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ABSTRACT

The present paper is part of a larger effort to redesign, fiioen
ground up, the best possible interconnect topologies fachkigss
multiprocessor computer systems. We focus here specyfioall
honeycomb graphs and their extension to problems on theephe
as motivated by the design of special-purpose computdttns:
ters for global weather forecasting. Eight families of efit tiled
layouts have been discovered which make such intercontracts
ial to scale to large cluster sizes while incorporating m@lovires.

In the resulting switchless interconnect designs,pimgsical prox-
imity of the cells created (in the PDE discretization of the physi-
cal domain) and théogical proximityof the nodes to which these
cells are assigned (in the computational cluster) coinpatéectly,

so all communication between physically adjacent cellsnduthe
PDE simulation require communication over just a single hop
the computational cluster.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks|: Network Archi-
tecture and Design-gistributed networks, network topology

General Terms
Design

1. INTRODUCTION

There are two paradigms for interconnecting processingeiés
in multiprocessor computer systems: switched and swisshle

Switched multiprocessor computer systems are the easisicdt
and use in general-purpose applications, and are thus tibday
most popular. Fast cluster switching hardware has beerapma
by Infiniband, Myrinet, and Quadrics, and inexpensive (“conal-
ity”) switching hardware is available leveraging the starmtigi-
gabit ethernet protocol from Cisco. Unfortunately, in atshwed
computer system, the switch itself is a restrictive botisain the
system when attempting to scale to large cluster sizes, asages
between any two nodes must pass through the switch, andhéus t
throughput demands on the switch increase rapidly as theteclu
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size is increased. Nonuniform memory access (NUMA) archite
tures, first pioneered by Silicon Graphics, attempt to cmeent
this quagmire by introducing a hierarchy of switches, thilsia

ing some of the “local” messages (that is, between two nodes o
the same “branch” of a tree-like structure) to avoid pas#ingugh

the full cascade of switches (that is, to avoid going all tlag Wwack

to the “trunk”). This NUMA paradigm certainly helps, but doeot
eliminate the bottlenecks inherent to switch-based achites.

Switchless multiprocessor computer systems, on the ot h
introduce a “graph” (typically, some sort ofdimensional “grid”)
to interconnect the nodes of the system. In such a systensages
between any two nodes are relayed along an appropriaterpté i
graph, from the source node to the destination node. To guégim
such an interconnection in a beowulf cluster, relativebxpensive
PCI cards are available from Dolphin ICS [1]; however, the us
of such hardware in today’s high-performance clustersiiy/fan-
common. The massively parallel high-performance Blue Glne
sign, by IBM, is a switchless three-dimensional torus nekwaith
dynamic virtual cut-through routing [2].

In the history of high-performance computing, switchlegei-
connect architectures have gone by a variety of descripawees,
including the 2D torus, the 3D torus, and the hypercube. Atmo
all such designs, including the IBM Blue Gene and the Dolphin
ICS designs discussed above, imply an underlying Cartégian
is, rectangular) grid topology in two, three, or> 3 dimensions.

Quite recently, the startup SiCortex broke away from theidom
nant Cartesian interconnect paradigm, launching a nowveilyfaf
switchless multiprocessor computer systems designecdrthe
Kautz graph [9]. The Kautz graph is the optimal interconrsett-
tion in terms of connecting the largest number of nodes of/argi
“degree” (that is, with a given number of incoming and ouigpi
wires at each node) for any prescribed maximum graph “diame-
ter” (that is, the maximum number of hops between any two sode
in the graph). If one considers the wide range of possiblptgra
that may be used to interconnect a large number of compogdtio
nodes, the Cartesian graph may be identified as one extreithe, w
the simplest local structure possible but a poor graph diame
whereas the Kautz graph may be considered the other extvathe,

a complex logical structure that sacrifices local order Ixhilsts
the optimal graph diameter.

In certain unstructured applications, the optimal graantiter
offered by the Kautz graph is attractive, though such systbe
come difficult to build as the cluster size is increased duthéo
intricate weave of long wires spanning the entire system.

Many problems of interest in high performance computingy-ho
ever, have a regular structure associated with them. A pexae
ample is the discretization of a partial differential edqoatPDE).
When distributing such a discretization on a switchlesstipna-



cessor computer systems for its parallel solution, one rgdpe
divides the domain of interest into a number of finite regjoms —(O—=CO—=C—=0) W

Voronoi cells, assigning one such cell to each computattioode.

An important observation is that such computations usuatiyire Figure 1: A simple 1D periodic Cartesian interconnect with
muchmore communication between neighboring cells than they do unidirectional links. The diameter of this graph is seven hgs.
between cells that are physically distant from one anotféus, Note that a long wire is needed to make the periodic connectip
the practical effectiveness of proposed solutions to @) defini- the length of this wire increases as the cluster size increes.

tion of the Voronoi cells, and (ii) the distribution of thesells over
the nodes of the cluster (together referred to as the “lo&hbing
problem”) is closely related to both the physical proximitythe
cells created in the PDE discretization and the logical ipndy of
the nodes to which these cells are assigned in the compaatio
cluster. A graph with local structure, such as the Cartegiaph,
can drastically reduce the average number of hops of theagess
it must pass during the simulation of the PDE by laying out the
problem in such a way that these two proximity conditionsieoi
cide; a graph without such local structure, such as the Kgraizh,
does not admit an efficient layout which achieves this caorlit

The present line of research thus considers alternativecéme *
tesian) graphs with local structure exploitable by PDE rdisza- I:‘ii "
tions, while keeping to a minimum both (a) the number of wires ! '_. '_.
per node [to minimize the complexity/expense of the cljsterd
(b) the graph diameter [to minimize the cost of whatever irhdp IR R R D EIER CREC CREIEL
communication is required during the PDE simulation].

This particular paper is motivated by the needs presented by
global weather forecasting problems defined over a spherte n
that some of the largest purpose-built computational ehgsin
the world are dedicated to this application. Loosely spagkihe
present paper explores the best ways to put a fine honeycdthb gr
on a sphere, and then explores how to realize this disctietiza
efficiently on an easily-scaled layout of computationaldweare
without using any long wires.

The work considered may be applied immediately at the system
level. With the further development of appropriate hardwat
may also be applied at the board level or even the chip levblelO
chip-level noncartesian interconnect strategies whiee leen in-
vestigated in the literature include the Y architecture tradX ar-
chitecture. The Y architecture for on-chip interconnestbased
on the use of three uniform wiring directions’(@2®, and 240)
to exploit on-chip routing resources more efficiently thiaa tradi-
tional Cartesian (a.k.a. Manhattan) wiring architectéres]. The
X architecture is an integrated-circuit wiring architaettbased on
the pervasive use of diagonal wires. Note that, compareil tivé
traditional Cartesian architecture, the X architectureaoestrates
a wire length reduction of more than 20% [11].

Figure 2: By folding the simple 1D interconnect of Figure 2 in
half while keeping the same logical connection, the effecf the
periodic connection may be localized. In this case, the lomgt
wires only span the distance between two nodes in the folded
structure, regardless of the number of nodes in the graph.

Figure 3: By identifying the local structure of the folded 1Din-
terconnect of Figure 2, a tile may be designed that containswo
nodes and four wires. This tile, together with simple end cag,
may be extended to larger interconnects with the same topol-
ogy. Here, we extend from 8 nodes (top) to 32 nodes (bottom).

through which a node can both send and receive data.

The expense of the hardware required to complete a hop often
increases quickly with the physical length of the wire betwéhe
nodes. To reduce this cost, it is thus desirable to minimiee t
maximum wire length. In Figure 1, the link connecting nodes 1
andN traversedN nodes, which makes scaling this layout to lake
costly. The problem of long wires can be circumvented byifgd
the graph. By keeping the same logical connection, butriglthe
graph onto itself along its axis of symmetry, one can prodhee
graph shown in Figure 2. Here, the interconnect is identc#hat
of Figure 1 (and, thus, so is the graph diameter), but nowcthgdst
wire only spans the distance between two nodes, indepentibint
thus facilitating scaling of the cluster to lartje

Noting the repetitive pattern in Figure 2, we identify a ssthilar
tile that can be used to build the interconnect. This tileimposed
of two nodes and four wires (two sending and two receivingg- F

2. CARTESIAN INTERCONNECTS ure 3a illustrates how four of these tiles, along with simeiel
Two criteria by which switchless interconnects are meatare caps, can be combined to produce the original interconrideige
cluster diameter and maximum wire length [6]. Loosely sjpegk ure 1. Animportant feature of the tiled configuration is talabil-
the former affects the speed at which information is padsedigh- ity; note how it can be extended to much larger interconneits
out the graph, whereas the latter affects the cost of eachugied the same topology, such as the 32 node graph in Figure 3b.
to construct the interconnect, as described further below. We now consider a four-connected periodic 2D Cartesianhgrap
Because each node can communicate directly only with its log known as a torus, in which each node has four unidirectionks)
ical neighbors, we characterize information as moving ipshat two for sending and two for receiving, as illustrated in Feyda.
takes one hop for information to travel from a given nodedarit- Similar to the 1D graph of Figure 1, the diameter of this 2Dpgra
mediate neighbor, two hops for information to travel to gheor is six hops, but now interconnects 16 nodes instead of 8. €he p

of a neighbor, etc. The diameter of a graph is the maximum eumb  odic connections of this 2D graph create many long wiresgpah
of hops between any two nodes in the graph. For example, é&igur the entire width of the interconnect. These long wires caelinai-
1 illustrates a 1D Cartesian graph with a periodic connactitach nated by folding the graph onto itself along both axes of sytnyn

node can send information to its neighbor to the right, acdive From the folded 2D graph, we again identify local structinat t
information from its neighbor to the left. This type of cowtien facilitates tiling. The tiles for the 2D Cartesian torus tan four
is called a unidirectional link, because information caity dtow nodes and the associated communication links. Figure 5show

in one direction. Many switchless clusters use bidirectidimks, how these tiles, together with simple end caps, may be assdmb
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Figure 4: The idea of folding the interconnect to minimize tre
maximum wire length extends directly to higher dimensions.
Here, a 2D periodic Cartesian graph (left) is folded onto itglf
in both directions of symmetry. Again, the longest wires ony}
span the distance between two nodes in the folded structure.

Figure 5: A four-node tile can be extracted from the intercon
nect of Figure 4b. This tile, combined with simple end caps,
can be extended to larger interconnects with the same topalgy.
Here, we extend from 16 nodes (left) to 256 nodes (right).

to produce the original 2D periodic Cartesian graph, antedda
larger graphs of the same topology.
The three key steps illustrated by example in this sectien ar

(i) folding a graph to minimize the maximum wire length,
(ii) identifying repetitive local structure in the foldedaph, and
(iii) defining a self-similar tiling to facilitate scaling.

The remainder of this paper extends these three steps ty-hone

comb graphs with a variety of useful periodic closures. Thed-
connected graphs so generated, in which each node is cedrtect
an odd number of nearest neighbors, lack the symmetry ejtor
configure an effective interconnect using unidirectioimétd. As a
result, each link in the remainder of this discussion isrid&sl to
represent either a bidirectional link or a pair of unidireral links
(one in each direction). In 83.1, we consider the intercotsthat
arise from periodically connecting the honeycombl graptiéndi-
rections of the Cartesian unit vectors, much like the gragfisg-
ure 4, to produce a toroidal class of interconnects. In 88c2hen
examine the tilings that arise by periodically closing adamomb
graph in three directions instead of two. Finally, 83.3 eixas a
variety of methods for wrapping a sphere with a (mostly) lyene
comb graph.

3. HONEYCOMB INTERCONNECTS
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Figure 6: A 2D honeycomb grid is anisotropic about its Carte-
sian axes of symmetry. Nonetheless, periodic connectionarc
be made in the directions of the Cartesian unit vectors (left

This closure produces a topology called a toroidal nanotuhe
By folding about the Cartesian axes, two distinct tiles can b

identified to construct the interconnect (right). This intercon-

nect has the same diameter the corresponding Cartesian tosu
with the same number of nodes, but uses 25% fewer wires.
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essentially no increase in the overall complexity of theolay and
can easily be extended from toroidal closures, as disclesed:,
to triply-periodic closures, and then to spherical closure

3.1 Toroidal closure

The simplest method for laying out a 2D periodic honeycomb
graph is shown in Figure 6a. By making a periodic connection i
the direction of one of the Cartesian unit vectors, we makdalar
topology similar to that of a carbon nanotube. This nanoiikee
structure is then closed upon itself about its other axiywietry,
forming a torus. Like the Cartesian torus, one can modify ¢fo-
sure by applying varying amounts of twist in one or both p#ido
directions before closing the graph. Such twists might erase-
ful in future applications, but for brevity are not consieéifurther
here.

Tiling the toroidal closure. As with the Cartesian torus, the
periodic connections in the toroidal nanotube illustrate&igure
6a create long wires that span the width of the entire grdpis t
hindering scalability. To eliminate these long wires, alfoy strat-
egy is again used to reveal local structure and identifyilagtilas
illustrated in Figure 6b. Unlike the Cartesian case (duenari
ily to the anisotropy of the topology with respect to the cies
applied), we now define two distinct tiles, each with four esd
However, the overall complexity of the tiling is on par withat of
the Cartesian interconnect discussed previously. It ismesl that
the honeycomb tilings of the family illustrated in Figure \Bith
bidirectional links) have essentially the same diametéhasorre-
sponding Cartesian tilings with the same number of nodesceéle

by moving to a honeycomb topology, we develop a graph with the

same diameter but only 3/4 of the wiring cost/complexity.

3.2 Triply-periodic closure

Although we can improve upon Cartesian interconnects wti h
eycomb graphs while still using a Cartesian closure styategdis-
cussed above, it is more natural to select a closure for theyho

Honeycomb (three-connected) graphs may be used in lieu of comb graph that better reflects its inherent symmetries. aldsv

Cartesian (four-connected) graphs to create 2D interctisméth a
significantly reduced number of wires (and, thus, a signitiyare-

this end, we now examine the triply-periodic closure of thenp
honeycomb graph. This study forms the foundation upon which

duced cost). We now show that such graphs can be developled wit our study of spherical closures (83.3) is based. Solutiorthis
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Figure 7: Three ClassA structures (that is, honeycomb graphs
on the equilateral triangle) with degree = 1, 2, and 6.

Figure 8: Three ClassB structures with degree = 1, 2, and 4.

PA2 % % PB1 g %
Figure 9: The two families of triply-periodic honeycomb inter-
connects. ThePA« family is built from six Class A structures

and has connected edge links whereas tHeBx« family is built
from six ClassB structures and has coincident edge nodes.

problem build from two distinct classes of honeycomb graphs
the equilateral triangle, denoted in this work as Classd Class
B structures:

A) The ClassA structures place the midpoints of the links on the
edges of the equilateral triangle, as illustrated in Figur&he de-
gree of this structure is defined as the number of midpoiratslit

on each edge of the triangle.

B) The ClassB structures place the edges of the hexagons on the
edges of the equilateral triangle, as illustrated in Figur&he de-
gree of this structure is defined as the number of hexagochitoy
each edge of the triangle.

It is straightforward to join six Clasa or ClassB structures, as il-
lustrated in Figures 7 and 8, to form a hexagon, as illustriat&ig-
ure 9. The periodic connections on this hexagon are easilyea

in the case of Clas4, the wires on opposite sides of the hexagon
are connected; in the case of Cl&she nodes on opposite sides of
the hexagon are taken to be identical (in both cases, movithgg
onal to each side of the hexagon, not diagonally through éhéec
point). The resulting graphs are denofeé andPBx, where the

x denotes the degree of the six Claser ClassB structures from
which the triply-periodic honeycomb graph is built.

Tiling the triply-periodic closure. As in the previous exam-
ples, the triply-periodic graphs of Figure 9 can be tiledfailaing
about the three axes of symmetry and identifying the rapetio-
cal structure of the folded graph. This process eliminalidsragy
wires which grow as the graph size is increased. For Glaske
new tile so constructed, denoted Tiein Figure 10, contains six
nodes instead of four, leading to the tilBd« family illustrated in

Figure 10: The three fundamental tiles, denotecE, F, and G,
upon which the tilings of the triply-periodic (83.2) and spheri-
cal (83.3) closures of the honeycomb interconnect are based

| l O ' .
Figure 11: The three Platonic solids with triangular faces.
From left to right: Tetrahedron (4 faces), Octahedron (8 fa@s),
and Icosahedron (20 faces). The faces of these polyhedra can
be gridded with either ClassA or ClassB triangular graphs (see

Figures 7 and 8) to build tiled spherical interconnects bas&on
the fundamental tiles introduced in Figure 10.

the first four subfigures of Figure 18. For Cldsthe new tile so
constructed contains 18 nodes; as illustrated in the lastdiobfig-
ures of Figure 18, and for later convenience, we may immelgiat
split this 18-node tile into three identical smaller tildenoted Tile
F in Figure 10. The tilings are completed with simple end caps.

3.3 Spherical closure

We now discuss the most uniform techniques available torcove
a sphere with a (mostly) honeycomb grid.

Note first that eactin structure of Figure 7 ha¢ = n? vertices
(that is, nodes) anH = 1.5n? edges (that is, wires between nodes),
whereas eacBn structure of Figure 8 hag = 3n? vertices and
E = 4.5n? edges. If each corner of akn structure is joined with
five other identicaAnstructures, then eadkn structure contributes
effectivelyF = 0.5n? faces (that is, hexagons) to the overall graph,
whereas if each corner of Bn structure is joined with five other
Bn structures, then eadBn structure contributeE = 1.5n2 faces
to the overall graph. In both cases, we h&ve E +F = 0, which
is characteristic of a planar graph.

Euler's formulaV — E + F = 2 relates the numbers of vertices,
edges, and faces of any convex polyhedron. The upshot of Eu-
ler's formula in the present problem is that it is impossiioleover
a sphere perfectly with a honeycomb grid. By this formulay an
attempt to map a honeycomb grid onto the sphere will lead te-a p
dictable number of “defects” (that is, faces which are nasgens).

The three most uniform constructions available for gemnayed
mostly honeycomb graph on a sphere are given by pasting & set o
identical An structures of Figure 7, dBn structures of Figure 8,
onto the triangular faces of a Tetrahedron, Octahedrorgasahe-
dron (see Figure 11); these three constructions form this fas
the remainder of this study. Note that this approach joich ear-
ner of the structure selected with two, three, or four ottlentical
structures, and leads to 4 triangular faces, 6 square facek?
pentagonal faces embedded within an otherwise honeycoapth gr
The resulting graph is easily projected onto the spheregralbhs
so constructed, of course, satisfy Euler's formula. Soméhef
graphs so constructed occur in nature as nearly spheridabrca
molecules known as Buckyballs.



o Symmetry and Class

2 Periodic | Tetrahedral| Octahedral| Icosahedral
o] A| B A | B A| B A | B

1 6 18 4 12 8 24 20 60
2| 24| 72 | 16 | 48 | 32| 96 80 | 240
3| 54| 162 | 36 | 108 | 72 | 216 | 180 | 540
4 || 96 | 288 | 64 | 192 | 128 | 384 | 320 | 960
k || 6k? | 18k? | 4k? | 12k? | 8Kk? | 24k? | 20k? | 60K?

Table 1: Number of nodes in a honeycomb interconnect. For
the same symmetry and degree, the ClasB topologies have
three times as many nodes as Class. Note also thatOAl is a
cube,lAlis a dodecahedron, andB1is a buckminsterfullerene.

OA2 OAd

OAl

Figure 12: A representative family of spherical interconnets.

Table 1 shows the number of nodes in these graphs as a functionall six graphs are members of theOA2P family (three of the

of their symmetry P, T, O, orl), class A or B), and degreekj.
For each case, the number of nodes increaseskfitFor a given
symmetry and degree, the ClaBgraph contains three times as
many nodes as the Cladgraph.

For general-purpose computing on switchless multipraressm-
puter systems, spherical interconnects (83.3) are no¢ @stef-
ficient as planar interconnects (83.2) with either toroiclasure
or triply-periodic closure, as spherical interconnectgehslightly
higher diameters for a given number of nodes. However, as men
tioned previously, spherical interconnects are poisedakena ma-
jor impact for the specific problem of solving PDEs on the sphe
which is an important class of computational grand chakgmgb-
lems central to a host of important questions related toallalea-
ther forecasting, climate prediction, and solar physingatt, some
of the largest purpose-built supercomputers in the worddedi-
cated to such applications, and thus it is logical to desigmnes
computational clusters with switchless interconnect<iviare nat-
urally suited to this particular class of applications.

Some of the graphs developed here lend themselves partycula
well to efficient numerical solution of elliptical PDEs vihg iter-
ative geometric multigrid method; Figure 12 illustrates giaphs
that may be used for such a purpo&#®P for p={0,1,---,5}).
Note that the Octahedral symmetry of these grids introdadesy
property missing from the Tetrahedral and Icosahedrallfesnof
spherical interconnects: due to the square defect regibiiseo
Octahedral graphs, a red/black ordering of points is meiath
over the entire graph. That is, half of the points may be kdbel
as red and the other half labeled as black, with red points hav
ing only black neighbors and black points having only redyhei
bors. This ordering allows an iterative smoothing alganitknown

square “defect" regions are visible in each graph). From top
left to bottom-right the degree is20,21,22 23 24 and 2°. The
thick black lines show the logical interconnect. The light gey
lines illustrate the respective Voronoi cell for each nodeindi-
cating the region of the physical domain that each node is re-
sponsible for in a PDE simulation on a sphere.

are built) onto the sphere (where they are applied). Miniimgiz
such graph deformation is beneficial for improving accuiaayu-
merical simulations. However, as mentioned above, ourareke
indicates that Octahedral graphs, which admit a valuallélack
ordering not available in Icosahedral graphs, might, orarzg,
prove to be significantly better suited in many applications

Tiling the spherical closure. As illustrated in Figure 12, spher-
ical graphs are quite complicated; their practical deplegtrfor
largeN would be quite difficult without a scalable tiling strategy.
Thus, in a manner analogous to that used in §3.1 and §3.2,we no
transform these graphs to discover local patterns andifylesetf-
similar tilings that make such constructions tractable scadable.

To illustrate the process, consider first fhB2 interconnect as a
representative example, as depicted in Figure 13. Notdtimstve
replace the “folding” idea used in §2, §3.1, and §3.2 withtegtsh-
ing” and “grouping” strategy. The stretching step may beaized
by imagining all links in the spherical graph under considien as
elastic, then imagining the transformation that would tefsom
grabbing all of the nodes near one of the vertices of the @olyh
dron, or near the center of one of the faces of the polyhednod,
pulling them out to the side (while maintaining the connétt)
until the resulting stretched graph may be laid flat. The Itegy

as Red/Black Gauss Seidel to be applied at each sub step of thespider web-like structure is known as a Schlegel diagram.

multigrid algorithm and facilitates remarkable multigednver-
gence rates and efficient scaling on multiprocessor mashime
very large grids.

Although the idea of building the interconnect of a multipes-
sor computer system in the form of a honeycomb sphericahgsap
still in its infancy, people have known about and used sueiplys
to discretize the sphere in the numerical weather predictam-
munity for many years; see, e.g., [3], [8], and [10]. In pautar, the
model developed by the Deutscher Wetterdienst (DWD) is an ex
ample of an operational meteorological code that implesém
dual of a honeycomb graph with icosahedral symmetry (sée [7]
These previous investigations have almost exclusivelg gsaphs
with Icosahedral symmetry, as such graphs undergo thedefst
mation when being projected from the polyhedron (on whigyth

For theT B2 Schlegel diagram in the top-right of Figure 13, the
outer edge of the diagram is a triangle that correspondstodtes
near one of the vertices of the tetrahedron of the unstretgteph,
and near the center of the diagram is a hexagon that corréspon
nodes near the middle of the opposite face of the tetrahedron

The next step in tiling a spherical graph is to identify répet
structure. In the Schlegel diagram of Figure 13, after atersible
deliberation, we have grouped the nodes in sets of six. Thigyy
ing is not unique, but it is with the choice shown that a simjézl
structure reveals itself. In general, nodes that are ajpaiely
the same distance from the center of the Schlegel diagradtéen
be lumped together. From the selected grouping, we canectieat
flowchart shown on the lower-left of Figure 13. In this flowdha
all obvious honeycomb structure is removed, but now theggai
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Figure 13: In order to determine a tiling for a given spherica
interconnect graph (top-left), a Schlegel diagram (top-rght) is
first constructed by stretching and flattening the graph ontothe
plane while maintaining the same logical connections. From
this, locally similar groups of nodes can be grouped into a
revealing “flowchart” (bottom-left) that ultimately makes the
tiling evident (bottom-right). In the case of TB2 illustrated
here, with the exception of the top of each column of the
flowchart, the nodes are connected identically to th&Ax« case,
leading to a tiling with the E tiles of Figure 10. This tiling is
then completed with F tiles from Figure 10 along one side, to-
gether with the appropriate end caps.

paired nodes are brought together in what will eventualiyobee
their tiled form. Significantly, the logical structure oktfiowchart
(as well as the Schlegel diagram) is identical to the origipaeri-
cal interconnect. Note that flow from bottom to top on the flbeut
corresponds to in-to-out flow in the Schlegel diagram.

With the exception of the top set of nodes in each column of

the flowchart, the connections between the other six seteddés

match those of th®Ax« case. That is, the first node in each group

is connected to the first node in the neighboring groups, Atca
result, we can use the sarBdiles (see Figure 10) to construct this
part of the graph as were used in th&« constructions. The re-
maining two sets of nodes can be incorporated using ttie used

in the PBx constructions. After making simple end connections,

the completed tiling is shown on the bottom-right of FiguBe In
this case, the overall tiling builds out to a right triangle.

For each interconnect family, we perform a similar procedur
for the first few graph degrees until a pattern emerges, fitestch-
ing/flattening the graph to make a Schlegel diagram, themtiige
ing repetitive local structure by grouping the nodes in atohout
flowchart of the Schlegel diagram, and finally defining a gjlto
facilitate scaling. Though this was an involved processsdylo-
ing, we have discovered the simple and easily scaled fesnilfe
tilings depicted in Figures 19 - 21.

Interesting and surprising correlations exist betweervéi®us
simple tilings which we have discovered. We first observeehah
symmetry family shares a common overall shape:Tthe: family
builds out to right triangles, th® * x family builds out to parallelo-
grams, and thes* family builds out to “six-sided parallelograms”.

By identifying an equivalence between a pairbfiiles and a

pair of F tiles, as depicted in Figure 14, we are also able to identify

interfamily relationships between the tilings as well. Appg this

Figure 14: An equivalence between a pair oE tiles and a pair
of F tiles. Typically, we use theE tiles whenever possible; how-
ever, the equivalence between these two pairings helps to ity
the ClassB tilings of the various different families.

Figure 15: For any of the OB« family of tilings (here, OBl is
shown), we can replace thet tiles along the shorter diagonal
using the equivalence depicted in Figure 14. This allows us
to identify the bifurcation axis that splits the tiling into two
smaller tilings in the T Bx tilings of the appropriate degree.

U AU\»

Figure 16: (left) The IBn graph may be subdivided into four
smaller tilings [two TBnand two PBr] via a series of simple
switches applied to the electrical connections between thies
along the three diagonals shown; a similar subdivision to for
smaller tilings [two TAn and two PAr may also be accom-
plished with the 1An tiling after the transformation illustrated
in Figure 14 is applied along the appropriate diagonals. (rght)
The IBn tiling, for n even, may also be subdivided a different
way [to two TBnand two OA(n/2)]; a similar subdivision [to
two TAnand two OB(3n/2)] may also be accomplished with the
IAn tiling, for n even, after the transformation in Figure 14 is
applied appropriately. Such subdivisions are useful for running
four small jobs on the cluster simultaneously.

substitution along the shortest diagonal of @@« family, as illus-
trated in Figure 15, shows immediately how B8« tiling can be
built up from two tilings of theT B« family. Equivalently, theDA«
family can be built from twar A« tilings of the appropriate degree.

Similarly, as illustrated in Figure 16, the x family of tilings can
be built up from twoT x « tilings and either twd? x « tilings or two
O % tilings. Such subdivisions could be useful for running four
smaller jobs on the cluster simultaneously without recaméigon.

We have focused in 83.3 on applying the triangular Chassid
ClassB structures from Figures 7 and 8 to the triangular faces of
three of the Platonic solids (Figure 11). However, otherstwe-
tions are also possible. For instance, the truncated &xrah (Fig-
ure 17) has only hexagonal and triangular sides, and thudean
covered with triangular Clagsor ClassB structures on its triangu-
lar faces and six Clags or ClassB structures (see Figure 9) on its
hexagonal sides. The resulting Cldsgraphs have 28 nodes, and
the resulting ClasB graphs have 8& nodes (cf. Table 1). These
graphs each have 12 pentagonal faces embedded within an othe
wise honeycomb graph, just like the icosahedron; howeveg, o
projected out to the sphere, they are slightly less unifarthdo not
admit a red/black ordering of points. Another alternatigestruc-



Figure 17: The truncated tetrahedron, the only Archimedean
solid with only triangular and hexagonal sides.

tion places twd?A« of PB« graphs on top of one another, connected
along the edges, projecting the top onto the norther hererspmd
the bottom to the southern hemisphere. These graphs eaelsilav
square faces embedded within an otherwise honeycomb gtesph,
like the octahedron; however, they are significantly lesgoom,
though they do admit a red/black ordering of points. It igently
unclear whether or not such alternative constructions hayesig-
nificant advantages.

4. SUMMARY

The present line of research considers the topology of the in
terconnection of processing elements in switchless nroktgssor
computer systems. The design of such switchless interctsine
a problem that has been considered for decades; howeveudise
tion of scalability of such designs is of heightened impoctato-
day, as modern computer systems take parallelization toleew
els. Note that the three fastest computer systems in thelvathy
each has hundreds of thousands of nodes, whereas typicalitem
clusters in academic and industrial settings are today igigpftom
thousands to tens of thousands of nodes. It is for this retsdn
we believe, a revisiting of the topology used in switchlesstipro-
cessor computer systems is in order, and special-purppsktpies
for clusters built for special-purpose applications, sashglobal
weather forecasting, are warranted.

The present paper focused on the optimal ways to cover aespher
with a fine honeycomb grid. Euler’s formula leads to a prexits
number of “defects” (non-hexagons) within the otherwisedyw
comb grid; the three choices that may be developed with malxim
uniformly incorporate 4 triangles (distributed at the @msof a
Tetrahedron), 8 squares (distributed at the corners of daah@e
dron), or 12 pentagons (distributed at the corners of anatoes
dron) into the otherwise honeycomb grid. The present wogk sy
tematically examined all three of these cases (denbdted, O x,
and| %), and discovered two convenient families of tilings for
each case (denoted\+ and«Bx). These tilings are repetitive struc-
tures, which greatly eases their scaling to large clusgssf * n
for n>> 1), and contain no long wires, thereby facilitating fasklin
speeds and reduced cluster cost and complexity even asutercl
size scales to hundreds of thousands of nodes.

In the resulting switchless interconnect designspthesical prox-
imity of the cells created (in the PDE discretization on the sphere
and thelogical proximityof the nodes to which these cells are as-
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signed (in the computational cluster) coincide perfesttyall com-
munication between physically adjacent cells during th&RDn-
ulation require communication over just a single hop in th&pu-
tational cluster. Such an interconnect should provide-pedect
scaling with cluster size in operational problems; tharédining
the overall grid by a factor of while also increasing the overall
cluster size by a factor af will result in an essentially unchanged
execution speed. Such scaling is the holy grail of paralbehc
puting, and is enabled in the present case by the carefugrdesi
a computational interconnect topology that is well matcteethe
physical problem to which the computational cluster is datdid.
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each builds out to an equilaterbtriangle. Note that

whereas thePB« construction is built using F tiles (see Figure 10).

Figure 18: The first four members of the PA« and PB« families of interconnects;

the PA« construction illustrated here is built using E tiles

Figure 19: The first four members of the T A« and T B« families of interconnects; each builds out to a right triande.



Figure 20: The first four members of the OAx and OB« families of interconnects; each builds out to a parallelogam. Both families
may be constructed by connecting twd A« or T B« tilings along the longest leg, as described in Figure 15.

Figure 21: The first four members of thel Ax and IBx families of interconnects; each builds out to a “six-sided prallelogram”. Both
families may be constructed by connecting tw@ = * and two P« tilings, or two T % and two O« * tilings, as described in Figure 16.



