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ABSTRACT
The present paper is part of a larger effort to redesign, fromthe
ground up, the best possible interconnect topologies for switchless
multiprocessor computer systems. We focus here specifically on
honeycomb graphs and their extension to problems on the sphere,
as motivated by the design of special-purpose computational clus-
ters for global weather forecasting. Eight families of efficient tiled
layouts have been discovered which make such interconnectstriv-
ial to scale to large cluster sizes while incorporating no long wires.
In the resulting switchless interconnect designs, thephysical prox-
imity of the cells created (in the PDE discretization of the physi-
cal domain) and thelogical proximityof the nodes to which these
cells are assigned (in the computational cluster) coincideperfectly,
so all communication between physically adjacent cells during the
PDE simulation require communication over just a single hopin
the computational cluster.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—distributed networks, network topology

General Terms
Design

1. INTRODUCTION
There are two paradigms for interconnecting processing elements

in multiprocessor computer systems: switched and switchless.
Switched multiprocessor computer systems are the easiest to field

and use in general-purpose applications, and are thus todaythe
most popular. Fast cluster switching hardware has been developed
by Infiniband, Myrinet, and Quadrics, and inexpensive (“commod-
ity”) switching hardware is available leveraging the standard gi-
gabit ethernet protocol from Cisco. Unfortunately, in a switched
computer system, the switch itself is a restrictive bottleneck in the
system when attempting to scale to large cluster sizes, as messages
between any two nodes must pass through the switch, and thus the
throughput demands on the switch increase rapidly as the cluster
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size is increased. Nonuniform memory access (NUMA) architec-
tures, first pioneered by Silicon Graphics, attempt to circumvent
this quagmire by introducing a hierarchy of switches, thus allow-
ing some of the “local” messages (that is, between two nodes on
the same “branch” of a tree-like structure) to avoid passingthrough
the full cascade of switches (that is, to avoid going all the way back
to the “trunk”). This NUMA paradigm certainly helps, but does not
eliminate the bottlenecks inherent to switch-based architectures.

Switchless multiprocessor computer systems, on the other hand,
introduce a “graph” (typically, some sort ofn-dimensional “grid”)
to interconnect the nodes of the system. In such a system, messages
between any two nodes are relayed along an appropriate path in the
graph, from the source node to the destination node. To accomplish
such an interconnection in a beowulf cluster, relatively inexpensive
PCI cards are available from Dolphin ICS [1]; however, the use
of such hardware in today’s high-performance clusters is fairly un-
common. The massively parallel high-performance Blue Genede-
sign, by IBM, is a switchless three-dimensional torus network with
dynamic virtual cut-through routing [2].

In the history of high-performance computing, switchless inter-
connect architectures have gone by a variety of descriptivenames,
including the 2D torus, the 3D torus, and the hypercube. Almost
all such designs, including the IBM Blue Gene and the Dolphin
ICS designs discussed above, imply an underlying Cartesian(that
is, rectangular) grid topology in two, three, orn > 3 dimensions.

Quite recently, the startup SiCortex broke away from the domi-
nant Cartesian interconnect paradigm, launching a novel family of
switchless multiprocessor computer systems designed around the
Kautz graph [9]. The Kautz graph is the optimal interconnectsolu-
tion in terms of connecting the largest number of nodes of a given
“degree” (that is, with a given number of incoming and outgoing
wires at each node) for any prescribed maximum graph “diame-
ter” (that is, the maximum number of hops between any two nodes
in the graph). If one considers the wide range of possible graphs
that may be used to interconnect a large number of computational
nodes, the Cartesian graph may be identified as one extreme, with
the simplest local structure possible but a poor graph diameter,
whereas the Kautz graph may be considered the other extreme,with
a complex logical structure that sacrifices local order but exhibits
the optimal graph diameter.

In certain unstructured applications, the optimal graph diameter
offered by the Kautz graph is attractive, though such systems be-
come difficult to build as the cluster size is increased due tothe
intricate weave of long wires spanning the entire system.

Many problems of interest in high performance computing, how-
ever, have a regular structure associated with them. A primeex-
ample is the discretization of a partial differential equation (PDE).
When distributing such a discretization on a switchless multipro-



cessor computer systems for its parallel solution, one generally
divides the domain of interest into a number of finite regions, or
Voronoi cells, assigning one such cell to each computational node.
An important observation is that such computations usuallyrequire
muchmore communication between neighboring cells than they do
between cells that are physically distant from one another.Thus,
the practical effectiveness of proposed solutions to (i) the defini-
tion of the Voronoi cells, and (ii) the distribution of thesecells over
the nodes of the cluster (together referred to as the “load balancing
problem”) is closely related to both the physical proximityof the
cells created in the PDE discretization and the logical proximity of
the nodes to which these cells are assigned in the computational
cluster. A graph with local structure, such as the Cartesiangraph,
can drastically reduce the average number of hops of the messages
it must pass during the simulation of the PDE by laying out the
problem in such a way that these two proximity conditions coin-
cide; a graph without such local structure, such as the Kautzgraph,
does not admit an efficient layout which achieves this condition.

The present line of research thus considers alternative (noncar-
tesian) graphs with local structure exploitable by PDE discretiza-
tions, while keeping to a minimum both (a) the number of wires
per node [to minimize the complexity/expense of the cluster], and
(b) the graph diameter [to minimize the cost of whatever multi-hop
communication is required during the PDE simulation].

This particular paper is motivated by the needs presented by
global weather forecasting problems defined over a sphere; note
that some of the largest purpose-built computational clusters in
the world are dedicated to this application. Loosely speaking, the
present paper explores the best ways to put a fine honeycomb grid
on a sphere, and then explores how to realize this discretization
efficiently on an easily-scaled layout of computational hardware
without using any long wires.

The work considered may be applied immediately at the system
level. With the further development of appropriate hardware, it
may also be applied at the board level or even the chip level. Other
chip-level noncartesian interconnect strategies which have been in-
vestigated in the literature include the Y architecture andthe X ar-
chitecture. The Y architecture for on-chip interconnects is based
on the use of three uniform wiring directions (0o, 120o, and 240o)
to exploit on-chip routing resources more efficiently than the tradi-
tional Cartesian (a.k.a. Manhattan) wiring architecture [4, 5]. The
X architecture is an integrated-circuit wiring architecture based on
the pervasive use of diagonal wires. Note that, compared with the
traditional Cartesian architecture, the X architecture demonstrates
a wire length reduction of more than 20% [11].

2. CARTESIAN INTERCONNECTS
Two criteria by which switchless interconnects are measured are

cluster diameter and maximum wire length [6]. Loosely speaking,
the former affects the speed at which information is passed through-
out the graph, whereas the latter affects the cost of each wire used
to construct the interconnect, as described further below.

Because each node can communicate directly only with its log-
ical neighbors, we characterize information as moving in hops: it
takes one hop for information to travel from a given node to its im-
mediate neighbor, two hops for information to travel to a neighbor
of a neighbor, etc. The diameter of a graph is the maximum number
of hops between any two nodes in the graph. For example, Figure
1 illustrates a 1D Cartesian graph with a periodic connection. Each
node can send information to its neighbor to the right, and receive
information from its neighbor to the left. This type of connection
is called a unidirectional link, because information can only flow
in one direction. Many switchless clusters use bidirectional links,
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Figure 1: A simple 1D periodic Cartesian interconnect with
unidirectional links. The diameter of this graph is seven hops.
Note that a long wire is needed to make the periodic connection;
the length of this wire increases as the cluster size increases.
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Figure 2: By folding the simple 1D interconnect of Figure 2 in
half while keeping the same logical connection, the effect of the
periodic connection may be localized. In this case, the longest
wires only span the distance between two nodes in the folded
structure, regardless of the number of nodes in the graph.

Figure 3: By identifying the local structure of the folded 1Din-
terconnect of Figure 2, a tile may be designed that contains two
nodes and four wires. This tile, together with simple end caps,
may be extended to larger interconnects with the same topol-
ogy. Here, we extend from 8 nodes (top) to 32 nodes (bottom).

through which a node can both send and receive data.
The expense of the hardware required to complete a hop often

increases quickly with the physical length of the wire between the
nodes. To reduce this cost, it is thus desirable to minimize the
maximum wire length. In Figure 1, the link connecting nodes 1
andN traversesN nodes, which makes scaling this layout to largeN
costly. The problem of long wires can be circumvented by folding
the graph. By keeping the same logical connection, but folding the
graph onto itself along its axis of symmetry, one can producethe
graph shown in Figure 2. Here, the interconnect is identicalto that
of Figure 1 (and, thus, so is the graph diameter), but now the longest
wire only spans the distance between two nodes, independentof N,
thus facilitating scaling of the cluster to largeN.

Noting the repetitive pattern in Figure 2, we identify a self-similar
tile that can be used to build the interconnect. This tile is composed
of two nodes and four wires (two sending and two receiving). Fig-
ure 3a illustrates how four of these tiles, along with simpleend
caps, can be combined to produce the original interconnect of Fig-
ure 1. An important feature of the tiled configuration is its scalabil-
ity; note how it can be extended to much larger interconnectswith
the same topology, such as the 32 node graph in Figure 3b.

We now consider a four-connected periodic 2D Cartesian graph,
known as a torus, in which each node has four unidirectional links,
two for sending and two for receiving, as illustrated in Figure 4a.
Similar to the 1D graph of Figure 1, the diameter of this 2D graph
is six hops, but now interconnects 16 nodes instead of 8. The peri-
odic connections of this 2D graph create many long wires thatspan
the entire width of the interconnect. These long wires can beelimi-
nated by folding the graph onto itself along both axes of symmetry.

From the folded 2D graph, we again identify local structure that
facilitates tiling. The tiles for the 2D Cartesian torus contain four
nodes and the associated communication links. Figure 5 shows
how these tiles, together with simple end caps, may be assembled
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Figure 4: The idea of folding the interconnect to minimize the
maximum wire length extends directly to higher dimensions.
Here, a 2D periodic Cartesian graph (left) is folded onto itself
in both directions of symmetry. Again, the longest wires only
span the distance between two nodes in the folded structure.

Figure 5: A four-node tile can be extracted from the intercon-
nect of Figure 4b. This tile, combined with simple end caps,
can be extended to larger interconnects with the same topology.
Here, we extend from 16 nodes (left) to 256 nodes (right).

to produce the original 2D periodic Cartesian graph, and scaled to
larger graphs of the same topology.

The three key steps illustrated by example in this section are:

a (i) folding a graph to minimize the maximum wire length,
a (ii) identifying repetitive local structure in the folded graph, and
a (iii) defining a self-similar tiling to facilitate scaling.

The remainder of this paper extends these three steps to honey-
comb graphs with a variety of useful periodic closures. The three-
connected graphs so generated, in which each node is connected to
an odd number of nearest neighbors, lack the symmetry required to
configure an effective interconnect using unidirectional links. As a
result, each link in the remainder of this discussion is intended to
represent either a bidirectional link or a pair of unidirectional links
(one in each direction). In §3.1, we consider the interconnects that
arise from periodically connecting the honeycombl graph inthe di-
rections of the Cartesian unit vectors, much like the graphsof Fig-
ure 4, to produce a toroidal class of interconnects. In §3.2,we then
examine the tilings that arise by periodically closing a honeycomb
graph in three directions instead of two. Finally, §3.3 examines a
variety of methods for wrapping a sphere with a (mostly) honey-
comb graph.

3. HONEYCOMB INTERCONNECTS
Honeycomb (three-connected) graphs may be used in lieu of

Cartesian (four-connected) graphs to create 2D interconnects with a
significantly reduced number of wires (and, thus, a significantly re-
duced cost). We now show that such graphs can be developed with

Figure 6: A 2D honeycomb grid is anisotropic about its Carte-
sian axes of symmetry. Nonetheless, periodic connections can
be made in the directions of the Cartesian unit vectors (left).
This closure produces a topology called a toroidal nanotube.
By folding about the Cartesian axes, two distinct tiles can be
identified to construct the interconnect (right). This intercon-
nect has the same diameter the corresponding Cartesian torus
with the same number of nodes, but uses 25% fewer wires.

essentially no increase in the overall complexity of the layout, and
can easily be extended from toroidal closures, as discussedabove,
to triply-periodic closures, and then to spherical closures.

3.1 Toroidal closure
The simplest method for laying out a 2D periodic honeycomb

graph is shown in Figure 6a. By making a periodic connection in
the direction of one of the Cartesian unit vectors, we make a tubular
topology similar to that of a carbon nanotube. This nanotube-like
structure is then closed upon itself about its other axis of symmetry,
forming a torus. Like the Cartesian torus, one can modify this clo-
sure by applying varying amounts of twist in one or both periodic
directions before closing the graph. Such twists might prove use-
ful in future applications, but for brevity are not considered further
here.

Tiling the toroidal closure. As with the Cartesian torus, the
periodic connections in the toroidal nanotube illustratedin Figure
6a create long wires that span the width of the entire graph, thus
hindering scalability. To eliminate these long wires, a folding strat-
egy is again used to reveal local structure and identify a tiling, as
illustrated in Figure 6b. Unlike the Cartesian case (due primar-
ily to the anisotropy of the topology with respect to the closure
applied), we now define two distinct tiles, each with four nodes.
However, the overall complexity of the tiling is on par with that of
the Cartesian interconnect discussed previously. It is observed that
the honeycomb tilings of the family illustrated in Figure 6 (with
bidirectional links) have essentially the same diameter asthe corre-
sponding Cartesian tilings with the same number of nodes. Hence,
by moving to a honeycomb topology, we develop a graph with the
same diameter but only 3/4 of the wiring cost/complexity.

3.2 Triply-periodic closure
Although we can improve upon Cartesian interconnects with hon-

eycomb graphs while still using a Cartesian closure strategy, as dis-
cussed above, it is more natural to select a closure for the honey-
comb graph that better reflects its inherent symmetries. Towards
this end, we now examine the triply-periodic closure of the plane
honeycomb graph. This study forms the foundation upon which
our study of spherical closures (§3.3) is based. Solutions to this
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Figure 7: Three ClassA structures (that is, honeycomb graphs
on the equilateral triangle) with degree = 1, 2, and 6.
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Figure 8: Three ClassB structures with degree = 1, 2, and 4.

PA2 PB1

Figure 9: The two families of triply-periodic honeycomb inter-
connects. ThePA∗ family is built from six Class A structures
and has connected edge links whereas thePB∗ family is built
from six ClassB structures and has coincident edge nodes.

problem build from two distinct classes of honeycomb graphson
the equilateral triangle, denoted in this work as ClassA and Class
B structures:

A) The ClassA structures place the midpoints of the links on the
edges of the equilateral triangle, as illustrated in Figure7. The de-
gree of this structure is defined as the number of midpoints that lie
on each edge of the triangle.

B) The ClassB structures place the edges of the hexagons on the
edges of the equilateral triangle, as illustrated in Figure8. The de-
gree of this structure is defined as the number of hexagons touching
each edge of the triangle.

It is straightforward to join six ClassA or ClassB structures, as il-
lustrated in Figures 7 and 8, to form a hexagon, as illustrated in Fig-
ure 9. The periodic connections on this hexagon are easily applied:
in the case of ClassA, the wires on opposite sides of the hexagon
are connected; in the case of ClassB, the nodes on opposite sides of
the hexagon are taken to be identical (in both cases, moving orthog-
onal to each side of the hexagon, not diagonally through the center
point). The resulting graphs are denotedPA∗ andPB∗, where the
∗ denotes the degree of the six ClassA or ClassB structures from
which the triply-periodic honeycomb graph is built.

Tiling the triply-periodic closure. As in the previous exam-
ples, the triply-periodic graphs of Figure 9 can be tiled viafolding
about the three axes of symmetry and identifying the repetitive lo-
cal structure of the folded graph. This process eliminates all long
wires which grow as the graph size is increased. For ClassA, the
new tile so constructed, denoted TileE in Figure 10, contains six
nodes instead of four, leading to the tiledPA∗ family illustrated in

E
F

G

Figure 10: The three fundamental tiles, denotedE, F , and G,
upon which the tilings of the triply-periodic (§3.2) and spheri-
cal (§3.3) closures of the honeycomb interconnect are based.

T O I

Figure 11: The three Platonic solids with triangular faces.
From left to right: Tetrahedron (4 faces), Octahedron (8 faces),
and Icosahedron (20 faces). The faces of these polyhedra can
be gridded with either ClassA or ClassB triangular graphs (see
Figures 7 and 8) to build tiled spherical interconnects based on
the fundamental tiles introduced in Figure 10.

the first four subfigures of Figure 18. For ClassB, the new tile so
constructed contains 18 nodes; as illustrated in the last four subfig-
ures of Figure 18, and for later convenience, we may immediately
split this 18-node tile into three identical smaller tiles,denoted Tile
F in Figure 10. The tilings are completed with simple end caps.

3.3 Spherical closure
We now discuss the most uniform techniques available to cover

a sphere with a (mostly) honeycomb grid.
Note first that eachAn structure of Figure 7 hasV = n2 vertices

(that is, nodes) andE = 1.5n2 edges (that is, wires between nodes),
whereas eachBn structure of Figure 8 hasV = 3n2 vertices and
E = 4.5n2 edges. If each corner of anAn structure is joined with
five other identicalAnstructures, then eachAnstructure contributes
effectivelyF = 0.5n2 faces (that is, hexagons) to the overall graph,
whereas if each corner of aBn structure is joined with five other
Bn structures, then eachBn structure contributesF = 1.5n2 faces
to the overall graph. In both cases, we haveV −E +F = 0, which
is characteristic of a planar graph.

Euler’s formulaV −E + F = 2 relates the numbers of vertices,
edges, and faces of any convex polyhedron. The upshot of Eu-
ler’s formula in the present problem is that it is impossibleto cover
a sphere perfectly with a honeycomb grid. By this formula, any
attempt to map a honeycomb grid onto the sphere will lead to a pre-
dictable number of “defects” (that is, faces which are not hexagons).

The three most uniform constructions available for generating a
mostly honeycomb graph on a sphere are given by pasting a set of
identical An structures of Figure 7, orBn structures of Figure 8,
onto the triangular faces of a Tetrahedron, Octahedron, or Icosahe-
dron (see Figure 11); these three constructions form the basis for
the remainder of this study. Note that this approach joins each cor-
ner of the structure selected with two, three, or four other identical
structures, and leads to 4 triangular faces, 6 square faces,or 12
pentagonal faces embedded within an otherwise honeycomb graph.
The resulting graph is easily projected onto the sphere. Allgraphs
so constructed, of course, satisfy Euler’s formula. Some ofthe
graphs so constructed occur in nature as nearly spherical carbon
molecules known as Buckyballs.
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Periodic Tetrahedral Octahedral Icosahedral
A B A B A B A B

1 6 18 4 12 8 24 20 60
2 24 72 16 48 32 96 80 240
3 54 162 36 108 72 216 180 540
4 96 288 64 192 128 384 320 960
...

...
...

...
...

...
...

...
...

k 6k2 18k2 4k2 12k2 8k2 24k2 20k2 60k2

Table 1: Number of nodes in a honeycomb interconnect. For
the same symmetry and degree, the ClassB topologies have
three times as many nodes as ClassA. Note also thatOA1 is a
cube,IA1 is a dodecahedron, andIB1 is a buckminsterfullerene.

Table 1 shows the number of nodes in these graphs as a function
of their symmetry (P, T, O, or I ), class (A or B), and degree (k).
For each case, the number of nodes increases withk2. For a given
symmetry and degree, the ClassB graph contains three times as
many nodes as the ClassA graph.

For general-purpose computing on switchless multiprocessor com-
puter systems, spherical interconnects (§3.3) are not quite as ef-
ficient as planar interconnects (§3.2) with either toroidalclosure
or triply-periodic closure, as spherical interconnects have slightly
higher diameters for a given number of nodes. However, as men-
tioned previously, spherical interconnects are poised to make a ma-
jor impact for the specific problem of solving PDEs on the sphere,
which is an important class of computational grand challenge prob-
lems central to a host of important questions related to global wea-
ther forecasting, climate prediction, and solar physics. In fact, some
of the largest purpose-built supercomputers in the world are dedi-
cated to such applications, and thus it is logical to design some
computational clusters with switchless interconnects which are nat-
urally suited to this particular class of applications.

Some of the graphs developed here lend themselves particularly
well to efficient numerical solution of elliptical PDEs via the iter-
ative geometric multigrid method; Figure 12 illustrates six graphs
that may be used for such a purpose (OA2p for p = {0,1, · · · ,5}).
Note that the Octahedral symmetry of these grids introducesa key
property missing from the Tetrahedral and Icosahedral families of
spherical interconnects: due to the square defect regions of the
Octahedral graphs, a red/black ordering of points is maintained
over the entire graph. That is, half of the points may be labeled
as red and the other half labeled as black, with red points hav-
ing only black neighbors and black points having only red neigh-
bors. This ordering allows an iterative smoothing algorithm known
as Red/Black Gauss Seidel to be applied at each sub step of the
multigrid algorithm and facilitates remarkable multigridconver-
gence rates and efficient scaling on multiprocessor machines to
very large grids.

Although the idea of building the interconnect of a multiproces-
sor computer system in the form of a honeycomb spherical graph is
still in its infancy, people have known about and used such graphs
to discretize the sphere in the numerical weather prediction com-
munity for many years; see, e.g., [3], [8], and [10]. In particular, the
model developed by the Deutscher Wetterdienst (DWD) is an ex-
ample of an operational meteorological code that implements the
dual of a honeycomb graph with icosahedral symmetry (see [7]).
These previous investigations have almost exclusively used graphs
with Icosahedral symmetry, as such graphs undergo the leastdefor-
mation when being projected from the polyhedron (on which they

OA1 OA2 OA4

OA8 OA16 OA32

Figure 12: A representative family of spherical interconnects.
All six graphs are members of theOA2p family (three of the
square “defect" regions are visible in each graph). From top-
left to bottom-right the degree is 20,21,22,23,24, and 25. The
thick black lines show the logical interconnect. The light grey
lines illustrate the respective Voronoi cell for each node,indi-
cating the region of the physical domain that each node is re-
sponsible for in a PDE simulation on a sphere.

are built) onto the sphere (where they are applied). Minimizing
such graph deformation is beneficial for improving accuracyin nu-
merical simulations. However, as mentioned above, our research
indicates that Octahedral graphs, which admit a valuable red/black
ordering not available in Icosahedral graphs, might, on balance,
prove to be significantly better suited in many applications.

Tiling the spherical closure. As illustrated in Figure 12, spher-
ical graphs are quite complicated; their practical deployment for
largeN would be quite difficult without a scalable tiling strategy.
Thus, in a manner analogous to that used in §3.1 and §3.2, we now
transform these graphs to discover local patterns and identify self-
similar tilings that make such constructions tractable andscalable.

To illustrate the process, consider first theTB2 interconnect as a
representative example, as depicted in Figure 13. Note firstthat we
replace the “folding” idea used in §2, §3.1, and §3.2 with a “stretch-
ing” and “grouping” strategy. The stretching step may be visualized
by imagining all links in the spherical graph under consideration as
elastic, then imagining the transformation that would result from
grabbing all of the nodes near one of the vertices of the polyhe-
dron, or near the center of one of the faces of the polyhedron,and
pulling them out to the side (while maintaining the connectivity)
until the resulting stretched graph may be laid flat. The resulting
spider web-like structure is known as a Schlegel diagram.

For theTB2 Schlegel diagram in the top-right of Figure 13, the
outer edge of the diagram is a triangle that corresponds to the nodes
near one of the vertices of the tetrahedron of the unstretched graph,
and near the center of the diagram is a hexagon that corresponds to
nodes near the middle of the opposite face of the tetrahedron.

The next step in tiling a spherical graph is to identify repetitive
structure. In the Schlegel diagram of Figure 13, after considerable
deliberation, we have grouped the nodes in sets of six. This group-
ing is not unique, but it is with the choice shown that a simpletiled
structure reveals itself. In general, nodes that are approximately
the same distance from the center of the Schlegel diagram tend to
be lumped together. From the selected grouping, we can create the
flowchart shown on the lower-left of Figure 13. In this flowchart,
all obvious honeycomb structure is removed, but now the groups of



TB2

TB2 TB2

TB2
Tiling

Schlegelgraph

flowchart

Figure 13: In order to determine a tiling for a given spherical
interconnect graph (top-left), a Schlegel diagram (top-right) is
first constructed by stretching and flattening the graph ontothe
plane while maintaining the same logical connections. From
this, locally similar groups of nodes can be grouped into a
revealing “flowchart” (bottom-left) that ultimately makes the
tiling evident (bottom-right). In the case of TB2 illustrated
here, with the exception of the top of each column of the
flowchart, the nodes are connected identically to thePA∗ case,
leading to a tiling with the E tiles of Figure 10. This tiling is
then completed withF tiles from Figure 10 along one side, to-
gether with the appropriate end caps.

paired nodes are brought together in what will eventually become
their tiled form. Significantly, the logical structure of the flowchart
(as well as the Schlegel diagram) is identical to the original spheri-
cal interconnect. Note that flow from bottom to top on the flowchart
corresponds to in-to-out flow in the Schlegel diagram.

With the exception of the top set of nodes in each column of
the flowchart, the connections between the other six sets of nodes
match those of thePA∗ case. That is, the first node in each group
is connected to the first node in the neighboring groups, etc.As a
result, we can use the sameE tiles (see Figure 10) to construct this
part of the graph as were used in thePA∗ constructions. The re-
maining two sets of nodes can be incorporated using theF tile used
in the PB∗ constructions. After making simple end connections,
the completed tiling is shown on the bottom-right of Figure 13. In
this case, the overall tiling builds out to a right triangle.

For each interconnect family, we perform a similar procedure
for the first few graph degrees until a pattern emerges, first stretch-
ing/flattening the graph to make a Schlegel diagram, then identify-
ing repetitive local structure by grouping the nodes in an in-to-out
flowchart of the Schlegel diagram, and finally defining a tiling to
facilitate scaling. Though this was an involved process, byso do-
ing, we have discovered the simple and easily scaled families of
tilings depicted in Figures 19 - 21.

Interesting and surprising correlations exist between thevarious
simple tilings which we have discovered. We first observe that each
symmetry family shares a common overall shape: theT ∗∗ family
builds out to right triangles, theO∗∗ family builds out to parallelo-
grams, and theI ∗∗ family builds out to “six-sided parallelograms”.

By identifying an equivalence between a pair ofE tiles and a
pair ofF tiles, as depicted in Figure 14, we are also able to identify
interfamily relationships between the tilings as well. Applying this

Figure 14: An equivalence between a pair ofE tiles and a pair
of F tiles. Typically, we use theE tiles whenever possible; how-
ever, the equivalence between these two pairings helps to unify
the ClassB tilings of the various different families.

Figure 15: For any of the OB∗ family of tilings (here, OB1 is
shown), we can replace theE tiles along the shorter diagonal
using the equivalence depicted in Figure 14. This allows us
to identify the bifurcation axis that splits the tiling into two
smaller tilings in the TB∗ tilings of the appropriate degree.

Figure 16: (left) The IBn graph may be subdivided into four
smaller tilings [two TBn and two PBn] via a series of simple
switches applied to the electrical connections between thetiles
along the three diagonals shown; a similar subdivision to four
smaller tilings [two TAn and two PAn] may also be accom-
plished with the IAn tiling after the transformation illustrated
in Figure 14 is applied along the appropriate diagonals. (right)
The IBn tiling, for n even, may also be subdivided a different
way [to two TBn and two OA(n/2)]; a similar subdivision [to
two TAnand two OB(3n/2)] may also be accomplished with the
IAn tiling, for n even, after the transformation in Figure 14 is
applied appropriately. Such subdivisions are useful for running
four small jobs on the cluster simultaneously.

substitution along the shortest diagonal of theOB∗ family, as illus-
trated in Figure 15, shows immediately how theOB∗ tiling can be
built up from two tilings of theTB∗ family. Equivalently, theOA∗
family can be built from twoTA∗ tilings of the appropriate degree.

Similarly, as illustrated in Figure 16, theI ∗∗ family of tilings can
be built up from twoT ∗∗ tilings and either twoP∗∗ tilings or two
O∗ ∗ tilings. Such subdivisions could be useful for running four
smaller jobs on the cluster simultaneously without reconfiguration.

We have focused in §3.3 on applying the triangular ClassA and
ClassB structures from Figures 7 and 8 to the triangular faces of
three of the Platonic solids (Figure 11). However, other construc-
tions are also possible. For instance, the truncated tetrahedron (Fig-
ure 17) has only hexagonal and triangular sides, and thus canbe
covered with triangular ClassA or ClassB structures on its triangu-
lar faces and six ClassA or ClassB structures (see Figure 9) on its
hexagonal sides. The resulting ClassAgraphs have 28k2 nodes, and
the resulting ClassB graphs have 84k2 nodes (cf. Table 1). These
graphs each have 12 pentagonal faces embedded within an other-
wise honeycomb graph, just like the icosahedron; however, one
projected out to the sphere, they are slightly less uniform and do not
admit a red/black ordering of points. Another alternative construc-



Figure 17: The truncated tetrahedron, the only Archimedean
solid with only triangular and hexagonal sides.

tion places twoPA∗ of PB∗ graphs on top of one another, connected
along the edges, projecting the top onto the norther hemisphere and
the bottom to the southern hemisphere. These graphs each have six
square faces embedded within an otherwise honeycomb graph,just
like the octahedron; however, they are significantly less uniform,
though they do admit a red/black ordering of points. It is currently
unclear whether or not such alternative constructions haveany sig-
nificant advantages.

4. SUMMARY
The present line of research considers the topology of the in-

terconnection of processing elements in switchless multiprocessor
computer systems. The design of such switchless interconnects is
a problem that has been considered for decades; however, theques-
tion of scalability of such designs is of heightened importance to-
day, as modern computer systems take parallelization to newlev-
els. Note that the three fastest computer systems in the world today
each has hundreds of thousands of nodes, whereas typical computer
clusters in academic and industrial settings are today growing from
thousands to tens of thousands of nodes. It is for this reasonthat,
we believe, a revisiting of the topology used in switchless multipro-
cessor computer systems is in order, and special-purpose topologies
for clusters built for special-purpose applications, suchas global
weather forecasting, are warranted.

The present paper focused on the optimal ways to cover a sphere
with a fine honeycomb grid. Euler’s formula leads to a predictable
number of “defects” (non-hexagons) within the otherwise honey-
comb grid; the three choices that may be developed with maximal
uniformly incorporate 4 triangles (distributed at the corners of a
Tetrahedron), 8 squares (distributed at the corners of an Octahe-
dron), or 12 pentagons (distributed at the corners of an Icosahe-
dron) into the otherwise honeycomb grid. The present work sys-
tematically examined all three of these cases (denotedT ∗∗, O∗∗,
and I ∗ ∗), and discovered two convenient families of tilings for
each case (denoted∗A∗ and∗B∗). These tilings are repetitive struc-
tures, which greatly eases their scaling to large cluster sizes (∗ ∗n
for n≫ 1), and contain no long wires, thereby facilitating fast link
speeds and reduced cluster cost and complexity even as the cluster
size scales to hundreds of thousands of nodes.

In the resulting switchless interconnect designs, thephysical prox-
imity of the cells created (in the PDE discretization on the sphere)
and thelogical proximityof the nodes to which these cells are as-

signed (in the computational cluster) coincide perfectly,so all com-
munication between physically adjacent cells during the PDE sim-
ulation require communication over just a single hop in the compu-
tational cluster. Such an interconnect should provide near-perfect
scaling with cluster size in operational problems; that is,refining
the overall grid by a factor ofn while also increasing the overall
cluster size by a factor ofn will result in an essentially unchanged
execution speed. Such scaling is the holy grail of parallel com-
puting, and is enabled in the present case by the careful design of
a computational interconnect topology that is well matchedto the
physical problem to which the computational cluster is dedicated.
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Figure 18: The first four members of thePA∗ and PB∗ families of interconnects; each builds out to an equilateral triangle. Note that
the PA∗ construction illustrated here is built using E tiles, whereas thePB∗ construction is built using F tiles (see Figure 10).
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Figure 19: The first four members of theTA∗ and TB∗ families of interconnects; each builds out to a right triangle.
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Figure 20: The first four members of theOA∗ and OB∗ families of interconnects; each builds out to a parallelogram. Both families
may be constructed by connecting twoTA∗ or TB∗ tilings along the longest leg, as described in Figure 15.
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Figure 21: The first four members of theIA∗ and IB∗ families of interconnects; each builds out to a “six-sided parallelogram”. Both
families may be constructed by connecting twoT ∗∗ and two P∗∗ tilings, or two T ∗∗ and two O∗∗ tilings, as described in Figure 16.


