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Abstract—We present a noncausal framework for model- appropriate for open-loop control optimizations, and are
based feedback stabilization of a large class of spatially- peginning to see successful applications in this regard. For
developing boundary-layer flow systems. The systems consid- recent reviews of this line of research, see, e.g., Walter

ered are (approximately) parabolic in the spatial coordinatezx. . . .
This facilitates the application of a range of established feedback et al. [20], Cathalifaud & Luchini [7], and Pralits et al.

control theories which are based on the solution of differential  [16]. However, it is computationally quite difficult (if

Riccati equations which march over a finite horizon inz (rather ~ not impossible) to apply iterative, adjoint-based control
than marching in ¢, as customary). However, unlike systems gptimization strategies in the closed-loop setting to neutralize
which are parabolic in time, there is no causality constraint for e effects of the random flow disturbances that arise in
the feedback control of systems which are parabolic in space; .

that is, downstream information may be used to update the nat_ure. For such pr(_)blems, fgedback (_:ontrol strgtegles
controls upstream. Thus, a particular actuator may be used Which can respond quickly and in a coordinated fashion to

to neutralize the effects of a disturbance which actually enters measurements of the flow system are necessary.

the system downstream of the actuator location. In the present

study, a feedback control strategy is proposed which takes ] ] )
advantage of this special capability of feedback control rules in ~ Control strategies for systems which evolve parabolically

the spatially-parabolic setting in order to minimize a globally- in time must becausal that is, they must depend only on
deﬁneq cost fUnCtiOﬂl in an .effort to maintain the ﬂOW laminar. present and past measurements of the flow. However, control
Numerical results which verify the effectiveness of this approach strategies for systems which evolve parabolically in space are
is presented. e . .
not limited by such a constraint; the control at a particular
I. INTRODUCTION actuator location may depend on measurements taken both
The present paper develops a closed-loop, Riccati-basgfSteam and downstream. Thus, to exploit the additional
measurement information available in this setting, a different

feedback control strategy (as opposed to an open-loop . .
— A - set of tools is needed for this problem beyond the standard
adjoint-based controbptimization strategy) to stabilize a QG (M,) framework and “robustifying” extensions thereof

spatially-developing boundary layer flow system. Controk‘H LTR, efc.)
is applied via a blowing/suction distribution over a portion*” ">’ T
of the wall, and state estimation is accomplished via
measurements of skin friction and pressure distributed
over the same region (for a dicussion on the actual
implementation of such a distributed control see Bewley
[4]). The purpose of the control in this problem is to keep
the flow perturbations sufficiently small that transition to

turbulence is inhibited. Based on the dimensional coordinatgs*,y*,z*},

velocities {u*,v*,w*}, and pressurep*, we define the
An important characteristic of laminasystems of this dimensionless quantitiesr = 2*/L, {y,z} = {y*, 2"}/,

[I. GOVERNING EQUATIONS

type is that they are essentially independent of time, and the = u* /Uy, {v,w}y = {v*,w*}Res/U,, and
equations that govern them, subject to the correct approyj- = p* Re2/(pU?2), where U, is the freestream
mations, argyarabolicin the spatial coordinate. velocity, p is the density,u is the viscosity,y = u/p is

Hill [11] pointed out the role of adjoint systems in the localthe kinematic viscosity[ is a reference streamwise length,
receptivity problem for boundary-layer flow systems. Bys = ,/Lv/U, is a reference boundary layer thickness,
using an iterative adjoint-based optimization strategy Luchirind Re; = U, §/v is a reference Reynolds number. Also,
[13] and Andersson et al. [2] found the optimal perturbationfrom the dimensional radius of curvaturé of the surface

of the boundary-layer flow. Iterative (adjoint-based) controin the z-y plane, we define the dimensionless curvature
optimization strategies for boundary-layer flow systems angarametere = §/|r*|, the Gortler numberG = Resv/e,

nd a sign functions such thats = 0 corresponds to
1A laminar flow is characterized by the regularity of the trajectories ofa 9 P

the fluid particles, producing contiguous layers of fluid which slip the one& flat wall, s = 1 CorrESpondS to a concave wall, and
on the others and do not mix. s = —1 corresponds to a convex wall. In order to apply the



boundary-layer approximatidrand to develop a linear set Ey = U, Ay = —ifU,, A; = — {(Vyy—ﬂzle +
of equations governing small perturbations to the nominquyyy+vy(D2 —52)+VD3—D4+2ﬁ2D2—64+iﬂWyy—
(undisturbed) boundary-layer flow, we assume thakt L . 2 .3 i _ 2 2

(e, Res > 1),6 < |r| (Lewe < 1),G < O(1),and DVD"+i0 W), A = Z/ﬁ[VW{ Va(D™+ 57) +
that the nominal flowQ = (U, V, W, P)” is laminar, steady 2i6(WxD1—WW)—262G2U], and Ay, = {Ux+VD1—

and spanwise—invariant. Dy i /BW}.

Small three-dimensional perturbations= (u,v,w,p)”
to the nominal flowQ = (U, V, W, P)T are governed by the [ll. FORMULATION OF THE DISCRETIZED
linearized Navier-Stokes equation. As the system governing SYSTEM

these perturbations is linear and homogeneous:,inve

may decouple the various spanwise modes of this systemWe now perform a discretization of the system in the
by taking the Fourier transform of all perturbation variablegoordinate on a finite number of discretization points with
with spanwise variation (namely, the state, the controls, tHB€e appropriate grid stretching. Lét,n} denote the spatial
measurements, and the disturbances) in:tfirection (see discretizations of v, n} on the interior of the domain. Define
Bewley & Liu [5]). In the present discussion, we therefordhe matrices £y, 12, Eaa, A11, A1, Ao1, Az} as the spa-
consider a particular Fourier mode of the flow perturbationdial discretizations of E11, E12, a2, A11, A12, A21, Az2} On
and assign a variation in of exp (—i3z) to all of these the interior of the domain using the chosen technique, and
variables. Once the control problem is solved for a seridfe vectorse;; anda;; to denote the influence of the normal
of spanwise wavenumbers, inverse Fourier transform of theglocity at the wall on, respectively, the left-hand side and
feedback gains should lead to feedback convolution kernglight-hand side of thev component of the discretization
which are spatially localized in the spanwise coordinate (seef (3). Using these discrete forms, it is straightforward to
e.g., Bamieh et al. [3] and Bewley [4]). express (3) in the state-space form

Following the analysis of Hall [10], under the boundary-layer

assumptions itemized above, the linearized, nondimensional (V>

equations for the flow perturbations reduce to d: = Aq+ B¢, whergg= | \n/ |, (4)

(Uu)z + Vuy + Uyv — iBWu — uy, + 2u =0, Y
Uvg + Vou+ (Vo)y + py — iBWo + 2sG2Uu — vy + 320 =0,
Uwy + Wou + Vw, + Wyv — iBp — ifWw — wy,, + 2w =0, Y. .
Uy + vy — ifw =0, and A — E7'A E'a B— —E e
(1) 0 0o )’ 1 ’
where a subscript means a differential operation, and the B = <E11 ?12> , A= <{111 {112> 7
boundary and initial conditions are: 0  FEa A1 Ago
w=w=0,v=1v,(),aty=0 =<) a=<an>.
u=v=w=0, aty = oo (2) 0 0

U, V, W} = {Ug, Vg, W atr ==z . . . L.
{ b= {uo, vo, wo}, 0 The control variable in this formulation i = dv,, /dz.

whereu, (v) is the control velocity of blowing/suction dis- 14 account for external system disturbances and modeling

t”bl."ed over the wall_ on th_e Stripo <z < L. . uncertainties, we now modify the state equation (4) by adding
Define the normal dimensionless vorticity = —ifu, We jisturbancesv to the fight-hand side:

now combine the governing equations (1) in such a way as to
determine a set of two coupled equations for the perturbation
components of the normal velocity and normal vorticity.

Defining D* = 9% /ay* the result is

d: = Aq + B¢ + Dw, %)

~ ~ ~ _ where the disturbance vector depends on the spatial
<E11 11712) 9 (v> - ({111 {112) (v) (3 coordinates. The matrix D in (5), which represents the
0 Ey) oz \n) \Ay Az ) \n)’ square root of the external disturbances covariance, reflects
- ~ ) which disturbances affect the most the system. We desire
wherle.EH = U(D* = §%) = Uy, Erz = —=(2i/B) Uy + to develop a global strategy in which the contrgl:) may
U.D7], actually respond to disturbancesx) acting over the entire
2The boundary layer assumption is that the boundary-layer thickness domain under considerationp, < x < L. To facilitate

much smaller than the streamwise length scales in the system, and that thss in the standard (causal) setting we first discretize the
time scale of the external perturbations to the system are large with respect . h - LA }c _ N d
to the boundary-layer thickness divided by the freestream velocity (see, e.%/Stem Nz, wherexy, = o + , =0,...,N, an

[17]). = (L — xo)/N represents the grid spacing in Then we



define an augmented state IV. OPTIMAL CONTROL FOR NONCAUSAL

SYSTEMS
_ (9%

UG = (qg’>’ In the original PDE setting, our control objective may be
Wo W wy\ Written as finding a feedback control rule which minimizes
w1 : 0 the cost function

where qf = - ql¥ = W IS .- N

) N ) a\* a . a *
W 0 0 J:ZA[(q )i QA + o ¢l s
=0
0 0 a? I 20 0
Note that the augmented stai¢ at a particular streamwise ~Where Q“ = (0 0) , Q=1 0 o3l 02 )
stationz; only includes the disturbances entering the system 0 0 as
downstream of that location, as the influence of the distur- (11)

bances upstream are accounted foryjn Note also that we

) ) : and/; is a diagonal matrix with the corresponding local grid
can express the evolution ef)’ in the discrete state-space

spacing on the elements of the diagondl.represents the

form sum of the control energy and the perturbation energy over
0 1 0 [zo, zN].
- dow J 0 1 Note that the technique of augmenting the initial state with
ait = Aay, AT = (") the disturbances entering the entire system facilitated the
0 0 (1) conversion of the noncausal problem described in the intro-
duction into the causal problem represented by (10). Together
where the relation betweew; andqy’ is with the control objective (11), a feedback control rule of the
form
wi=MYqY, MY—=(I 0 - 0. @

By combining equations (5), (7), and (8), we can obtain a o Kirai (12)
state-space formulation for the augmented sigteHowever, may be found directly using standard “discrete-time” optimal
the inherently discrete nature of the evolution of our distureontrol theory. In fact, as discussed in Bitmead et al. [6], the
bance modelq” compels us to first derive a discrete—in—Riccati equation associated with this control problem may be
x formulation of the state equation (5). To accomplish thispartitioned in a convenient fashion by defining

we approximatg A, B, q, ¢} with { Ay, By, qi, ¢r } over the .

interval =, < = < x4 for each value oft, where, e.g., Kk = (il + AB{G S QBy)  Biy (K KR),

Ay = A(zy). Using this approximation (comonly referred to k! = ¥l (T + AQiAy),
?dseiazfirrcr)ng)r[tiesg:hold ), we may express (5) in the following K2 = AXIQ, D MY + 212 (I + AAZ) 7

13)
oar = Qe Arqe + Qe Bedr + L Dewe, ©) whereX}! andX:}? solve the Riccati and Lyapunov equations
A _
whereQy, = (1/A) [ exp (Apr)dr anddaqy, = (qurs — 0%k = Q@ + ARQEEE + X QA + AALQEN O Ay
0 * * () * -1 * () *
ax)/A. Note in particular thaf), — I asA — 0, and thus — (Kp)" QB [oi] + ABLO Y QB BrQj K,

the discrete-inz relation (9) tends towards the continuous-§x.}2 = AT QI %12 + [I + AA;Q] [EklngkMW + z}fAd}
in-z relation (5) as the grid is refined. This behaviour of 1vx 9 frall B N
the §-formulation also follows for the Riccati and Lyapunov = ()" Bi[adl + ABIQ S By Bka(‘rl{Z)’
equations that arise in the control and estimation problems
in the following sections, and is an appealing characteristi¢hare 0%k = —(Zk — De1)/A. As A — 0, equations

of this particular discrete formulation. _ _ (14) tend towards the corresponding continuous Riccati and
Combining (9), (7), and (8), we finally obtain a d'screteLyapunov equations (cf. Middleton & Goodwin, [15]).

causal state-space formulation for the augmented state,lg&a”y by combining (12) and (10), we can expressas
which standard control theories may be applied: a simple function of the initial augmented state veajgr

oqy = Ajaj + Bio, k—1
where A% — (QkOAk le?qlng ) and BY — <QkOBk> k= Kl(c)-i-l qé, where K2+1 =K1 H(A;‘ — B{K;1).
=0

(20) (15)



V. OPTIMAL ESTIMATION/SMOOTHING we first substitute the value af; obtained in (12) into the

By (15), we see that we can express the optimal contr§duations (10) and (19). Defining, = A} — B} Ky41 and
distribution onz, < z < L which minimizes the globally- Hr = Zi — NiKj11, we have
defined cost functiow/ as a simple function of the upstream " "
flow perturbationqy and the system disturbances(x) oqp = B kq"{{ (20)
betweenr, and L. The task which remains is to find a simple Ye o = Hrdi+ p

way to obtain a good estimate qff based on the available Defining q3|_1 — BE(q%), the a priori estimate ofg, and

megs.urements at the wall. . applying Kalman filter theory to the system (20), we obtain
Defining the vectou as the measurement noise, the meay following evolution equation for the estim
a1

surements of the streamwise and spanwise skin friction and®
pressure distributions over the wall may be written as
0dy -1 = Frlyp—1 + L [Yk — Hyljpp1 ]
0y o 0y |y’ Plwatt Ly, = (AFy + I) PoH} [AH P H}, + C,] 7"
Note that applying the nondimensionalization discussed Pr&here P
viously to the definition of), to the continuity equation, and ¥

to the wall-normal momentum equation, and neglecting thg p _ PoFy + Fy Py + AF, P, Ff — Ly [AHPLH; + C,] L},
terms in1/Re2, we can express the skin friction and pressure

y(z) = m(z) + p,
where m(z) = (

wall

is solution of the Riccati equation

| k=0,1,...N,
at the wall as: ; 22)
m=7q+N¢, where N = 0 and  wherePF; is an estimate of the covariance of the stafeat
1/3? (1) k=0 andC, is an estimate of the covariance of the noise
(17) m; in practice, Py and C,, are used as design parameters
0 i ol 0 when developing the estimator.Our problem actually differs
, jint Bovty @ o w slightly from the filtering problem (21). In particular, the
Z é 5‘5? Zao 2’;{;’(1) — % 6‘5? , information we want to reconstructyj, must be obtained
L int ”1 5 | v from measurements taken ag < = < xn. In other words,
B2 343 0 B2 57|, we seek to determine the value qu\,, not the value of
5U1(ul> 51 4

)

) , 2 A1 which can be obtained from (21). As in Anderson
whereZy: = vy [— 7 |, T e, P 5 w] and Moore [1],4§, can be easily derived from the filter
and the notations* /5y*| = denotes the discretization of the problem presented above by marching the discrete equation
k’th derivative operator evaluated at the wall (the superscript

int denotes the influence on the interior of the domain, and, = g, + ARkH; [AHPHj + Cﬂ}’l [yk — Hipjq |
w the influence at the wall) ant ") the k'th y-derivative

of U evaluated at the wall. k=012 ..N,
Using the relations (16) and (17), we can approximate the
vector of the wall measurements as a function of the \ynere R, satisfies the Lyapunov equation
discrete state vector;, the control variableg, and the
measurement noise: 0Ry = Ry(F), — LiyHy)*, k=0,1,2,...N,
=Zq+ No¢+ 18
Y d oFH (18) where Ry = P,; note thatélg‘_1 = E(q}) as stated
Applying the definition of the augmented stajé, we may previously.
write (18) as Assuming that the initial stateyy is a random variable
a a uncorrelated with the disturbancgs, it is straightforward
v = 2% + Nedn + (19) P J

to partition this estimation problem like we did previously
where Z¢ = (Z 0). We now define the notatioﬁ;g‘m = with the control problem.

q°(xg|z,,) to denote the estimate @f*(x;) based on the We thus obtairqglN, which is the best approximation possi-
measurementy (x) from z, < z < z,. Our aim is ble of the initial augmented statg given all of the measured
to calculate an estimate efj based on the measurementsdata onzy < z < L. This estimate of the augmented state at
y(z) for zg < =z < zy = L (i.e qgw). This is a 1z may then be combined with the control relationship (15)
“smoothing” problem, and, given the correct manipulationsto determine the optimal control based on the available noisy
can be solved using a Kalman filter. To solve this problenmeasurements.



Fig. 1. Isosurfaces ofK°(xz,y, z) (left) relating the streamwise Fig. 3. Isosurfaces ofK°(x,y, z) relating (left) the streamwise
component of the velocity.(x = 0.5,y,2), and (right) relating component of the velocity.(x = 0.5,y, z), and (right) the wall—
the wall-normal component of the velocityz = 0.5,y, z) to the  normal component of the velocity(x = 0.5,y, z) to the control
control input¢(x, z = 0). Note the control domain extension in  input ¢(x,z = 0). Control domain extension i@ = [0.5,0.8].
=[0.5,0.8]. Minimization of the perturbation energy at= 0.8.

Streamvise cost function a penalty term on the energy of the perturbation
at the end of the control domain

Wall normal y

> . . = 00} 96,
J = ;A [(Q)zQQz +€35 ¢z¢z] +;A Pg O ax}
+Hn(Q)yENan,
(23)

where 21! is the initial condition of the Riccati equation
R which arises when solving the feedback control problem.
T glaw?) We may target these outflow (“terminal”) perturbations ex-
lusively simpl tting = 0. Figur represent th
Fig. 2. Relation between the convolution control kernel and theC us ey.s p)(/j by ﬁe QQI kO Igu_e :; ep ﬁse i de f
control. The controlg(z = =, 2) is found by convolving the Stréamwise and wall-normal kernels in this other kind o

convolution kernelK® in the planez = z, with the augmented Optimization problem.
stateqg in the vicinity of the spanwise location
VIl. NUMERICAL SIMULATIONS

By inserting these convolution feedback control kernels
VI. LOCALIZED CONVOLUTION KERNELS into a direct numerical simulation (DNS) code, we now
By inverse Fourier transforming the gain matricd®, perform simulations of the feedback controlled system, as-
we obtain convolution control kernels which are spatiallysuming full knowledge of the initial perturbatiaqf;. Figure
localized in the spanwise direction (see [3] and [12]). 1 depicts the streamwise and wall-normal kernels used in
Physically, this means that the control at a spanwise locatidhe numerical simulation. For comparison, we have also cal-
z depends only on the input perturbation in the vicinity of thiulated the effectiveness of controls determined by applying
spanwise location. Figure 1 depict representative convolutiaan iterative, adjoint—based control optimization strategy, as
kernels relating the streamwise and wall-normal velocity afieveloped by Cathalifaud and Luchini [7].
perturbation atry = 0.5 to the control input on the wall as a To perform the boundary-layer flow simulations, we used
result of the present control formulation. To obtain the contrahe spectral DNS code developed by Lundbladh et al. [14],
at the wall positionz, and z, we simply convolve the kernel which accurately solves the full 3D incompressible Navier-
in the plane at the streamwise locatian with the input Stokes equations in the boundary layer and accounts correctly
perturbationgg in the vicinity of the spanwise location as for the effects of control inputs on the wall, as thoroughly
depicted in Figure 2. As expected, the convolution kernelsenchmarked in [14].
depicted in Figure 1 do not exhibit spatial localization in thaVe have tested a worst—cade (a.k.a., “optimal”) initial per-
streamwise directior;, but are elongated in this direction. turbation, that is, a perturbation whose energy is amplified
maximally over the computational domain under consider-
It is significant to note that our objective function, which upation in the uncontrolled system. This kind of perturbation
to this point has been to minimize the perturbation energyas been computed previously by Luchini [13], who found
over the entire streamwise extdnt, x| of the domain of that such perturbations come in the form of stationary
control under consideration, may easily be generalized gireamwise vortices, whereas the velocity field they induce
target specifically the perturbation energy at the end of the dominated by streamwise streaks. This is a typical be-
control domaing 5. To accomplish this, we simply add to the haviour in shear—driven flows. The control is applied over

Spanwise =
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