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We present a global framework for the feedback control of a

large class of spatially-developing boundary-layer flow systems.
The systems considered are (approximately) parabolic in the spa-
tial coordinate x. This facilitates the application of a range of
established feedback control theories which are based on the so-
lution of differential Riccati equations which march over a finite
horizon in x (rather than marching in t, as customary). How-
ever, unlike systems which are parabolic in time, there is no
causality constraint for the feedback control of systems which
are parabolic in space; that is, downstream information may be
used to update the controls upstream. Thus, a particular actuator
may be used to neutralize the effects of a disturbance which ac-
tually enters the system downstream of the actuator location. In
the present study, a numerically-tractable feedback control strat-
egy is proposed which takes advantage of this special capability
of feedback control rules in the spatially-parabolic setting in or-
der to minimize a globally-defined cost function in an effort to
maintain laminar boundary-layer flow.
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This paper considers the feedback estimation and control of

small, spatially-developing, three-dimensional perturbations to
a thin laminar boundary layer in a viscous wall-bounded flow.
Control is applied via a blowing/suction distribution over a por-
tion of the wall, and state estimation is accomplished via mea-
surements of skin friction and pressure distributed over the same
region. The wall-normal direction is taken to be y and the leading
edge of the surface, which might be blunt, is near the line defined
by x µ y µ 0; the wall thus lies in the half plane ¶ y µ 0 · x ¸ 0 ¹ . In
the special case of an unswept flat plate, the streamwise direction
is x and the spanwise direction is z. More generally, the leading
edge of the surface over which the boundary layer develops may
be swept, and the surface may be inclined and/or curved in the

x-y plane. The curvilinear coordinate system is fitted to the body
such that the surface is defined by ¶ y µ 0 · x ¸ 0 ¹ even when the
leading edge is swept and the surface is curved. Special cases
of interest included in the framework presented here include the
stabilization of the Blasius, Falkner-Skan, Falkner-Skan-Cooke,
and Görtler families of boundary-layer flows.

An important characteristic of laminar systems of this type,
which fall under the classic “boundary-layer assumption”1, is
that they are essentially independent of time2, and the equa-
tions that govern them, subject to the correct approximations,
are parabolic in x. Further generalizations to the framework pre-
sented here, such as accounting for heat transfer to or from the
surface, are straightforward extensions as long as the boundary-
layer assumption remains valid.

There is a large body of work in the fluids literature on itera-
tive (adjoint-based) control optimization strategies for boundary-
layer flow systems. These strategies are appropriate for open-
loop control optimizations, and are beginning to see successful
applications in this regard. For recent reviews of this line of re-
search, see, e.g., Walter et al. (2001), Cathalifaud & Luchini
(2000), and Pralits et al. (2000). However, it is computationally
quite difficult (if not impossible) to apply iterative, adjoint-based
control optimization strategies in the closed-loop setting to neu-
tralize the effects of the random flow disturbances that arise in
nature. For such problems, feedback control strategies which can
respond quickly and in a coordinated fashion to measurements of
the flow system are necessary.

1The boundary layer assumption is that the boundary-layer thickness is much
smaller than the streamwise length scales in the system, and that the time scale
of the external perturbations to the system are large with respect to the boundary-
layer thickness divided by the freestream velocity (see, e.g., Schlichting 1978).

2Time variations in the system model are easily accounted for by gradual
variation of the inflow conditions and the external disturbances.
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There is a large body work in the controls literature on the
feedback estimation and control of systems which are parabolic
in time. Of particular interest for non-normal systems, such
as those often encountered in fluid mechanics, is the fact that
H2 � H∞ control theory, which is quite well suited to such sys-
tems, is now well understood for both infinite-horizon and finite-
horizon control problems, and is discussed in detail in standard
textbooks (see, e.g., Green & Limebeer 1995). Applications of
this and related feedback control theories are now finding their
way into many control problems in fluid mechanics. Though
subtle issues related to the infinite dimension and inflow/outflow
conditions make the application of established feedback con-
trol strategies to such systems nontrivial, significant progress
has been made in recent years. For a recent review of this line
of research, see Bewley (2001). The present paper develops a
closed-loop, Riccati-based feedback control strategy (as opposed
to an open-loop, adjoint-based control optimization strategy) to a
spatially-developing boundary layer flow system.

Control strategies for systems which evolve parabolically in
time must be causal; that is, they must depend only on present
and past measurements of the flow. However, control strategies
for systems which evolve parabolically in space are not limited
by such a constraint; the control at a particular actuator location
may depend on measurements taken both upstream and down-
stream. Thus, to exploit the additional measurement information
available in this setting, a different set of tools is needed for this
problem beyond the standard LQG (H2) framework and “robusti-
fying” extensions thereof (H∞, LTR, etc.). In fact, the necessary
control theory for the present problem was essentially laid out by
Anderson & Moore (1979) and Middleton & Goodwin (1990).
The present paper discusses the additional considerations neces-
sary to apply these tools to boundary-layer flows.

Unlike recent efforts to develop decentralized feedback con-
trol strategies for boundary-layer flows, which depend only upon
flow measurements and state estimates in the immediate vicinity
of any given actuator, the present approach sacrifices localiza-
tion of the feedback rules in the streamwise coordinate in order
to achieve possibly significant performance improvements over
that possible with localized strategies. Performance comparisons
will be conducted in future numerical studies; the purpose of the
present paper is simply to present a numerically-tractable frame-
work for a global strategy for the feedback control of boundary-
layer flow systems.

� ²�����¦¨±�°�± � ���`´ ­�¡¯°&²`±¢®
Based on the dimensional coordinates ¶ x �4· y �E· z �4¹ , ve-

locities ¶ u � · v � · w � ¹ , and pressure p � , we define the dimen-
sionless quantities x µ x � � L, ¶ y · z ¹pµ ¶ y � · z � ¹ � δ, u µ u � � Uo,¶ v · w ¹:µ ¶ v � · w � ¹ Reδ � Uo, and p µ p � Re2

δ �
	 ρU2
o � , where Uo is

the freestream velocity, ρ is the density, µ is the viscosity,
ν µ µ � ρ is the kinematic viscosity, L is a reference streamwise

length, δ µ
� Lν � Uo is a reference boundary layer thickness, and
Reδ µ Uo δ � ν is a reference Reynolds number. Also, from the di-
mensional radius of curvature r � of the surface in the x-y plane,
we define the dimensionless curvature parameter ε µ δ ��� r � � , the
Görtler number G µ Reδ � ε, and a sign function s such that s µ 0
corresponds to a flat wall, s µ 1 corresponds to a concave wall,
and s µ�� 1 corresponds to a convex wall.

In order to apply the boundary-layer approximation and to
develop a linear set of equations governing small perturbations
to the nominal (undisturbed) boundary-layer flow, we make the
following assumptions:

A1: δ � L (i.e., Reδ � 1);
A2: δ � � r � � (i.e., ε � 1);
A3: G � O 	 1 � ;
A4: the nominal (undisturbed) flow is laminar and steady.

Note that the boundary-layer approximation of the Navier-Stokes
equations is not valid in the vicinity of the leading edge. The
present work avoids this singularity by considering the evolution
of the system only over the interval over which the control is
applied, which we define as x0 � x � L, where x0 � 0. In order
to develop control strategies which are not sensitive to errors in
the modeling of the flow upstream of x0, we will seek control
strategies which are insensitive to small errors in the nominal
inflow velocity profile.

Though not necessary for the application of the present
control approach, it is convenient to approximate the nominal
boundary layer flow ¶ U 	 x · y � · V 	 x · y � · W 	 x · y � ¹ by a profile of
the Blasius/Falkner-Skan-Cooke/Görtler family (see, e.g., Cooke
1950). Similarity solutions of this commonly-occuring class of
boundary-layer flows may be found from the coupled ODEs

f � � ��� m � 1
2

f f � ��� m � 1 � f � 2 � µ 0 · g � ��� m � 1
2

f g �	µ 0 ·
f 	 0 � µ f � 	 0 � µ 0 · f � 	 ∞ ��� 1 · g 	 0 � µ 0 · g 	 ∞ ��� 1 ·

by defining U0 µ xm, η µ y � U0 � x, U µ U0 f � 	 η � , W µ W0 g 	 η � ,
and V µ�� U0 � x  	 1 � m � η f � � 	 1 � m � f ! � 2. Alternatively, for
systems in which, e.g., the curvature of the wall changes gradu-
ally as a function of x (as with the flow over a typical airfoil), the
nominal boundary-layer flow profile ¶ U 	 x · y � · V 	 x · y � · W 	 x · y � ¹
may be found via straightforward numerical integration of the
steady-state boundary-layer equations over the appropriate ge-
ometry.

Small three-dimensional perturbations to the nominal flow,¶ u 	 x · y · z � · v 	 x · y · z � · w 	 x · y · z � ¹ , are governed by the linearized
Navier-Stokes equation. As the system governing these pertur-
bations is linear and homogeneous in z, we may decouple the
various spanwise modes of this system by taking the Fourier
transform of all perturbation variables with spanwise variation
(namely, the state, the controls, the measurements, and the dis-
turbances) in the z direction (see, e.g., Bewley & Liu 1998). In
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the present discussion, we therefore consider a particular Fourier
mode of the flow perturbations, and assign a variation in z of
exp 	 � iβz � to all of these variables. Once the control problem
is solved for a series of spanwise wavenumbers, inverse Fourier
transform of the feedback gains should lead to feedback convolu-
tion kernels which are spatially localized in the spanwise coordi-
nate (Bewley 2001, Bamieh et al. 2002). Such localization in the
spanwise coordinate of the feedback convolution kernels which
result from the solution of this control problem will be explored
in future work.

Following the analysis of Hall (1985), under the boundary-
layer assumptions itemized above, the linearized, nondimen-
sional equations for the flow perturbations reduce to

	 Uu � x � Vuy � Uyv � iβWu � uyy � β2u µ 0 ·
Uvx � Vxu � 	 Vv � y � py � iβWv � 2sG2Uu � vyy � β2v µ 0 ·

Uwx � Wxu � Vwy � Wyv � iβp � iβWw � wyy � β2w µ 0 ·
ux � vy � iβw µ 0 ·

(1)

with the boundary and initial conditions :

u µ w µ 0 · v µ vw 	 x � · at y µ 0 ·
u µ v µ w µ 0 · at y µ ∞ ·

¶ u · v · w ¹�µ�¶ u0 · v0 · w0 ¹�· at x µ x0 ·
(2)

where vw 	 x � is the control velocity of blowing and suction dis-
tributed over the wall on the strip x0 � x � L. The purpose of
the control in this problem is to keep the flow perturbations suf-
ficiently small that transition to turbulence is inhibited.

Define the normal vorticity η � µ ∂u � � ∂z � � ∂w � � ∂x � and the
corresponding dimensionless form η µ
� iβu � wx � Re2

δ. We now
combine the governing equations (1) in such a way as to deter-
mine a set of two coupled equations for the perturbation compo-
nents of the normal velocity and normal vorticity. The first of
these equations is found by taking the Laplacian of the second
component of the momentum equation, substituting the expres-
sion for ∆p found by taking the divergence of the momentum
equation, and applying continuity. The second of these equa-
tions is found by taking the normal component of the curl of the
momentum equation. Defining Dk µ ∂k � ∂yk the result is�

Ẽ11 Ẽ12

0 Ẽ22 � ∂
∂x

�
v
η � µ

�
Ã11 Ã12

Ã21 Ã22 � � v
η � · (3)

where

Ẽ11 µ U 	 D2 � β2 � � Uyy

Ẽ12 µ � 	 2i � β �  Uxy � UxD1 !
Ẽ22 µ � U

Ã11 µ���� 	 Vyy � β2V � D1 � Vyyy � Vy 	 D2 � β2 �
� VD3 � D4 � 2β2D2 � β4 � iβWyy � iβWD2 � iβ3W �

Ã12 µ�� i
β
� Vxyy � Vx 	 D2 � β2 � � 2iβ 	 WxD1 � Wxy � � 2β2G2U �

Ã21 µ�� iβUy

Ã22 µ��Ux � VD1 � D2 � β2 � iβW ���
®(¡?­�¡ �
	�®
�=­�� ���O²`¦�
6´�� ­�¡¯°&²`±��"³�°�®?� ¦��	¡¯°���­�¡¯°&²`± °�±

y
We now perform a discretization of the system in the y co-

ordinate on a finite number of discretization points with the ap-
propriate grid stretching. Let ¶ v · ηηη ¹ denote the spatial discretiza-
tions of ¶ v · η ¹ on the interior of the domain. The derivative oper-
ators Dk may be approximated in this discretization using any of
a variety of techniques, such as finite differences, Padé, Cheby-
shev, etc. Define the matrices ¶ Ê11 · Ê12 · Ê22 · Â11 · Â12 · Â21 · Â22 ¹
as the spatial discretizations of ¶ Ẽ11 · Ẽ12 · Ẽ22 · Ã11 · Ã12 · Ã21 · Ã22 ¹
on the interior of the domain using the chosen technique, and the
vectors ¶ e11 · a11 ¹ to denote the influence of the normal velocity
at the wall on the left-hand side and right-hand side of the v com-
ponent of the discretization of (3). Using these discrete forms, it
is straightforward to express (3) in the state-space form

qx µ Aq � Bφ · (4)

q µ��� v
ηηη
vw

��
· A µ

�
Ê � 1Â Ê � 1a

0 0 � · B µ
� � Ê � 1e

1 �
Ê µ

�
Ê11 Ê12

0 Ê22 � · Â µ
�

Â11 Â12

Â21 Â22 � · e µ
�

e11

0 � · a µ
�

a11

0 � �
The control variable in this formulation is φ µ dvw � dx.

®��¢®(¡ ��
�³�°.®(¡¯´r¦¨© ­¯±r����®z­¯±�³ ³�°.®���¦���¡r°��
­?¡¯°&²`± °�±
x

To account for external system disturbances and modeling
uncertainties, we now modify the state equation (4) by adding
disturbances w to the right-hand side:

qx µ Aq � Bφ � Dw · (5)

where the disturbance vector w depends on the spatial coordinate
x. We desire to develop a global strategy in which the control
φ 	 x � may actually respond to disturbances w 	 x � acting over the
entire domain under consideration x0 � x � L. To facilitate this
in the standard (causal) setting, we first discretize the system in
x, then define an augmented state

qa
k µ

�
qk

qw
k � (6)
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at each station xk µ x0 � k∆, k µ 0 · � � � · N, where ∆ µ 	 L � x0 � � N
represents the grid spacing in x, qk µ q 	 xk � , wk µ w 	 xk � , and

qw
0 µ ����� w0

w1
...

wN

� ���� · qw
1 µ ����� w1

...
wN

0

� ���� · � � � qw
N µ ����� wN

0
...
0

� ���� �
Note that the augmented state qa

k at a particular streamwise sta-
tion xk need only include the disturbances entering the system
downstream of that location, as the influence of the disturbances
upstream are accounted for in qk. Note also that we can express
the evolution of qw

k in the discrete state-space form

qw
k � 1 µ Adqw

k · Ad µ ������
0 1 0

0 1
. . .

. . .
0 1

0 0

� ����� · (7)

where the relation between wk and qw
k is

wk µ Mwqw
k · Mw µ �

I 0 ����� 0 � � (8)

By combining equations (5), (7), and (8), we can obtain a state-
space formulation for the augmented state qa. However, the in-
herently discrete nature of the evolution of our disturbance model
qw compels us to first derive a discrete formulation of the state
equation (5). To accomplish this, we approximate ¶ A · B · q · φ ¹
with ¶ Ak · Bk · qk · φk ¹ over the interval xk � x � xk � 1 for each
value of k, where, e.g., Ak µ A 	 xk � . Using this approximation
(comonly referred to as a “zero-order hold”), we may express (5)
in the following “delta form” (Middleton and Goodwin, 1990):

δqk µ ΩkAkqk � ΩkBkφk � ΩkDkwk · (9)

where Ωk µ 	 1 � ∆ �	� ∆
0 exp 	 Akτ � dτ and δqk µ 	 qk � 1 � qk � � ∆.

Note in particular that Ωk � I as ∆ � 0, and thus the discrete-
in-x relation (9) tends towards the continuous-in-x relation (5)
as the grid is refined. This behaviour of the δ-formulation also
follows for the Riccati and Lyapunov equations that arise in the
control and estimation problems in the following sections, and is
an appealing characteristic of this particular discrete formulation.
Note that the calculation of the matrix exponential necessary to
determine Ωk can be performed with any of at least 19 dubious
techniques (Moler and Van Loan, 1978). One of the least dubious
of these techniques is the so-called scaling and squaring method.

Combining (9), (7), and (8), we finally obtain a discrete,
causal state-space formulation for the augmented state, to which
standard control theories may be applied:

δqa
k µ Aa

kqa
k � Ba

kφk (10)

where Aa
k µ

�
ΩkAk ΩkDkMw

0 Ad � and Ba
k µ

�
ΩkBk

0 � .

²`��¡r° 
�­ �9�¨²`±¢¡r¦7² � �O²�¦�±r²`±r�7­�´ ®(­ ��®��¢®(¡ ��
�®
In the original PDE setting, our control objective may be

written as finding a feedback control rule which minimizes the
cost function

J µ�
 L

x0

� 
 ∞

0
u � udy � α2

1v �wvw � α2
2φ � φ 
 dx �

Discretizing in x and y, the cost function may be approximated
by

J µ N

∑
i � 0

∆ � 	 qa � �i Qaqa
i � α2

2φ �i φi � · (11)

where Qa µ
�

Q 0
0 0 � , Q µ �� Is � β2 0 0

0 0 0
0 0 α2

1

��
, and Is is a diagonal

matrix with the corresponding local grid spacing on the elements
of the diagonal.

Note that the technique of augmenting the initial state with
the disturbances entering the entire system [see (6)] facilitated
the conversion of the noncausal problem described in the intro-
duction into the causal problem represented by (10). Together
with the control objective (11), a feedback control rule of the
form

φk µ � Kk � 1qa
k (12)

may be found directly using standard “discrete-time” optimal
control theory. In fact, as discussed in Bitmead et al. (1990),
the Riccati equation associated with this control problem may be
partitioned in a convenient fashion by defining

Kk µ �
α2

2I � ∆B �kΩ �kΣ11
k ΩkBk � � 1

B �kΩ �k � K1
k K2

k � ·
K1

k µ Σ11
k 	 I � ∆ΩkAk � ·

K2
k µ ∆Σ11

k ΩkDkMw � Σ12
k � I � ∆Ad

k
� ·

(13)
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where Σ11
k and Σ12

k solve the Riccati and Lyapunov equations

δΣ11
k µ Q � A �kΩ �kΣ11

k � Σ11
k ΩkAk � ∆A �kΩ �kΣ11

k ΩkAk �
	 K1

k � � ΩkBk � α2
2I � ∆B �kΩ �kΣ11

k ΩkBk � � 1
B �kΩ �kK1

k ·

δΣ12
k µ A �kΩ �kΣ12

k �  I � ∆A �kΩ �k ! � Σ11
k ΩkDkMw � Σ12

k Ad ���
	 K1

k � � ΩkBk � α2
2I � ∆B �kΩ �kΣ11

k ΩkBk � � 1
B �kΩ �kK2

k ·
(14)

where δΣk µ � 	 Σk � Σk � 1 � � ∆. As ∆ � 0, equations (14) tend to-
wards the corresponding continuous Riccati and Lyapunov equa-
tions (cf. Middleton & Goodwin, 1990).

Finally, by combining (12) and (10), we can express φk as a
simple function of the initial augmented state vector qa

0:

φk µ K0
k � 1 qa

0 · (15)

where K0
k � 1 µ�� Kk � 1 ∏k � 1

i � 0 	 Aa
i � Ki � 1Ba

i � .
²`��¡r° 
|­ � ��®(¡r° 
�­�¡¯°&²`±�� ® 
9²�²r¡���°�± �

By (15), we see that we can express the optimal control dis-
tribution on x0 � x � L which minimizes the globally-defined
cost function J as a simple function of the upstream flow pertur-
bation q0 and the system disturbances w 	 x � between x0 and L.
The task which remains is to find a simple way to obtain a good
estimate of qa

0 based on the available measurements at the wall.

Defining the vector µµµ as the measurement noise, the mea-
surements of the streamwise and spanwise skin friction and pres-
sure distributions over the wall may be written as

y 	 x � µ
��������

∂u
∂y

����
wall

	 x �
∂w
∂y

����
wall

	 x �
p � wall 	 x �

� ������� � µµµ · (16)

Note that (from Bewley & Protas 2002, applying the nondimen-
sionalization discussed previously) we may write

∂η
∂y

����
wall

µ � iβ
∂u
∂y

����
wall

� 1

Re2
δ

∂
∂x

∂w
∂y

����
wall

·
∂2v
∂y2

����
wall

µ�� ∂
∂x

∂u
∂y

����
wall

� iβ
∂w
∂y

����
wall

·
∂3v
∂y3

����
wall

µ
�

β2 � 1

Re2
δ

∂2

∂x2 � p � wall � ∂U
∂y

����
wall

∂vw

∂x
�

(17)

By neglecting the terms in 1 � Re2
δ in (17) we can express the skin

friction and pressure at the wall as:

��������
∂u
∂y

����
wall

∂w
∂y

����
wall

p � wall

� ������� µ Z

�����������
∂η
∂y

����
wall

∂2v
∂y2

����
wall

∂3v
∂y3

����
wall

� ���������� � N φ · where

Z µ��� i � β 0 0
1 � β2∂ � ∂x � i � β 0

0 0 1 � β2

��
· N µ��� 0

0
∂U � ∂y �wall

��
(18)

Using the relations (16) and (18), we can approximate the vector
of the wall measurements y as a function of the discrete state
vector q, the control variable φ, and the measurement noise µµµ:

y µ ZMq � Nφ � µµµ where M µ
��������

δ1

δy1

����
w

0

0
δ2

δy2

����
w

0
δ3

δy3

����
w

� ������� (19)

and the notation δk � δyk
��
w denotes the discretization of the k’th

derivative operator evaluated at the wall. Applying the definition
of the augmented state qa, we may write (19) as

yk µ Maqa
k � Nkφk � µk (20)

where Ma µ 	 ZM 0 � . We now define the notation q̂a
k �m µ

q̂a 	 xk � xm � to denote the estimate of qa 	 xk � based on the measure-
ments y 	 x � from x0 � x � xm. Our aim is to calculate an esti-
mate of qa

0 based on the measurements y 	 x � for x0 � x � xN µ L
(i.e. q̂a

0 �N). This is a “smoothing” problem, and, given the cor-
rect manipulations, can be solved using a Kalman filter. To solve
this problem, we first substitute the value of φk obtained in (12)
into the equations (10) and (20). Defining Fk µ Aa

k � Ba
kKk � 1 and

Hk µ Ma
k � NkKk � 1, we have

δqa
k µ Fkqa

k
yk µ Hkqa

k � µµµk � (21)

Applying Kalman filter theory to the system (21), we obtain the
following evolution equation for the estimate q̂a

k � k � 1

δq̂a
k � k � 1 µ Fk q̂a

k � k � 1 � Lk � yk � Hkq̂a
k � k � 1 � · (22)
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where Lk µ 	 ∆Fk � I � P11
k H �k � ∆HkP11

k H �k � Cµ � � 1
and P11

k is solu-
tion of the Riccati equation δP11

k µ P11
k F �k � FkP11

k � ∆FkP11
k F �k �

Lk � ∆HkP11
k H �k � Cµ � L �k . Our problem actually differs slightly

from the filtering problem (22). In particular, the information
we want to reconstruct, qa

0, must be obtained from measurements
taken on x0 � x � xN . In other words, we seek to determine the
value of q̂a

0 �N , not the value of q̂a
N � 1 �N, which can be obtained

from (22). As in Anderson and Moore (1979), q̂a
0 �N can be easily

derived from the filter problem presented above by initializing
this estimate with q̂a

0 � 0 µ 0 and marching the discrete equation

q̂a
0 � k µ q̂a

0 � k � 1 � ∆P12
k H �k � ∆HkP11

k H �k � Cµ � � 1 � yk � Hkq̂a
k � k � 1 �

from k µ 0 to k µ N, where P12
k satisfies the Lyapunov equation

δP12
k µ P12

k 	 Fk � LkHk � � �
We thus obtain q̂a

0 �N , which is the best approximation possible of
the initial augmented state qa

0 given all of the measured data on
x0 � x � L. This estimate of the augmented state at x0 may then
be combined with the control relationship (15) to determine the
optimal control based on the available noisy measurements.

�¨²`±r� ��´ ®
°&²`±¢®
The primary challenge in the application of Riccati-based

feedback control strategies to fluid-mechanical systems is the
enormous state dimension which is necessary to capture such
systems with an adequate degree of fidelity. The state dimen-
sion necessary to resolve such systems typically renders Riccati-
based control strategies numerically unfeasible, and open-loop
model reduction strategies are highly prone to misrepresentation
of the relevant dynamics of the fluid system, effectively “losing
the baby with the bathwater”.

In flow systems with two directions of spatial homogene-
ity (such as channel flows), the linearized system model may be
made approachable with Riccati-based feedback control strate-
gies by decoupling the various streamwise and spanwise modes
of the problem using Fourier-based approaches (Bewley & Liu
1998). Linearized boundary-layer systems, however, have only
one direction of spatial homogeneity.

The present paper proposes a new, Riccati-based feed-
back control strategy which leverages the fact that linearized
boundary-layer systems develop parabolically in the streamwise
coordinate. Taking advantage of this property, numerically-
tractable control and estimation algorithms have been proposed
which target the reduction of a globally-defined cost function
with control feedback while only requiring the solution of Ric-
cati equations related to system models which are spatially-
discretized in a single coordinate direction (y). Such Riccati

equations are computationally tractable; numerical results of this
formulation will be presented in future work.

­����r±r²�� � ��³ � 
 ��±¢¡
The authors gratefully acknowledge helpful guidance from

Prof. Robert Bitmead and generous funding from Prof. Belinda
King’s program at AFOSR.

¦�� ����¦���±r����®
ANDERSON, B.D.O., & MOORE, J.B. 1979 Optimal filter-

ing. Prentice Hall, Englewood Cliffs, New Jersey.
BAMIEH, B., PAGANINI, F., DAHLEH, M. 2002 “Dis-

tributed Control of Spatially Invariant Systems,” to appear in
IEEE Trans. Autom. Control.

BEWLEY, T.R. 2001 “Flow control: new challenges for a
new Renaissance,” Progress in Aerospace Sciences, 37, 21-58.

BEWLEY, T.R., & LIU, S. 1998 “Optimal and robust con-
trol and estimation of linear paths to transition,” J. Fluid Mech.,
365: 305–349.

BITMEAD, R.R., GEVERS, M., & WERTZ, V. 1990 Adap-
tive optimal control: the thinking man’s GPC. Prentice-Hall In-
ternational Series in Systems Control engineering.

CATHALIFAUD, P., & LUCHINI, P. 2000 “Algebraic growth
in boundary layers: optimal control by blowing and suction at
the wall” Eur. J. Mech. B-Fluid, 19 (4): 469–490.

COOKE ,J.C. 1950 “The boundary-layer of a class of infinite
yawed cylinder,” Proc. Cambridge Philos. Soc.. 46, 645.

GREEN, M., & LIMEBEER, D.J.N. 1995 Linear robust con-
trol. Prentice-Hall.
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