This can be done simply and quickly by fixing ¢ > 0
repulsive particles at the prespecified lattice points, and initializing n + m — g free repulsive particles on the
sphere randomly. Then, at each iteration, a straightforward force-based algorithm may be used to move each
free particle along the surface of the sphere a small amount in the direction that the other particles are tending
to push it, and iterating until the set of particles approaches an equilibrium. The free particle that is nearest
to a nearest-neighbor lattice point around the CMP is then moved to said lattice point and fixed there, and
the remaining free particles adjusted until they reach a new equilibrium. This adjust/fix/adjust/fix sequence is
repeated until all particles are fixed at lattice points.
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Figure 7.2: Various minimal positive bases (shown in red) around the origin (shown in blue) in the (left)
triangular, (center) BCC, and (right) FCC lattices. Note that the triangular and BCC lattices each have two
perfectly distributed minimal positive bases. In contrast, there are several choices for selecting a minimal
positive basis in the FCC lattice, but none is perfectly distributed.

Algorithm B. If the kissing number 7 of the lattice under consideration is relatively small (that is, if T is not
well over an order of magnitude larger than n), then it turns out to be more expedient to solve the discrete
Thomson problem directly. To accomplish this, again taking the g presepecified repulsive particles as fixed,
we initialize n + m — g free repulsive particles randomly on n 4 m — g nearest-neighbor lattice points around
the CMP and then, at each iteration, move the two or three* free particles that are furthest from equilibrium in

4Moving more than two or three particles at a time in this algorithm makes each iteration computationally intensive, and has little
impact on overall convergence of the algorithm, whereas moving only one at a time is found to significantly impede convergence to the
optimal solution.
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the force-based model described above (that is, those free particles which have the highest force component
projected onto the surface of the sphere) into new positions selected from the available locations in such a
way as to minimize the maximum force (projected onto the sphere) over the entire set of (fixed and free)
particles. Though each iteration of this algorithm involves an exhaustive search for placing the two or three
free particles in question, it converges quickly when T is O(100) or less.

Algorithm C. For intermediate kissing numbers T, a hybrid approach may be used: a “good” initial distribution
may be found using Algorithm A, then this distribution may be refined using Algorithm B.

In each of these algorithms, to minimize the number of new function evaluations required at each poll step,
a check is first made to determine whether any previous function evaluations have already been performed on
the nearest-neighbor lattice points around the CMP. If so, then particles are fixed at these locations, while the
remaining particles are adjusted via one of the three algorithms described above. By so doing, previously-
calculated function values may be used with maximum effectiveness during the polling procedure. When
performing the poll step of a surrogate-based search, in order to orient the new poll set favorably (and, on
average, exit the poll step quickly), a particle may also be fixed at the nearest neighbor point with the lowest
value of the surrogate function; when polling, this poll point is thus evaluated first.

The iterative algorithms described above, though in practice quite effective, are not guaranteed to converge
from arbitrary initial conditions to a positive basis for a given value of m, even if such a positive basis exists.
To address this issue, if the algorithm used fails to produce a positive basis, the algorithm may be repeated
using a new random starting distribution. Our numerical tests indicate that this repeated random initialization
scheme usually generates a positive basis within a few initializations when such a positive basis indeed exists.
Since at times, for a given m, there exists no configuration of the free particles on the nearest-neighbor lattice
points that produces a positive basis, particularly when the previous function evaluations being leveraged are
poorly configured, the number of new random initializations is limited to a prespecified value. Once this value
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is reached, m is increased by one and the process repeated. As the cost of each function evaluation increases,
the user can increase the number of random initializations attempted using one of the above algorithms for
each value of m in order to avoid the computation of extraneous poll points that might in fact be unnecessary
if sufficient exploration by the discrete Thomson algorithm described above is performed.

Numerical tests have demonstrated the efficacy of this rather simple strategy, which reliably generates
a positive basis while keeping computational costs to a minimum even when leveraging a relatively poor
configuration of previous function evaluations and when working in relatively high dimension n. Additionally,
the algorithm itself is independent of the lattice being used; the only inputs to the algorithm are the dimension
of the problem, the locations of the nearest-neighbor lattice points, and the identification of those nearest-
neighbor lattice points for which previous function evaluations are available.

7.4 Implementation of feasible domain boundaries

When implementing a global search in n dimensions, or even when implementing a local search on a function
which is ill-defined for certain nonphysical values of the parameters (such as negative concentrations of
chemicals), it is important to restrict the optimization algorithm to look only over a prespecified “feasible”
region of parameter space. For simplicity, the present work assumes rectangular constraints on this feasible
domain (that is, simple upper and lower bounds on each parameter value). An efficient n-dimensional lattice
with packing radius p, is used to quantize the interior of the feasible domain, efficient (n — 1)-dimensional
lattices with packing radius p,_1 = p,/2 are used to quantize the portions of the boundary of the feasible
domain with one active constraint (that is, the “faces”), efficient (n — 2)—dimensiona1 lattices with packing
radius p,—» = p,/4 are used to quantize the portions of the boundary of the feasible domain with two active
constraints (that is, the “edges”), etc. The present section describes how to search over the boundaries of the
feasible domain, and how to move on and off of these boundaries as appropriate, while carefully restricting
all function evaluations to the interior and boundary lattices in order to coordinate an efficient search.
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We distinguish between two scenarios in which the polling algorithm as described thus far must be adju-
sted to avoid violating the (n — 1)-dimensional boundaries® of the feasible domain. In the first scenario, the
CMP is relatively far (that is, greater than p, but less than 2p,) from the boundary of the feasible domain,
and thus one or more of the poll points as determined by one of the algorithms proposed in §7.3 might land
slightly outside this boundary. In this scenario, an effective remedy is simply to eliminate all lattice points
which land outside of the feasible domain from the list of potential poll points, and then to augment this re-
stricted list of potential poll points with all lattice points on the nearby (n — 1)-dimensional constraint surface
which are less than 2p,, from the CMP. From this modified list of potential poll points, the poll set may be
selected in the usual fashion using one of the algorithms described in §7.3.

In the second scenario, the CMP is relatively close (that is, less than p,) to the boundary of the feasible
domain. In this scenario, it is most effective simply to shift the CMP onto the nearest lattice point on the (n —
1)-dimensional constraint surface. With the CMP on the feasible domain boundary, each poll step explores a
minimum positive basis selected on the lattice quantizing the (n — 1)-dimensional boundary and, in addition,
polls an additional lattice point on the interior of the feasible domain to allow the algorithm to move back off
this constraint boundary. Ideally, this additional point would be located on a inward-facing vector normal to
the (n — 1)-dimensional feasible domain boundary a distance p, from the CMP; we thus choose the interior
lattice point closest to this location.

Multiple active constraints are handled in an analogous manner (see Figure 7.3). In an n-dimensional
optimization problem with p > 2 active constraints, the CMP is located on an active constraint “surface”
of dimension n — p. An efficient (n — p)-dimensional lattice with packing radius p,—, = p,/2? is used to
quantize this active constraint surface, and a poll set is constructed by creating a positive basis selected from
the points neighboring the CMP within the (n — p)-dimensional active constraint surface, together with p
additional points located on the (n — p 4 1)-dimensional constraint surfaces neighboring the CMP. Ideally,

S5That is, the portions of the boundary with a single active constraint.
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X3

Figure 7.3: A scenario in which a CMP at x = (0 0 O)T sits on an (n —2) = 1-dimensional edge of an
n = 3-dimensional feasible region with bounds x; > 0 and x, > 0. Note that the feasible neighborhood of this
edge is positively spanned by the nearest neighbors on the integer lattice, and that two additional vectors are
added to the poll set to facilitate moving off of each of these active constraint boundaries.
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these p additional points would be located on vectors normal to the (n — p)-dimensional active constraint
surface a distance p,—p11 = p,/2” ~! from the CMP; we thus choose the lattice points on the (n—p+1)-
dimensional feasible domain boundaries closest to these locations.

In practice, it is found that, once an optimization routine moves onto p > 1 feasible domain boundaries,
it only somewhat infrequently moves back off. To account for this, the p additional poll points mentioned in
the previous paragraph are polled affer the other poll points forming the positive basis within the (n — p)-
dimensional active constraint surface.

7.5 Quantifying the skewness of minimal positive bases

A final relevant metric of a lattice that relates to the performance of the corresponding lattice-based optimiza-
tion is the deviation from perfect uniformity of the best minimal positive basis available on nearest-neighbor
lattice points. The best nearest-neighbor minimal positive basis skewness of a lattice, s, is thus now defined
as the ratio between the largest and the smallest angles between any two vectors in the best minimal positive
basis available on nearest-neighbor lattice points, minus one. Therefore, s = 0 indicates a perfectly uniform
minimal positive basis on nearest-neighbor lattice points, as exhibited by A> (see Figure 7.2a) and A} (Figure
7.2b). In constrast, A3 through Ag all have s = 0.3333 (see, e.g., A3 in Figure 7.2¢).

Surprisingly, the best nearest-neighbor minimal positive basis skewness of Eg is s = 1; one might initially
expect it to be much smaller than this (indeed, one might hope that it would be fairly close to s = 0) due
to the relatively large kissing number (T = 240) of this n = 8 lattice. Interestingly, the best nearest-neighbor
positive basis of Eg when using n 4 2 points (that is, instead of a minimal positive basis with n + 1 points) is
perfectly uniform. The tests reported later in Part II thus use n + 2 points instead of n 4 1 points when polling
on the Ejg lattice.

A minimal positive basis on nearest-neighbor lattice points doesn’t even exist on the Z" lattice (indeed,
a positive basis on nearest neighbors of the Z" lattice requires a full 2n points). This was, in fact, a matter
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of significant inconvenience in previous work when using the Cartesian lattice as the default choice for such
problems, as using a maximal positive basis rather than a minimal positive basis essentially doubles the cost
of each complete poll step for large n. When developing a minimal positive basis for the Z" lattice, it is thus
common (see, e.g., Booker et al. 1999) to select the Cartesian unit vectors e! through e and one additional
“oddball” vector in the (—1,—1,...,—1) direction which is /i longer. Note the “clustering” of the Cartesian
unit vectors in directions generally opposite to the oddball vector. To quantify, the skewness of this minimal
positive basis is cos ™! (=1/+/n)/(m/2) — 1, which in dimensions n = 2 through 8 is given by 0.5, 0.3918,
0.3333, 0.2952, 0.2677, 0.2468, and 0.2301. Note that, while the skewness of the angular distribution of this
minimal positive basis actually decreases gradually as the dimension of the problem increases, the ratio in
lengths of the vectors to the nearest-neighbor lattice points and the oddball vector in this basis increases
like \/n (that is, from 1.4142 in n = 2 to 2.8284 in n = 8). This is quite unfortunate, as it leads to a peculiar
nonisotropic behavior of the optimization algorithm over parameter space (for further discussion on this point,
see the sixth paragraph of §10.1). The tests reported later in Part II use this peculiar minimum positive basis,
with a long oddball vector, when polling on the Z" lattice.

We now have all of the ingredients necessary to coordinate SMF algorithms, as introduced in §7.1, with
any of the lattices listed in Tables 3.1-3.2 of Part I, while both reusing previous function evaluations as
effecieintly as possible as well as respecting sharp bounds on the feasible region of parameter space.



7.5. QUANTIFYING THE SKEWNESS OF MINIMAL POSITIVE BASES

n | lattice name A © G T
Ay hexagonal 0.90690 | 1.2092 | 0.080188 6
2 72 square 0.78540 | 1.5708 | 0.083333 4

A3 face-centered cubic (FCC) || 0.74048 | 2.0944 | 0.078745 12

3 A3 body-centered cubic (BCC) || 0.68017 | 1.4635 | 0.078543 8

7?3 cubic 0.52360 | 2.7207 | 0.083333 6
Eg Gosset 0.25367 | 4.0587 | 0.071682 || 240
Dyg 0.12683 | 32.470 | 0.075914 || 112
Ag Zero-sum 0.08456 | 32.993 | 0.077391 || 72
8 Dy 0.03171 | 8.1174 | 0.074735 || 16
A3 0.02969 | 3.6658 | 0.075972 | 18
73 Cartesian 0.01585 | 64.939 | 0.083333 || 16

Table 7.1. Characteristics of select distinct lattices in dimensions 2, 3, and 8, ordered from dense to rare (for
a more complete characterization, see Tables 3.1 and 3.2 of Part I). Listed (see Part I) are the packing density,
A, covering thickness, ©, mean squared quantization error per dimension, G, and kissing number, T. Note
that Z" is significantly outperformed in every standard metric in every dimension n > 1 by the available
alternatives.



CHAPTER 7. EXTENDING LATTICE THEORY FOR DERIVATIVE-FREE OPTIMIZATION

Az As | Dy | Ds | E¢ | E7 | Eg | Kio | Aje Aoy

fa| 1155 | 1.414 | 2 | 283|462 | 8 | 16 | 152 | 4096 | 1.68¢’

Jx L.5 2 3 4 6 9 | 15| 315 | 135 | 4095

Table 7.2. The densest, most uniform lattices available in several dimensions, and two factors quantifying
the degree to which these lattices are better than the corresponding Cartesian grid in the same dimension; fx
denotes the factor of improvement in the packing density, an indication of the uniformity of the lattice, and fz
denotes the factor of improvement in the kissing number, an indication of the flexibility available in selecting
a positive basis from the nearest neighbors on the lattice. Note that the improvements becoming especially
pronounced as the dimension 7 is increased.
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CHAPTER 8. KRIGING INTERPOLATION

8.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm (see §7.1) is to interpolate, and extrapolate, the trends
exhibited by the existing function evaluations in order to suggest new regions of parameter space, perhaps
far from the CMP, where the function value is anticipated, with some reasonable degree of probability, to be
lower than that of the CMP. There are a variety of possibile ways of accomplishing this; we leverage here the
Kriging interpolation strategy (Krige 1951; Matheron 1963; Jones 2001; Rasmussen & Williams 2006).

The problem of interpolation is the problem of drawing a smooth curve through data points in order to
estimate the function values in regions where the function itself has not yet been computed. The problem
of interpolation, thus, necessarily builds on some hypothesis that models the function behavior in order to
“connect the dots”. The most common such model is a mechanical one, based on a thin piece of wood,
or “spline”, that is “bent” in order to touch all the data points; this mechanical model leads directly to the
mathematical algorithm known as cubic spline interpolation. A perhaps equally valid hypothesis, which forms
the foundation for the Kriging interpolation strategy, is to model the underlying function as a realization, with
maximum likelihood, of some stochastic process. The stochastic model used in this approach is selected to
be general enough to model a broad range of functions reasonably well, yet simple enough to be fairly
inexpensive to tune appropriately based on the measured data. There are many such stochastic models which
one can select; the simple stochastic model considered here leads to the easy-to-use interpolation strategy
commonly referred to as ordinary Kriging.



8.2. NOTATION OF STATISTICAL DESCRIPTION

8.2 Notation of statistical description

To begin, consider N points {Xl, cooxN }, at which the function will ultimately be evaluated, and model the
function’s value at these N points with the random vector

f(xh) f

f(xY) i

To proceed further, we need a clear statistical framework to describe this random vector.
The cumulative distribution function (CDF) of the random vector f, denoted d(f), is a mapping from
f € R" to the real interval [0, 1] that monotonically increases in each of the components of f, and is defined

dif) =P(fi<f.o<[fpsSn <[

where f is some particular value of the random vector f and P(S) denotes a probability measure that the
conditions stated in S are true. In the scalar case, for example, df(l) = 0.6 means that it is 60% likely that
the random variable f satisfies the condition f < 1. For a random vector f whose CDF is modelled as being
differentiable everywhere, the probability density function (PDF) pg(f’) > 0 is a scalar function of f’ defined
such that

. /11, 1 / - / N andf<f)
df(f)_Lw[w"'prf(f)dfldfz"'dfn <~ pf(f)_ aj_claj_(zaj_(n 1‘=f/.

For small |Af’|, the quantity pe(f')Af] Af;--- Af; represents the probability that the random vector f takes
some value within a small rectangular region centered at the value f” and of width Af/ in each coordinate
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direction e;. Note that the integral of pg(f’) over all possible values of f’ is unity, that is

£)df' = 1.
/R"Pf< )

The expected value of a function g(f) of a random vector f is given by

£{g(0)} = [ o) pe(t)dx

The expected value may be interpreted as the average of the quantity in question over many realizations. In
particular, the mean f and covariance P of the random vector f are defined as

P2rity= [ Op()dr.  REc{E-DE-D)= [ @ -HE D pl0)ar.

8.3 Statistical modeling assumptions of the ordinary Kriging model

The PDF of the random vector f = f,, in this analysis is modelled as Gaussian, and is thus restricted to the
generic form
1 —(-DTP(f —F
pf(f/) _ exp ( ) f ( ),
(2m)/2|Py|1/2 )

(8.1a)

where the covariance Py is modelled as a constant 62, referred to as the variance, times a correlation matrix R
whose {i, j} th component r;; is given by a model of the correlation of the random function f between points
x! and x/, where this correlation model r(+,-) itself decays exponentially with the distance between points x’
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and x/; that is,

P2 G°R, where rij 2 r(x',x/) and r(x,y) Hexp ( — 0¢|x¢ —y4|”5) (8.1b)

for some yet-to-be-determined constants 62, 0,>0,and 0 < pe <2 for £ =1,...,n. The mean f in the
Gaussian model (8.1a) is itself modelled as uniform over all of its components:

||!>

f=ul (8.1c)

for some yet-to-be-determined constant u. There is extensive debate in the recent literature (see, e.g., Isaaks
& Srivastava 1989; Rasmussen & Williams 2006) on the statistical modeling assumptions one should use
in a Kriging model of this sort. It is straightforward to extend the present investigation to incorporate less
restrictive Kriging models; the ordinary Kriging model is used here primarily due to its simplicity.

8.4 Adjusting the coefficients of the model based on the data

If the vector of observed function values is
17
N
then the PDF corresponding to this observation in the statistical model proposed in (8.1) can be written as

1 —(f”f,ul)TR*I(f”—,ul)
0\ __
ni(f?) = (2m)"/2(c2)n2|R[172 P 262 :

(8.2)
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The process of Kriging modeling boils down to selecting the parameters o2, 8y, pe, and u in the statistical
model proposed in (8.1) to maximize the PDF evaluated for the function values actually observed, f = f°, as
given in (8.2).

Maximizing pg(f°) is equivalent to minimizing the negative of its log. Thus, for simplicity, consider

J = —log[pe(t”)] = 3 log(2m) +

n

2

(£ —p1) "R (£ — p1)
262 '

1
log(c?) + 5 log(IR|) + (8.3)
Setting the derivatives of J with respect to u and 6> equal to zero and solving, the optimal values of u and >
are determined immediately:
S o (7 —p)"RI (£ — 1)

=R O T " ' 4

With these optimal values of u and 62 applied, noting that the last term in (8.3) is now constant, what remains
to be done is to minimize

n 1
i = 3 log(c?) + 5 log(|R|) (8.5)

with respect to the remaining free parameters' 0, and p;, where 67 is given as a function of R in (8.4) and R,
in turn, is given as a function of the free parameters 6, and p in (8.1b). This minimization must, in general, be
performed numerically. However, the function J; is smooth in the parameters 6, and py, so this optimization

'To simplify this optimization, p, may be specified by the user instead of being determined via optimization; this is especially
appropriate to do when the number of function evaluations N is relatively small, and thus there is not yet enough data to determine
both the 6y and py uniquely. If this approach is followed, p; = 1 or 2 are natural choices; the case with p; = 1 is referred to as an
Ornstein-Uhlenbeck process, whereas the case with py = 2 is infinitely differentiable everywhere.
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may be performed efficiently with a standard gradient-based algorithm, such as the nonquadratic conjugate
gradient algorithm, where the gradient itself, for simplicity, may easily be determined via a simple finite
difference or complex-step derivative approach.

Note that, after each new function evaluation, the Kriging parameters adjust only slightly, and thus the
previously-converged values of these parameters form an excellent initial guess for this gradient-based op-
timization algorithm. Note also that, while performing this optimization, the determinant of the correlation
matrix occasionally reaches machine zero. To avoid the numerical difficulty that taking the log of zero would
otherwise induce, a small [0(10’6)] term may be added to the diagonal elements of R. By so doing, the Kri-
ging predictor does not quite have the value of the sampled data at each sampled point; however, it remains
quite close, and the algorithm is made numerically robust [Booker ef al, 1999].

8.5 Using the tuned statistical model to predict new function values

Once the parameters of the stochastic model have been tuned as described above, the tuned Kriging model
facilitates the computationally inexpensive prediction of the function value at any new location X. To perform
this prediction, consider now the N + 1 points {x' oo xN ,X}, and model the function’s value at these N + 1

pOlntS Wlth the vector
( ) ( ) ’
f(li) f

where f is the N x 1 random vector considered previously and f is the random scalar modeling the function
at the new point. Analogous statistical assumptions as laid out in (8.1) are again applied, with the correlation
matrix now written as

R= L’; T] P2 o°R, (8.6)
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where R is the N x N correlation matrix considered previously and, consistent with this definition, the vector
I is constructed with components

7= r(xi,)‘(), where X y HGXP ( — Blxy —)’€|W)'

Following Jones (2001), note by the matrix inversion lemma that R~' may be written

=11 —1 =T p—1=\—1=T p—1 —Ix =T p—12)—1
e [R r} :[ +RE(1 I;R F)'f'RTY R 'f(1—-¢'R 7 'F) ] 87)

—(1-¢'R

Keeping the paramter values 62, 8;, ps, and u as tuned previously, we now examine the variation of the

PDF in the remaining unknown random variable, f. Substituting (8.6) and (8.7) into a PDF of the form (8.1a),
we may write

262 (8.8)
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where, with a minor amount of algebraic rearrangement, the mean and variance of this scalar Gaussian dis-
tribution modeling the random scalar f work out to be”

FE) =2 {f®)} = {f} =u+e R (£ ), (8.92)
&) =e{[f&) -} =2{[f- f*} =c*(1 —r"R'r). (8.9b)

Equations (8.9a)-(8.9b) give the final formulae for the Kriging predictor, f (%), and its associated uncertainty,
52(X).

When applied numerically to a representative test problem, as expected, the Kriging predictor function,
which we denote f (%), interpolates [that is, it goes through every observed function value at points X = x!
to X = xV], whereas the uncertainty function, denoted s> (%), is zero at each sampled point, and resembles a
Gaussian “bump” between these sampled points, as seen in Figure 8.1. Note that, once the parameters of the
statistical model have been determined, as described in §8.4, the formula (8.92)-(8.9b) for the Kriging pre-

dictor f(x) and its corresponding uncertainty s>(X) at any test point X is computationally quite inexpensive®.

2 An alternative interpretation of this process models the constant y itself as a stochastic variable rather than as a constant. Following
this line of reasoning ultimately gives the same formula for the predictor f(X) as given in (8.9a), and a slightly modified formula for its
associated uncertainty,

(1—-r"R 'r)? ,
U= (909
Which formula [(8.9b) or (8.9b)] is used in the present model is ultimately a matter of little consequence as far as the overall derivative-
free optimization algorithm is concerned; we thus prefer the form given in (8.9b) due to its computational simplicity.

3Note that, for maximum efficiency, R~ should be saved between function evaluations and reused for every new computation of f
and 52 required.

(%) = 62(1 —r"R'r+
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Figure 8.1: (a) The Kriging predictor, f (x), and (b) its associated uncertainty, 52 (x), for a perturbed quadratic
bowl sampled on a square grid of 7 x 7 points. (c) The corresponding J(x) = f(x) — ¢ - s?(x) search function

used for a global search in two dimensions (see §9).



Chapter 9

Global optimization leveraging
Kriging-based interpolation

The previous chapter reviewed the Kriging interpolation strategy which, based on a sparse set of observed
function values f°(x') for i = 1,...,N, develops a function predictor f(x) and a model of the uncertainty
s?(x) associated with this prediction for any given set of parameter values x. Leveraging this Kriging model,
an efficient search algorithm can now be developed for the derivative-free optimization algorithm summarized
in §7.1.

The effectiveness of the various Kriging-based search strategies which one might propose may be tested
by applying them repeatedly to simple test problems via the following procedure:
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e asearch function J(x) is first developed based on a Kriging model fit to the existing function evaluati-

ons,

e a gradient-based search is used to minimize this (computationally inexpensive, smoothly-varying)

search function,

e the function f(x) is sampled at the point X which minimizes the search function',

o the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem with multiple minima, f(x) = sin(x) + x>, on the
interval x € [—10,10], and use four starting points to initialize the search x = —10, x = —5.2, x = 6, and
x = 10. Ineffective search strategies will not converge to the global minimum of f(x) in this test, and may not
even converge to a local minimum. More effective search strategies converge to the global minimum following
this approach, and the number of function evaluations required for convergence indicates the effectiveness of
the search strategy used.

Perhaps the most “obvious” strategy to use in such problems is simply fitting a Kriging model to the
known data, then searching the Kriging predictor itself, J(x) = f(x), for its minimum value. This simple
approach has been implemented in a variety of examples with reasonably good results (see Booker et al,
1999). However, as shown clearly in Figure 9.1, this approach can easily break down. The Kriging predictor
does not necessarily model the function accurately, and its minimization fails to guarantee convergence to
even a local minimum of the function f(x). This observed fact can be motivated informally by identifying the
Kriging predictor as an interpolating function which only under extradrdinary conditions predicts a function
value significantly lower than all of the previously-computed function values; under ordinary conditions, a
strategy of minimizing the predictor will thus often stall in the vicinity of the previously-evaluated points.

To avoid the shortcomings of a search defined solely by the minimization of the predictor, another strategy

!For the moment, to focus our attention on the behavior of the search algorithm itself, no underlying grid is used to coordinate the
search in order to keep function evaluations far apart.



explored by Booker er al (1999) is to evaluate the function at fwo points in parameter space during the search:
one point chosen to minimize the predictor, and the other point chosen to maximize the predictor uncertainty.
Such a heuristic provides a guarantee of global convergence, as the seach becomes dense in the parameter
space as the total number of function evaluations, N, approaches infinity (see §7.1.2). However, this approach
generally does not converge quickly as compared with the improved methods described below, as the extra
search point has no component associated with the predictor, and is thus often evaluated in relatively “poor”
regions of parameter space.

We are thus motivated to develop a more flexible strategy to explore slightly away from the minima of
the predictor. To achieve this, consider the minimization of J(x) = f(x) — c-s?(x), where c is some constant
(see Cox & John 1997 and Jones 2001). A search coordinated by this function will tend to explore regions
of parameter space where both the predictor of the function value is relatively low and the uncertainty of this
prediction in the Kriging model is relatively high. With this strategy, the search is driven to regions of higher
uncertainty, with the —c - 52 (x) term in J(x) tending to cause the algorithm to explore away from previously
evaluated points. Additionally, minimizing f(x) — ¢ - s?(x) allows the algorithm to explore the vicinity of
multiple local minima in successive iterations in order to determine, with an increasing degree of certainty,
which local “bowl” in fact has the deepest minimum. The parameter ¢ provides a natural means to “tune”
the degree to which the search is driven to regions of higher uncertainty, with smaller values of ¢ focusing
the search more on refining the vicinity of the lowest function value(s) already found, and larger values of ¢
focusing the search more on exploring regions of parameter space which are still relatively poorly sampled.
This parameter may tuned based on knowledge of the function being minimized: if the function is suspected
to have multiple minima, ¢ can be made relatively large to ensure a more exploratory search, whereas if the
function is suspected of having a single minimum, ¢ can be made relatively small to ensure a more focused
search in the vicinity of the CMP. For an appropriate intermediate value of c, the resulting algorithm is often
quite effective at both global exploration and local refinement of the minimum, as illustrated in Figure 9.2.
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The strategy of searching J(x) = f(x) —c-s?(x) also extends naturally to multiple dimensions, as illustrated
for a two-dimensional problem in Figure 8.1c. Note also that, in the spirit of Booker et al (1999) [who
effectively suggested, in the present notation, exploring based on both ¢ = 0 and ¢ — o at each search step],
one can perform a search using multiple but finite values of ¢ at each search step, returning a set of points
designed to focus, to varying degrees, on the competing objectives of global exploration and local refinement.
If at each search step k at least one point is included which minimizes f(x) — ¢t - s> (x) for a value of ¢; which
itself approaches o as k — oo, then the search drives at least some new function evaluations sufficiently far
from the existing points that the function evaluations eventually become dense over the feasible domain, thus
guaranteeing global convergence. Thus, an f (x)—c- sz(x) search, when used properly, can indeed be used
in a globally convergent manner.

Minimizing J(x) = f(x) — c-s?(x) is not the only strategy to take advantage of the estimate of the uncer-
tainty of the predictor provided by the Kriging model. Another effective search strategy involves maximizing
the probability of achieving a target level of improvement below the current CMP; this is called the maximum
likelihood of improvement (MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen 1991, Elder 1992,
and Mockus 1994]. If the current CMP has a function value fi,i,, then this search strategy seeks that x for
which the probability of finding a function value f(x) less than some prespecified target value fiarger [that
is, for which f(X) < fiarget < fmin] is maximized in the Kriging model. If f(x) is known to be a positive
function, a typical target value in this approach is fiarget = (1 — ) finin, Where 8 may be selected somewhere
in the range of 0.01 to 0.2. As for the parameter ¢ discussed in the previous paragraph, the parameter d in this
strategy tunes the degree to which the search is driven to regions of higher uncertainty, with smaller values of
d focusing the search more on refining the vicinity of the lowest function value(s) already found, and larger
values of  focusing the search more on exploring regions of parameter space which are still relatively poorly
sampled. As seen in Figure 9.3, the MLI search offers performance similar to the f(x) —c-s?(x) method dis-
cussed previously. In contrast with the f(x) — ¢ s?(x) approach, even for a fixed (finite) value of 8, the MLI



approach eventually drives the function evaluations far enough away from existing points that the function
evaluations eventually become dense over the feasible domain, thus guaranteeing global convergence. Thus,
the MLI approach is inherently globally convergent.

Even more sophisticated search strategies can also be proposed, as reviewed elegantly by Jones (2001).
However, the simplicity, flexibility, and performance given by the strategy of minimizing J(x) = f(x) —c-
s?(x) renders this approach as adequate for our testing purposes here.

Since both the J(x) = f(x) — c-s?(x) search function and the MLI search function are inexpensive to
compute, continuous, and smooth, but in general have multiple minima, an efficient gradient-based search,
initialized from several well-selected points in parameter space, may be used to to minimize them. As the
uncertainty s°(x) goes to zero at each sample point, J(x) will tend to dip between each sample point. Thus,
a search is initialized on 2n - N total points forming a positive basis near (say, at a distance of p,,/2) to each
of the N sample points, and each of these starting points is marched to a local minima of the search function
using an efficient gradient-based search (which is constrained to remain within the feasible domain of x).
The lowest point of the paths so generated will very likely be the global minima of the search function. For
simplicity, the necessary gradients for this search may be computed via a simple second-order central finite
difference scheme applied to the Kriging model, though more sophisticated and efficient approaches are also
possible.
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Figure 9.1: Convergence of a search algorithm based on minimizing the Kriging predictor, J(x) = f (x), at
each iteration. This algorithm does not necessarily converge to even a local minimum, and in this example
has stalled, far from the global minimum, after six iterations.
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Figure 9.2: Convergence of a search algorithm based on minimizing the search function J(x) = f(x) —
c-s?(x) at each iteration, taking ¢ = 1. Note that the global minimum is found after just a few iterations.

However, global convergence is not guaranteed.
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Figure 9.3: MLI search with a target 7 = 10%. Note convergence to global minimum, as well as exploratory
nature of the search which guarantees global convergence.
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10.5 LABDOGS Performance Summary

Putting everything together, we now develop and test what we identify as the Lattice Based Derivative-
free Optimization via Global Surrogates (LABDOGS) algorithm. This algorithm consists of an SMF-based
optimization (see §7.1) coordinated by uniform n-dimensional lattices (see Part I and further extensions in
§7) while leveraging a Kriging interpolant (see §8) to perform an efficient global search based on the search
function J(x) = f(x) — c-s?(x) (see §9). The full algorithm has been implemented in an efficient numerical
code, dubbed Checkers, and is tested in this section in n = 2 to n = 8 dimensions using the Z", A,,, and E3
lattices to coordinate the search, and is applied here to:

e randomly shifted quadratic bowls
fo(x) = (x—x")TA(x —x’)
e randomly shifted Rosenbrock functions:
fr(x) = B {1 = (i —x))]? + (=1)"500] (i1 = xfy1) = (i = 27) ]},

e the Branin function:

fz(x) = [1 = 2x2+ 0.05sin(47mxy) — x1] + [x2 — 0.5sin(27x ) |2,
e and the “7;” function:

fu(x) = sin(5x;) 4 sin(5x2) 4 0.02[(5x; + 1.5)> + (5x2 + 1.5)?].

Note that the first two test functions are n-dimensional and have unique minima, whereas the last two test
functions are 2-dimensional and have multiple minima. Much further testing remains to be done, and will be
reported in future work.
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10.1 SP applied to randomly-shifted quadratic bowls

To test the hypothesis that the efficiency of a pattern search is significantly affected by the packing efficiency
and/or the nearest-neighbor distribution of the lattices which coordinate it, a large number of SP optimizati-
ons were first performed on randomly-shifted quadratic bowls to gather and compare statistical data on the
performance of Z"-based, A,-based, and Eg-based SP optimizations. The positive-definite matrices A > 0 and
offsets x? defining the quadratic bowls to be minimized, as well as the starting points used in the searches,
were selected at random for every set of tests, and the initial Z", A,,, and Eg lattices were scaled such that the
initial number of points per unit volume of parameter space was identical.

The Z"-based, A,-based, and Eg-based SP algorithms were run from the same starting points on the
same quadratic test functions to the same level of convergence. Note that several of the significant built-in
acceleration features of the full Checkers code were in fact turned off for this baseline comparison. Most
notably, complete polls were performed (that is, the poll steps were not terminated immediately upon finding
a lower CMP), and no attempt was made to reuse previously-computed points when forming each successive
poll set, or to orient optimally any given poll set. In fact, the angular distribution of the poll set around the
CMP was fixed from one step to the next in these initial tests.

Two quantitative measures of the relative efficiency of the optimization algorithms to be tested are now
defined. The metric p is defined as the percentage of runs in which the lattice-based algorithm requires fewer
function evaluations than does the Z"-based algorithm to converge 99.99% of the way from the initial value
of J(x) to the optimal value of J(x) [which, in these test problems, is easy to compute analytically]. The
metric r is defined as the ratio of the average number of function evaluations required for the lattice-based
algorithm to converge 99.99% of the way from the initial value of J(x) to the optimal value of J(x) divided by
the average number of function evaluations needed for the Z"-based algorithm to converge the same amount.

The p and r measures described above (averaged over 5000 runs for each value of n) were calculated in
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(nl 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 ]
p | 74.77 | 8132 | 8403 | 84.53 | 8443 | 84.56 | 85.8
r [ 04290 | 0.4161 | 0.3273 | 0.3585 | 0.3150 | 0.3345 | 0.3060

Table 10.1. Performance comparison between the A,-based SP algorithm and the Z"-based SP algorithm app-
lied to randomly shifted quadratic bowls for n = 2 to 8. It is seen that the Ag-based SP algorithm outperformed
the Z8-based SP algorithm 85% of the time, and on average required 30% as many function evaluations to
reach the same level of convergence.

n]l 8 |
90.65
0.1554

SIS

Table 10.2. Performance comparison between the Eg-based SP algorithm and the Z3-based SP algorithm
applied to randomly shifted quadratic bowls. It is seen that the Eg-based SP algorithm outperformed the Z8-
based SP algorithm 91% of the time, and on average required 17% as many function evaluations to reach the
same level of convergence, thus offering nearly twice the performance of A,,.

the case of the A, lattice (for n = 2 to n = 8) and the Eg lattice, and are reported in Tables 10.1 and 10.2. Note
that values of p over 50% and values of r less than 1 indicate that, on average, the lattice-based SP algorithm
outperforms the Z"-based SP algorithm, with p quantifying how often and r quantifying how much.

Note in Table 3.1 that the “best” lattice in n = 2 and n = 3, accoring to several standard metrics, is
Ap; however, as the dimension of the problem increases, several other lattices become available, and that by
n = 8 the Ejg lattice appears to be the best choice. This observation is consistent with the numerical results
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Figure 10.1: Typical paths taken by the A,-based SP algorithm (dots) and the Z>-based SP algorithm (+) on
a randomly-shifted quadratic bowl.

reported in Tables 10.1 and 10.2, which indicates that the A,-based optimizations provided a consistent and
substantial improvement over the Z"-based optimizations over the entire range n = 2 to 8, and that, in n = 8,
the Eg-based optimization significantly outperformed the Ag-based optimization.

The mechanism by which the lattice-based SP algorithms outperform the Z"-based SP algorithm on
quadratic test problems is now examined in detail. As described previously, the Z" minimal positive basis
vectors are distributed with poor angular uniformity and can not be selected on nearest-neighbor lattice points.
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When the optimal descent direction is poorly approximated by these n + 1 vectors (such as when the optimal
descent direction is configured somewhere approximately midway between the oddball vector and one of the
Cartesian unit vectors), the search path must “zig-zag” to move towards the actual minimum. If the local
curvature of the function is small compared to the current lattice spacing, then the search algorithm must
take several steps in a rather poor direction before it must eventually turn back down the “valley floor”, as
illustrated by the path of the Z"-based SP algorithm in Figure 10.1. Once in this valley, the lattice spacing
must be diminished such that each step of the “zig-zag” path required to proceed down the valley floor in
fact decreases the function; this leads to otherwise unnecessary lattice refinement and thus very slow progress
by the SP algorithm. This effect is exacerbated when the vectors of the poll set are of substantially different
length, as the entire set of vectors must be scaled down until movement along the direction of the longest poll
vector during this zig-zagging motion still decreases the function. This leads to the poor convergence behavior
demonstrated by the Z"-based SP algorithm along the narrow valley floor of the quadratic bowl indicated in
Figure 10.1. Of course, the present arguments are statistical in nature, and in specific cases either the A,-based
SP algorithm or the Z"-based SP algorithm will sometimes get “lucky” and converge remarkably quickly.
However, it is clear that the optimal descent direction at any given iteration is more likely to be “far” from
the poll vectors when the poll set is distributed with poor angular uniformity.

10.2 SP applied to randomly-shifted Rosenbrock functions

The A,-based and Z"-based SP algorithms were also applied to a randomly-shifted Rosenbrock function in
a similar fashion. Figure 10.2 demonstrates a typical case, indicating the respective rates of convergence of
the two SP algorithms. The A,-based SP algorithm demonstrates a substantially improved convergence rate
compared to the Z"-based SP algorithm.

These results demonstrate that the efficiency of the SP portion of a pattern search can be substantially
improved simply by implementing a more efficient lattice to discretize parameter space.
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Figure 10.2: A sample SP minimization comparing the A,-based case (dash-dot line at left and black + at
center) with the Z"-based case (solid line at left and blue * at right) on a randomly shifted Rosenbrock
function. Note the superior convergence rate of the A,-based approach (as illustrated in the convergence plot
at left), resulting in further progress toward the minimum at [1,—1] (as illustrated in the subfigures at center
and right).

10.3 LABDOGS applied to randomly shifted Rosenbrock functions

To test the hypothesis that the efficiency of the full LABDOGS algorithm is significantly affected by the
choice of the lattices which coordinate it, a more demanding test than a quadratic bowl is required. We thus
consider here the application of the full LABDOGS algorithm to randomly shifted Rosenbrock functions.
The “valley” in which the minimum of the Rosenbrock function lies is narrow, curved, and relatively flat
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(that is, with a vanishing second derivative) along the bottom. This makes it a difficult test case for any SMF-
like algorithm to approximate with a surrogate function of sufficient accuracy to be particularly useful along
the valley floor, other than simply to indicate where the function evaluations are currently relatively sparse.
In other words, both the search and poll components of the LABDOGS algorithm are put to the test when
searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of the A,-based and Z"-based LABDOGS algorithms (using ¢ = 5)
applied to randomly shifted Rosenbrock functions are reported here. As in the SP tests described previously,
the initial A, and Z" lattices were scaled appropriately so as to be of the same initial density.

Recall in the SP tests the metric p, which quantified how often the lattice-based method outperformed
the Cartesian-based method, and the metric r, which quantifying how much the lattice-based method outper-
formed the Cartesian-based method. In this section, we use two similar metrics, p and 7, but now terminate
each optimization after a particular number of iterations rather than after convergence to a given percentage
of the (known) optimal solution. Specifically, the metric p is defined as the percentage of runs in which the
A,-based LABDOGS algorithm converged further than did the Z"-based LABDOGS algorithm after 300
function evaluations, whereas the metric 7 is defined as the ratio of the average function value to which the
Ap-based LABDOGS algorithm converged after 300 function evaluations divided by the average function
value to which the Z"-based LABDOGS algorithm converged after 300 function evaluations. The results for
n =2to 5 (averaged over 200 runs for n = 2, 3, and 4, and 100 runs for n = 5) are reported in Table 10.3. Note
that values of p over 50% and values of 7 less than 1 indicate that, on average, the lattice-based LABDOGS
algorithm outperforms the Z"-based LABDOGS algorithm, with p quantifying how often and 7 quantifying
how much. It is seen that the A,-based LABDOGS algorithm consistently and significantly outperforms the
Z"-based LABDOGS algorithm.

Figure 10.3 compares the convergence of the A,-based and Z"-based LABDOGS algorithms on a repre-
sentative realization of the Rosenbrock function in n = 6. The convergence of the two algorithms are similar



10.3. LABDOGS APPLIED TO RANDOMLY SHIFTED ROSENBROCK FUNCTIONS

-
w

Figure 10.3: Convergence of the Checkers code using A, (red) vs Z" (green), on an n = 6 Rosenbrock
function.

in behavior during the first 20 iterations, during which they share a nearly identical search, with the diffe-
rences between the two becoming more and more apparent as convergence is approached. Initially, the poll
steps return much smaller improvements than the search steps. Once the surrogate model adequately repres-
ents the walls of the Rosenbrock function, thereby identifying the “valley floor”, the search becomes less
effective, and both algorithms rely more heavily on the polling algorithm to identify the minimum.
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(nl 2 [ 3 ] 4[5 |
5] 640 | 560 | 630 | 680
7 [ 0651 | 0.699 | 0.773 | 0.758

Table 10.3. Performance comparison between the A,-based LABDOGS algorithm and the Z"-based LAB-
DOGS algorithm applied to randomly shifted Rosenbrock functions. For n = 2, it is seen that the A,-based
SP algorithm outperformed the Z"-based SP algorithm about 64% of the time, and on average converged to
a function value 65% better using the same number of function evaluations.

10.4 LABDOGS applied to Branin and 7;

Thus far, only functions with unique minima have been explored. As the LABDOGS algorithm has the ca-
pability to locate and explore multiple local minima in an attempt to identify and refine an estimate of the
global minimum, some searches were performed on two test functions with multiple minima, Branin and 77,
to demonstrate this capability.

On the interval —2 < x < 2, —2 < y < 2, the Branin function has five local minima. As seen in Figure 10.4,
with the search parameter ¢ = 2, the LABDOGS algorithm does an excellent job of locating and exploring all
of these local minima, eventually converging to an accurate estimate of the global minimum. With ¢ = 10000,
the search tends to be more “space-filling”, acting at each step to reduce the maximum uncertainty of the
Kriging surrogate. It is clearly evident that, as the number of function evaluations gets large in the ¢ = 10000
case, this search will tend to explore nearly uniformly over the entire feasible domain. [In the limit that c is
infinite, the function evaluations become dense as N — oo, thereby assuring global convergence.] However, for
a small number of total function evaluations N [which should be the primary problem of interest if function
evaluations are expensive!], the strategy with smaller ¢ in fact identifies and refines the estimate of the global
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Figure 10.4: Points evaluated by the LABDOGS algorithm when exploring the Branin function (with multiple
minima), with (left) ¢ = 2 and (right) ¢ = 10000. Note the more “focused” sampling when c is small and the
more “exploratory” sampling when c is large.

minimum point much sooner, as the case with large ¢ wastes a lot of computational effort reducing the
uncertainty of the surrogate in areas predicted to have poor function values.

Similar behavior can be seen for the 73 test function in Figure 10.5. Initially, the algorithm happens upon
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Figure 10.5: Points evaluated by the LABDOGS algorithm when exploring the 77 function (with multiple
minima) with ¢ = 1000 after (left) 30 function evaluations, (center) 60 function evaluations, and (right) 100
function evaluations. Note (after 30 function evaluations) that the LABDOGS algorithm initially identifies
and converges to a local minimum near the lower-left corner. Ultimately (after 100 function evaluations), the
LABDOGS algorithm successfully identifies a refined estimate of the global minimum.

the local minimum in the lower-left corner of the feasible domain. With its exploratory function evaluations,
however, the algorithm ultimately identifies and refines its estimate of the global minimum.

While these results indicate encouraging global exploration, further testing of the LABDOGS algorithm
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on nonconvex functions is certainly warranted, particularly in high-dimensional problems. In particular, fur-
ther refinement of the algorithm to provide the most robust combination of “focused” and “exploratory” samp-
ling remains to be performed; however, the present results clearly demonstrate the capability and flexibility
of the LABDOGS algorithm to strike this balance while maintaining maximum computational efficiency.

10.5 LABDOGS Performance Summary

This chapter proposes a new algorithm, dubbed LABDOGS, for derivative-free optimization formed via the
tight integration of

o the efficient SMF algorithm (see §7.1) for a surrogate-based search coordinated by an underlying grid,
in order to keep function evaluations far apart until convergence is approached,

e auniform “grid” selected from those available in lattice theory (see Part I and further extensions in §7)
to coordinate such an optimization algorithm, in order to reduce the average quantization error of a grid
of a given density and to better distribute the poll points during the poll step, and

e a highly effective search algorithm, leveraging a Kriging interpolant (see §8) to construct the search
function J(x) = f(x) — ¢-s*(x) combining both the function predictor and a model of its associated
uncertainty, in order to provide a flexible combination of global exploration and local refinement during
the search (see §9).

The numerical results achieved via this algorithm, as reported in this chapter, indicate effective convergence
of the resulting algorithm on a range of benchmark optimization problems, and reveal a clear advantage for
using an efficient lattice derived from an n-dimensional sphere packing to coordinate such a search, rather
than the heretofore default choice, Z", which is simply untenable in light of the clear advantages of using
alternative lattices which are, quantifiably, both more uniform and have a more favorable distribution of
nearest neighbors, especially as the dimension of the optimization problem is increased.
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The flexible numerical code we have developed which implements this algorithm, dubbed Checkers, has
been written from scratch, and each subroutine of the code has been scrutinized to maximize its overall
efficiency for systems with expensive function evaluations.
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