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We presenta noncausaframework for model-basedeedbackstabilizationof a large classof spatially-
developing boundary-layeflow systems. The systemsconsideredare (approximately)parabolicin the
spatialcoordinatex. This facilitatesthe applicationof a rangeof establishedeedbackcontrol theories
which are basedon the solution of differential Riccati equationswhich marchover a finite horizonin x
(ratherthanmarchingin t, ascustomary) However, unlike systemswhich areparabolicin time, thereis no
causalityconstraintfor the feedbackcontrol of systemswhich are parabolicin spacethatis, downstream
informationmay be usedto updatethe controlsupstream.Thus, a particularactuatomay be usedto neu-
tralize the effectsof a disturbancevhich actuallyentersthe systemdownstreanof the actuatodocation. A
numerically-tractabléeedbaclcontrolstratey is formulatedwhich takesadvantageof this specialcapabil-
ity of feedbackcontrolrulesin the spatially-parabolisettingin orderto minimize a globally-definedcost
functionin aneffort to maintainlaminarboundary-layeflow. We computethe state-feedbackontrolgains
at severalspanwisevavenumber$. We theninversetransformthe resultto obtainspatialcorvolutionker
nelsfor determiningthe controlfeedback The effectivenes®f the controlscomputedusingthesefeedback
kernelswhicharewell resohedon thecomputationagrid andspatiallylocalizedin the spanwisedirection,
is testedusing direct numericalsimulationof the boundary-layeflow system. A significantdampingof
the flow perturbationis obsened, which is of the sameorder asthe dampingthat ariseswhen applying
significantlymoreexpensveiterative adjoint-baseaontrol optimizationschemes.
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1 INTRODUCTION

This paper considers the feedback estimation
and control of small, spatially-deeloping, three-
dimensionalperturbationgo a thin laminarbound-
ary layer in a viscouswall-boundedflow. Control
is appliedvia a blowing/suctiondistribution over a
portion of the wall, and stateestimationis accom-
plishedvia measurementsf skin friction andpres-
sure distributed over the sameregion. The wall-

normal direction is taken to be y and the leading
edgeof the surface,which might be blunt, is near
the line definedby x = y = 0; thewall thuslies in

the half plane{y = 0,x2 0}. In the specialcaseof

an unsweptflat plate, the streamwisedirectionis x

andthe spanwisdlirectionis z. More generally the
leadingedgeof the surfaceover which the bound-
ary layer develops may be swept, and the surface
may be inclinedand/orcurvedin the x-y plane.The
curvilinear coordinatesystemis fitted to the body
suchthatthesurfaceis definedby {y = 0,x2 0} even
whenthe leadingedgeis sweptand the surfaceis

curved. Specialcasesof interestincludedin the
framawvork presentechereinclude the stabilization
of the Blasius, FalknerSkan,FalknerSkan-Cool,

andGortlerfamiliesof boundary-layeflows.

An importantcharacteristiof laminarsystemsof
this type is that they are essentiallyindependenbf
time (time variationsin the systemmodelareeasily
accountedor by gradualvariationof theinflow con-
ditionsandthe externaldisturbancesyndthe equa-
tionsthatgovernthem,subjectto thecorrectapprox-
imations,areparabolicin x.

Hill 13 pointed out the role of adjoint systems
in the local receptvity problemfor boundary-layer
flow systems. By using an iterative adjoint-based
optimization stratey, Luchini'® and Anderssonet
al? found the worst—case(a.k.a. “optimal”) per
turbationsof the boundary-layeflow thatleadto a
maximumenegy growth of the perturbations.lter-
ative (adjoint-basedyontrol optimizationstratejies
for boundary-layeflow systemsareappropriateor
open-loopcontrol optimizations,and are beginning
to seesuccessfulapplicationsin this regard. For
recentreviews of this line of researchsee?2"17,
However, it is computationallyquite difficult (if not
impossible)to apply iterative, adjoint-basedcon-
trol optimizationstratgiesin theclosed-loopsetting
to neutralizethe effects of the randomflow distur
banceghatarisein nature.For suchproblemsfeed-
back control strateyies which can respondquickly
andin a coordinatedashionto measurementsf the

1 INTRODUCTION

flow systemarenecessatry

Thereis a large body work in the controls lit-
eratureon the feedbackestimationand control of
systemswhich are parabolicin time. Of particular
interestfor non-normalsystems,suchas thoseof-
ten encounteredn fluid mechanicsjs the fact that
H>/ Hs control theory which is quite well suited
to suchsystems,is now well understoodfor both
infinite-horizonandfinite-horizoncontrolproblems,
andis discussedhn detailin standardextbooks(see,
e.g.)). Applicationsof this and relatedfeedback
control theoriesto fluid-mechanicabystemsyener
ally reducethe non-normalityof the systemeigen-
vectorsby closingthe feedbackcontrolloop (se€),
thereby rendering such systemsmuch better be-
haved. Thoughsubtleissuegelatedo theinfinite di-
mensiorandinflow/outflow conditionsmake theap-
plication of establishedeedbackcontrol strategjies
to suchsystemanontrivial, significantprogresshas
beenmadein recentyears. For a recentreview of
this active areaof researchseé. The presenpaper
developsaclosed-loopRiccati-basedeedbak con-
trol strateyy (as opposedo an open-loop,adjoint-
basedcontrol optimizationstrateyy) for a spatially-
developingboundarylayerflow system.Thepresent
work differs from all previousinvestigationsof the
Riccati-basedeedbackcontrol of fluid systemsin
that it leveragesthe parabolic evolution of bound-
ary layer flow systemsin spacein orderto reduce
the dimensionof the Riccati equationgo be solved
in the formulationof the feedbackcontrolequations
in orderto make them numericallytractable. This
provides an attractie alternatve to the more com-
monparallel flow assumptionalsoreferredto asthe
assumptiorof “spatialhomogeneity”or “spatialin-
variance”of the baseflow, which facilitatesthe use
of Fouriertransformgo decoupleheproblemof the
control of flow perturbationsat eachwavenumber
pair. Se&*>12 for further discussiorof this alter
native approach.

Control stratgyies for systems which evolve
parabolicallyin time mustbe causal thatis, they
mustdependnly on presenfandpastmeasurements
of the flow. However, control stratgiesfor systems
which evolve parabolicallyin spacearenot limited
by sucha constraint;the control at a particularac-
tuatorlocationmay dependon measurementtsaken
both upstreamand downstream. Thus, to exploit
theadditionalmeasuremenhformationavailablein
this setting,a differentsetof toolsis neededor this
problembeyondthe standard_QG (#4) framework
and “robustifying” extensionsthereof (#,, LTR,
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2 GOVERNING EQUATIONS

etc.). Fortunatelymary of thenecessargontrolthe-
oretictoolsfor the presenproblemwereessentially
laid out by Anderson& Moore! and Middleton &
Goodwin'>, thoughwith very differentapplications
in mind. The presenpaperdiscusseshe severalad-
ditional considerationsecessaryo synthesize¢hese
tools and apply them to boundary-layerflow sys-
tems.

Unlike recent efforts to develop decentralized
feedbaclcontrolstrategiesfor boundary-layeflows,
which dependonly upon flow measurementand
stateestimates$n theimmediatevicinity of any given
actuator the presentapproachsacrificeslocaliza-
tion of the feedbackrulesin the streamwisecoor
dinatein orderto achieve possiblysignificantper
formanceimprovementsover that possiblewith lo-
calizedstratgies. Moving from the theoreticalfor-
mulation of an appropriatecontrol strat@y for a
fluid systemto numericalimplementatiorand test-
ing suchstrat@y is oftennontrivial dueto somespe-
cial considerationshatarerequiredto handleprop-
erly the infinite-dimensionalnatureand infinite or
semi-infinite spatial extent of fluid systems. The
problemessentiallyboils down to gettingthecontrol
feedbackgainsfor the PDE systemto roll off suffi-
ciently rapidly asafunctionof the spatialwavenum-
bers,andis akin to the issue(which controlsengi-
neersarealreadyfamiliarwith) of gettingthecontrol
feedbackto roll off sufiiciently rapidly as a func-
tion of the temporalwavenumbetin ODE systems,
as evidencedin a Bode plot. Significantprogress
hasalreadybeenmadeon this subtleissue,which
is discussedurtherin 18 for iterative adjoint-based
control optimizationproblemsandin 12 for Riccati-
basedeedbaclcontrolcalculations.

2 GOVERNING EQUATIONS

Basedon the dimensionalcoordinates{x*,y*,z},
velocities {u*,v*,w*}, and pressurep*, we de-
fine the dimensionlessgjuantitiesx = x*/L, {y,z} =
{y",Z}/8, u=u/Uo, {ww} = {v",w}Re/Uo,
and p = p*Re&/(pUZ), whereU, is the freestream
velocity, p isthedensity pis theviscosity v = p/pis
the kinematicviscosity L is a referencestreamwise
length,d = y/Lv/U, is a referenceboundarylayer
thicknessandRey = U, 8/v is areferenceReynolds
number Also, from thedimensionatadiusof curva-
turer* of the surfacein the x-y plane,we definethe
dimensionlessurvature parametere = d/|r*|, the
Gortler numberG = Res\/€, and a sign function s

suchthats= 0 correspondso aflatwall, s= 1 cor
respondgo aconcaewall, ands = —1 corresponds
to acorvex wall.

In orderto apply the boundary-layeapproxima-
tion andto develop a linear set of equationsgov-
erning small perturbationsto the nominal (undis-
turbed)boundary-layeflow, we make the following
assumptions:

Al: 6k L (i.e,Reg>1);

A2: dkr*| (e, ek 1)

A3: GSO(1);

A4: thenominal(undisturbedjlow is laminarand
steady
Note that the boundary-layeiapproximationof the
Navier-Stokesequationss notvalid in thevicinity of
the leadingedge. The presentwork avoids this sin-
gularity by consideringthe evolution of the system
only over the interval over which the controlis ap-
plied, whichwe defineasxy < x < L, wherexy > 0.
In orderto develop control stratgieswhich arenot
sensitve to errorsin the modelingof the flow up-
streamof xg, we will seekcontrol stratgjieswhich
areinsensitve to smallerrorsin the nominalinflow
velocity profile.

Though not necessaryfor the application of
the present control approach, it is corvenient
to approximatethe nominal boundarylayer flow
{Uxy),V(x,y),W(xy)} by a profile of the
Blasius/RalknerSkan-Coolke/Gortler family (see,
e.q.8). Similarity solutions of this commonly-
occurring class of boundary-layerflows may be
foundby solvingthe coupledODEs

m+1

" n 12\ _ 1" m+1 /
L +m(1 f )_o, ¢'+——fg =0,

f(0)=1(0)=0, f'(0)—=1, g(0)=0, g()—1,

by definingUp = X™ andn = y4/Ug/x, andtaking
U =Uyf'(n), W=Wog(n), andV = /Up/x[(1—
mnf'(n) — (1+ m)f(n)]/2. Alternatively, for sys-
temsin which, e.g. ,thecurvatureof thewall changes
graduallyasa function of x (aswith the flow over
a typical airfoil), the nominal boundary-layefflow
profile {U(x,y),V(x,y),W(x,y)} may be found via
straightforward numericalintegrationof the steady-
stateboundary-layeequationsover the appropriate
geometry

Small three-dimensionalperturbationsto the
nominal flow, {u(x,y,2),v(xy,2),w(x,y,2)}, are
governedby the linearizedNavier-Stokes equation.
As thesystengoverningtheseperturbationss linear
andhomogeneouim z, we maydecouplehevarious

3

Americaninstituteof AeronauticsandAstronautics



spanwisanodesof this systenby takingthe Fourier
transformof all perturbatiorvariableswith spanwise
variation (namely the state,the controls, the mea-
surementsand the disturbances)n the z direction
(see,e.q.?). In the presentliscussionwe therefore
considera particularFourier modeof the flow per
turbations,andassigna variationin z of exp(—ipz)
to all of thesevariables. Oncethe control problem
is solvedfor a seriesof spanwisevavenumbersin-
verseFourier transformof the feedbackgainslead
to feedbackconvolution kernelswhich are spatially
localizedin the spanwisecoordinateasshovnin §8
of this paper Suchlocalizationin the spanwiseco-
ordinateof the feedbackcorvolution kernelsgreatly
facilitatetheir practicalimplementation(for further
discussione.g.3%).

Following the analysis of Hall*®, under the
boundary-layeassumptiongemizedabore, thelin-
earized hondimensionakquationgor the flow per
turbationsreduceto

(Uu)x+Vuy + Uy — iBWu — uyy+ B2u = 0,
Uvy+ Vi + (VV)y + py — iBWv+ 2sGPUu
—Vyy+ BV =0,
Uy + Wi + Vit +Wov — iBp — iBWw
—Wyy+ BZW: O,
Ux+Vy —ipw=0,
1)

with the boundaryandinitial conditions;

u=w=0, v=vy(x), aty=0,
u=v=w=0, aty=oo, (2)
{u,v,w} = {uo,vo,Wo}, atx=xo,

wherevy(X) is the control velocity of blowing and
suctiondistributed over the wall on the strip xg <
X < L. Thepurposeof the controlin this problemis
to keepthe flow perturbationsuficiently smallthat
transitionto turbulenceis inhibited.

Define the normal vorticity n* = ou*/0z" —
ow*/dx* andthe correspondinglimensionles$orm
n=-ipu— WX/R%. We now combinethe govern-
ing equationg1) in suchaway asto determinea set
of two coupledequationgor the perturbationcom-
ponentsof the normal velocity and normal vortic-
ity. Thefirst of theseequationss found by taking
the Laplacianof the secondcomponenbf the mo-
mentumequation substitutingheexpressiorfor Ap
found by taking the divergenceof the momentum
equation,and applying continuity. The secondof
theseequationds found by taking the normalcom-
ponenbf thecurl of themomenturrequation.Defin-

4 SYSTEMDISTURBANCES

ing DX = a*/ayX, theresultis

& 2)al) -G 20

0 Ez2/ ax \n A Ax/\n)’
. 3)

whereEy; = U (D?— B?) Uy,

Eio= —(Zi/B) [ny+ UxDl], Exo = —U,

Aj_]_ = —[(Vyy — BZV)Dl + Vyyy + Vy(D2 —

B?) + VD® — D* + 2@2D% — B* + iPWy —

iBWD? + iB3\N], Aoy = —ipUy, and

Rop = [UX+VD1—D2+[32—i[3W].

3 STATE-SPACE FORMULA-
TION

We now perform a discretizationof the systemin
the y coordinateon a finite numberof discretiza-
tion pointswith the appropriategrid stretching.Let
{v,n} denotethe spatialdiscretization®f {v,n} on
theinterior of the domain. The derivative operators
DK may be approximatedn this discretizationus-
ing ary of avarietyof techniquessuchasfinite dif-
ferencesPadg, Chebyshg, etc. Definethe matrices
{élly élz, ézz,A]_];, Aj_%, AZ];, Azg} as the~spa~tial dis-
cretizationsof {Ell; E12,E22,A11,A12,A01, Azz} on
the interior of the domain using the chosentech-
nique,andthe vectorse;; anday; to denotethe in-
fluenceof the normalvelocity atthewall on, respec-
tively, theleft-handsideandright-handsideof thev
componenbf the discretizationof (3). Usingthese
discreteforms, it is straightforvardto express(3) in
the state-spacéorm

ax =Ag+Ba, (4)
\Y A ~ -
E-1A E-la —
o R S
Vw
= I211 I212 A All Alz
E = LS A: ~ ~
( 0 E22> ’ (A21 Azz) ’

(1), (%)

The control variable in this formulation is
¢ = dvy /dx

4 SYSTEM DISTURBANCES

To accountfor external systemdisturbancesand
modeling uncertainties,we now modify the state
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5 OPTIMAL CONTROL FORNONCAUSAL SYSTEMS

equation(4) by addingdisturbancesv to theright-
handside:
Ox = Aq + B+ Dw, 5)

wherethedisturbancevectorw depend®n the spa-
tial coordinatex. We desireto developaglobalstrat-
egy in which the control ¢(x) may actuallyrespond
to disturbancesv(x) actingover the entire domain
underconsideratiorkg < x < L. To facilitatethisin

the standardcausal)setting, we first discretizethe
systemin x, thendefineanaugmentedtate

a_ [ 9k
= (qvk”)

ateachstationxy = xg+ kA, k=0, ...,N, whereA =
(L —x0)/N representshe grid spacingin X, qx =
a (%), Wk = W(xc), and

(6)

Wo Wi WN
W1 0
= .| ar=]| - | -, W=
. WN .
WN 0 0

Note that the augmentedstate g3 at a particular
streamwisestationx, needonly include the distur
bancesenteringthe systemdownstreamof that lo-
cation,astheinfluenceof the disturbancesipstream
areaccountedor in gx. Note alsothatwe canex-

pressthe evolution of g in the discretestate-space

form
0 1 0
0 1
q\liv-o-l = Adq\liv7 Ad = . . )
0 1
0 0
(7)
wheretherelationbetweenwy andqy’ is
wg=M"qy, M"= (I 0 0) .
(8)

By combining equations(5), (7), and (8), we can

obtain a state-spacérmulationfor the augmented

stateg®. However, the inherently discretenature
of the evolution of our disturbancemodelg” com-
pels us to first derive a discreteformulation of the
stateequation(5). To accomplishthis, we approxi-
mate{A,B,q, ¢} with {A, By, qx, ¢} overtheinter-

val xx < X < X¢+1 for eachvalue of k, where,e.g.,
A« = A(X«). Using this approximation(commonly
referredto asa “zero-orderhold”), we may express
(5) in thefollowing “delta form”15:

Ok = QuAK + QB + QDkwi,  (9)

where Q¢ = (1/4) /S exp(Ac)dT and 8qx
(dk+1 — Q) /A. Note in particularthat Qx — | as
A — 0, andthusthe discrete-inx relation (9) tends
towardsthe continuous-inx relation (5) asthe grid
is refined. This behaior of the d-formulation also
follows for the RiccatiandLyapunw equationghat
arisein the control and estimationproblemsin the
following sectionsandis an appealingcharacteris-
tic of this particulardiscreteformulation. Note that
the calculationof the matrix exponentialnecessary
to determineQy can be performedwith ary of at
least19“dubious”technique¥. Oneof theleastdu-
biousof thesetechniqueswhich appeargo be ade-
quatefor the presensystemfor sufficiently smallA,
is the so-calledscalingandsquaringmethod.
Combining(9), (7), and(8), we finally obtaina dis-
crete, causalstate-spacdormulation for the aug-
mentedstate to which standaratontroltheoriesmay
beapplied:

8ol = AR + BRox (10)
w
where A} = QEAk QK%M ) and B} =

QB

(%)

5 OPTIMAL CONTROL FOR
NONCAUSAL SYSTEMS

In the original PDE setting, our control objective
may be written as finding a feedbackcontrol rule
which minimizesthe costfunction

L 00
g= / [ /0 (ai\f“vwﬁn*n)dy+a§\fv*vvw+a§cp*cp]dX-
X0

Discretizingin x andy, the costfunctionmaybeap-
proximatedoy

N
I=20 [(@®)iQ%af+ai@al,  (11)

2
._(Q 0 als D 9
whereQ® = 0 0 ,Q= 0 oasls O |,
0 0 o}

andls is a diagonalmatrix with the corresponding
local grid spacingon the elementf thediagonal.
Note that the techniqueof augmentinghe initial
statewith the disturbance®nteringthe entire sys-
temin (6) facilitatedthe corversionof thenoncausal
problemdescribedn theintroductioninto thecausal
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problemrepresentedly (10). Togethewith thecon-
trol objective (11), a feedbackcontrol rule of the
form

O = —Kir10] (12)

may be found directly using standard“discrete-
time” optimal controltheory In fact,asdiscussedn
Bitmeadetal 8, the Riccatiequationassociatedvith
this control problemmay be partitionedin a corve-
nientfashionby defining

X K -1 * K
K = (041 + ABLQiZHQBY) B Qs (KE K2),
Ki =21+ QA

KZ = ASE'QDMY + £ (I + AAE) ;

(13)
wheres}! and £1? solve the Riccatiand Lyapuno
equations
O5t = Q+ AT + THOWA+ DA O SO A

(KD)* QuBx [021 + ABLQLT OB~ BLQIKE,

O5i? = ALQIE? + [| + AN Q)] [ZH QDM Y

d * * () * -1
+ZCA ] — (Ke)" QB [0d] + ABOLZ ' UBY]  yyherethe notation 3 /3y |,

BLQ;iKZ,

(14)
wheredzy = —(3x — Zx_1)/A. As A — 0, equations
(14) tendtowardsthe correspondingontinuousRic-
catiandLyapunw equationgcf.19).

Finally, by combining(12) and (10), we canex-
pressp asasimplefunctionof theinitial augmented
statevectorqg:

0= Kgp1 05, (15)

whereKg, ; = —Kiw1 155 (A~ BKi41).

6 OPTIMAL ESTIMATION/
SMOOTHING

By (15), we seethatwe canexpresgheoptimalcon-
trol distribution on Xg < X < L which minimizesthe
globally-definedccostfunction 7 asasimplefunction
of theupstreanflow perturbatiorgg andthe system
disturbancesv(x) betweernxy andL. Thetaskwhich
remainsis to find a simpleway to obtaina goodes-
timateof g basedon the availablemeasurementat
thewall.

Definingthe vectorp asthe measurementoise,the

6 OPTIMAL ESTIMATION/
SMOQOTHING

measurementsf the streamwiseand spanwiseskin
friction andpressuralistributionsoverthewall may

bewritten as
ou
- &
ay wall

(X) +H

y(x) (16)

ay wall

Plwai (X)
Note that applying the nondimensionalizatiomlis-
cussedoreviously to the definition of n, to the con-
tinuity equationandto thewall-normalmomentum
equation|t is straightforvardto write

M g 1w

ay wall ay wall R% ox ay wall ’

v 1 [ ool 1

a_y2 wall B _ZUV(Vl) l_ ox ° /6y |W+ ° /6YA|W
& oW 3

-B? = ]u—HB— + = Vi,

oy2 |, 0 |wa ZUV(Vl) "

a%v , 1 02 (1) OViw

a_y3 wall B (B - @W> p|Wa” _UW W7

17)

denoteghe discretiza-
tion of the k'th derivative operatorevaluatedat the
wall andU\,(vk) thek'th y-derivative of U evaluatedat
thewall.

By neglectingthetermsin 1/R% in (17),we canex-

pressthe skinfriction andpressureatthewall as:

@
ay wall
W = Zq + N@ where
6_ Z N h (18)
ay wall
WaII0 |_ 5_1
B oy,
I I B S (¥ 2 - O
B dy?|, ZBZUV(Vl) ox oyt|, oy
18 0
B2 &y3|,
0 0 O 0
1163
N = ( o |, zy= 'UW(l) ,
1 2u(1) ZBUW
/B 00 O
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7 ROBUSTNESS

whereMq = :]/ andV denoteghey-discretization

of the normalvelocity thatincludesthe velocity at
thewall vy,.

Using the relations(16) and (18), we can approx-
imate the vector of the wall measurementg as a
function of the discretestatevector q, the control
variableg, andthe measuremenmnioisep:

y =29+ No+ R (19)

Applying the definition of the augmentedstateg?,
we maywrite (19) as

Yk = 20 + N + K (20)

whereZ? = (Z 0). We now definethe notation
qﬁlm = §%(x|xm) to denotethe estimateof gq?(x)

basednthemeasurementsx) fromxg < X < Xm.

Our aim is to calculatean estimateof g3 basedon
the measurementg(x) for xo < x < xy = L (i.e.
qglN). Thisis a“smoothing”problem,and,giventhe
correctmanipulations,can be solved basedon the
solution of a standardKalmanfilter. To solve this
problem,we first substitutethe valueof ¢ obtained
in (12) into the equations(10) and (20). Defining
Fc = A? — BiKyy1 andHy = Z2 — NkKi;-1, we have

oap
Yk

Fag,

Hidf + M- D)

Defining qgl_l = E(qj), thea priori estimateof g3,
andapplyingKalmanfilter theoryto thesystem(21),
we obtainthe following evolution equationfor the
estimatefﬁk‘lk_1

5CIE\|<_1 = qufﬂk_l + Lk [Yk - HkQﬁ|k_1 )
L = (AR + 1) PH [AHPH; +Cy) 72,

wherek=0,1,2,...N, andF is solutionof theRic-
cati equation

0Pk = ARy + RePk+ ARPF — L [AHRH, + Cy] L,
(23)
wherePy is anestimateof the covarianceof the state
gg atk = 0 andC, is an estimateof the covariance
of the noisey,; in practice,Py andC, are usedas
design parametersvhen developing the estimator
Our problemactuallydiffers a bit from thefiltering
problem(22). In particular theinformationwe want
to reconstructgg, mustbe obtainedfrom measure-
mentstaken on xp < x < Xy. In otherwords, we
seekto determinethe valueof QS‘N, notthe valueof

(22)

qﬁHIN which canbe obtainedfrom (22). As in An-

dersonandMoore?, G5\ canbeeasilyderivedfrom
thefilter problempresentedibove by marchingthe
discreteequation

31 = B+ ORH [AHRH; +C] ™ [y ey

(24)

whereRy satisfieghe Lyapuna equation
6Rk:Rk(Fk_Lka)*a kIO,l,Z,...N,

where Ry = Pp; note that qg‘_l = E(g§) asstated
previously.
Assuming that the initial state go is a random
variableuncorrelatedwith the disturbancegy,, it is
straightforwardto partition this estimationproblem

aswe did previously with the control problem(see
AppendixA).

We thusobtainqg‘N, whichis thebestapproxima-
tion possibleof theinitial augmentedtateqy given
all of themeasuredlataon xp < x < L. Thisestimate
of the augmentedtateat xo may thenbe combined
with the control relationship(15) to determinethe
optimal control basedon the available noisy mea-
surements.

7/ ROBUSTNESS

In orderto maintaineffectivenessn the controland
estimationproblemseven in the presenceof ad-
versely structuredstate disturbancesaand measure-
mentnoise, it is importantto analyzeand possibly
supplementhe robustnessof our presentformula-
tion. The state-spacérmulation (10) of our prob-
lem hasthe peculiarfeaturethat the systemdistur
bancesareincludedinside the statevectorg?. By
applyingstandard#, controltheoryto the problem
(10), we determinethe mosteffective control ¢ in
responséo thestatevectorqy, (thatis, thestategy to-
getherwith theexternaldisturbancebetween and
xn). In otherwords, the control strateyy responds
optimally to ary disturbancegincluding thosewith
adwersestructureasthedisturbancethemselesare
partof theaugmentedtate. Thus,robustnesgo ex-
ternaldisturbancess “built in” to the presentstate
feedbackcontrolformulation.

In practicewe don't have ary knowledge about
theseexternaldisturbancesandmustestimatehem.
Sincethe disturbancesarenow includedin the state

7
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vector g2, we must solve a standardstate estima-
tion problem (%2 or ). The solution of the ro-

bust estimationproblemis an %, filter that “ro-

bustly” estimateghe informationrequiredto apply
the full-information controllaw (12). Therearetwo

kinds of uncertaintiesin this problem: the uncer

tainty causedy the measurementoiseandthe un-
certaintycausedy theunknowninitial statej.e. the
uncertaintyon the valueof qgl_l = E(qg). This 7

filtering problemmay be interpretedas a noncoop-
eratve gamebetweerthe estimatoy which seeksto

find the bestestimateof ¢, and nature,which si-

multaneouslyseeksto find the most hostile inputs
K (measurementsoise)andqg (initial state). This

Ho, filtering problemmay be expressin the follow-

ing min-maxform:

N—1
min max 7= a_ g2 )KE K
B () 2 [(Qk 1) Kicr 1 QuKir1
(0 = 61_1) — VP~ Ha) Vi L — Hued)|
_y2(qg_ qa_l)*Po_l(qg_ qSl—l)’

wherey > Orepresentaspecifiedperformancde

of the estimator and Qx, Py andVy are weight
matriceschoserwhendevelopingtheestimator 1
evolution equationfor the es;timateé]f(‘“(_l reme
the sameasin (22) but with the following filter gain
(seee.g?%2Y):

L= (ARcHD ARV HAC
+1 = A/VPKE QKR T HRVTY,
(25)
where
O = PR + FRP+ ARPF +

(AFc+ 1) P (1/¥PKe, 1 Qi1 — HgVi HH)
[ARH VT Hi+ 1 — A/VRK,  QeKien] ™
Pc(BRc+1)",

(26)
wheretheinitial conditionof the Riccatiequationis
Po. The weighting matrix Py quantifiesthe uncer
tainty in theinitial conditionsqgg. In the #, setting,
theestimateér’;‘“(_l of g} hastheinterestingoroperty
that(jék‘lk_1 depend=n the controlgain Ky,1. This
impliesaone-way couplingbetweerthecontroland
estimationproblems andit is necessaryo solve the
control problemfirst. Note thatthis couplingis not
apparentn the Kalmanfilter (23), in whicha“sepa-
rationprinciple” applies.

As we did previously, we may againderie the so-
lution of thesmoothingproblemfrom theassociated

8 LOCALIZED CONVOLUTION KERNELS

filtering problem.We obtainthefollowing evolution
equationfor qglk:

~ A oy — « -1
o= By Re[AHRVIT HIB 1 = A/yPKE, QK 1P]

*\/—1 A
Hka [yk_ Hkq%k—l] ’
(27)
fork=0,1,2,...N, where:

ORe= ReFy + Re (1/Y2Ky 1 QuKicr1 — Hg Vi TH)

[APH Vi Hic+ 1 = B/V2RKE 1 QkKir1] PR (BRc+ 1),

(28)
Ro = P, andqg‘_l is theinitial conditionof (27).

8 LOCALIZED
TION KERNELS

CONVOLU-

Figure 1: Isosurhcesof KO(x,y,2) (left) relating the
streamwiseeomponenbf thevelocity u(x = 0.5,y, z), and
(right) relatingthewall-normalcomponenbf thevelocity
v(x = 0.5,y,2) to the controlinput @(x,z= 0). Note the
controldomainextensionin x = [0.5,0.8].

By inverseFourier transformingthe gain matri-
cesk?, we obtaincorvolution controlkernelswhich
are spatially localized in the spanwisedirection z
(seé?). Physically this meansthat the control at
aspanwisdocationz depend®nly ontheinput per
turbationin the vicinity of this spanwiselocation.
Figure 1 depict representatie convolution kernels
relatingthe streamwisendwall-normalvelocity of
perturbationat xo = 0.1 to the control input on the
wall as a resultof the presentcontrol formulation.
To obtainthe control at the wall positionx, andz,
we simply corvolve the kernelin the planeat the
streamwisdocation xx with the input perturbation
g3 in the vicinity of the spanwisdocationz, asde-
pictedin Figure2. As expectedthecorvolutionker-
nelsdepictedn Figurel do notexhibit spatiallocal-
ization in the streamwisealirectionx, but are elon-

8
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9 NUMERICAL SIMULATIONS

Streamwise z

Wall normal y

conrol -~

Spanwise z -- .
O@k

Figure2: Relationbetweenthe corvolution control ker-
nel andthe control. The control ¢(x = X, 2) is found by
convolving the corvolution kernelK? in the planex = x,
with theaugmentedtateq3 in thevicinity of thespanwise
locationz.

gatedin thisdirection.

Figure 3: lIsosurhcesof KO(x,y,2) relating (left) the
streamwise&omponenbf thevelocity u(x = 0.5,y,z), and
(right) the wall-normalcomponenbf the velocity v(x =

0.5,y,2) to the control input @(x,z= 0). Controldomain
extensionin x = [0.5,0.9]. Minimization of the perturba-
tion enegy atx = 0.9.

It is significantto note that our objective function,
which upto this pointhasbeento minimize the per
turbationenepgy over the entire streamwiseextent
[X0,Xn] of the domainof control underconsidera-
tion, may easilybe generalizedo targetspecifically
the perturbatiorenegy at the endof the controldo-
main,Xxy. To accomplishthis, we simply addto the
costfunctionapenaltytermontheenegy of theper

turbationat the endof the controldomain

2 0@ 09

J= S 3x Ox

|

(29)
wherezi! is theinitial conditionof theRiccatiequa-
tion which ariseswhensolvingthe feedbackcontrol
problem(see85). We maytargettheseoutflow (“ter-
minal”) perturbationsxclusively simply by setting
Q = 0. Figure3 representhe streamwiseandwall—
normal kernelsin thesetwo kinds of optimization
problems.

N N
> a[(@);Qa+ ] + 3 o L
+in(@)} T, )

9 NUMERICAL SIMULA-

TIONS

Figure4: Longitudinalstreaksvithoutcontrol(top), with
presentfeedbackcontrol stratgy (center),and with the
iterative adjoint-basedontrol optimisationstratey of ’
(bottom).

By insertingtheseconvolution feedbackcontrol
kernelsinto a direct numerical simulation (DNS)
code,we now performsimulationsof the feedback
controlledsystem,assumingfull knowledgeof the
initial perturbationgd. Figure 1 depictsthe stream-
wise andwall-normalkernelsusedin the numerical
simulation.For comparisonye have alsocalculated
the effectivenessof controls determinedby apply-
ing aniterative, adjoint—basedontrol optimization

9
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strateyy, asdevelopedby CathalifiudandLuchini’. (@)

To performthe boundary-layeflow simulationswe
usedthespectraDNS codedevelopedby Lundbladh
et al.1#, which accuratelysolvesthe full 3D incom-
pressibleNavier-Stokes equationsin the boundary
layer and accountscorrectlyfor the effects of con-
trol inputson the wall, asthoroughlybenchmarkd
in 14,

Figure 4 displaysthe isolines of the longitudinal
velocity of perturbationin a x,z plane located at
y = 2.022, both without andwith control. We have
testedaworst—cadda.k.a.,"optimal”) initial pertur
bation,thatis, aperturbationwhoseenepgy is ampli-
fied maximally over the computationadomainun-
der consideratiorin the uncontrolledsystem. This
kind of perturbationhasbeencomputedpreviously
by Luchini'3, who found that such perturbations
comein theform of stationarystreamwisevortices,
whereaghe velocity field they induceis dominated
by streamwisestreaks. This is a typical behaiour
in sheardriven flows. The control is appliedover
[0,Xn] = [0.5,0.8], andwe noticea very similar re-
duction of the perturbationmagnitudein both the
presentfeedbackcontrol formulationandthe itera-
tive adjoint—basedontroloptimization.

We have alsocomputedthe enegy of the perturba-

X Zr
tion E =/ N/ u? dz dy. Figure5(a)displaysthe
x Jg

streamwiseavolution of this enegy. In the present
feedbackcontrol formulation, the blowing/suction
velocity vy is partof thestatevectorg®. Thismeans
that, usingthe control law (15), the control at each
streamwisestation xx dependson the velocity of
blowing/suctionat xp, vw(X0), which we imposeto
be zero; this leadsto the controlin the presentfor-
mulationgentlyrampingup from zeroatx = xg. On
the contrary in the adjoint—-basedchemethe con-
trol viy(xo) experiencesa large jump at x = xg, as
shawn in the figure 5(b). This explains, at leastin
part,thedifferenceof effectbetweerthetwo control
stratgjies. Otherwise the dampingof the perturba-
tion enepy is foundto be of the sameorderin both
cases.

10 CONCLUSIONS

The primary challenge in the application of
Riccati-basedieedbackcontrol stratgies to fluid-
mechanicalsystemsis the enormousstate dimen-
sionwhichis necessaryo capturesuchsystemswith
an adequatalegreeof fidelity. The statedimension

10 CONCLUSIONS

(b)

aaaaa

Figure5: (a) Evolution of the enegy of perturbationE
using (— - -) no control, (—) the presentfeedbackcon-
trol stratgy, (— -) theiterative adjoint—basedontrolopti-
mizationstratayy of /. (b) Evolution of the controlenegy
using (—) the presentstrat@y, (— -) the adjoint—-based
stratayy.

necessaryo resole suchsystemsypically renders
Riccati-basedcontrol strateyies numerically unfea-
sible, and open-loopmodelreductionstratgjiesare
highly proneto misrepresentatioaf therelevantdy-
namicsof the fluid system,effectively “losing the
babywith the bathwater”.

In flow systemswith two directionsof spatialhomo-
geneity(suchaschannelflows), the linearizedsys-
temmodelmay be madeapproachablith Riccati-
basedeedbaclkcontrol stratgiesby decouplingthe
variousstreamwis@ndspanwisenodesof theprob-
lem using Fourierbasedapproaches. Linearized
boundary-layesystemshowever, have only onedi-
rectionof spatialhomogeneity

The presentpaper proposesa new, Riccati-based
feedbackcontrol stratgy which leveragesthe fact
that linearized boundary-layer systems develop
parabolicallyin the streamwisecoordinate. Tak-
ing advantageof this property numerically-tractable
control and estimationalgorithms have been pro-
posed which target the reduction of a globally-
definedcost function with control feedbackwhile
only requiring the solution of Riccati equations
related to system models which are spatially-
discretizedn a singlecoordinatedirection(y). The
state-feedbackontrol stratgy usedhasrobustness
“built in”, asit dependsexplicitly on the distur
bances,which are augmentedto the statein the
presentformulation. The robustificationof the es-
timator via honcooperatie analysisis straightfor
wardanda solutionof the “robust” estimationprob-
lemwhich solvesthisnoncooperatiegamehasbeen
presented. Using the formulation developedhere,
we obtainedwell-resoled corvolution control ker-
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nelsthat are elongatedn the streamwisedirection
and localized in the spanwisedirection. By ap-
plying thesefeedbackkernelsin a directnumerical
simulation, we have shawvn that the resulting con-
trol is quite effective, andthatit providesa damp-
ing of the perturbationenegy of the sameorderas
thatobtainedvith muchmorecumbersometerative
adjoint—basedontroloptimizationschemes.
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