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An efficient technique is presented to compute minimal-energy stabilizing linear feedback control rules for
linear systems. The technique presented extends easily to large-scale convection-dominated nonlinear fluid sys-
tems, linearized about unstable equilibria, as it is based solely on the least-stable eigenvalues and the correspond-
ing left eigenvectors of the linearized open-loop system. These eigenvalues and eigenvectors, in turn, may be
computed directly from a linearized simulation code via, e.g., Arnoldi or Multigrid strategies for large-scale sys-
tems. The linearized simulation code, in turn, may be computed via, e.g., the Complex Step Derivative technique
from any trustworthy unsteady flow solver. Application of this procedure to a vortex-induced vibration problem
resulting from the flow past a cylinder is discussed.

1 Efficient computation of minimal-energy stabilizing control feedback

It is a classical result in control theory that, if a minimal-energy stabilizing feedback control rule u = KX is
applied to the linear system X = Ax + Bu, the eigenvalues of the closed-loop system A+ BK are given by the
union of the stable eigenvalues of A and the reflection of the unstable eigenvalues of A into the left-half plane
across the imaginary axis. Since we know where the closed-loop eigenvalues of the system are, the requisite
feedback gain matrix K in this problem may be computed by the process of pole assignment. Applying this
process to the equation governing the dynamics of the unstable modes of the system in modal form and then
transforming appropriately, this leads to a simple expression for K, as shown below.

1.1 The linear optimal control problem and its solution
Consider first the following optimization problem: for the state x and the control u related via the state equation
X=Ax+Bu on 0<t<T with x=xg9 att=0, (1)

where X is initially unspecified, find the control u that minimizes the cost function

J= %/OT [XHQ)H—uHRu} dr. )

Via standard manipulations (see, e.g., Kim & Bewley 2007), it is found that the state and relevant adjoint equa-
tions for this optimization problem may be written in the combined matrix form

dz A —BR'BH X x=Xo atr=0,
T _z h Z=17 = = d 3
o =77 where 2nx2n [7Q _AH | EZT |l an r=0 atr="T, ©)

where r is known as the adjoint variable. This ODE, with both initial and terminal conditions, is a two-point

boundary value problem. It may be solved by assuming there exists a relation between the state vector x = x(¢)

and adjoint vector r = r(¢) via a matrix X = X (¢) such that r = Xx, inserting this assumed form of the solution

into the combined matrix form (3) to eliminate r, combining rows to eliminate dx/dr, factoring out x to the right,

and requiring that the result holds for all xo, from which it follows that X obeys the differential Riccati equation
dx

—EZAHXJFXA—XBR*‘BHXJFQ where X(T) =0. 4)

The optimal value of u may then be written in the form of a feedback control rule such that

u=Kx where K=—R'BX. @)
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Finally, if the system is linear time invariant (LTI) and we take the limit that 7 — oo, the matrix X in (4) may be
marched to steady state. This steady state solution for X satisfies the continuous-time algebraic Riccati equation

0=A"X + XA—XBR'BX + 0, (6)

where additionally X is constrained such that A 4 BK is stable.
Assume now that an eigen decomposition of the composite matrix Z is available such that

| | :
Vll * _ 1 2 n i X!
Vo *} = (v v ... V' x and V' = vl (7)

where the eigenvalues of Z appearing in diagonal matrix A, are enumerated such that the LHP eigenvalues appear
first, followed by the RHP eigenvalues. Defining y = V~'z, it follows from (3) that dy/dt = A.y. The stable
solutions of y are thus spanned by the first n columns of A, (that is, they are nonzero only in the first n elements
of y). Since z = VY, it follows that the stable solutions of z are spanned by the first n columns of V. To achieve
stability of z via the additional constraint r = Xx for each of these directions, denoted v/ and decomposed as
shown above, we must have r' = Xx' fori = 1...n. Assembling these equations in matrix form, we have

vl L =X |x XX = V=XV = X=VuV )l (8)

Z=VANV"! where V:{

1.2 The minimal-energy stabilizing feedback control

Selecting Q > 0 and R = Ry /¢ with Ryp > 0 and € > 0 in the above derivation, and taking the limit as ¢ — 0, we
arrive at the what is known as the minimum-energy stabilizing feedback control. As Z becomes block triangular in
this limit, it is seen immediately that, in this limit, the eigenvalues of Z are given by the union of the eigenvalues
of A and the eigenvalues of —A’ for any Q > 0 and Ry > 0. Additionally constraining this system to be stable
[by the additional constraint r = Xx, with X as constructed in (8)], the eigenvalues of the closed-loop system
are selected precisely as the stable eigenvalues of Z; that is, the stable eigenvalues of A together with the stable
eigenvalues of —A” .

1.3 The pole assignment problem

Let us focus now on the eigen decomposition of Z in the above derivation:

{ A —BR'BH

o0 _aH }Vszvmc,x with w=[v"], ©)

Va1

where the n desired (stable) eigenvalues of the closed-loop system, A, appear in the diagonal matrix A,
and the corresponding eigenvectors of Z are given by the columns of Vi, which is partitioned as indicated. In
the typical pole assignment problem, we prescribe the closed-loop eigenvalues A, in advance, then modify
the control input u [equivalently, the upper-right block of the matrix on the LHS of (9)] in order to put these
eigenvalues in the desired locations. In the present pole assignment problem, however, we happen to know both
the closed-loop eigenvalues A, s and the upper-right block of the matrix on the LHS of (9); all that remains is
for us to compute the corresponding eigenvector matrix V5. As summarized above, once these eigenvectors are
calculated, the desired feedback rule is given by u = Kx with K = —R~!BYX, where X = V5, Vl_l1 . Multiplying
out (9), it follows immediately that

AVy1 —BR'BVy = Vi1 Ay, (10a)
—QVi1 — AV = Vay A (10b)



Solving (10b) for V;; and substituting the result into (10a) gives
AQ ™ (A"Vy + Va1 Acy) + BR'BTVa = Q7N AV + Vai Ac ) Acs, (11a)
Vit = =0 ' (A"Va1 + VarAcy). (11b)

Note that equation (11a) is linear in the unknown matrix V1. Once V»; is obtained from this equation, calculation
of V1 is trivial using (11b) or, equivalently, (10a).

14 Simplification of the linear algebra problem in modal form

It is straightforward transform the original linear system to a modal representation of its unstable dynamics.
Performing the eigen decomposition A = SAS~! and multiplying (1) from the left by S~ it follows that

% =Ax+Bu where x=S'x, B=S"!B. (12)

Note that A is diagonal. Denoting the inverse of the eigenvector matrix as' T# = S~!, the portion of (12)
governing the unstable dynamics of the system may be written
X' = A"+ B where x'=Tfx, A= [’}) N } . T=[T, T,], B= H . B.=TIB. (13)
N
The pole placement process in the minimal-energy stabilizing feedback control problem, as derived in §1.3,
can be simplified greatly when applied to the equation for the unstable dynamics of the original system in modal
form, as given in (13). Partitioning V5 into its respective columns, Vo = [r! r? ... r"], taking A = A,,
B=B, 0=I1,R=1 /€, and? Ay = —A';’ in (11a), and applying the above relationships, it follows after some
simplifications® that (11a) may be written in the simple form
(eB,BY +diag(dV,d ... d)r* £ Mk =0, (14)
where
di(k) _ (hi+ 7\.}3)(7\.{1 - Xf) for l *k (15)
0 fori=k.

Thus, the vectors r¥ lie in the nullspace of My, and may be found by the process of Gaussian elimination,
manipulating M}, to row-echelon form. In the limit € — 0, M} approaches a diagonal matrix with a zero in the
k’th diagonal element, and thus* V5, — I. In order to avoid taking the difference of two quantities which are
almost equal in the computation of Vi1, we return to (10a), which, in the ¢ — 0 limit, may be written in the form

AVii+ VAL =eB,Bl £ «C. (16)

Defining the {7, j}’th element of V1 as v;;, the {i, j} th element of (16) may be written v;; = ec;;/(A; —H»?) Lefij.
With Vi = ¢F and Va; = I, it follows that X = F~! /€, and thus the minimal-energy feedback control that
stabilizes (13) in the limit that ¢ — O is given by u = Kx* where K = —B7F~!. Writing this feedback in terms
of the original state variable x, we have u = Kx where K = KT,/

The solution for the minimal-energy stabilizing control feedback problem derived above is now summarized:

Theorem 1. Consider a stabilizable system X = AX + Bu with no pure imaginary open-loop eigenvalues. Deter-
mine the unstable eigenvalues and corresponding left eigenvectors of A such that TuH A= AMTMH (alternatively,
determine the unstable eigenvalues and corresponding right eigenvectors of A such that A"T, = TuAf ). De-
fine B, = T,'B and C = BB}, and compute a matrix F with elements fij = cij/(Ai+N{). The minimal-energy
stabilizing feedback controller is then given by u = KX, where K = —B{;IF’ITMH.

'Note that the columns of T' are referred to as the left or adjoint eigenvectors of A.

2We take Acy = —AH following the discussion in §1.2, noting that all eigenvalues in A, are unstable.

3Note that, if A is diagonal, the product AV corresponds to scaling the ’th row of V by A; for all i, whereas the product VA corresponds
to scaling the i’th column of V by A; for all i.

“If all unstable eigenvalues of A are distinct, then d§k> # 0 for i # k; Va1 necessarily becomes diagonal in this case in the limit that ¢ — 0,
and its columns may be normalized such that V,; — I. If some of the unstable eigenvalues of A are repeated, then there are other solutions as
well. However, V1 — [ is a valid solution in either case in the limit that € — 0.
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Figure 1: The first twenty eigenvalues of (4-) the discretized open-loop system described in §2, and (o) the
closed-loop system A 4 BK after minimal-energy control is applied via the formulae summarized in Theorem 1.

2 Numerical results.

The above algorithm was applied to the following forced convection-diffusion model of weakly nonparallel flows
(see Lauga & Bewley 2003, Chomaz et al. 1987, 1990)

2

%+U% :pt(x)lerV% +8%(x—xp)u & %p = L+ 8% (x — xp)u, (17)
where U = 6, u(x) = uo — [e(x — x;)]*>, v=1—10i, ¢ = 0.01, x, = 0.1i, xy =47 and d°(x) is a numerical
(triangular) approximation of a dirac delta representing pointwise forcing on the system. We have taken the su-
percriticality (yo — ) /pte = 3 in the numerical simulation, where 1. 2 y1, +eR(v!'/?) and u, 2 U?R(v)/ (4[v]?).
Results are shown in Figure 1, illustrating that the formulae provided above successfully reflect the unstable
eigenvalues of A into the LHP, and leave the stable eigenvalues of A unchanged. Application of this approach to
a 2D cylinder wake, using our recently-developed large-scale eigenvalue solver for this class of problems, will
be presented at the conference.
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