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Abstract— Model predictive control (via adjoint-based op-
timization) has already been applied successfully to large
nonlinear systems for which the delay between the control
actuation and the resulting effect on the metric of interest
is large. This method extends naturally to high-dimensional
discretizations of infinite-dimensional multiscale PDE systems
such as compressible turbulent jet flows, for which the dimen-
sion of the system when discretized in space can be on the
order of N ∼ O(107). Such optimizations involve an expensive
iterative procedure; our lab is currently gearing up to perform
such supercomputer-based optimizations of 3D compressible
turbulent jet systems. As an intermediate result, much may be
learned from 2D adjoint calculations in this system to identify
the sensitivity of the system to control actuation at various
locations. The suitability of different types of control at different
locations may be inferred from this sensitivity. It is seen that
modification of the high-frequency noise radiated to the far field
is possible with low-frequency actuation near the jet nozzle,
and that mass sources are more effective than heat sources for
modifying the acoustic field via forcing of the hydrodynamic
field.

I. INTRODUCTION

Passive noise reduction strategies have already been ex-
plored extensively in order to reduce the noise radiated by
turbulent jets, especially using techniques which reduce the
convective Mach number, in the supersonic regime (see,
e.g., [10]), and more recently in subsonic turbofans ([11]).
Effective, unsteady, individually-controllable actuators at the
exit of the nozzle have already been developed and tested
(at full scale) for the problem of jet mixing enhancement, as
seen in Figure 1. However, to the best of our knowledge, no
active control strategy has yet succeeded for the purpose of
jet noise reduction in such systems due to the complex nature
of the physics involved and the high-dimensional aspect of
the control forcing schedule to be optimized.

Adjoint-based nonlinear system optimization is a popular
technique in the flow control community. The adjoint system,
when defined and calculated appropriately, gives very accu-
rate gradient information with which controls may be tuned
even in high-dimensional systems with high-dimensional
controls. The performance of a control distribution optimized
via this method cannot be guaranteed to be globally optimal,
but it often far exceeds that possible with other control
design techniques. Adjoint-based gradient optimization has
proven to be effective in the analysis, control, optimization
and forecasting of incompressible turbulence (see, e.g., [1]).
Recently, there has been an increased interest in extending
this approach to compressible flows (see, for example [15],
where a 6.3dB reduction of noise in a 2D shear layer

is obtained). The ultimate goal of the present project is
to achieve 3D jet noise reduction via active control using
an adjoint-based optimization procedure by optimizing the
azimuthal and temporal distribution of the actuator forcing
near the jet exhaust, as illustrated in Figure 1.

Due to the high cost of the optimization procedure, it is
useful to perform first an adjoint analysis and to evaluate
whether the type of control which we intend to apply is
appropriate for this problem. The adjoint analysis reveals the
sensitivity of the cost function to modification of the control
actuation. Further, if an eigenvalue/eigenvector analysis is
performed, it may be used to characterize the stabilizability
of the system, as discussed in detail in [7]. Adjoint analysis is
thus a valuable tool, since quantification of the stabilizability
and the suitability of proposed actuator configurations in a
large system such as that studied here is difficult to obtain
without it.

For the simulation-based characterization and optimization
of jet noise, it is important to obtain an accurate calculation
of the hydrodynamic and acoustic fields. This is now possible
with the advance numerical methods discussed in [5] and [6],
upon which our present numerical code is based.

II. PERTURBATION VS. ADJOINT ANALYSES

As summarized in Figure 1, perturbation analyses, which
simulate directly the effect on the flow of a perturbation
to the control distribution, characterize control→effect re-
lationships (If I change the control here, how and where will
that affect the flow?). A representative perturbation analysis
of the present system is shown in the top row of Figure 2.
This analysis was obtained by the Complex Step Derivative
method, which has been used broadly in the optimization
literature (see, e.g., [8], [9]), and has recently been extended
by our group for application to pseudospectral CFD codes
([3]). Perturbation analyses characterize the propagation of
disturbances in the system as it evolves forward in time. In
order to perform an extensive investigation of the effect of
different control possibilities, the perturbation field must be
computed once for each possible location of the actuators,
since it does not give at once a global view of the sensitivity
of the cost function to changes to the control distribution.

In adjoint analyses an “adjoint system” is defined and com-
puted (by marching backward in time) in order to identify
the gradient of the cost function of interest to additional
control forcing of the system. As depicted in Figure 1, such
analyses characterize effect→control relationships (If I want
to achieve a desired effect here, how and where should I



apply control to the flow?). A representative adjoint analysis
of the present system is depicted in the bottom row of
Figure 2. Once the cost function is defined, one adjoint
simulation gives at once information about the sensitivity
of this cost function to control actuation everywhere in the
flow domain. Thus, for the purpose of control optimization,
adjoint analyses provide much more valuable information
than perturbation analyses.
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Fig. 1. Experiment by Pratt & Whitney on a JT8D engine (top); once
the control forcing schedule is optimized, the actuators for the noise control
problem are expected to be an order of magnitude smaller. Perturbation
analyses (bottom left) characterize control → effect relationships. On the
other hand, adjoint analyses (bottom right) characterize effect → control
relationships.

It is important to note that adjoint analyses do not identify
the “origin” or “source” of the radiated sound in such
a system. Rather, they identify how and where additional
forcing may be applied to the existing system to modify
the radiating noise already present in a desired manner. This
point is readily evident by considering a simpler model sys-
tem (without the jet present), as depicted in Figure 3. Thus,
identification of sound “sources” is not to be expected from
adjoint analyses when applied to more complex systems, such
as the unsteady jet considered in the present work.

Note that, in the remainder of the present work, the
cost functions considered are essentially pointwise measures
of the sound field, and the adjoint field computations are
therefore referred to as “adjoint Green’s functions”.

III. DESCRIPTION OF THE SYSTEM

The system under consideration is a Mach 0.5 cold 2D
jet at a Reynolds number ReD = ρDU j/µ = 5000 (where ρ
is the density of the jet, D is the nozzle diameter, U j is the
exit velocity of the jet, and µ is the viscosity of the jet) with
sinusoidal excitation near the jet exit at a Strouhal number
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Fig. 2. Perturbation analysis (top) characterizes the effect on the entire
flow resulting from a small change to a particular control quantity, taken
here to be a sinusoidally-varying mass source at point xc. Adjoint analysis
(bottom) characterizes the effect on a particular flow quantity, taken here
to be high frequency noise at point xe, due to small changes in the control
applied anywhere in the flow. Vorticity contours are superimposed to the
colored perturbation and adjoint fields.

St = f0D/U j = 0.4 (where f0 is the frequency of excitation).
This system is governed by the equation

N (q) = g, where q =




p
ρu
ρ


 =




p
m
ρ


 (1)

q is referred to as the state field, and the operator N (q)
represents the nondimensionalized full compressible Navier-
Stokes equation for an ideal gas with constant specific heats
cp and cv and constant Prandtl number Pr (for a more detailed
description of the system, see [2]). Note that g is the control
applied, here introduced as a right-hand-side-forcing term in
the governing equation. Refraction effects are expected to be
significantly weaker in a cold jet than in a hot jet, as the speed
of sound is identical in the ambient fluid and the jet core.
In fact, in sharp contrast with the perturbation and adjoint
analyses of the mean of a heated jet as considered by [14],
the corresponding analyses of the refraction due to the mean
of the cold jet flow studied here exhibit very little refraction.
Nevertheless, as shown in this paper, the acoustic scattering
due to the unsteady vortex roll-up in the present flow is
quite pronounced even in this cold jet system, illustrating
significant opportunities to control the hydrodynamic field
(at low frequencies) in order to modify the high-frequency
radiated noise.

The simulation code used in the present work implements
the full compressible Navier-Stokes equation using a numer-
ical method based closely on that developed by [5]. The



Fig. 3. Adjoint analysis of sound waves, produced by a monopole sound
source at the point marked by the X, in a stationary fluid. The corresponding
adjoint field is driven by the sound waves in the box and propagates away
from it, as visualized above, illustrating possible locations for “antinoise”
sources where additional forcing could be applied to achieve the desired
effect (namely, to reduce the sound pressure level within the box). Even
though the governing system represented here is a linear, constant-coefficient
PDE and the cost function is quadratic in the state variables, the adjoint
field identifies a range of effective “antinoise” forcing locations, and does
not accurately identify the isolated sound source.

present simulations do not resolve any solid boundaries.
Instead, artificial “buffer zones” have been used around the
domain of physical interest, coupled with characteristic-based
boundary conditions on the computational boundaries. This
type of ad hoc but effective numerical boundary conditions
simulates the effect of quiescent far-field boundary conditions
on the physical system, and has now become standard for this
type of problem. It is discussed further in, e.g., [6] and [4].

IV. DERIVATION OF THE ADJOINT SYSTEM

In order to develop an adjoint solver, certain additional
approximations have been made, as explained in [2] (namely
that the viscosity µ and the bulk viscosity of the flow µB are
constant, and that the irreversible viscous dissipation in the
energy equation is 0). These convenient simplifications are
thought to be acceptable in the approximate adjoint analysis,
as the spatial and temporal variations of viscosity in the
system and the irreversible viscous dissipation in the heat
equation both affect the dynamics of the system only at the
small length scales, and are thus thought to be relatively
unimportant in terms of the mechanics of sound generation.
Subject to these additional assumptions, and following the
established procedure for performing an adjoint analysis (see,
e.g., appendix B of [1] for the case of an unsteady compress-
ible Euler system), we may take the Fréchet derivative of
the governing equation (described in full in [2]) to obtain a

linearized equation of the form

N ′(q)q′ = g′, where q′ =




p′

m′

ρ′


 (2)

and q′ is referred to as the perturbation field. Selecting an
L2 duality pairing of the form 〈q∗,q′〉 ,

∫ T
0

∫
Ω q∗ · q′ dxdt,

this linearized operator is then transformed according to the
identity

〈
q∗, N ′(q)q′

〉
=

〈
N ′(q)∗ q∗, q′

〉
+ b , whereq∗ =




p∗

m∗

ρ∗




(3)
and q∗ is referred to as the adjoint field. The L2 norm
has been selected here, even though in multiscale PDE
systems such as the present, the L2 duality pairing is not
necessarily the best choice for defining the adjoint operator,
and incorporating spatial or temporal derivatives into this
pairing is recognized to have an important regularizing effect
on the spectra of the resulting adjoint field that must be
calculated (for further discussion of this important topic,
see [12]). After some algebra involving several integrations
by parts, it is straightforward to obtain the adjoint operator
corresponding to the approximate linearized form of the
compressible Navier-Stokes equation in this framework (see
[2] for details). It is important to note that, in the present
derivation, we have associated the “adjoint pressure” p∗ with
additional forcing of the continuity equation ∂ρ/∂t, and the
“adjoint density” ρ∗ with additional forcing of the selected
form of the energy equation ∂p/∂t (this is in contrast with,
e.g., the nomenclature selected by [14]).

In a domain enclosed by solid boundaries, by selecting
the appropriate adjoint boundary and initial conditions, we
can make the boundary term b in (3), which results from
the several integrations by parts, equal to zero. Alternatively,
as in the present analysis, we may surround the physical
part of the domain of interest in both the flow and adjoint
problems with the numerical equivalent of quiescent far-field
boundary conditions which propagate no information toward
the physical domain of interest; this again effectively allows
us to neglect the influence of b. By so doing, the adjoint
identity (3) then reveals that the following two analyses are
equivalent:

#1) analyzing the effect on q′i(xe, te) (that is, the effect on
the i’th component of the perturbation field at point x = xe

and time t = te) created by applying a localized force g′j =
δ(x− xc)δ(t − tc) to the j’th component of the perturbation
equation, and

#2) analyzing the effect on q∗j(xc, tc) created by applying a
localized force g∗i = δ(x−xe)δ(t − te) to the i’th component
of the adjoint equation.

By the identity (3), we may relate the perturbation and adjoint



fields in these two analyses by

q′i(xe, te) = q∗j(xc, tc). (4)

Note that the point xc and time tc do not appear in the for-
mulation of the adjoint system in problem #2, but arise only
in the subsequent analysis of the resulting adjoint field. Thus,
a single adjoint calculation allows us to quantify the effect of
forcing anywhere in the flow system (for any xc, tc, and j) on
the particular flow quantity q′i(xe, te). This relation between
the perturbation and adjoint Green’s functions provides an
alternative but equivalent explanation of the significance of
adjoint analyses to the explanation provided in Figure 1.

V. CALCULATION OF AN ADJOINT GREEN’S FUNCTION
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Fig. 4. Adjoint density (top) and adjoint pressure (bottom) reveals
sensitivity of the pressure component of the perturbation field at point xe
at time te to additional control forcing in, respectively, the energy equation
(top) and the continuity equation (bottom) everywhere in space xc and for
all times tc < te. Note that, by causality, the adjoint field is zero for tc > te;
that is, the adjoint field marches backward in time from t = te.

Figure 4 illustrates a computation of the adjoint Green’s
function, as formulated at the end of the previous section,
obtained by forcing the adjoint system N ′(q)∗ q∗ = g∗ with
an isolated force at a particular point in space and time,
that is, g∗i = δ(x − xe)δ(t − te). As discussed above, each
component j of the resulting adjoint Green’s function, at
each point in space xc and each instant in time tc, may
be interpreted as the i’th component of the perturbation to
the flow at point xe and time te that would arise due to
localized forcing of the corresponding component j of the
flow system at the corresponding point in space xc and time
tc. The calculation reported in Figure 4 takes i = 1, that
is, the adjoint field shown characterizes the effect on the
perturbation pressure p′(xe, te).

It is interesting to note that the disturbance in the adjoint
pressure grows rapidly as it propagates within the jet toward

the nozzle at the convective velocity as the adjoint field
evolves (in backward time). In contrast, the disturbance
in the adjoint density essentially propagates right through
the jet, experiencing significant refraction. This behavior is
quantified further in Figures 5 and 6. The component of the
adjoint density that propagates at the convective speed of the
jet within the jet shear layers is found to be quite small. This
indicates, as one might expect, that mass sources are more
efficient than energy sources in modifying the hydrodynamic
field in a way which changes the radiated noise.

p∗ f

Time

ρ∗
f

Time

Fig. 5. Evolution of adjoint pressure (top) and adjoint density (bottom)
in time at the points {x,y} of (solid) {5D,0}, (dashed) {5D,2.5D}, (dot-
dashed) {5D,−2.5D}.

VI. AN ADJOINT GREEN’S FUNCTION AT TEMPORAL

FREQUENCY f CORRESPONDING TO FAR-FIELD NOISE

An alternative to forcing the adjoint problem at an isolated
time te is to force it at a specific temporal frequency f .
This corresponds roughly to looking at the sensitivity of the
sound field at point xe (at the frequency and phase selected)
to additional control forcing in the governing equations.
This correspondence is only approximate, however, as the
system under consideration has time-varying coefficients, and
therefore frequency-based characterizations of the system’s
response are of limited usefulness. Note that, in systems with
constant coefficients, a Bode plot completely characterizes
the frequency response of the system. Such a frequency-
domain analysis may only be applied to the case where only
the mean flow is considered. Nonetheless, an approximate
characterization of this sort may still be developed for the
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Fig. 6. Adjoint pressure at three different locations at the centerline: at
(dot-dashed) x = 8, (dashed) x = 9, and (solid) x = 10. When the actual
evolutions of the variable (top) are shifted by the time corresponding to
the convection velocity (bottom), there is an approximate superposition of
the three lines, which indicates that these perturbations convect toward the
nozzle at the convective speed of the jet.

present system (in the time domain) simply by forcing the
adjoint system sinusoidally at the frequency of interest during
the backward march for the adjoint field. The computation
corresponding to this kind of forcing is shown in the bottom
row of Figure 2.

Instead of forcing the adjoint problem at an isolated point
in the computational domain xe we can force it along a line
near the boundary of the computational domain (that is, in
the “buffer zone” used to approximate the far-field boundary
conditions). By so doing, one may set up a propagating wave
in the adjoint field which is the same as if the computational
domain extended deep into the far field and the adjoint
problem was forced at an isolated point a very long distance
away. By varying the forcing along this line sinusoidally,
one may simulate the arrival of a wave in the adjoint field
corresponding to the effect on the far-field noise in any
direction of interest. A representative example is given in
Figure 7. Note that both reflection and refraction of the
adjoint field are observed in this computation.

VII. QUANTIFICATION OF SCATTERING OF ADJOINT

GREEN’S FUNCTIONS

In an attempt to quantify the scattering of a wave in the
adjoint field due to the unsteady vortex roll-up, the values of
the adjoint density and adjoint pressure have been measured

te

Fig. 7. Adjoint density field due to incoming waves from the far field.

at three different points in the representative adjoint Green’s
function analysis illustrated in Figure 8 (top). The points
where the adjoint density and adjoint pressure were measured
are above the jet (where the scattering will be referred to
as reflection), at the centerline, and below the jet (where
the scattering will be referred to as refraction). The time
series of these measurements were Fourier-transformed in
time, and the results are plotted in Figure 8. The analysis
was performed for adjoint forcing at two different Strouhal
numbers: St = 0.8 (2× the vortex roll-up frequency) and
St = 2.0 (5× the vortex roll-up frequency).

Perhaps the most important observation to make in Figure
8 is that there is very significant frequency broadening in
all of the adjoint spectra measured. The adjoint systems
are excited by forcing at the single frequency indicated
(St = 0.8 or 2.0) but, due to the time-varying coefficients
(from the unsteady flow field q) in the adjoint operator,
the measurements of the adjoint field at the points indicated
exhibit energy over a broad range of temporal frequencies.

The frequency broadening present when the adjoint field
is forced at a higher frequency is much larger than when
it is forced at a lower frequency. This fact was noticed by
[13] for the direct problem, and was described as “multiple
scattering”. In the present adjoint analysis, this suggests that
high-frequency noise may be modified by a broad range of
possible forcing frequencies.

Note in particular that the frequency spectrum is generally
narrower at the point above the jet (dashed lines) than below
the jet (dot-dashed lines), apparently because the refraction
of the traveling wave in the adjoint field is stronger than
the reflection of this wave for the incidence angle tested.
Within the jet (solid line), it is observed that the frequency
broadening is strongest.

The low-wavenumber components of the spectra of the
adjoint pressure at the centerline are especially strong for
all three forcing frequencies tested. This indicates that low-
frequency modulation of the hydrodynamic field via mass
sources within the jet can have a significant impact on the
high-frequency noise in the far field, and provides impetus
for further studies in jet-noise control based on such charac-
terizations to exploit this sensitivity.
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Fig. 8. Adjoint pressure wave (top) corresponding to far-field noise at an
angle of 60◦ off the jet axis and at a frequency of St = 2.0, and temporal
spectra measured at the indicated points {x,y} of (solid) {5D,0}, (dashed)
{5D,2.5D}, (dot-dashed) {5D,−2.5D} of (left) the adjoint pressure p̂∗ f and
(right) the adjoint density ρ̂∗

f of incoming waves at the same angle and at
a frequency of (middle) St = 0.8 and (bottom) St = 2.0.

Note also that all of the spectra are somewhat jagged, and
the distance between each small peak in this jaggedness is
∆ f = 0.2D/U , which is exactly half of the vortex roll-up
frequency. This appears to indicate (as one might expect)
that the scattering of the wave in the adjoint field is closely
related to its interactions with the large-scale vortex roll-up.

A second set of cases was also run in which the wave in
the adjoint field approaches the jet at a 90◦ angle off the jet
axis (cf. Figure 8). The results showed very similar trends,
and are thus not included here.

VIII. CONCLUDING REMARKS

An adjoint analysis in an unsteady compressible 2D jet
has been performed in order to obtain insight on control
opportunities in this system. Attention has been focused on
the scattering of adjoint Green’s functions corresponding to
far-field high-frequency noise. Significant scattering of the
adjoint field is detected both above and below the jet, as
quantified by a spectral analysis of the adjoint field. This

scattering is a direct result of system unsteadiness (vortex
roll-up), and cannot be captured by mean flow analyses.

The degree to which frequency broadening extends into
the low frequencies within the jet in the adjoint analyses
indicates the degree to which low-frequency alteration of
the hydrodynamic field can be used to affect the high-
frequency radiated acoustic field. This distinguishes promis-
ing low-frequency “hydrodynamic” control strategies from
simple (but perhaps impractical) “antinoise” control strate-
gies, which must be applied at the frequency of the radiated
noise.
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