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A generalized framework for
robust control in fluid mechanics

By T. Bewley, R. Temam AND M. Ziane

1. Motivation and objectives

The application of optimal control theory to turbulence has proven to be quite
effective when complete state information from high-resolution direct numerical
simulations is available (Bewley, Moin, & Temam 1997a). In this approach, an iter-
ative optimization algorithm based on the repeated computation of an adjoint field
is used to optimize the controls for a finite-horizon nonlinear flow problem (Abergel
& Temam 1990). In order to extend this infinite-dimensional optimization approach
to control externally disturbed flows for which the control must be determined based
on limited noisy flow measurements alone, it is necessary that the control computed
be insensitive to both state disturbances and measurement noise. For this reason,
robust control theory, a generalization of optimal control theory, is now examined
as a technique by which effective control algorithms might be developed for infinite-
dimensional laminar (linear) and turbulent (nonlinear) flows subjected to a wide
class of external disturbances.

The numerical approach proposed to solve the robust control problem is based
on computations of an O(N) adjoint field, where N is the number of grid points
used to resolve the continuous PDE for the flow problem. Note that N ~ O(10°)
for problems of engineering interest today and may be expected to increase in the
future. Computation of the adjoint field is only as difficult as the computation of
the flow itself, and thus is a numerically tractable approach to the control problem
whenever the computation of the flow itself is numerically tractable. In contrast,
control approaches based on the solution of O(N?) Riccati equations have not been
shown to be numerically tractable for discretizations with N > O(10%).

In its essence, robust control theory (Doyle et al. 1989, Green & Limebeer 1995)
boils down to Murphy’s Law (Bewley, Moin, & Temam 1997b) taken seriously:

If a worst-case system disturbance can disrupt
a controlled closed-loop system, it will.

When designing a robust controller, therefore, one should plan on a finite component
of the worst-case disturbance aggravating the system, and design a controller which
is suited to handle even this extreme situation. A controller which is designed to
work even in the presence of a finite component of the worst-case disturbance will
also be robust to a wide class of other possible disturbances which, by definition,
are not as detrimental to the control objective as the worst-case disturbance. Thus,
the problem of finding a robust control is intimately coupled with the problem of
finding the worst-case disturbance, in the spirit of a non-cooperative game.

To summarize the robust control approach briefly, a cost functional 7 describing
the control problem at hand is defined that weighs together the (distributed) control
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¢, the (distributed) disturbance w, and the flow perturbation u(¢,w). The cost
functional considered in the present work is of the form

1" 1 4 du
TJ(p,w) = —/ / |Clu|2d:1:dt—|——/ |Cou(z, T)|? d:z;—l—/ / Cs— -7dodt
2 Jo Ja 2 Jo o Joo ~On
1 /7
+ 5/0 /Q (18] — v*|w]|?] du dt.

This cost functional is simultaneously minimized with respect to the control ¢ and
maximized with respect to the disturbance w, as illustrated in Fig. 1. The robust
control problem is considered to be solved when a saddle point (¢,w) is reached;
note that such a solution, if it exists, is not necessarily unique. Four cases of
particular interest are:

a. Cit=dyI and (Cy; =C3 =0 = regulation of the turbulent kinetic energy.

b. C1 = dy Vx and C; = C3 = 0 = regulation of the square of the vorticity.

¢c. Co=d3I and(C; = (3 = 0 = terminal control of the turbulent kinetic energy.

d. C3 =dyvI and Cy =Cy =0 = minimization of the average skin-friction in the
direction 7 integrated over the boundary of the domain.

All four of these cases, and many others, may be considered in the present frame-
work; the extension to other linear /quadratic interior /boundary regulation /terminal
constraints is straightforward. The dimensional constants d; (which are the appro-
priate functions of the kinematic viscosity v, a characteristic length Ly, a charac-
teristic velocity Uy, and the volume Vj and the surface area Sy of the domain )
are included to make the cost functional dimensionally consistent.

It cannot be assumed at the outset that a solution to the min/max problem de-
scribed above even exists. However, it is established in the present paper that, for
a sufficiently large v and reasonable requirements on the regularity of the problem
(described later in this introduction), a solution to this min/max problem indeed
does exist, with the (finite) magnitudes of the disturbance and the control governed
by the scalar parameters v and ¢. To accomplish this, we will extend the optimal
control setting of Abergel & Temam (1990) to analyze the non-cooperative differ-
ential game of the robust control setting in which a saddle point (¢,w) is sought.
The analysis will also account for the possibility of corners in the boundary 2. Our
treatment of the presence of corners in the domain avoids “smoothing” out the cor-
ners as was done in Abergel & Temam (1990) and thus further extends the optimal
control analysis contained therein.

Note that, for simplicity, only the control problem is considered; the concomi-
tant estimation problem, required to determine the control when only partial flow
information is measured, is closely related to the control problem discussed here.

1.1 An intuitive introduction to robust control theory

Consider the present problem as a differential game between a fluid dynamicist
seeking the “best” control ¢ which stabilizes the flow perturbation with limited
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FIGURE 1. Schematic of a saddle point representing the neighborhood of a solu-
tion to a robust control problem with one scalar control variable ¢ and one scalar
disturbance variable w. When the robust control problem is solved, the cost func-
tion J is simultaneously minimized with respect to ¢ and maximized with respect
to w, and a saddle point such as (¢,w) is reached. The present paper formulates
the infinite-dimensional extension of this concept, where the cost J is related to a
distributed control ¢ and a distributed disturbance w through the solution of the
Navier-Stokes equation.

control effort and, simultaneously, nature seeking the “maximally malevolent” dis-
turbance w which destabilizes the flow perturbation with limited disturbance mag-
nitude (Green & Limebeer 1995). The parameter 42 factors into such a competition
as a weighting on the magnitude of the disturbance which nature can afford to offer,
in a manner analogous to the parameter (2, which is a weighting on the magnitude
of the control which the fluid dynamicist can afford to offer.

The parameter (* may be interpreted as the “price” of the control to the fluid
dynamicist. The ¢ — oo limit corresponds to prohibitively “expensive” control
and results in ¢ — 0 in the minimization with respect to ¢ for the present problem.
Reduced values of ¢ increase the cost functional less upon the application of a control
¢. A nonzero control results whenever the control ¢ can affect the flow perturbation
u in such a way that the net cost functional J is reduced.

The parameter 42 may be interpreted as the “price” of the disturbance to nature.
The v — oo limit results in w — 0 in the maximization with respect to w, leading to
the optimal control formulation of Abergel & Temam (1990) for ¢ alone. Reduced
values of v decrease the cost functional less upon the application of a disturbance
w. A nonzero disturbance results whenever the disturbance w can affect the flow
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perturbation u in such a way that the net cost functional 7 is increased.

Solving for the control ¢ which is effective even in the presence of a disturbance w,
which maximally spoils the control objective, is a way of achieving system robust-
ness. As stated earlier, a control which works even in the presence of the malevolent
disturbance w will also be robust to a wide class of other possible disturbances.

In the present systems, for v < 5o for some critical value 7 (an upper bound of
which is established in this paper), the non-cooperative game does not have a finite
solution; essentially, the malevolent disturbance wins. The control ¢ corresponding
to v = 79 results in a stable system even when nature is on the brink of making
the system unstable. However, note that the control determined with v = =, is not
always the most suitable as it may result in a very large control magnitude and
may have degraded performance in response to disturbances with structure more
benign than the worst-case scenario. In the implementation, variation of ¢ and
provide the necessary flexibility in the control design to achieve the desired trade-
offs between disturbance response and control magnitude required (Bewley & Liu

1997).

1.2 Governing equations

We begin with the Navier-Stokes equation for a flow U in an open domain Q ¢ R
such that, in © x (0, 00), we have

aa—(i—z/AU—l-(U-V)U—I-VP:F,

div U = 0, (1.1)
U=0 on 0,

U(O):Uo at t = 0.

We focus our attention on the case in which the forcing is applied by way of an
interior volume force on the r.h.s. of the momentum equation; the case of boundary
forcing (such as wall transpiration) is closely related and will be treated later. A
stationary or non-stationary solution U(x,t) to this equation with a corresponding
forcing F(x,t) will be referred to as the “target” flow for the control problem. (If
no target flow is known or given, U and F are taken as zero.)

We are interested in the robust regulation of the deviation of the flow from the
desired target (U, F'). In §2, we consider the control of the linearized equation which
models small perturbations (u, f) to the target flow (U, F') with Dirichlet boundary
conditions and known initial conditions such that, in € x (0, 00), we have

0

8—1;—uAu—|—(u-V)U—|—(U-V)u—|—Vp:f,

div u =0, (1.2)
u=20 on 0,

u(0) = ug at t = 0.
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In §3, we consider the control of the full nonlinear equation which models large
perturbations (u, f) to the target flow (U, F') such that, in Q x (0,00), we have

0

8—1;—yAu—l—(u-V)U—I—(U-V)u—l—(u-V)u—l—Vp:f,

div u =0, (1.3)
u=20 on 0,

u(0) = ug at t = 0.

1.8 Mathematical setting

Let © be a bounded open set of IR® with boundary 99, and let 77 be the unit
outward normal vector to 9. We denote by H*(Q2), s € IR the Sobolev spaces
constructed on L*(Q), and H§ () the closure of C§°(£2) in H*(). Following Temam
(1984), we set X = {u € (C§°())?; divu = O} , and denote by H (resp. V) the
closure of X in (L*(Q2))? (resp. (H'(Q))?); we have

H = {uE(LZ(Q))S; div u =0 in £, u-ﬁzOon@Q}
and
V ={ue(H;(Q)* divu=0in Q}.

The scalar product on H is denoted by (u,v) = fQ u-vdz, that on V is denoted by
((u,v)) = [, Vu - Vodz, and the associated norms are denoted by | - [1> and || - ||
respectively. We denote by A the Stokes operator, defined as an isomorphism from

V onto the dual V' of V such that, for u € V', Au is defined by
Ve V7 <Au7v>V’,V = ((uvv))

where (-, )y v is the duality bracket between V' and V. The operator A is extended
to H as a linear unbounded operator with domain D(A) = (H?*(Q))*NV when 99 is
a C? surface; the case of a domain ) with corners is treated in §4. We also recall the
Leray-Hopf projector P, which is the orthogonal projector of the non-divergence-
free space (L?(£2))* onto the divergence-free space H. The Stokes operator is defined
with this projector such that

Au = —P(Au), YV uée D(A). (1.4)

We shall denote by 0 < Ay < Ay < ... the increasing sequence of the eigenvalues of
A. Define the bilinear mapping B by

B(u,v) =P((u-V)v), Yu,veW (1.5)

Note that B is a bilinear mapping from V into V'. Define a continuous trilinear
form b on V such that, with u,v,w € (H'(Q))?, we have

blu,v,w) = (B(u,v),w)y: v
:/(u-V)v-wdx:/ui%wjdx,
Q o Oz

where Einstein’s summation is assumed.
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1.4 Abstract form of governing equations

The operators A and B may be used to write the Navier-Stokes equation in the
“abstract form” useful for mathematical analysis. By application of the Leray
projector to (1.2), noting (1.4), (1.5), and that Pu = u and P(Vp) = 0, the
linearized Navier-Stokes equation, to be considered in §2, may be written in the

form
d_u

dt
u eV,

u(0) = uyg,

+ vAu + B(u,U) 4+ B(U,u) = P¥,
(1.6)

where the regularity required on f, ug, and U are

2 . T2 .
{feL(o,T,L), VT >0; an

ug € V; U €C([0,T)],V)n L*(0,T; D(A)).

Similarly, application of the Leray projector to the nonlinear form (1.3), to be
considered in §3, gives

%—I—VAu—I—B(u,U)—I—B(U,u)—I—B(u,u) =Pf,
ueV, (1.8)
u(0) = uyg.

1.5 Control framework

In the control framework, the interior forcing f is decomposed into a control
¢ € L*(0,T, L*) and a disturbance w € L*(0, T, L?), with T > 0, in the spirit of the

non-cooperative game discussed in §1.1. Thus, we write f as
f:Blw—I—ngﬁ, (19)

where By and B are given bounded operators on (L?(Q))3. Only the divergence
free part of the forcing f will affect the evolution of the velocity field u, as seen on
the r.h.s. of the governing equations (1.6) and (1.8). Thus, in the remainder of this
paper, we consider only the divergence free part of the forcing by writing

Pf=P(Biw+ By¢)

(1.10)
= Blw + qub,

where By = PB; and By = PB; are mappings from (L*(Q2))* to H. Note that

the difference f — Pf may be written as the gradient of a scalar and thus will

only modify the pressure p in (1.2) and (1.3). As the solution to the Navier-Stokes

equation in the abstract form is implicitly confined to a divergence-free manifold of

(L%(Q))?, the pressure p may be entirely neglected in the mathematical analysis.
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1.6 Important identities and inequalities

We now recall some important properties of the nonlinear operator b, which can
be found, for instance, in §3 of Temam (1984). First, we have the orthogonality
identity

blu,v,v) =0, YuoveV (1.11)

as a consequence of div u = 0, as shown by integration by parts. Moreover, the
continuity of the nonlinear mapping in various functional spaces are expressed by
the following classical inequalities: there exists a constant Cy(§2) such that

(b, v,0)] < Collullo]| 72 Av| 1w 1, YueV, veDA), weH,
[b(u, v,w0)] < Colul pa [ Aul 32 o]l w] 12, VueD(A), veV, weH, .

(b, v,0)] < Colul 2 ul P4 [o]| ol [w]*/*, Y u eV, veV, weV.

where Cy denotes here and throughout this paper a numerical constant whose value
may be different in each inequality.

Note that the mapping v — B(u) = B(u,u) is differentiable from V into V'; its
differential is defined by

B'(u)v = B(u,v) + B(v,u) YoeV

:77<(u-V)v—|-(v-V)u>. (1.12)

Let B'(u)* denote the adjoint of B'(u) for the duality between V and V'; the adjoint
operator B'(u)* is thus defined by

(v, B'(u)w)y,y» = <B'(u)*v,w>v,’v. (1.13)

It follows from integration by parts (Abergel & Temam 1990) that

Ou; Ov;
% - LIPS J oo 4
<B (u) v,w>‘,,", = /Q ( v vy ) ul> w; dz

(1.14)
= / ((VU)T -v — (Vo) - u) cwdz,
Q
where, again, Einstein’s summation is assumed.

The use of adjoint operators to define an appropriate O(N) adjoint field will be
central to the development of an efficient numerical algorithm to solve the robust
control problem. For the linear problem described in §2, an appropriately defined
adjoint field reveals the solution {¢,w} of the robust control problem directly, as
shown in §2.2. For the nonlinear problem described in §3, a solution {¢,w} of the
robust control must be found by iteration, as discussed in §3.2. At each iteration k.,
an adjoint field is computed to determine the gradients D7 /D¢ and D.J /Dw in the
vicinity of {¢*, w*}. The control ¢* and the disturbance w* are then updated based
on this gradient information and a new adjoint field computed until the iteration
in k converges and a saddle point for the full nonlinear problem is reached. Proof
of the convergence of such an algorithm is currently under development.
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2. Accomplishments

As discussed in the introduction, the objective in the robust control problem is
to find the best control ¢ in the presence of the disturbance w which is maximally
aggravating to the control objective. The cost functional considered in the present
work, in the mathematical setting described in §1.3, is given by

1 T 2 T ou
_ — 7 dt
T (¢, w) ) /0 ‘Clu L2(Q) + /0 <C3 8n7r> L2(8Q)

T
t3f [ ]

where the scalar control parameters v and ¢ are given and b is a known vector field
on 9. The operators C; and Cz are unbounded operators on (L*(Q))? satisfying

Coulde < alulde + Blull? for i=1,2, (2.1a)

with a >0, >0, a+ 8 > 0, and C; is a bounded operator of (L*(99Q))?, so that,
by the Trace theorem (Lions & Magenes 1972), we have

ou
‘<C38_Z’T>L2(ag)

where the constants « and &' depend upon 7 and 2. In this chapter, the flow u is
assumed to be related to the control ¢ and the disturbance w through the linearized

2

1
dt + §‘CQU(T)

L2(Q)

¢

2 2 (2.1)
e

< llul s < 'l 2wl 7 (2.10)

Navier-Stokes equation

d

d_ltl + vAu+ B(u,U) + B(U,u) = Byw + B3¢,

uecV, (2.2)
u(0) = uyg,

which models small deviations of the flow perturbation u from the desired target
flow U. The regularity required is given by

¢7w S LZ(O,T; Lz); 81782 S E(szﬂ);
ug € V; U €C([0,T),V)N L*0,T; D(A)),

and the Stokes operator A, the bilinear mapping B, and other notations are de-
scribed in §1.3. The robust control problem to be solved is stated precisely as:

Definition 2.1 The control ¢ € L?(0,T, L27) and disturbance w € L*(0,T,L?),
and the solution u to (2.2) associated with ¢ and w, are said to solve the robust
control problem when a saddle point (¢, w) of the cost functional J defined in (2.1)
is reached such that

S T(Gw)<TGa) < Inf J(pw), (23

weL2(0,T,L2) T ¢€L2(0,T,L?)

In this chapter, we will establish both existence and uniqueness of the solution to
the robust control problem stated in Definition 2.1, and will present an iterative
adjoint algorithm to solve a two-point boundary value problem to find this solution.
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2.1 Existence of a solution of the robust control problem

The proof of the existence of a solution (¢,w) to the robust control problem is
based on the following existence result:

Proposition 2.1. Let J be a functional defined on X x Y, where X and Y are
non-empty, closed, convex sets. If [J satisfies

(a
(b
(c
(d

VweY, ¢— J(¢,w) is convex lower semicontinuous,
VoeX, w— J(¢,w) is concave upper semicontinuous,

Jwy € Y such that lim  J(¢,wg) = +oo,
lléllx —+oc

3¢9 € X such that lim  J(¢g,w) = —00,

lwlly —+oo

)
)
)
)

then the functional J has at least one saddle point (¢,w) and

J(¢,w) = Min Sup J(é,w) = Max Inf J(¢,w).

peX wey weY ¢eX

Proof: See §6 of Ekeland & Temam (1974).

In order to establish conditions (a) through (d) of Proposition 2.1 for the present
problem, we need to analyze the evolution equation (2.2). It can be proven rigor-
ously that, given ug € V, U € C([0,T],V)NL*(0,T; D(A)), and ¢,w € L*(0,T; L*),

there exists a unique solution v of (2.2) such that
u e L*0,T;V)NnL>(0,T,H).

The proof is based on the following “a priori estimates”. Multiplying (2.2) with wu,
we can write

d 1
£|u|§2 + v < W 1Biw + Bad|r> + 2|b(u, U, u)]

1
< o 1Brew - Bagli + CollUlul 2wl

Hence,

d 2 14 2 1 2 Co 4 2

Il + Ll < B+ Bagle + SOl
Let My = — sup [|U|]*(¢). Then, we have

V0 o<i<r
2 T 2
ufia0) < fual 2+ S [ B+ Bao (2.4)
1 Jo
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and

2 1 [t ) 2M, [*
— B B . d 2.d
ot | B Bl ds 220 [ as

2 ! 5 2. 2 M
< Vz/\lt/o |Biw + B2 g - dS—I—;|u0|L2e (2.5)

26M0T
1/2/\1

T
/ 1Biw + Bagl3, ds.
0
Similarly, multiplying (2.2) with Au, we can write
d 2 2 1 2
EHUH + v]Aulj. < - |Biw 4 Bao|; 2 + 2|b(u, U, Au)| 4 2|b(U, u, Au)|

1
<~ 1Biw + B2l + Col| UV |AU| 2 || Aul 2

+ Col UL AU L || Au] 2.

Letting
Cy 1/2 3/2
M(T) = 50 sup ([T + AT (1) + U AT )
Voo<t<
we have
Dyl + L Aulte < 2 1Brw + Bad s + Mylull?
dt 2 Lz =, ! 2V ! '
Therefore
1 t
rmWU<HuWA“+Ve”/W&w+&m;@ (2.6)
0
and

1 [ 2 [ 2M; [
—/ |Au|3.ds < T/ |Biw + Bao|7, ds + —1/ ||u||*ds

2 4My  2My o /t 2
< | = T Mo B Bayo|3 . ds.
< <V2t+ o 0 1Biw + Bagl ;. ds

(2.7)

The a priori estimates (2.4), (2.5), (2.6), and (2.7) allow us to characterize the
mapping (¢, w) — u(¢,w). Specifically, we have:

Lemma 2.1. For ¢ € L*(0,T;L?), the mapping w — u(¢,w) from L*(0,T; L?)
into L*(0,T;V) is affine and continuous. Similarly, for w € L*(0,T; L?) the map-
ping ¢ — u(¢,w) from L*(0,T;L*) into L*(0,T;V') is affine and continuous. For
¢ € L*(0,T;L*), the mapping w +— u(¢,w)|p from L*(0,T;L*) into V is affine
and continuous. Similarly, for w € L*(0,T;L*) the mapping ¢ — u(d,w)|r
from L*(0,T;L*) into V is affine and continuous. Furthermore, for ug € V and
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w € L*(0,T;L?), the mapping w — u($,w) has a Gateau derivative £(w1) in ev-
ery direction wy € L?(0,T;L*), and &(wy) is the solution of the linear evolution
equation
d
X F VAL B+ BIEU) = B,
cev (2.8)
£(0) =0,
and it follows that £ € L>(0,T; V)N L*(0,T; D(A)).
Proof. The fact that w — u(¢,w) and ¢ — u(¢,w) are affine and continuous follows
from the linearity of (2.2) and the a priori estimates (2.4), (2.5), (2.6), and (2.7).

The existence of the Gateau derivative as well as its characterization by (2.8) is
proved in Abergel & Temam (1990), to which we refer the reader for more details.

Remark 2.1. The solution £ of (2.8) can be expressed as a function of wy in
terms of the Green-Oseen’s tensor G(x,t,1',t") (see Ladyzhenskaya 1969); vaguely,
we write

(x,t) / / z, t 2w (2 ) da' dt' = G - wy.
Notationally, we will denote G by Du/Dw and &{(wy) by (Du/Dw) - wy. Note

that the Green-Oseen’s tensor G = Du/Dw is an infinite-dimensional extrapola-
tion of the Jacobian of a finite-dimensional discretization of u with respect to a
finite-dimensional discretization of w, as suggested by this notation. By causality,
G(x,t,2',t') =0 for t' > t.

With Lemma 2.1 established, we are ready to prove that conditions (a) through
(d) of Proposition 2.1 are indeed satisfied for the present robust control problem:

Lemma 2.2. Let ug € V. There exists vy such that, for v > ~,, we have
(A) Y w e L*0,T;L?), ¢+ J(é,w) is convex lower semicontinuous,
(B) YV ¢ € L*(0,T;L?), wr J(é,w) is concave upper semicontinuous,

C li 0) =
( ) |¢|L2(07T1;Lrn2)—>+00j(¢7 ) +o0
(D) lim J(0,w) = —o0.

lwl 20,72y —+0

Proof. Condition (A): by Lemma 2.1, the map ¢ — J (¢, w) is lower semicontinuous.
As ¢ — u(¢,w) is affine, the convexity of ¢ — J(¢,w) follows promptly.

Condition (B): by Lemma 2.1, the map w — J(¢,w) is upper semicontinuous.
In order to prove concavity, note that it is sufficient to show that

ha) = J(¢, awy + ws)

is concave w.r.t. «,i.e., h''(a) < 0. To this end, we compute

T D
U U(T)
oo _D )
h'(a) = /0 <Clu Cy D w1>L2(Q) dt + <Czu(T),Cz Duw w1>L2(Q)

OB )yt [ o)
0 0w Dw " L2(9%) 7 0 At Tz, 1 L2(Q)
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It is clear that £(wq) = (Du/Dw) - wy is independent of a. Therefore,
2

T T
h”(a):/ _72/ oy |2, dt.
0 L2 0

Note that £(w;) satisfies (2.8) by Lemma 2.1. Hence, using the a priori estimates
(2.4), (2.5), (2.6), and (2.7), we have

r

2

dt +
L2

Du(T)

C
> Dw

Ci—w

Dw

.wl

2

Du T T T ,
dt < « |€]52dt + IIENI7 dt < kq |Biwi|7» dt
L2 0 0 0

Cipy v

T
2
<k |Bl|L(L2,H)/ w172 dt,
0

and, similarly,

2

T
2
<k |Bl|L(L2,H)/ w1y dt.
0

L2

Now under the assumption that
v > 2k |Bl|£(L2,H) )

we have h''(a) < 0 for & € R. Thus the function & is concave, and the concavity of
w — J(¢,w) follows immediately.
Condition (C): Using (2.1b), we can write

2

Vi T
706,002 Sloo = [ ol 2dul 2 at

and by the a priori inequalities (2.4), (2.5), (2.6), and (2.7), there exists a constant
Co = Co(T,Q, ||ug]]) such that

T
|2 0]} dt < Colol o e
0

Hence,
T
J(¢,0) > §|¢|L2(0,T;L2) - CO|¢|L2(0,T;L2)7

and condition (C) follows promptly.
Condition (D): it follows from (2.4) that

T T
2
/ ICruly. dt < / (aful?s + Bllull?)dt <k {|¢|2L2(0,T;L2) + |w|2L2(o,T;L2) + k2,
0 0
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and, similarly,
CouTe < (@D + (D) < ks [16nc01300) + [0l sz + b
Thus, if v* > 4(ky + k2) and |w|p2(0,7,22) > 1, we have

1 T 2 1 2 T 8u . ’72 T 2
j(O,w):§/0 |Crul;- dt—|—§|Cgu(T)|L2 —I—/O Agcga—n-rdadt—?/o |w|}ds

2
~
< _I|w|2L2(O,T;L2) + C|w|L2(0,T;L2)7

which implies (D).
Putting the statements of this section together, we have established existence of
a solution (¢, w) to the robust control problem for a sufficiently large ~:

Theorem 2.1. Assume that v is sufficiently large so that
2 2
7 24k + k) and 97 =2k |Bl|£(L2,H) ’

where

2 TeMOT 2
MyT
klz——|— and k2:/\1|u0|L2e 0os,
v? v

Then there exists a saddle point (¢,w) and u(¢,w) such that

T($rw0) < T(6,0) < T(6,0), ¥ by in L0, T; I2).
Proof. The proof follows promptly from Lemmas 2.1 and 2.2 and Proposition 2.1.

2.2 Identification of the unique solution to the robust control problem

The existence of a saddle point (¢,w) of the functional J implies that

DJ . 2N
Define an adjoint state by the equation
dA
~B A By =i,
AeV, = {v € (HY(Q)? dive=0inQ, v=CiFon 89} : (2.10)

ANT) =C3Cu(T),
where A* is defined by

<u,A*/\> - <Au,/\> - <C3§_Z’F>L2<am for u € D(A), and A € V.
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We have the following:
Lemma 2.3. Let U € L*>(0,T;

V)N L*(0,T; D(A)), and let u be the solution of
(2.2), &(h), i =1,2, h € L*(0,T; L?

) the solution of

C;i" + VAL + B'(U) = Bih for i =1,2,
Lev (2.11)
£(0) = 0.
Then
T T
/0 (B:x 1) ooy :/0 (creiu, ) ooy ¥ (csCou(T), (T)) L0

T 9
+ /0 <C3 8_n§i’ r) L2(8%) dt,

where B} is the adjoint of B; for 1 = 1,2.
Proof. The proof follows from integration by parts and the regularity of u,§; and A:

/0 ' (cien.e) , o dt+ (ECu(D).a@) | /0 ' (&2 D oy

_ /OT ([ % FUATA 4 B’(U)*A},@)B(Q) dt

* <A(T)’§i(T)> L2(%) + /OT <C3%§i’F> L2(89) dt

Now we prove

Theorem 2.2. Let (¢,w) be a solution of the robust control problem stated in
Definition 2.1. Then

1 - 1 -

K_ZB; A and w= — BiA, (2.13)

72

b= —

where ) is found from the solution (i, \) of the following coupled system:

dﬂ _ _ ]— * 1 * Ry
o +vAu+ B'(U)u = (; BB} — g_28282> A,
d;\ * Oy ! * Y\ * —
—E—I—I/A A+ B (U)X =C{Cu, (2.14)
uevV, \eV,,
u(0) = ug and N(T) = C5Cou(T),
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which admits a unique solution for v > ~o(|B1|z(r2, 1y, |1B2| (12,1, )
Proof. A necessary condition for (¢,w) to be a saddle point of the functional J is

DJ DJ

Do —~(¢,w)-h; =0 and (qz w)-hy =0, ¥ hy €L*0,T;H).
Thus,
Dj . 7 Du(T)
Do 9%0) _/ Clu Cl hl)mm dt <CZU(T)’62W ' h1>L2(Q)
T T
a Du
< hy, 7 dt —~? 0, h dt = 0.
+/ 1’r>L2(aQ) U /0 <w’ 1>L2(Q) 0
and
DT Du Du(T)

T
B\ —~%w., h dt =0, VY hy € L*(0,T:H
[ (3= tmn) g =0 v ez

and

T
BIXN+ (26, h dt =0, Vh L*(0,T; H
/0 < 2 + ¢7 2>L2(Q) ) 2 € ( Ly )7

which implies that (2.13) follows from the definition of the coupled system given in
(2.14).

The uniqueness of the solution of the coupled system (2.14) is classical. For v suf-
ficiently large [y > vo(|Bilzcr2, my: B2 (22,1, ()], we have (7_2 BB — (72 BgBé‘)
is positive definite. The proof of uniqueness then follows by multiplying the u equa-
tion by A and the X equation by %, integrating between 0 and T, and then adding
the two resulting equations.

2.8 Generalized framework

We now identify all possible sources of forcing in the two-point boundary-value
problem (2.14) and thereby establish a generalized framework for which the ap-
proaches discussed herein can be applied to a wide variety of problems in fluid
mechanics.
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o0 g

o2
0 t T

FIGURE 2. Schematic representation of the domain over which the flow field u is
computed. The arrow indicates the direction in time that the p.d.e. is marched.

The space-time domain over which the flow field v is computed is illustrated in
Fig. 2. The possible regions of forcing in this system are:

a. the r.h.s. of the p.d.e., indicated by , representing flow control by interior

volume forcing (e.g., externally-applied electromagnetic forcing by wall-mounted
magnets and electrodes);

b. the b.c.’s, indicated by 777, representing flow control by boundary forcing (e.g.,
wall transpiration);

c. the i.c.’s, indicated by B, representing the optimization of the initial state in
a data assimilation framework (e.g., the weather forecasting problem).

Only the first of these cases is treated in detail in the present work.

o2

7,

o0 : :
0 t T

FIGURE 3. Schematic representation of the domain over which the adjoint field A
is computed. The arrow indicates the direction in time that the p.d.e. is marched.

The space-time domain over which the adjoint field A is computed is illustrated in
Fig 3. The possible regions of forcing in this system are:

a. the r.h.s. of the p.d.e., indicated by
quantity (e.g., turbulent kinetic energy);

representing regulation of an interior

b. the b.c.’s, indicated by 7, representing regulation of a boundary quantity
(e.g., wall skin-friction);

b. the i.c.’s, indicated by B8, representing terminal control of an interior flow
quantity (e.g., turbulent kinetic energy).

All three possible locations of forcing of the adjoint problem are considered in the
present framework. Note that an interesting singularity arises when considering the
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terminal control of a boundary quantity such as wall skin-friction. The (inhomoge-
neous) boundary conditions on the adjoint field for such a case are the same as in
the corresponding regulation problem with a delta function applied at time ¢t = T

3. Future work

We are currently repeating the analysis of section 2 for the nonlinear problem.
As mentioned in the introduction, this analysis will account for corners in the do-
main ). The analysis of existence of the solution for the nonlinear problem and
the characterization of a simple gradient search routine (with fixed step size) to
find this solution are both straightforward, though results are only available for a)
small initial data, b) small T, or ¢) a 2D domain. Such a restriction is a direct
consequence of the fundamental lack of a complete mathematical characterization
currently available for the 3D Navier-Stokes equation, not a shortcoming of the
present analysis.

In addition, we are attempting to establish rigorously the convergence of practical
gradient search algorithms for the iterative solution of the robust control problem.
To be practical, such algorithms must have variable step size, perhaps updating ¢
to minimize J in the direction DJ /D¢ and/or updating w to maximize J in the
direction DJ /Dw at each step of the iteration. Further, the initial guess of the
solution (¢°,w?) must, in general, be considered to be “far” from the nearest solu-
tion (¢, w) of the robust control problem. A thorough mathematical understanding
of such a search algorithm is essential before testing these ideas numerically, as
gradient searches for a saddle points even in low dimensional problems may eas-
ily get caught in limit cycles or fail altogether unless the optimization problem is
thoroughly understood.
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