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An efficient technique is presented to compute minimal-energy stabilizing linear feedback control rules for
linear systems. The technique presented extends easily to large-scale convection-dominated nonlinear fluid sys-
tems, linearized about unstable equilibria, as it is based solely on the least-stable eigenvalues and the correspond-
ing left eigenvectors of the linearized open-loop system. These eigenvalues and eigenvectors, in turn, may be
computed directly from a linearized simulation code via, e.g., Arnoldi or Multigrid strategies for large-scale sys-
tems. The linearized simulation code, in turn, may be computed via, e.g., the Complex Step Derivative technique
from any trustworthy unsteady flow solver. Application of this procedure to a vortex-induced vibration problem
resulting from the flow past a cylinder is discussed.

1 Efficient computation of minimal-energy stabilizing control feedback
It is a classical result in control theory that, if a minimal-energy stabilizing feedback control rule u = Kx is
applied to the linear system ẋ = Ax+Bu, the eigenvalues of the closed-loop system A+BK are given by the
union of the stable eigenvalues of A and the reflection of the unstable eigenvalues of A into the left-half plane
across the imaginary axis. Since we know where the closed-loop eigenvalues of the system are, the requisite
feedback gain matrix K in this problem may be computed by the process of pole assignment. Applying this
process to the equation governing the dynamics of the unstable modes of the system in modal form and then
transforming appropriately, this leads to a simple expression for K, as shown below.

1.1 The linear optimal control problem and its solution
Consider first the following optimization problem: for the state x and the control u related via the state equation

ẋ= Ax+Bu on 0< t < T with x= x0 at t = 0, (1)

where x0 is initially unspecified, find the control u that minimizes the cost function

J =
1
2

Z T

0

[
xHQx+uHRu

]
dt. (2)

Via standard manipulations (see, e.g., Kim & Bewley 2007), it is found that the state and relevant adjoint equa-
tions for this optimization problem may be written in the combined matrix form

dz
dt

= Zz where Z = Z2n→2n =

[
A −BR−1BH
−Q −AH

]
, z=

[
x
r

]
, and

{
x= x0 at t = 0,
r= 0 at t = T,

(3)

where r is known as the adjoint variable. This ODE, with both initial and terminal conditions, is a two-point
boundary value problem. It may be solved by assuming there exists a relation between the state vector x = x(t)
and adjoint vector r = r(t) via a matrix X = X(t) such that r = Xx, inserting this assumed form of the solution
into the combined matrix form (3) to eliminate r, combining rows to eliminate dx/dt, factoring out x to the right,
and requiring that the result holds for all x0, from which it follows that X obeys the differential Riccati equation

−
dX
dt

= AHX+XA−XBR−1BHX+Q where X(T ) = 0. (4)

The optimal value of u may then be written in the form of a feedback control rule such that

u= Kx where K = −R−1BHX . (5)
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Finally, if the system is linear time invariant (LTI) and we take the limit that T → ∞, the matrix X in (4) may be
marched to steady state. This steady state solution for X satisfies the continuous-time algebraic Riccati equation

0= AHX+XA−XBR−1BHX+Q, (6)

where additionally X is constrained such that A+BK is stable.
Assume now that an eigen decomposition of the composite matrix Z is available such that

Z =VΛcV−1 where V =

[
V11 ∗
V21 ∗

]
=




| | |
v1 v2 . . . vn ∗
| | |



 and vi =
[
xi
ri

]
, (7)

where the eigenvalues of Z appearing in diagonal matrixΛc are enumerated such that the LHP eigenvalues appear
first, followed by the RHP eigenvalues. Defining y = V−1z, it follows from (3) that dy/dt = Λcy. The stable
solutions of y are thus spanned by the first n columns of Λc (that is, they are nonzero only in the first n elements
of y). Since z= Vy, it follows that the stable solutions of z are spanned by the first n columns of V . To achieve
stability of z via the additional constraint r = Xx for each of these directions, denoted vi and decomposed as
shown above, we must have ri = Xxi for i= 1 . . .n. Assembling these equations in matrix form, we have




| | |
r1 r2 . . . rn
| | |



 = X




| | |
x1 x2 . . . xn
| | |



 ⇒ V21 = XV11 ⇒ X =V21V−1
11 . (8)

1.2 The minimal-energy stabilizing feedback control
Selecting Q > 0 and R= R0/ε with R0 > 0 and ε > 0 in the above derivation, and taking the limit as ε→ 0, we
arrive at the what is known as theminimum-energy stabilizing feedback control. As Z becomes block triangular in
this limit, it is seen immediately that, in this limit, the eigenvalues of Z are given by the union of the eigenvalues
of A and the eigenvalues of −AH for any Q > 0 and R0 > 0. Additionally constraining this system to be stable
[by the additional constraint r = Xx, with X as constructed in (8)], the eigenvalues of the closed-loop system
are selected precisely as the stable eigenvalues of Z; that is, the stable eigenvalues of A together with the stable
eigenvalues of −AH .

1.3 The pole assignment problem
Let us focus now on the eigen decomposition of Z in the above derivation:

[
A −BR−1BH
−Q −AH

]
Vs =VsΛc,s with Vs =

[
V11
V21

]
, (9)

where the n desired (stable) eigenvalues of the closed-loop system, λc,s, appear in the diagonal matrix Λc,s,
and the corresponding eigenvectors of Z are given by the columns of Vs, which is partitioned as indicated. In
the typical pole assignment problem, we prescribe the closed-loop eigenvalues λc,s in advance, then modify
the control input u [equivalently, the upper-right block of the matrix on the LHS of (9)] in order to put these
eigenvalues in the desired locations. In the present pole assignment problem, however, we happen to know both
the closed-loop eigenvalues λc,s and the upper-right block of the matrix on the LHS of (9); all that remains is
for us to compute the corresponding eigenvector matrix Vs. As summarized above, once these eigenvectors are
calculated, the desired feedback rule is given by u= Kx with K = −R−1BHX , where X = V21V−1

11 . Multiplying
out (9), it follows immediately that

AV11−BR−1BHV21 =V11Λc,s, (10a)

−QV11−AHV21 =V21Λc,s. (10b)



Solving (10b) for V11 and substituting the result into (10a) gives

AQ−1(AHV21+V21Λc,s)+BR−1BHV21 = Q−1(AHV21+V21Λc,s)Λc,s, (11a)

V11 = −Q−1(AHV21+V21Λc,s). (11b)

Note that equation (11a) is linear in the unknownmatrixV21. OnceV21 is obtained from this equation, calculation
of V11 is trivial using (11b) or, equivalently, (10a).

1.4 Simplification of the linear algebra problem in modal form
It is straightforward transform the original linear system to a modal representation of its unstable dynamics.
Performing the eigen decomposition A= SΛS−1 and multiplying (1) from the left by S−1, it follows that

χ̇χχ= Λχχχ+ B̄u where χχχ= S−1x, B̄= S−1B. (12)

Note that Λ is diagonal. Denoting the inverse of the eigenvector matrix as1 TH = S−1, the portion of (12)
governing the unstable dynamics of the system may be written

χ̇χχu = Λuχχχu+ B̄uu where χχχu = THu x, Λ=

[
Λu 0
0 Λs

]
, T =

[
Tu Ts

]
, B̄=

[
B̄u
B̄s

]
, B̄u = THu B. (13)

The pole placement process in the minimal-energy stabilizing feedback control problem, as derived in §1.3,
can be simplified greatly when applied to the equation for the unstable dynamics of the original system in modal
form, as given in (13). Partitioning V21 into its respective columns, V21 =

[
r1 r2 . . . rn

]
, taking A = Λu,

B = B̄u, Q = I, R= I/ε, and2 Λc,s = −ΛHu in (11a), and applying the above relationships, it follows after some
simplifications3 that (11a) may be written in the simple form

[εB̄uB̄Hu +diag(d(k)
1 ,d(k)

2 , . . . ,d(k)
n )]rk !Mkrk = 0, (14)

where

d(k)
i =

{
(λi+λHk )(λHi −λHk ) for i &= k
0 for i= k.

(15)

Thus, the vectors rk lie in the nullspace of Mk, and may be found by the process of Gaussian elimination,
manipulating Mk to row-echelon form. In the limit ε→ 0, Mk approaches a diagonal matrix with a zero in the
k’th diagonal element, and thus4 V21 → I. In order to avoid taking the difference of two quantities which are
almost equal in the computation of V11, we return to (10a), which, in the ε→ 0 limit, may be written in the form

ΛuV11+V11ΛHu = εB̄uB̄Hu ! εC. (16)

Defining the {i, j}’th element ofV11 as vi j, the {i, j}’th element of (16) may be written vi j = εci j/(λi+λHj )! ε fi j .
With V11 = εF and V21 = I, it follows that X = F−1/ε, and thus the minimal-energy feedback control that
stabilizes (13) in the limit that ε→ 0 is given by u= K̄χχχu where K̄ = −B̄Hu F−1. Writing this feedback in terms
of the original state variable x, we have u= Kx where K = K̄THu .

The solution for the minimal-energy stabilizing control feedback problem derived above is now summarized:

Theorem 1. Consider a stabilizable system ẋ= Ax+Bu with no pure imaginary open-loop eigenvalues. Deter-
mine the unstable eigenvalues and corresponding left eigenvectors of A such that THu A = ΛuTHu (alternatively,
determine the unstable eigenvalues and corresponding right eigenvectors of AH such that AHTu = TuΛHu ). De-
fine B̄u = THu B and C = B̄uB̄Hu , and compute a matrix F with elements fi j = ci j/(λi+λHj ). The minimal-energy
stabilizing feedback controller is then given by u= Kx, where K = −B̄Hu F−1THu .

1Note that the columns of T are referred to as the left or adjoint eigenvectors of A.
2We take Λc,s = −ΛHu following the discussion in §1.2, noting that all eigenvalues in Λu are unstable.
3Note that, if Λ is diagonal, the product ΛV corresponds to scaling the i’th row of V by λi for all i, whereas the product VΛ corresponds

to scaling the i’th column of V by λi for all i.
4If all unstable eigenvalues of A are distinct, then d(k)

i &= 0 for i &= k; V21 necessarily becomes diagonal in this case in the limit that ε→ 0,
and its columns may be normalized such that V21→ I. If some of the unstable eigenvalues of A are repeated, then there are other solutions as
well. However, V21 → I is a valid solution in either case in the limit that ε→ 0.
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Figure 1: The first twenty eigenvalues of (+) the discretized open-loop system described in §2, and (o) the
closed-loop system A+BK after minimal-energy control is applied via the formulae summarized in Theorem 1.

2 Numerical results.
The above algorithm was applied to the following forced convection-diffusionmodel of weakly nonparallel flows
(see Lauga & Bewley 2003, Chomaz et al. 1987, 1990)

∂ψ
∂t

+U
∂ψ
∂x

= µ(x)ψ+ν
∂2ψ
∂x2

+ δσ(x− x f )u ⇔
∂ψ
∂t

= Lψ+ δσ(x− x f )u, (17)

where U = 6, µ(x) = µ0− [ε(x− xt)]2, ν = 1− 10i, ε = 0.01, xt = 0.1i, x f = 47 and δσ(x) is a numerical
(triangular) approximation of a dirac delta representing pointwise forcing on the system. We have taken the su-
percriticality (µ0−µc)/µc = 3 in the numerical simulation, where µc ! µa+εℜ(ν1/2) and µa !U2ℜ(ν)/(4|ν|2).
Results are shown in Figure 1, illustrating that the formulae provided above successfully reflect the unstable
eigenvalues of A into the LHP, and leave the stable eigenvalues of A unchanged. Application of this approach to
a 2D cylinder wake, using our recently-developed large-scale eigenvalue solver for this class of problems, will
be presented at the conference.
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