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Abstract— We present a noncausal framework for model-
based feedback stabilization of a large class of spatially-
developing boundary-layer flow systems. The systems consid-
ered are (approximately) parabolic in the spatial coordinatex.
This facilitates the application of a range of established feedback
control theories which are based on the solution of differential
Riccati equations which march over a finite horizon inx (rather
than marching in t, as customary). However, unlike systems
which are parabolic in time, there is no causality constraint for
the feedback control of systems which are parabolic in space;
that is, downstream information may be used to update the
controls upstream. Thus, a particular actuator may be used
to neutralize the effects of a disturbance which actually enters
the system downstream of the actuator location. In the present
study, a feedback control strategy is proposed which takes
advantage of this special capability of feedback control rules in
the spatially-parabolic setting in order to minimize a globally-
defined cost function in an effort to maintain the flow laminar.
Numerical results which verify the effectiveness of this approach
is presented.

I. INTRODUCTION

The present paper develops a closed-loop, Riccati-based
feedback control strategy (as opposed to an open-loop,
adjoint-based controloptimization strategy) to stabilize a
spatially-developing boundary layer flow system. Control
is applied via a blowing/suction distribution over a portion
of the wall, and state estimation is accomplished via
measurements of skin friction and pressure distributed
over the same region (for a dicussion on the actual
implementation of such a distributed control see Bewley
[4]). The purpose of the control in this problem is to keep
the flow perturbations sufficiently small that transition to
turbulence is inhibited.

An important characteristic of laminar1 systems of this
type is that they are essentially independent of time, and the
equations that govern them, subject to the correct approxi-
mations, areparabolic in the spatial coordinatex.
Hill [11] pointed out the role of adjoint systems in the local
receptivity problem for boundary-layer flow systems. By
using an iterative adjoint-based optimization strategy Luchini
[13] and Andersson et al. [2] found the optimal perturbations
of the boundary-layer flow. Iterative (adjoint-based) control
optimization strategies for boundary-layer flow systems are

1A laminar flow is characterized by the regularity of the trajectories of
the fluid particles, producing contiguous layers of fluid which slip the ones
on the others and do not mix.

appropriate for open-loop control optimizations, and are
beginning to see successful applications in this regard. For
recent reviews of this line of research, see, e.g., Walter
et al. [20], Cathalifaud & Luchini [7], and Pralits et al.
[16]. However, it is computationally quite difficult (if
not impossible) to apply iterative, adjoint-based control
optimization strategies in the closed-loop setting to neutralize
the effects of the random flow disturbances that arise in
nature. For such problems, feedback control strategies
which can respond quickly and in a coordinated fashion to
measurements of the flow system are necessary.

Control strategies for systems which evolve parabolically
in time must becausal; that is, they must depend only on
present and past measurements of the flow. However, control
strategies for systems which evolve parabolically in space are
not limited by such a constraint; the control at a particular
actuator location may depend on measurements taken both
upstream and downstream. Thus, to exploit the additional
measurement information available in this setting, a different
set of tools is needed for this problem beyond the standard
LQG (H2) framework and “robustifying” extensions thereof
(H∞, LTR, etc.).

II. GOVERNING EQUATIONS

Based on the dimensional coordinates{x∗, y∗, z∗},
velocities {u∗, v∗, w∗}, and pressurep∗, we define the
dimensionless quantitiesx = x∗/L, {y, z} = {y∗, z∗}/δ,
u = u∗/Uo, {v, w} = {v∗, w∗}Reδ/Uo, and
p = p∗Re2

δ/(ρU
2
o ), where Uo is the freestream

velocity, ρ is the density,µ is the viscosity,ν = µ/ρ is
the kinematic viscosity,L is a reference streamwise length,
δ =

√
Lν/Uo is a reference boundary layer thickness,

andReδ = Uo δ/ν is a reference Reynolds number. Also,
from the dimensional radius of curvaturer∗ of the surface
in the x-y plane, we define the dimensionless curvature
parameterε = δ/|r∗|, the G̈ortler numberG = Reδ

√
ε,

and a sign functions such thats = 0 corresponds to
a flat wall, s = 1 corresponds to a concave wall, and
s = −1 corresponds to a convex wall. In order to apply the



boundary-layer approximation2 and to develop a linear set
of equations governing small perturbations to the nominal
(undisturbed) boundary-layer flow, we assume thatδ � L
(i.e., Reδ � 1), δ � |r∗| (i.e., ε � 1), G . O(1), and
that the nominal flowQ = (U, V,W,P )T is laminar, steady
and spanwise–invariant.

Small three-dimensional perturbationsq = (u, v, w, p)T

to the nominal flowQ = (U, V,W,P )T are governed by the
linearized Navier-Stokes equation. As the system governing
these perturbations is linear and homogeneous inz, we
may decouple the various spanwise modes of this system
by taking the Fourier transform of all perturbation variables
with spanwise variation (namely, the state, the controls, the
measurements, and the disturbances) in thez direction (see
Bewley & Liu [5]). In the present discussion, we therefore
consider a particular Fourier mode of the flow perturbations,
and assign a variation inz of exp (−iβz) to all of these
variables. Once the control problem is solved for a series
of spanwise wavenumbers, inverse Fourier transform of the
feedback gains should lead to feedback convolution kernels
which are spatially localized in the spanwise coordinate (see,
e.g., Bamieh et al. [3] and Bewley [4]).
Following the analysis of Hall [10], under the boundary-layer
assumptions itemized above, the linearized, nondimensional
equations for the flow perturbations reduce to

(Uu)x + V uy + Uyv − iβWu− uyy + β2u = 0,
Uvx + Vxu+ (V v)y + py − iβWv + 2sG2Uu− vyy + β2v = 0,
Uwx +Wxu+ V wy +Wyv − iβp− iβWw − wyy + β2w = 0,
ux + vy − iβw = 0,

(1)

where a subscript means a differential operation, and the
boundary and initial conditions are:

u = w = 0, v = vw(x), at y = 0
u = v = w = 0, at y =∞
{u, v, w} = {u0, v0, w0}, at x = x0,

(2)

wherevw(x) is the control velocity of blowing/suction dis-
tributed over the wall on the stripx0 < x < L.
Define the normal dimensionless vorticityη = −iβu, we
now combine the governing equations (1) in such a way as to
determine a set of two coupled equations for the perturbation
components of the normal velocity and normal vorticity.
DefiningDk = ∂k/∂yk the result is(

Ẽ11 Ẽ12

0 Ẽ22

)
∂

∂x

(
v
η

)
=
(
Ã11 Ã12

Ã21 Ã22

)(
v
η

)
, (3)

where: Ẽ11 = U(D2 − β2) − Uyy, Ẽ12 = −(2i/β)[Uxy +
UxD

1],
2The boundary layer assumption is that the boundary-layer thickness is

much smaller than the streamwise length scales in the system, and that the
time scale of the external perturbations to the system are large with respect
to the boundary-layer thickness divided by the freestream velocity (see, e.g.,
[17]).

Ẽ22 = −U , Ã21 = −iβ Uy, Ã11 = −
[
(Vyy−β2V )D1 +

Vyyy +Vy(D2−β2) +V D3−D4 + 2β2D2−β4 + iβWyy−
iβWD2 + iβ3W

]
, Ã12 = −i/β

[
Vxyy − Vx(D2 + β2) +

2iβ(WxD
1−Wxy)−2β2G2U

]
, and Ã22 =

[
Ux+V D1−

D2 + β2 − iβW
]
.

III. FORMULATION OF THE DISCRETIZED
SYSTEM

We now perform a discretization of the system in they
coordinate on a finite number of discretization points with
the appropriate grid stretching. Let{v, ηηη} denote the spatial
discretizations of{v, η} on the interior of the domain. Define
the matrices{Ê11, Ê12, Ê22, Â11, Â12, Â21, Â22} as the spa-
tial discretizations of{Ẽ11, Ẽ12, Ẽ22, Ã11, Ã12, Ã21, Ã22} on
the interior of the domain using the chosen technique, and
the vectorse11 anda11 to denote the influence of the normal
velocity at the wall on, respectively, the left-hand side and
right-hand side of thev component of the discretization
of (3). Using these discrete forms, it is straightforward to
express (3) in the state-space form

qx = Aq +B φ, whereq =

(v
ηηη

)
vw

 , (4)

and A =
(
Ê−1Â Ê−1a

0 0

)
, B =

(
−Ê−1e

1

)
,

Ê =
(
Ê11 Ê12

0 Ê22

)
, Â =

(
Â11 Â12

Â21 Â22

)
,

e =
(

e11

0

)
, a =

(
a11

0

)
.

The control variable in this formulation isφ = dvw/dx.
To account for external system disturbances and modeling
uncertainties, we now modify the state equation (4) by adding
disturbancesw to the right-hand side:

qx = Aq +Bφ+Dw, (5)

where the disturbance vectorw depends on the spatial
coordinatex. The matrixD in (5), which represents the
square root of the external disturbances covariance, reflects
which disturbances affect the most the system. We desire
to develop a global strategy in which the controlφ(x) may
actually respond to disturbancesw(x) acting over the entire
domain under considerationx0 ≤ x ≤ L. To facilitate
this in the standard (causal) setting, we first discretize the
system inx, where xk = x0 + k∆, k = 0, . . . , N , and
∆ = (L− x0)/N represents the grid spacing inx. Then we



define an augmented state

qak =
(

qk
qw
k

)
,

where qw
0 =


w0

w1

...
wN

, qw
1 =


w1

...
wN

0

, . . . qw
N =


wN

0
...
0

 .

(6)

Note that the augmented stateqak at a particular streamwise
stationxk only includes the disturbances entering the system
downstream of that location, as the influence of the distur-
bances upstream are accounted for inqk. Note also that we
can express the evolution ofqw

k in the discrete state-space
form

qw
k+1 = Adqw

k , Ad =


0 1 0

0 1
...

...
0 1

0 0

 , (7)

where the relation betweenwk andqw
k is

wk = Mwqw
k , Mw =

(
I 0 · · · 0

)
. (8)

By combining equations (5), (7), and (8), we can obtain a
state-space formulation for the augmented stateqa. However,
the inherently discrete nature of the evolution of our distur-
bance modelqw compels us to first derive a discrete–in–
x formulation of the state equation (5). To accomplish this,
we approximate{A,B,q, φ} with {Ak, Bk,qk, φk} over the
interval xk ≤ x < xk+1 for each value ofk, where, e.g.,
Ak = A(xk). Using this approximation (comonly referred to
as a “zero-order hold”), we may express (5) in the following
“delta form” [15]:

δqk = ΩkAkqk + ΩkBkφk + ΩkDkwk, (9)

whereΩk = (1/∆)
∫ ∆

0

exp (Akτ) dτ and δqk = (qk+1 −
qk)/∆. Note in particular thatΩk → I as∆→ 0, and thus
the discrete-in-x relation (9) tends towards the continuous-
in-x relation (5) as the grid is refined. This behaviour of
the δ-formulation also follows for the Riccati and Lyapunov
equations that arise in the control and estimation problems
in the following sections, and is an appealing characteristic
of this particular discrete formulation.
Combining (9), (7), and (8), we finally obtain a discrete,
causal state-space formulation for the augmented state, to
which standard control theories may be applied:

δqak = Aakq
a
k +Bakφk,

where Aak =
(

ΩkAk ΩkDkM
w

0 Ad

)
and Bak =

(
ΩkBk

0

)
.

(10)

IV. OPTIMAL CONTROL FOR NONCAUSAL
SYSTEMS

In the original PDE setting, our control objective may be
written as finding a feedback control rule which minimizes
the cost function

J =
N∑
i=0

∆
[
(qa)∗iQ

aqai + α2
4 φ
∗
iφi
]
,

where Qa =
(
Q 0
0 0

)
, Q =

α2
1 Is 0 0
0 α2

2 Is 0
0 0 α2

3

 ,

(11)

andIs is a diagonal matrix with the corresponding local grid
spacing on the elements of the diagonal.J represents the
sum of the control energy and the perturbation energy over
[x0, xN ].
Note that the technique of augmenting the initial state with
the disturbances entering the entire system facilitated the
conversion of the noncausal problem described in the intro-
duction into the causal problem represented by (10). Together
with the control objective (11), a feedback control rule of the
form

φk = −Kk+1qak (12)

may be found directly using standard “discrete-time” optimal
control theory. In fact, as discussed in Bitmead et al. [6], the
Riccati equation associated with this control problem may be
partitioned in a convenient fashion by defining

Kk =
(
α2

4I + ∆B∗kΩ∗kΣ11
k ΩkBk

)−1
B∗kΩ∗k

(
K1
k K2

k

)
,

K1
k = Σ11

k (I + ∆ΩkAk) ,

K2
k = ∆Σ11

k ΩkDkM
w + Σ12

k

(
I + ∆Adk

)
,

(13)

whereΣ11
k andΣ12

k solve the Riccati and Lyapunov equations

δΣ11
k = Q+A∗kΩ∗kΣ11

k + Σ11
k ΩkAk + ∆A∗kΩ∗kΣ11

k ΩkAk

− (K1
k)∗ΩkBk

[
α2

4I + ∆B∗kΩ∗kΣ11
k ΩkBk

]−1
B∗kΩ∗kK

1
k ,

δΣ12
k = A∗kΩ∗kΣ12

k + [I + ∆A∗kΩ∗k]
[
Σ11
k ΩkDkM

w + Σ12
k A

d
]

− (K1
k)∗ΩkBk

[
α2

4I + ∆B∗kΩ∗kΣ11
k ΩkBk

]−1
B∗kΩ∗kK

2
k ,

(14)

where δΣk = −(Σk − Σk−1)/∆. As ∆ → 0, equations
(14) tend towards the corresponding continuous Riccati and
Lyapunov equations (cf. Middleton & Goodwin, [15]).
Finally, by combining (12) and (10), we can expressφk as
a simple function of the initial augmented state vectorqa0 :

φk = K0
k+1 qa0 , where K0

k+1 = −Kk+1

k−1∏
i=0

(Aai −BaiKi+1).

(15)



V. OPTIMAL ESTIMATION/SMOOTHING

By (15), we see that we can express the optimal control
distribution onx0 < x < L which minimizes the globally-
defined cost functionJ as a simple function of the upstream
flow perturbation q0 and the system disturbancesw(x)
betweenx0 andL. The task which remains is to find a simple
way to obtain a good estimate ofqa0 based on the available
measurements at the wall.
Defining the vectorµµµ as the measurement noise, the mea-
surements of the streamwise and spanwise skin friction and
pressure distributions over the wall may be written as

y(x) = m(x) +µµµ,

where m(x) =
(
∂u

∂y

∣∣∣∣
wall

,
∂w

∂y

∣∣∣∣
wall

, p|wall

)T (16)

Note that applying the nondimensionalization discussed pre-
viously to the definition ofη, to the continuity equation, and
to the wall-normal momentum equation, and neglecting the
terms in1/Re2

δ , we can express the skin friction and pressure
at the wall as:

m = Z q +N φ, where N =

 0
0

1/β2U
(1)
w

 and

(17)

Z =


0 i

β
δ1

δy1

∣∣∣
w

0

− i
β

δ2

δy2

∣∣∣int
w

Z22
iU(3)
w

2βU
(1)
w

− i
β

δ2

δy2

∣∣∣w
w

1
β2

δ3

δy3

∣∣∣int
w

0 1
β2

δ3

δy3

∣∣∣w
w

 ,

whereZ22 = 1

2β2U
(1)
w

[
−∂U

(1)
w

∂x
δ1

δy1

∣∣∣
w

+ δ4

δy4

∣∣∣
w
− β2 δ2

δy2

∣∣∣
w

]
,

and the notationδk/δyk
∣∣
w

denotes the discretization of the
k’th derivative operator evaluated at the wall (the superscript
int denotes the influence on the interior of the domain, and
w the influence at the wall) andU (k)

w the k’th y-derivative
of U evaluated at the wall.
Using the relations (16) and (17), we can approximate the
vector of the wall measurementsy as a function of the
discrete state vectorq, the control variableφ, and the
measurement noiseµµµ:

y = Zq +Nφ+µµµ (18)

Applying the definition of the augmented stateqa, we may
write (18) as

yk = Zaqak +Nkφk + µk (19)

whereZa = (Z 0). We now define the notation̂qak|m =
q̂a(xk|xm) to denote the estimate ofqa(xk) based on the
measurementsy(x) from x0 ≤ x ≤ xm. Our aim is
to calculate an estimate ofqa0 based on the measurements
y(x) for x0 ≤ x ≤ xN = L (i.e. q̂a0|N ). This is a
“smoothing” problem, and, given the correct manipulations,
can be solved using a Kalman filter. To solve this problem,

we first substitute the value ofφk obtained in (12) into the
equations (10) and (19). DefiningFk = Aak − BakKk+1 and
Hk = Zak −NkKk+1, we have

δqak = Fkqak,
yk = Hkqak +µµµk.

(20)

Defining q̂a0|−1 = E(qa0), the a priori estimate ofqa0 , and
applying Kalman filter theory to the system (20), we obtain
the following evolution equation for the estimatêqak|k−1

δq̂ak|k−1 = Fkq̂ak|k−1 + Lk

[
yk −Hkq̂ak|k−1

]
,

k = 0, 1, 2, . . . N,

Lk = (∆Fk + I)PkH∗k [∆HkPkH
∗
k + Cµ]−1

(21)

wherePk is solution of the Riccati equation

δPk = PkF
∗
k + FkPk + ∆FkPkF ∗k − Lk [∆HkPkH

∗
k + Cµ]L∗k,

k = 0, 1, . . . N,
(22)

whereP0 is an estimate of the covariance of the stateqak at
k = 0 andCµ is an estimate of the covariance of the noise
µµµ; in practice,P0 and Cµ are used as design parameters
when developing the estimator.Our problem actually differs
slightly from the filtering problem (21). In particular, the
information we want to reconstruct,qa0 , must be obtained
from measurements taken onx0 ≤ x ≤ xN . In other words,
we seek to determine the value ofq̂a0|N , not the value of
q̂aN+1|N which can be obtained from (21). As in Anderson
and Moore [1],q̂a0|N can be easily derived from the filter
problem presented above by marching the discrete equation

q̂a0|k = q̂a0|k−1 + ∆RkH∗k [∆HkPkH
∗
k + Cµ]−1

[
yk −Hkq̂ak|k−1

]
,

k = 0, 1, 2, . . . N,

whereRk satisfies the Lyapunov equation

δRk = Rk(Fk − LkHk)∗, k = 0, 1, 2, . . . N,

where R0 = P0; note that q̂a0|−1 = E(qa0) as stated
previously.
Assuming that the initial stateq0 is a random variable
uncorrelated with the disturbancesµµµk, it is straightforward
to partition this estimation problem like we did previously
with the control problem.
We thus obtain̂qa0|N , which is the best approximation possi-
ble of the initial augmented stateqa0 given all of the measured
data onx0 ≤ x ≤ L. This estimate of the augmented state at
x0 may then be combined with the control relationship (15)
to determine the optimal control based on the available noisy
measurements.



Fig. 1. Isosurfaces ofK0(x, y, z) (left) relating the streamwise
component of the velocityu(x = 0.5, y, z), and (right) relating
the wall–normal component of the velocityv(x = 0.5, y, z) to the
control inputφ(x, z = 0). Note the control domain extension inx
= [0.5, 0.8].
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Fig. 2. Relation between the convolution control kernel and the
control. The controlφ(x = xk, z) is found by convolving the
convolution kernelK0 in the planex = xk with the augmented
stateqa0 in the vicinity of the spanwise locationz.

VI. LOCALIZED CONVOLUTION KERNELS

By inverse Fourier transforming the gain matricesK0,
we obtain convolution control kernels which are spatially
localized in the spanwise directionz (see [3] and [12]).
Physically, this means that the control at a spanwise location
z depends only on the input perturbation in the vicinity of this
spanwise location. Figure 1 depict representative convolution
kernels relating the streamwise and wall–normal velocity of
perturbation atx0 = 0.5 to the control input on the wall as a
result of the present control formulation. To obtain the control
at the wall positionxk andz, we simply convolve the kernel
in the plane at the streamwise locationxk with the input
perturbationqa0 in the vicinity of the spanwise locationz, as
depicted in Figure 2. As expected, the convolution kernels
depicted in Figure 1 do not exhibit spatial localization in the
streamwise directionx, but are elongated in this direction.

It is significant to note that our objective function, which up
to this point has been to minimize the perturbation energy
over the entire streamwise extent[x0, xN ] of the domain of
control under consideration, may easily be generalized to
target specifically the perturbation energy at the end of the
control domain,xN . To accomplish this, we simply add to the

Fig. 3. Isosurfaces ofK0(x, y, z) relating (left) the streamwise
component of the velocityu(x = 0.5, y, z), and (right) the wall–
normal component of the velocityv(x = 0.5, y, z) to the control
input φ(x, z = 0). Control domain extension inx = [0.5, 0.8].
Minimization of the perturbation energy atx = 0.8.

cost function a penalty term on the energy of the perturbation
at the end of the control domain

J =
N∑
i=0

∆
[
(q)∗iQqi + `2φ φ

∗
iφi
]

+
N∑
i=1

∆
[
`2s
∂φ∗i
∂x

∂φi
∂x

]
+`N (q)∗NΣ11

N qN ,
(23)

where Σ11
N is the initial condition of the Riccati equation

which arises when solving the feedback control problem.
We may target these outflow (“terminal”) perturbations ex-
clusively simply by settingQ = 0. Figure 3 represent the
streamwise and wall–normal kernels in this other kind of
optimization problem.

VII. NUMERICAL SIMULATIONS

By inserting these convolution feedback control kernels
into a direct numerical simulation (DNS) code, we now
perform simulations of the feedback controlled system, as-
suming full knowledge of the initial perturbationqa0 . Figure
1 depicts the streamwise and wall–normal kernels used in
the numerical simulation. For comparison, we have also cal-
culated the effectiveness of controls determined by applying
an iterative, adjoint–based control optimization strategy, as
developed by Cathalifaud and Luchini [7].
To perform the boundary-layer flow simulations, we used
the spectral DNS code developed by Lundbladh et al. [14],
which accurately solves the full 3D incompressible Navier-
Stokes equations in the boundary layer and accounts correctly
for the effects of control inputs on the wall, as thoroughly
benchmarked in [14].
We have tested a worst–cade (a.k.a., “optimal”) initial per-
turbation, that is, a perturbation whose energy is amplified
maximally over the computational domain under consider-
ation in the uncontrolled system. This kind of perturbation
has been computed previously by Luchini [13], who found
that such perturbations come in the form of stationary
streamwise vortices, whereas the velocity field they induce
is dominated by streamwise streaks. This is a typical be-
haviour in shear–driven flows. The control is applied over



[x0, xN ] = [0.5, 0.8], and we notice a very similar reduction
of the perturbation magnitude in both the present feedback
control formulation and the iterative adjoint–based control
optimization.
We have also computed the energy of the perturbationE =∫ xN

xi

∫ zr

zl

u2 dz dy. Figure 4(a) displays the streamwise

evolution of this energy. In the present feedback control
formulation, the blowing/suction velocityvw is part of the
state vectorqa. This means that, using the control law (15),
the control at each streamwise stationxk depends on the
velocity of blowing/suction atx0, vw(x0), which we impose
to be zero; this leads to the control in the present formulation
gently ramping up from zero atx = x0. On the contrary, in
the adjoint–based scheme the controlvw(x0) experiences a
large jump atx = x0, as shown in the figure 4(b). This
explains, at least in part, the difference of effect between
the two control strategies. Otherwise, the damping of the
perturbation energy is found to be of the same order in both
cases.
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Fig. 4. (a) Evolution of the energy of perturbationE using (–
· –) no control, (—) the present feedback control strategy, (– –)
the iterative adjoint–based control optimization strategy of7. (b)
Evolution of the control energy using (—) the present strategy, (–
–) the adjoint–based strategy.

VIII. CONCLUSIONS

The primary challenge in the application of Riccati-based
feedback control strategies to fluid-mechanical systems is
the enormous state dimension which is necessary to cap-
ture such systems with an adequate degree of fidelity. The
state dimension necessary to resolve such systems typically
renders Riccati-based feedback control strategies numerically
unfeasible.
The present paper proposes a new, Riccati-based feed-
back control strategy which leverages the fact that lin-
earized boundary-layer systems develop parabolically in the
streamwise coordinate. Taking advantage of this property,
numerically-tractable control and estimation algorithms have
been proposed which target the reduction of a globally-
defined cost function with control feedback while only re-
quiring the solution of Riccati equations related to system
models which are spatially-discretized in a single coordinate
direction (y).
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