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�� Motivation and objectives

The application of optimal control theory to turbulence has proven to be quite
e�ective when complete state information from high�resolution direct numerical
simulations is available �Bewley� Moin� � Temam ����a�	 In this approach� an iter�
ative optimization algorithm based on the repeated computation of an adjoint 
eld
is used to optimize the controls for a 
nite�horizon nonlinear �ow problem �Abergel
� Temam �����	 In order to extend this in
nite�dimensional optimization approach
to control externally disturbed �ows for which the control must be determined based
on limited noisy �ow measurements alone� it is necessary that the control computed
be insensitive to both state disturbances and measurement noise	 For this reason�
robust control theory� a generalization of optimal control theory� is now examined
as a technique by which e�ective control algorithms might be developed for in
nite�
dimensional laminar �linear� and turbulent �nonlinear� �ows subjected to a wide
class of external disturbances	

The numerical approach proposed to solve the robust control problem is based
on computations of an O�N� adjoint 
eld� where N is the number of grid points
used to resolve the continuous PDE for the �ow problem	 Note that N � O�����
for problems of engineering interest today and may be expected to increase in the
future	 Computation of the adjoint 
eld is only as di
cult as the computation of
the �ow itself� and thus is a numerically tractable approach to the control problem
whenever the computation of the �ow itself is numerically tractable	 In contrast�
control approaches based on the solution of O�N�� Riccati equations have not been
shown to be numerically tractable for discretizations with N � O�����	

In its essence� robust control theory �Doyle et al� ����� Green � Limebeer �����
boils down to Murphy�s Law �Bewley� Moin� � Temam ����b� taken seriously�

If a worst�case system disturbance can disrupt

a controlled closed�loop system� it will�

When designing a robust controller� therefore� one should plan on a 
nite component
of the worst�case disturbance aggravating the system� and design a controller which
is suited to handle even this extreme situation	 A controller which is designed to
work even in the presence of a 
nite component of the worst�case disturbance will
also be robust to a wide class of other possible disturbances which� by de
nition�
are not as detrimental to the control objective as the worst�case disturbance	 Thus�
the problem of 
nding a robust control is intimately coupled with the problem of

nding the worst�case disturbance� in the spirit of a non�cooperative game	

To summarize the robust control approach brie�y� a cost functional J describing
the control problem at hand is de
ned that weighs together the �distributed� control
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�� the �distributed� disturbance w� and the �ow perturbation u���w�	 The cost
functional considered in the present work is of the form

J ���w� �
�

�

Z T

�

Z
�

jC�uj
� dx dt �

�

�

Z
�

jC�u�x� T �j� dx �

Z T

�

Z
��

C�
�u

�n
� �r d� dt

�
�

�

Z T

�

Z
�

�
��j�j� � ��jwj�

�
dx dt�

This cost functional is simultaneously minimized with respect to the control � and
maximized with respect to the disturbance w� as illustrated in Fig	 �	 The robust
control problem is considered to be solved when a saddle point � ��� �w� is reached�
note that such a solution� if it exists� is not necessarily unique	 Four cases of
particular interest are�

a� C� � d� I and C� � C� � � � regulation of the turbulent kinetic energy	

b� C� � d�r� and C� � C� � � � regulation of the square of the vorticity	

c� C� � d� I and C� � C� � � � terminal control of the turbulent kinetic energy	

d� C� � d� 	 I and C� � C� � � � minimization of the average skin�friction in the
direction �r integrated over the boundary of the domain	

All four of these cases� and many others� may be considered in the present frame�
work� the extension to other linear�quadratic interior�boundary regulation�terminal
constraints is straightforward	 The dimensional constants di �which are the appro�
priate functions of the kinematic viscosity 	� a characteristic length L�� a charac�
teristic velocity U�� and the volume V� and the surface area S� of the domain ��
are included to make the cost functional dimensionally consistent	

It cannot be assumed at the outset that a solution to the min�max problem de�
scribed above even exists	 However� it is established in the present paper that� for
a su
ciently large � and reasonable requirements on the regularity of the problem
�described later in this introduction�� a solution to this min�max problem indeed
does exist� with the �
nite� magnitudes of the disturbance and the control governed
by the scalar parameters � and �	 To accomplish this� we will extend the optimal
control setting of Abergel � Temam ������ to analyze the non�cooperative di�er�
ential game of the robust control setting in which a saddle point � ��� �w� is sought	
The analysis will also account for the possibility of corners in the boundary �	 Our
treatment of the presence of corners in the domain avoids �smoothing� out the cor�
ners as was done in Abergel � Temam ������ and thus further extends the optimal
control analysis contained therein	

Note that� for simplicity� only the control problem is considered� the concomi�
tant estimation problem� required to determine the control when only partial �ow
information is measured� is closely related to the control problem discussed here	

��� An intuitive introduction to robust control theory

Consider the present problem as a di�erential game between a �uid dynamicist
seeking the �best� control � which stabilizes the �ow perturbation with limited
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Figure �� Schematic of a saddle point representing the neighborhood of a solu�
tion to a robust control problem with one scalar control variable � and one scalar
disturbance variable w	 When the robust control problem is solved� the cost func�
tion J is simultaneously minimized with respect to � and maximized with respect
to w� and a saddle point such as � ��� �w� is reached	 The present paper formulates
the in
nite�dimensional extension of this concept� where the cost J is related to a
distributed control � and a distributed disturbance w through the solution of the
Navier�Stokes equation	

control e�ort and� simultaneously� nature seeking the �maximally malevolent� dis�
turbance w which destabilizes the �ow perturbation with limited disturbance mag�
nitude �Green � Limebeer �����	 The parameter �� factors into such a competition
as a weighting on the magnitude of the disturbance which nature can a�ord to o�er�
in a manner analogous to the parameter ��� which is a weighting on the magnitude
of the control which the �uid dynamicist can a�ord to o�er	

The parameter �� may be interpreted as the �price� of the control to the �uid
dynamicist	 The � � � limit corresponds to prohibitively �expensive� control
and results in �� � in the minimization with respect to � for the present problem	
Reduced values of � increase the cost functional less upon the application of a control
�	 A nonzero control results whenever the control � can a�ect the �ow perturbation
u in such a way that the net cost functional J is reduced	

The parameter �� may be interpreted as the �price� of the disturbance to nature	
The � �� limit results in w� � in the maximization with respect to w� leading to
the optimal control formulation of Abergel � Temam ������ for � alone	 Reduced
values of � decrease the cost functional less upon the application of a disturbance
w	 A nonzero disturbance results whenever the disturbance w can a�ect the �ow
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perturbation u in such a way that the net cost functional J is increased	

Solving for the control � which is e�ective even in the presence of a disturbance w�
which maximally spoils the control objective� is a way of achieving system robust�
ness	 As stated earlier� a control which works even in the presence of the malevolent
disturbance w will also be robust to a wide class of other possible disturbances	

In the present systems� for � 
 �� for some critical value �� �an upper bound of
which is established in this paper�� the non�cooperative game does not have a 
nite
solution� essentially� the malevolent disturbance wins	 The control � corresponding
to � � �� results in a stable system even when nature is on the brink of making
the system unstable	 However� note that the control determined with � � �� is not
always the most suitable as it may result in a very large control magnitude and
may have degraded performance in response to disturbances with structure more
benign than the worst�case scenario	 In the implementation� variation of � and �
provide the necessary �exibility in the control design to achieve the desired trade�
o�s between disturbance response and control magnitude required �Bewley � Liu
�����	

��� Governing equations

We begin with the Navier�Stokes equation for a �ow U in an open domain � � IR�

such that� in �� ������ we have

�������
������

�U

�t
� 	�U � �U � r�U �rP � F�

div U � ��

U � � on ���

U��� � U� at t � ��

�����

We focus our attention on the case in which the forcing is applied by way of an
interior volume force on the r	h	s	 of the momentum equation� the case of boundary
forcing �such as wall transpiration� is closely related and will be treated later	 A
stationary or non�stationary solution U�x� t� to this equation with a corresponding
forcing F �x� t� will be referred to as the �target� �ow for the control problem	 �If
no target �ow is known or given� U and F are taken as zero	�

We are interested in the robust regulation of the deviation of the �ow from the
desired target �U�F �	 In x�� we consider the control of the linearized equation which
models small perturbations �u� f� to the target �ow �U�F � with Dirichlet boundary
conditions and known initial conditions such that� in �� ������ we have

�������
������

�u

�t
� 	�u� �u � r�U � �U � r�u�rp � f�

div u � ��

u � � on ���

u��� � u� at t � ��

�����
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In x�� we consider the control of the full nonlinear equation which models large
perturbations �u� f� to the target �ow �U�F � such that� in � � ������ we have�������

������

�u

�t
� 	�u� �u � r�U � �U � r�u� �u � r�u�rp � f�

div u � ��

u � � on ���

u��� � u� at t � ��

�����

��� Mathematical setting

Let � be a bounded open set of IR� with boundary ��� and let �n be the unit
outward normal vector to ��	 We denote by Hs���� s � IR the Sobolev spaces
constructed on L����� and Hs

� ��� the closure of C�
� ��� in Hs���� Following Temam

������� we set X �
�
u � ��C�

� ������ div u � �
�
� and denote by H �resp	 V � the

closure of X in �L������ �resp	 �H�������� we have

H �
�
u � �L������� div u � � in �� u � �n � � on ��

�
and

V �
�
u � �H�

� ������ div u � � in �
�
�

The scalar product on H is denoted by �u� v� �
R
� u � v dx� that on V is denoted by

��u� v�� �
R
�
ru � rv dx� and the associated norms are denoted by j � jL� and k � k

respectively	 We denote by A the Stokes operator� de
ned as an isomorphism from
V onto the dual V � of V such that� for u � V � Au is de
ned by

	 v � V� hAu� viV ��V � ��u� v��

where h�� �iV ��V is the duality bracket between V � and V 	 The operator A is extended
to H as a linear unbounded operator with domain D�A� � �H������
V when �� is
a C� surface� the case of a domain � with corners is treated in x�	 We also recall the
Leray�Hopf projector P� which is the orthogonal projector of the non�divergence�
free space �L������ onto the divergence�free space H	 The Stokes operator is de
ned
with this projector such that

Au � �P
�
�u

	
� 	 u � D�A�� �����

We shall denote by � 
 �� � �� � ��� the increasing sequence of the eigenvalues of
A	 De
ne the bilinear mapping B by

B�u� v� � P
�
�u � r�v

	
� 	 u� v � V� �����

Note that B is a bilinear mapping from V into V �	 De
ne a continuous trilinear
form b on V such that� with u� v�w � �H������� we have

b�u� v�w� � hB�u� v�� wiV ��V

�

Z
�

�u � r�v � wdx �

Z
�

ui
�vj
�xi

wj dx�

where Einstein�s summation is assumed	
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��� Abstract form of governing equations

The operators A and B may be used to write the Navier�Stokes equation in the
�abstract form� useful for mathematical analysis	 By application of the Leray
projector to ��	��� noting ��	��� ��	��� and that Pu � u and P�rp� � �� the
linearized Navier�Stokes equation� to be considered in x�� may be written in the
form ����

���
du

dt
� 	Au� B�u�U� � B�U� u� � Pf�

u � V�

u��� � u��

�����

where the regularity required on f � u�� and U are



f � L���� T �L��� 	 T � ��

u� � V � U � C���� T  � V � 
 L���� T �D�A���
�����

Similarly� application of the Leray projector to the nonlinear form ��	��� to be
considered in x�� gives

����
���

du

dt
� 	Au � B�u�U� � B�U� u� � B�u� u� � Pf�

u � V�

u��� � u��

�����

��	 Control framework

In the control framework� the interior forcing f is decomposed into a control
� � L���� T� L�� and a disturbance w � L���� T� L��� with T � �� in the spirit of the
non�cooperative game discussed in x�	�	 Thus� we write f as

f � B�w � B��� �����

where B� and B� are given bounded operators on �L������	 Only the divergence
free part of the forcing f will a�ect the evolution of the velocity 
eld u� as seen on
the r	h	s	 of the governing equations ��	�� and ��	��	 Thus� in the remainder of this
paper� we consider only the divergence free part of the forcing by writing

Pf � P�B�w � B���

� B�w � B���
������

where B� � PB� and B� � PB� are mappings from �L������ to H	 Note that
the di�erence f � Pf may be written as the gradient of a scalar and thus will
only modify the pressure p in ��	�� and ��	��	 As the solution to the Navier�Stokes
equation in the abstract form is implicitly con
ned to a divergence�free manifold of
�L������� the pressure p may be entirely neglected in the mathematical analysis	
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��
 Important identities and inequalities

We now recall some important properties of the nonlinear operator b� which can
be found� for instance� in x� of Temam ������	 First� we have the orthogonality
identity

b�u� v� v� � �� 	 u� v � V ������

as a consequence of div u � �� as shown by integration by parts	 Moreover� the
continuity of the nonlinear mapping in various functional spaces are expressed by
the following classical inequalities� there exists a constant C���� such that����
���
jb�u� v�w�j � C�kukkvk

���jAvj
���
L� jwjL� � 	 u � V� v � D�A�� w � H�

jb�u� v�w�j � C�juj
���
L� jAuj

���
L� kvkjwjL� � 	 u � D�A�� v � V� w � H�

jb�u� v�w�j � C�juj
���
L� kuk

���kvkjwj
���
L� kwk

���� 	 u � V� v � V� w � V�

�

where C� denotes here and throughout this paper a numerical constant whose value
may be di�erent in each inequality	

Note that the mapping u �� B�u� � B�u� u� is di�erentiable from V into V �� its
di�erential is de
ned by

B��u�v � B�u� v� � B�v� u� 	 v � V

� P
�
�u � r�v � �v � r�u

	
�

������

Let B��u�� denote the adjoint of B��u� for the duality between V and V �� the adjoint
operator B��u�� is thus de
ned by

hv�B��u�wiV�V � � hB��u��v�wiV ��V � ������

It follows from integration by parts �Abergel � Temam ����� that

hB��u��v�wiV ��V �

Z
�

�
�ui
�xj

vi �
�vj
�xi

ui

�
wj dx

�

Z
�

�
�ru�T � v � �rv� � u

	
� wdx�

������

where� again� Einstein�s summation is assumed	
The use of adjoint operators to de
ne an appropriate O�N� adjoint 
eld will be

central to the development of an e
cient numerical algorithm to solve the robust
control problem	 For the linear problem described in x�� an appropriately de
ned
adjoint 
eld reveals the solution f��� �wg of the robust control problem directly� as
shown in x�	�	 For the nonlinear problem described in x�� a solution f��� �wg of the
robust control must be found by iteration� as discussed in x�	�	 At each iteration k�
an adjoint 
eld is computed to determine the gradients DJ �D� and DJ �Dw in the
vicinity of f�k� wkg	 The control �k and the disturbance wk are then updated based
on this gradient information and a new adjoint 
eld computed until the iteration
in k converges and a saddle point for the full nonlinear problem is reached	 Proof
of the convergence of such an algorithm is currently under development	
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�� Accomplishments

As discussed in the introduction� the objective in the robust control problem is
to 
nd the best control � in the presence of the disturbance w which is maximally
aggravating to the control objective	 The cost functional considered in the present
work� in the mathematical setting described in x�	�� is given by

J ���w� �
�

�

Z T

�




C�u


�
L����

dt �
�

�




C�u�T �



�
L����

�

Z T

�

�
C�
�u

�n
� �r
�
L�����

dt

�
�

�

Z T

�

h
��



�


�

L����
� ��




w


�
L����

i
dt�

�����

where the scalar control parameters � and � are given and b is a known vector 
eld
on ��	 The operators C� and C� are unbounded operators on �L������ satisfying

jCiuj
�
L� � 
juj�L� � �kuk� for i � �� �� ����a�

with 
 
 �� � 
 �� 
� � � �� and C� is a bounded operator of �L�������� so that�
by the Trace theorem �Lions � Magenes ������ we have


�C� �u

�n
� �r
�
L�����




 � �kukH��� � ��kuk���jAuj
���
L� � ����b�

where the constants � and �� depend upon �r and �	 In this chapter� the �ow u is
assumed to be related to the control � and the disturbance w through the linearized
Navier�Stokes equation����

���
du

dt
� 	Au� B�u�U� � B�U� u� � B�w � B���

u � V�

u��� � u��

�����

which models small deviations of the �ow perturbation u from the desired target
�ow U 	 The regularity required is given by


��w � L���� T �L��� B��B� � L�L��H��

u� � V � U � C���� T  � V � 
 L���� T �D�A���

and the Stokes operator A� the bilinear mapping B� and other notations are de�
scribed in x�	�	 The robust control problem to be solved is stated precisely as�

De
nition ��� The control �� � L���� T� L�� and disturbance �w � L���� T� L���
and the solution u to ��	�� associated with �� and �w� are said to solve the robust
control problem when a saddle point � ��� �w� of the cost functional J de
ned in ��	��
is reached such that

Sup
w�L����T�L��

J � ���w� � J � ��� �w� � Inf
��L����T�L��

J ��� �w�� �����

In this chapter� we will establish both existence and uniqueness of the solution to
the robust control problem stated in De
nition �	�� and will present an iterative
adjoint algorithm to solve a two�point boundary value problem to 
nd this solution	



A generalized framework for robust control in �uid mechanics ���

��� Existence of a solution of the robust control problem

The proof of the existence of a solution � ��� �w� to the robust control problem is
based on the following existence result�

Proposition ���� Let J be a functional de�ned on X � Y � where X and Y are

non�empty� closed� convex sets� If J satis�es

�a� 	 w � Y� � �� J ���w� is convex lower semicontinuous�

�b� 	 � � X� w �� J ���w� is concave upper semicontinuous�

�c� � w� � Y such that lim
k�kX�	�

J ���w�� � ���

�d� � �� � X such that lim
kwkY�	�

J ���� w� � ���

then the functional J has at least one saddle point � ��� �w� and

J � ��� �w� � Min
��X

Sup
w�Y

J ���w� � Max
w�Y

Inf
��X

J ���w��

Proof� See x� of Ekeland � Temam ������	

In order to establish conditions �a� through �d� of Proposition �	� for the present
problem� we need to analyze the evolution equation ��	��	 It can be proven rigor�
ously that� given u� � V � U � C���� T  � V �
L���� T �D�A��� and ��w � L���� T �L���
there exists a unique solution u of ��	�� such that

u � L���� T �V � 
 L���� T�H��

The proof is based on the following �a priori estimates�	 Multiplying ��	�� with u�
we can write

d

dt
juj�L� � 	kuk� �

�

	��
jB�w � B��j

�
L� � �jb�u�U� u�j

�
�

	��
jB�w � B��j

�
L� � C�kUkjuj

���
L� kuk

����

Hence�
d

dt
juj�L� �

	

�
kuk� �

�

	��
jB�w � B��j

�
L� �

C�

	�
kUk�juj�L� �

Let M� �
C�

	�
sup

��t�T
kUk��t�	 Then� we have

juj�L��t� � ju�j
�
L� e

M�t �
eM�t

	��

Z t

�

jB�w � B��j
�
L� ds �����
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and
�

t

Z t

�

kuk�ds �
�

	���

�

t

Z t

�

jB�w � B��j
�
L� ds �

�M�

	t

Z t

�

juj�L�ds

�
�

	���t

Z t

�

jB�w � B��j
�
L� ds �

�

	
ju�j

�
L� e

M�T

�
�eM�T

	���

Z T

�

jB�w � B��j
�
L� ds�

�����

Similarly� multiplying ��	�� with Au� we can write

d

dt
kuk� � 	jAuj�L� �

�

	
jB�w � B��j

�
L� � �jb�u�U�Au�j � �jb�U� u�Au�j

�
�

	
jB�w � B��j

�
L� � C�kUk

���jAU j
���
L� kukjAujL�

� C�jU j
���
L� jAU j

���
L� kukjAujL��

Letting

M��T � �
C�
�

�	
sup

��t�T

�
kUk�t� � jAU jL� �t� � jU�t�j

���
L� jAU�t�j

���
L�

�
�

we have
d

dt
kuk� �

	

�
jAuj�L� �

�

	
jB�w � B��j

�
L� �M�kuk

��

Therefore

kuk��t� � ku�k
�
eM�t �

�

	
eM�t

Z t

�

jB�w � B��j
�
L� ds �����

and

�

t

Z t

�

jAuj�L�ds �
�

	�t

Z t

�

jB�w � B��j
�
L� ds �

�M�

t

Z t

�

kuk�ds

�

�
�

	�t
�

�M�

	��
�

�M�

	��
eM�T

�Z t

�

jB�w � B��j
�
L� ds�

�����

The a priori estimates ��	��� ��	��� ��	��� and ��	�� allow us to characterize the
mapping ���w� �� u���w�	 Speci
cally� we have�

Lemma ���� For � � L���� T �L��� the mapping w �� u���w� from L���� T �L��
into L���� T �V � is a�ne and continuous� Similarly� for w � L���� T �L�� the map�

ping � �� u���w� from L���� T �L�� into L���� T �V � is a�ne and continuous� For

� � L���� T �L��� the mapping w �� u���w�jT from L���� T �L�� into V is a�ne

and continuous� Similarly� for w � L���� T �L�� the mapping � �� u���w�jT
from L���� T �L�� into V is a�ne and continuous� Furthermore� for u� � V and



A generalized framework for robust control in �uid mechanics ���

w � L���� T �L��� the mapping w �� u���w� has a G�ateau derivative ��w�� in ev�

ery direction w� � L���� T �L��� and ��w�� is the solution of the linear evolution

equation ����
���

d�

dt
� 	A� � B�U� �� � B��� U� � B�w��

� � V�

���� � ��

�����

and it follows that � � L���� T �V � 
 L���� T �D�A��	

Proof	 The fact that w �� u���w� and � �� u���w� are a
ne and continuous follows
from the linearity of ��	�� and the a priori estimates ��	��� ��	��� ��	��� and ��	��	
The existence of the G!ateau derivative as well as its characterization by ��	�� is
proved in Abergel � Temam ������� to which we refer the reader for more details	

Remark ���� The solution � of ��	�� can be expressed as a function of w� in

terms of the Green�Oseen�s tensor G�x� t� x� � t�� �see Ladyzhenskaya ������ vaguely�
we write

��x� t� �

Z T

�

Z
�

G�x� t� x�� t��w��x�� t�� dx� dt� � G � w��

Notationally� we will denote G by Du�Dw and ��w�� by �Du�Dw� � w�	 Note

that the Green�Oseen�s tensor G � Du�Dw is an in�nite�dimensional extrapola�

tion of the Jacobian of a �nite�dimensional discretization of u with respect to a

�nite�dimensional discretization of w� as suggested by this notation� By causality�

G�x� t� x� � t�� � � for t� � t	

With Lemma �	� established� we are ready to prove that conditions �a� through
�d� of Proposition �	� are indeed satis
ed for the present robust control problem�

Lemma ���� Let u� � V� There exists �� such that� for � 
 ��� we have

�A� 	 w � L���� T �L��� � �� J ���w� is convex lower semicontinuous�

�B� 	 � � L���� T �L��� w �� J ���w� is concave upper semicontinuous�

�C� lim
j�jL����T �L���	�

J ��� �� � ���

�D� lim
jwjL����T �L���	�

J ��� w� � ���

Proof	 Condition �A�� by Lemma �	�� the map � �� J ���w� is lower semicontinuous	
As � �� u���w� is a
ne� the convexity of � �� J ���w� follows promptly	

Condition �B�� by Lemma �	�� the map w �� J ���w� is upper semicontinuous	
In order to prove concavity� note that it is su
cient to show that

h�
� � J ���
w� � w��

is concave w	r	t	 
� i	e	� h���
� � �	 To this end� we compute

h��
� �

Z T

�

�
C�u� C�

Du

Dw
�w�

�
L����

dt �
�
C�u�T �� C�

Du�T �

Dw
� w�

�
L����

�

Z T

�

�
C�

�

�w

Du

Dw
� w�� �r

�
L�����

dt� ��
Z T

�

�

w� �w�� w�

�
L����

dt�
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It is clear that ��w�� � �Du�Dw� � w� is independent of 
	 Therefore�

h���
� �

Z T

�





C� DuDw � w�






�

L�

dt �





C�Du�T �

Dw
� w�






�

L�

� ��
Z T

�

jw�j
�
L� dt�

Note that ��w�� satis
es ��	�� by Lemma �	�	 Hence� using the a priori estimates
��	��� ��	��� ��	��� and ��	��� we have

Z T

�





C� DuDw �w�






�

L�

dt � 


Z T

�

j�j�L�dt � �

Z T

�

k�k� dt � k�

Z T

�

jB�w�j
�
L� dt

� k� jB�jL�L��H�

Z T

�

jw�j
�
L� dt�

and� similarly�





C�Du�T �

Dw
� w�






�

L�

� k� jB�jL�L��H�

Z T

�

jw�j
�
L� dt�

Now under the assumption that

�� 
 �k� jB�jL�L��H� �

we have h���
� � � for 
 � IR	 Thus the function h is concave� and the concavity of
w �� J ���w� follows immediately	

Condition �C�� Using ��	�b�� we can write

J ��� �� 

��

�
j�j�L����T 
L�� � ��

Z T

�

kuk���jAuj
���
L� dt�

and by the a priori inequalities ��	��� ��	��� ��	��� and ��	��� there exists a constant
C� � C��T��� ku�k� such that

Z T

�

kuk���jAuj
���
L� dt � C�j�jL����T 
L���

Hence�

J ��� �� 

��

�
j�j�L����T 
L�� � C�j�jL����T 
L���

and condition �C� follows promptly	
Condition �D�� it follows from ��	�� that

Z T

�

jC�uj
�
L� dt �

Z T

�

�

juj�L� � �kuk�

	
dt � k�

h
j�j�L����T 
L�� � jwj�L����T 
L��

i
� k��
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and� similarly�

jC�u�T �j�L� �
�

ju�T �j�L� � �ku�T �k�

	
� k�

h
j�j�L����T 
L�� � jwj�L����T 
L��

i
� k��

Thus� if �� 
 ��k� � k�� and jwjL����T 
L�� 
 �� we have

J ��� w� �
�

�

Z T

�

jC�uj
�
L� dt �

�

�
jC�u�T �j�L� �

Z T

�

Z
��

C�
�u

�n
� �r d� dt�

��

�

Z T

�

jwj�L�ds

� �
��

�
jwj�L����T 
L�� � CjwjL����T 
L���

which implies �D�	
Putting the statements of this section together� we have established existence of

a solution ���� �w� to the robust control problem for a su
ciently large ��

Theorem ���� Assume that � is su�ciently large so that

�� 
 ��k� � k�� and �� 
 � k� jB�jL�L��H� �

where

k� �
�

	�
�
TeM�T

	
and k� � �� ju�j

�
L� e

M�T �

Then there exists a saddle point � ��� �w� and u� ��� �w� such that

J � ���w� � J � ��� �w� � J ��� �w�� 	 ��w in L���� T �L���

Proof� The proof follows promptly from Lemmas �	� and �	� and Proposition �	�	

��� Identi�cation of the unique solution to the robust control problem

The existence of a saddle point � ��� �w� of the functional J implies that

DJ

D�
� ��� �w� � � and

DJ

Dw
� ��� �w� � �� �����

De
ne an adjoint state by the equation

����
���
�
d�

dt
� 	A�� � B��U��� � C��C� u�

� � Vr �
�
v � �H������� div v � � in �� v � C���r on ��

�
�

��T � � C��C� u�T ��

������

where A� is de
ned by

�
u�A��

�
L�

�
�
Au� �

�
L�
�
�
C�
�u

�n
� �r
�
L�����

for u � D�A�� and � � Vr�
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We have the following�

Lemma ���� Let U � L���� T �V � 
 L���� T �D�A��� and let u be the solution of

��	��� �i�h�� i � �� �� h � L���� T �L�� the solution of����
���

d�i
dt

� 	A�i � B��U��i � Bih for i � �� ��

�i � V�

�i��� � ��

������

ThenZ T

�

�
B�i �� h

�
L����

dt �

Z T

�

�
C��C�u� �i

�
L����

dt �
�
C��C�u�T �� �i�T �

�
L����

�

Z T

�

�
C�

�

�n
�i� �r

�
L�����

dt�

������

where B�i is the adjoint of Bi for i � �� �	
Proof	 The proof follows from integration by parts and the regularity of u� �i and ��Z T

�

�
C��C�u� �i

�
L����

dt �
�
C��C�u�T �� �i�T �

�
L����

�

Z T

�

�
C�

�

�n
�i� �r

�
L�����

dt

�

Z T

�

�h
�
d�

dt
� 	A�� � B��U���

i
� �i

�
L����

dt

�
�
��T �� �i�T �

�
L����

�

Z T

�

�
C�

�

�n
�i� �r

�
L�����

dt

�

Z T

�

�
��
d�i
dt

�
L����

dt �

Z T

�

�
�� 	A�i

�
L����

dt �

Z T

�

�
��B��U��i

�
L����

dt

�

Z T

�

�
��Bih

�
L����

dt �

Z T

�

�
B�i �� h

�
L����

dt�

Now we prove

Theorem ���� Let � ��� �w� be a solution of the robust control problem stated in

De�nition ���� Then

�� � �
�

��
B��

�� and �w �
�

��
B��

��� ������

where �� is found from the solution ��u� ��� of the following coupled system	���������
��������

d�u

dt
� 	A�u� B��U��u �

�
�

��
B�B

�
� �

�

��
B�B

�
�

�
���

�
d��

dt
� 	A��� � B��U���� � C��C��u�

�u � V� �� � Vr�

�u��� � u� and ���T � � C��C� u�T ��

������
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which admits a unique solution for � � ���jB�jL�L��H�� jB�jL�L��H�� ��	

Proof	 A necessary condition for � ��� �w� to be a saddle point of the functional J is

DJ

D�
� ��� �w� � h� � � and

DJ

Dw
� ��� �w� � h� � �� 	 h� � L���� T �H��

Thus�

DJ

Dw
� ��� �w� � h� �

Z T

�

�
C�u� C�

Du

Dw
� h�

�
L����

dt �
�
C�u�T �� C�

Du�T �

Dw
� h�

�
L����

�

Z T

�

�
C�

�

�n

Du

Dw
� h�� �r

�
L�����

dt� ��
Z T

�

�
�w�h�

�
L����

dt � ��

and

DJ

D�
� ��� �w� � h� �

Z T

�

�
C�u� C�

Du

Dw
� h�

�
L����

dt �
�
C�u�T �� C�

Du�T �

Dw
� h�

�
L����

�

Z T

�

�
C�

�

�n

Du

Dw
� h�� �r

�
L�����

dt � ��
Z T

�

�
��� h�

�
L����

dt � ��

Hence� by ��	����

Z T

�

�
B����� �� �w�h�

�
L����

dt � �� 	 h� � L���� T �H�

and Z T

�

�
B��

�� � �� ��� h�
�
L����

dt � �� 	 h� � L���� T �H��

which implies that ��	��� follows from the de
nition of the coupled system given in
��	���	

The uniqueness of the solution of the coupled system ��	��� is classical	 For � suf�

ciently large �� � ���jB�jL�L��H�� jB�jL�L��H�� �� � we have

�
��� B�B�� � ��� B�B��

	
is positive de
nite	 The proof of uniqueness then follows by multiplying the �u equa�
tion by �� and the �� equation by �u� integrating between � and T � and then adding
the two resulting equations	

��� Generalized framework

We now identify all possible sources of forcing in the two�point boundary�value
problem ��	��� and thereby establish a generalized framework for which the ap�
proaches discussed herein can be applied to a wide variety of problems in �uid
mechanics	
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u� ��
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� t T

Figure �� Schematic representation of the domain over which the �ow 
eld u is
computed	 The arrow indicates the direction in time that the p	d	e	 is marched	

The space�time domain over which the �ow 
eld u is computed is illustrated in
Fig	 �	 The possible regions of forcing in this system are�

a� the r	h	s	 of the p	d	e	� indicated by ���
���� representing �ow control by interior

volume forcing �e	g	� externally�applied electromagnetic forcing by wall�mounted
magnets and electrodes��

b� the b	c	�s� indicated by
����
����
����

� representing �ow control by boundary forcing �e	g	�
wall transpiration��

c� the i	c	�s� indicated by
���
���� representing the optimization of the initial state in

a data assimilation framework �e	g	� the weather forecasting problem�	

Only the 
rst of these cases is treated in detail in the present work	

������������������������
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�� ��

��
� t T

Figure �� Schematic representation of the domain over which the adjoint 
eld �
is computed	 The arrow indicates the direction in time that the p	d	e	 is marched	

The space�time domain over which the adjoint 
eld � is computed is illustrated in
Fig �	 The possible regions of forcing in this system are�

a� the r	h	s	 of the p	d	e	� indicated by ���
���� representing regulation of an interior

quantity �e	g	� turbulent kinetic energy��

b� the b	c	�s� indicated by
����
����
����

� representing regulation of a boundary quantity
�e	g	� wall skin�friction��

b� the i	c	�s� indicated by
���
���� representing terminal control of an interior �ow

quantity �e	g	� turbulent kinetic energy�	

All three possible locations of forcing of the adjoint problem are considered in the
present framework	 Note that an interesting singularity arises when considering the
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terminal control of a boundary quantity such as wall skin�friction	 The �inhomoge�
neous� boundary conditions on the adjoint 
eld for such a case are the same as in
the corresponding regulation problem with a delta function applied at time t � T 	

�� Future work

We are currently repeating the analysis of section � for the nonlinear problem	
As mentioned in the introduction� this analysis will account for corners in the do�
main �	 The analysis of existence of the solution for the nonlinear problem and
the characterization of a simple gradient search routine �with 
xed step size� to

nd this solution are both straightforward� though results are only available for a�
small initial data� b� small T � or c� a �D domain	 Such a restriction is a direct
consequence of the fundamental lack of a complete mathematical characterization
currently available for the �D Navier�Stokes equation� not a shortcoming of the
present analysis	

In addition� we are attempting to establish rigorously the convergence of practical
gradient search algorithms for the iterative solution of the robust control problem	
To be practical� such algorithms must have variable step size� perhaps updating �
to minimize J in the direction DJ �D� and�or updating w to maximize J in the
direction DJ �Dw at each step of the iteration	 Further� the initial guess of the
solution ���� w�� must� in general� be considered to be �far� from the nearest solu�
tion � ��� �w� of the robust control problem	 A thorough mathematical understanding
of such a search algorithm is essential before testing these ideas numerically� as
gradient searches for a saddle points even in low dimensional problems may eas�
ily get caught in limit cycles or fail altogether unless the optimization problem is
thoroughly understood	
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