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Abstract

Implicit/Explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems
with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better)
implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more
convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage
RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE
systems on modern (cache-based) computational hardware, in which memory management is often the
most significant computational bottleneck. In this paper, we develop one second-order, three third-
order and one fourth-order IMEXRK schemes of the low-storage variety, all of which have the same
or comparable low storage requirements, better stability properties, and either fewer or slightly more
floating-point operations per timestep as the venerable (and, up to now, unique) second-order two-
register Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) IMEXRK algorithm that has dominated the
DNS/LES literature for the last two decades.

1 Introduction

Although a wide variety of methods have been used for spatial discretization and subgrid-scale modeling in
the Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of turbulent flows, time marching
schemes for such systems have relied, in most cases, on an implicit scheme for the advancement of the stiff
terms and an explicit scheme for the advancement of the nonstiff terms. Among these so-called IMEX
schemes, an approach that gained favor due to the pioneering work of Kim & Moin [9] and Kim, Moin,
& Moser [10] coupled the (implicit, second-order) Crank-Nicolson (CN) scheme for the stiff terms with the
(explicit) second-order Adams-Bashforth (AB2) scheme for the nonstiff terms. This approach was refined
in Le & Moin [11], which used the (implicit) CN scheme for the stiff terms, at each RK substep, together
with the (explicit) third-order low-storage Runge-Kutta-Wray (RKW3) scheme [18] for the nonstiff terms.
This venerable IMEX algorithm, dubbed CN/RKW3, still enjoys extensive use today, and is particularly
appealing, as only two registers are required for advancing the ODE in time, though if three registers
are used, the number of flops required by the algorithm may be significantly reduced. In high-dimensional
discretizations of 3D PDE systems on modern computational hardware, the reduced memory footprint of this
time marching algorithm, in its two-register or three-register form, can significantly reduce the execution time
of a simulation. However, the CN/RKW3 scheme has the considerable disadvantage of being only second-
order accurate, and its implicit part is only A-stable. In recent years, there have been relatively few attempts
to refine the CN/RKW3 time-marching scheme for turbulence simulations, perhaps due to a mistaken notion
that modifying it to achieve higher order might result in either increased storage requirements, significantly
more computation per timestep, or the loss of A stability of the implicit part. It turns out that this is untrue;
in fact, there is much to be gained by revising this algorithm.

When using an IMEX scheme, such as those described above, to march the incompressible Navier-Stokes
equation, one natural choice is to treat the diffusion terms as the “stiff terms” and the convective terms as the
“nonstiff terms”. Note that a better choice for discretizations with significant grid clustering implemented
in one or more directions, as usually present when simulating wall-bounded turbulent flows, is to treat the
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diffusion and (linearized) convection terms with derivatives in the direction of most significant grid clustering
(e.g., the direction normal to the nearest wall) as the “stiff” direction, and the diffusion and convection terms
with derivatives in the other directions as the “nonstiff” terms, as suggested by Akselvoll & Moin [1]. Note
further that so-called fractional step methods are often combined with such IMEX schemes in order to
enforce the incompressibility constraint (see, e.g., Le & Moin [11]). The present paper focuses exclusively
on the IMEXRK part of such time-advancement algorithms; various creative choices for which terms to
take implicitly at different points in the physical domain of interest, and various methods for implementing
fractional step techniques for enforcing the divergence-free constraint, may subsequently be addressed in an
identical manner as discussed in [1], [11], and elsewhere in the literature.

In the present work, we develop a new family of low-storage IMEXRK schemes well suited for turbulent
flow simulations, and other computational grand challenge applications, using either two or three registers.
With an eye on the computational cost of their implementation, we focus on third-order and fourth-order
IMEXRK schemes. We denote each scheme as IMEXRKnsS[rR]x, where n is the order of accuracy, s is
the number of stages, r = 2 is the minimum number of registers needed for implementation, and x reflects
the stablility properties of the scheme’s implicit component (see §1.1.1). A (hardware-dependent) trade-off
between flops and storage must ultimately be conducted to select between the two-register and three-register
implementation of each scheme.

The paper is organized as follows:

• §1.1 presents the general structure of IMEXRK schemes, their general implementation, conditions on
their parameters for second-order and third-order accuracy, and characterizations of their stability;
• §1.2 presents the general 2-register IMEXRK form, and 3-register & 2-register implementations of this
form;
• §2 presents the classical second-order, three-stage, A-stable CN/RKW3 scheme which, prior to the
present work, was the only existing prototypical example of a 2-register IMEXRK scheme;
• §3 through §4 present our four 2-register IMEXRK schemes;
• §5 presents our 3-register fourth-order IMEXRK schemes; and
• §6 considers the application of all of these 2-register IMEXRK schemes, and some of their full-storage
IMEXRK competitors, to a representative test problem in order to compare their computational effi-
ciency.

1.1 Full-storage IMEXRK schemes and their Butcher tableaux

A comprehensive review of (full-storage) IMEXRK schemes is given by Kennedy, Carpenter, & Lewis [7].
In short, IMEXRK schemes incorporate a coordinated pair of Diagonally Implicit Runge-Kutta (DIRK,
with lower-triangular A) and Explicit Runge-Kutta (ERK, with strictly lower-triangular A) schemes, with
parameters as summarized in the standard Butcher tableaux

cIM1 aIM1,1
cIM2 aIM2,1 aIM2,2

...
...

. . .
. . .

cIMs aIMs,1 · · · aIMs,s−1 aIMs,s

bIM1 · · · bIMs−1 bIMs

cEX
1 0

cEX
2 aEX

2,1 0
...

...
. . .

. . .

cEX
s aEX

s,1 · · · aEX
s,s−1 0

bEX
1 · · · bEX

s−1 bEX
s

(1)

for the time advancement of an ODE of the form

ẋ(t) = f(x, t) + g(x, t), (2)

where f(x, t) represents the stiff part of the RHS [advanced with the DIRK method at left in (1)], and g(x, t)
represents the nonstiff part of the RHS [simultaneously advanced with the ERK method at right in (1)].

If the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting the efficient solution of
Ax = b as A−1b, implementation of the IMEXRK scheme in (1) to advance from x = xn to x = xn+1
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proceeds as follows

for k = 1 : s (3a)

if k == 1, y = x, else, y = x+
∑ k−1

i=1
aIMki ∆t f i +

∑ k−1

j=1
aEX
kj ∆tg j , end (3b)

f k = A (I − aIMkk ∆t A)−1y [equivalently, f k = (I − aIMkk ∆t A)−1Ay ] (3c)

g k = g(y + aIMkk ∆t f k, tn + cEX
k ∆t) (3d)

end (3e)

x← x+
∑ s

i=1
bIMi ∆t f i +

∑ s

j=1
bEX
j ∆tg j (3f)

Line (3c) above is simply f k = f(z, tn + cIMk ∆t), where z is the solution of e(z) = z − y − aIMkk ∆t f(z, tn +
cIMk ∆t) = 0 [that is, where z = y + aIMkk ∆t f(z, tn + cIMk ∆t)], in the special case that f(x, t) = Ax. More
generally, if the stiff part f(x, t) is nonlinear, then line (3c) is replaced by a Newton-Raphson iteration (see
[13]) to find the z such that e(z) = 0:

Initialize: z0 = y + aIMkk ∆t f(y, tn + cIMk ∆t)

Iterate:
(

I − aIMkk ∆t
∂f(x, tn + cIMk ∆t)

∂x

∣

∣

∣

x=zm

)

(zm+1 − zm) = −zm + y + aIMkk ∆t f(zm, tn + cIMk ∆t)

Upon exit: f k = f(zconverged, tn + cIMk ∆t)



















(3c’)
The Jacobian used in this iteration may be computed analytically or approximated numerically, and the ini-
tialization of this iteration may sometimes be significantly improved with a so-called “dense output” strategy;
see [7] for details. The low-storage IMEXRK algorithms developed in this work may be applied in the linear
or nonlinear setting, mutatis mutandis; §1.2.1 and §1.2.2 provide low-storage pseudocode implementations
in the case in which the stiff part of the ODE is linear.

As is well known (see, e.g., [3]), for the DIRK and ERK components in (1), when used in isolation, to be
first-order accurate, it is required that

τ
IM(1)
1 =

∑

i
bIMi − 1 = 0 τ

EX(1)
1 =

∑

i
bEX
i − 1 = 0, (4a)

for these schemes, when used in isolation, to be second-order accurate, it is additionally required that

τ
IM(2)
1 =

∑

i
bIMi cIMi − 1/2 = 0 τ

EX(2)
1 =

∑

i
bEX
i cEX

i − 1/2 = 0, (4b)

for these schemes, when used in isolation, to be third-order accurate, it is additionally required that

τ
IM(3)
1 = (1/2)

∑

i
bIMi cIMi cIMi − 1/6 = 0 τ

EX(3)
1 = (1/2)

∑

i
bEX
i cEX

i cEX
i − 1/6 = 0 (4c)

τ
IM(3)
2 =

∑

i, j
bIMi aIMij cIMj − 1/6 = 0 τ

EX(3)
2 =

∑

i, j
bEX
i aEX

ij cEX
j − 1/6 = 0, (4d)

and for these schemes, when used in isolation, to be fourth-order accurate, it is additionally required that

τ
IM(4)
1 = (1/6)

∑

i
bIMi cIMi cIMi cIMi − 1/24 = 0 τ

EX(4)
1 = (1/6)

∑

i
bEX
i cEX

i cEX
i cEX

i − 1/24 = 0 (4e)

τ
IM(4)
2 = (1/3)

∑

i,j
bIMi cIMi aIMij cIMj − 1/24 = 0 τ

EX(4)
2 = (1/3)

∑

i,j
bEX
i cEX

i aEX
ij cEX

j − 1/24 = 0 (4f)

τ
IM(4)
3 = (1/2)

∑

i,j
bIMi aIMij cIMj cIMj − 1/24 = 0 τ

EX(4)
3 = (1/2)

∑

i,j
bEX
i aEX

ij cEX
j cEX

j − 1/24 = 0 (4g)

τ
IM(4)
4 =

∑

i,j,k
bIMi aIMij aIMjk c

IM
k − 1/24 = 0 τ

EX(4)
4 =

∑

i,j,k
bEX
i aEX

ij aEX
jk cEX

k − 1/24 = 0. (4h)

For the DIRK and ERK components in (1), when used together in an IMEX fashion, to be second-order
accurate, it is additionally required that

τ
IMEX(2)
1 =

∑

i
bIMi cEX

i − 1/2 = 0 τ
IMEX(2)
2 =

∑

i
bEX
i cIMi − 1/2 = 0, (4i)
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for these schemes, when used together in an IMEX fashion, to be third-order accurate, it is additionally
required that

τ
IMEX(3)
1 = (1/2)

∑

i
bIMi cEX

i cEX
i − 1/6 = 0 τ

IMEX(3)
2 = (1/2)

∑

i
bEX
i cIMi cIMi − 1/6 = 0 (4j)

τ
IMEX(3)
3 = (1/2)

∑

i
bIMi cIMi cEX

i − 1/6 = 0 τ
IMEX(3)
4 = (1/2)

∑

i
bEX
i cIMi cEX

i − 1/6 = 0 (4k)

τ
IMEX(3)
5 =

∑

i, j
bIMi aEX

ij cEX
j − 1/6 = 0 τ

IMEX(3)
6 =

∑

i, j
bEX
i aIMij cIMj − 1/6 = 0 (4l)

τ
IMEX(3)
7 =

∑

i, j
bEX
i aEX

ij cIMj − 1/6 = 0 τ
IMEX(3)
8 =

∑

i, j
bIMi aIMij cEX

j − 1/6 = 0 (4m)

τ
IMEX(3)
9 =

∑

i, j
bIMi aEX

ij cIMj − 1/6 = 0 τ
IMEX(3)
10 =

∑

i, j
bEX
i aIMij cEX

j − 1/6 = 0, (4n)

and for these schemes, when used together in an IMEX fashion, to be fourth-order accurate, 44 additional
constraints are required (see [7]), which for brevity aren’t listed here.

1.1.1 Stability

The stability of an RK scheme may be characterized by considering the model problem dx/dt = λx and
defining z = λ∆t, σ(z) = xn+1/xn, and σ(∞) , lim|z|→∞ σ(z). The stability function of an RK scheme
with Butcher tableau parameters A and b is then given by σ(z) = 1 + zbT (I − zA)−1111, where 111 denotes a
vector of ones; the RK scheme is said to be stable for any z such that |σ(z)| ≤ 1. Further, considering its
application to stiff systems, an RK scheme is said to be

• A-stable if |σ(z)| ≤ 1 over the entire LHP of z,
• strongly A-stable if it is A-stable and |σ(∞)| < 1, and
• L-stable if it is A-stable and σ(∞) = 0.

In our naming convention (see third paragraph of §1), x =‘A’ denotes A-stability, x =‘A+’ denotes strong
A stability, and x =‘L’ denotes L-stability, and parametric variations of a given scheme are indicated with
a Greek suffix.

The stability of an IMEXRK scheme is a bit more difficult to characterize. Of course, one may start
by characterizing the stability of the implicit and explicit parts considered in isolation. To evaluate the
stability of the implicit and explicit components of an IMEX scheme working in concert, we consider the
model problem dx/dt = λfx + λgx, where the first term on the RHS is handled implicitly, and the second
term on the RHS is handled explicitly. Defining zIM = λf ∆t, zEX = λg ∆t, and σ(zIM; zEX) = xn+1/xn, we
may write (see [7])

σ(zIM; zEX) =
det

[

I − zIMAIM − zEXAEX + zIM111(bIM)T + zEX111(bEX)T
]

det
[

I − zIMAIM
] . (5)

We may then characterize the stability of the implicit and explicit parts of an IMEXRK scheme working in
concert, when the implicit part of the problem is stiff, by looking at σ(zIM; zEX) as zIM →∞ for finite zEX.

1.2 Low-storage IMEXRK schemes

All existing literature on low-storage RK schemes to date appears to focus on explicit schemes. Note that a
cavalier implementation of a full-storage ERK scheme [see the explicit part of (3)] requires storage of the state
vector [x], the intermediate vector [y], and s values of the RHS vectors [g k]; that is, s+ 2 vectors of length
N , where x = xN×1. In the present work, we extend the two- and three-register van der Houwen class (see
[16]) of ERK schemes, a comprehensive review of which is given in Kennedy, Carpenter, & Lewis [8], to the
DIRK case, which can be accomplished by restricting all the elements below the first (second, for the three-
register case) lower subdiagonal to be equal to the corresponding bi in the same column. Further, we consider
coordinated pairs of such two- and three-register DIRK and ERK schemes in the IMEX setting described in
§1.1. In particular we will develop two-register third-order scheme and a three-register fourth-order scheme.
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As shown in §1.1, six constraints on the parameters of the IMEX Butcher tableaux (1) must be satisfied
for second-order accuracy, fourteen additional constraints must be satisfied for third-order accuracy and
forty-four constraints for fourth-order accuracy. Before proceeding, we thus introduce some simplifying
assumptions. Following [12] and [7] and the CN/RKW3 scheme of [11], we synchronize the stages of DIRK
and ERK components by imposing cIMi = cEX

i = ci for i = 1, . . . , s. We also coordinate the constituent
DIRK and ERK components such that bIMi = bEX

i = bi for i = 1, . . . , s, as also done in [12] and [7], but
which is not satisfied by CN/RKW3. Finally, for each stage, a stage order of one is also imposed such that

∑ i

j=1
aIMij =

∑ i−1

j=1
aEX
ij = ci for i = 1, . . . , s; (6)

it follows that c1 = aIM11 = aEX
11 = 0. As a result of these assumptions, the number of constraints on the

IMEX parameters [see (4)] for second-order accuracy is reduced to just two, the number of constraints for
third-order accuracy is reduced to just five, and the constraints for fourth-order accuracy are just nine.

For the third-order schemes, a second-order embedded scheme is also implemented without the assumption
b̂IMi = b̂EX

i , in order to benefit from higher freedom in the design phase. In this case, four constraints must
be imposed for accuracy, i.e. (4a) and (4b). As a guideline, none of the third-order truncation terms must
vanish so that each one will contribute to the error estimate. Furthermore the DIRK part must achieve
at least A-stability in order for the error estimation to stay bounded1. The remaining free parameters are
then optimized in order to increase the overall magnitude of the third-order truncation terms. The IMEX
Butcher tableaux in (1) for the two-register implementation are simplified as follows:

0 0
c2 aIM2,1 aIM2,2
c3 b1 aIM3,2 aIM3,3
c4 b1 b2 aIM4,3 aIM4,4
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · bs−2 aIMs,s−1 aIMs,s
b1 b2 · · · bs−2 bs−1 bs
b̂IM1 b̂IM2 · · · b̂IMs−2 b̂IMs−1 b̂IMs

0 0
c2 aEX

2,1 0
c3 b1 aEX

3,2 0
c4 b1 b2 aEX

4,3 0
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · bs−2 aEX
s,s−1 0

b1 b2 · · · bs−2 bs−1 bs
b̂EX
1 b̂EX

2 · · · b̂EX
s−2 b̂EX

s−1 b̂EX
s

(7)

In case a three-register implementation is considered, instead, the IMEX Butcher tableaux in (1) simplifies
as follows:

0 0
c2 aIM2,1 aIM2,2
c3 aIM3,1 aIM3,2 aIM3,3
c4 b1 aIM4,2 aIM4,3 aIM4,4
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · aIMs,s−2 aIMs,s−1 aIMs,s
b1 b2 · · · bs−2 bs−1 bs
b̂IM1 b̂IM2 · · · b̂IMs−2 b̂IMs−1 b̂IMs

0 0
c2 aEX

2,1 0
c3 aEX

3,1 aEX
3,2 0

c4 b1 aEX
4,2 aEX

4,3 0
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · aIMs,s−2 aEX
s,s−1 0

b1 b2 · · · bs−2 bs−1 bs
b̂EX
1 b̂EX

2 · · · b̂EX
s−2 b̂EX

s−1 b̂EX
s

(8)

As the DIRK component the IMEXRK form considered above has an explicit first stage, its stability func-
tion (5) may be written

σ(zIM; zEX) =
1 +

∑ s
i=1 pi(z

EX) [zIM]i

1 +
∑ s−1

i=1 qi [zIM]i
where pi(z

EX) =
∑ s−i

j=0
p̂ij [z

EX]j . (9)

1Notice that these last two conditions are not always achievable, hence not all the schemes here developed come with an
embedded scheme.
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1.2.1 General three-register implementation of IMEXRK[2R] schemes

Note that, if the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting the efficient solution
of Ax = b as A−1b, a straightforward implementation of the low-storage IMEXRK scheme in (7) that uses
three registers2 of length N , plus one additional register for error control purpose, to advance from x = xn

to x = xn+1 proceeds as follows

for k = 1 : s

if k == 1, y = x, else, y← x+ (aIMk,k−1 − bIMk−1)∆t z+ (aEX
k,k−1 − bEX

k−1)∆ty, end

z = (I − aIMk,k ∆t A)−1Ay

y← g(y + aIMk,k ∆t z, tn + cEX
k ∆t)

x← x+ bIMk ∆t z+ bEX
k ∆ty

x̂← x̂+ b̂IMk ∆t z+ b̂EX
k ∆ty

end

(10)

where z and y store the implicit and explicit parts of the RHS at each stage, x̂ stores the solution of the
embedded scheme and x is used to advance the solution of the main scheme3. Note that one linear solve
of the form (I − cA)−1b, one matrix/vector product Ay, and one nonlinear function evaluation g(y, t) are
computed per stage, in addition to various level-1 BLAS (basic linear algebra subroutine) operations. As in
§1.1, implementation in the case with nonlinear stiff part is a straightforward extension.

1.2.2 General two-register implementation of IMEXRK[2R] schemes

Applying the matrix inversion lemma (Â+B̂ĈD̂)−1 = Â−1−Â−1B̂(Ĉ−1+D̂Â−1B̂)−1D̂Â−1 with Â = Ĉ = I,
D̂ = A, and B = −aIMk,k ∆t, the algorithm laid out in §1.2.1 may be rewritten as:

for k = 1 : s

if k == 1, y = x, else

y← x+ (aIMk,k−1 − bIMk−1)∆t Ay + (aEX
k,k−1 − bEX

k−1)∆tg(y, tn + cEX
k−1∆t)

end

y← (I − aIMk,k ∆t A)−1y

x← x+ bIMk ∆t Ay + bEX
k ∆tg(y, tn + cEX

k ∆t)

x̂← x̂+ b̂IMk ∆t Ay + b̂EX
k ∆tg(y, tn + cEX

k ∆t)

end

(11)

In this case, one linear solve of the form (I− cA)−1b and two operations of the form4 x+ cAy+dg(y, t) are
computed per stage (an additional operation and register must be considered when the embedded scheme
is used for error control), in addition to various level-1 BLAS operations, but the storage requirements are
reduced from three registers of length N to only two, which is quite significant. In many cases, some of the
coefficients in the above algorithm turn out to be zero, so the increased computational cost associated with
the extra nonlinear function evaluations and matrix/vector products in this implementation is not as bad as
one might initially anticipate, as quantified in §6.

2That is, in addition to the extra memory required to solve the linear system, which is problem dependent.
3Note again that bIM

i
= bEX

i
= bi for i = 1, . . . , s for the schemes developed herein, though this property is not shared by

CN/RKW3 (see §2).
4When using finite-difference methods, an operation of this form can, with care, usually be performed in place in the

computer memory using O(1) temporary storage variables; how this is best accomplished, of course, depends on the precise
form of A and g(y, t). When using spectral methods, such a two-register implementation is generally not available.
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1.2.3 General four-register implementation of IMEXRK[3R] schemes

For the development of the fourth-order scheme only, due to the complexity of the problem and the significant
number of constraints to be imposed, a three-register implementation (8) has been considered, which, for
the sake of reducing the computational cost, allows a four-register implementation, as shown below:

for k = 1 : s

if k == 1, y = x, zIM = x, zEX = x, else

zEX ← y + aEX
k,k−1 ∆t zEX

y← x+ (aIMk,k−1 − bIMk−1)∆t zIM + (aEX
k,k−1 − bEX

k−1) (z
EX − y)/aEX

k,k−1

zEX ← zEX + aIMk,k−1 ∆tzIM

end

zIM = (I − aIMk,k ∆t A)−1A zEX

zEX ← g(zEX + aIMk,k ∆t zIM, tn + cEX
k ∆t)

x← x+ bIMk ∆t zIM + bEX
k ∆t zEX

x̂← x̂+ b̂IMk ∆t zIM + b̂EX
k ∆t zEX

end

(12)

where zIM and zEX store the implicit and explicit parts of the RHS at each stage, y is a temporary variable
which contributes to advance the solution to the next stage, x̂ stores the solution of the embedded scheme
and x is used to advance the solution of the main scheme. As in the three-register implementation of the
two-register scheme, only one linear solve of the form (I − cA)−1b, one matrix/vector product and one
nonlinear function evaluation are computed per stage.

1.2.4 General three-register implementation of IMEXRK[3R] schemes

Leveraging matrix inversion lemma, as done in the two-register implementation of the register scheme, it is
possible to obtain a three-register implementation for the three-register scheme, as follows:

for k = 1 : s

if k == 1, y = x, z = x, else

z← y + aIMk,k−1 ∆t A z

y← A−1 (z− y)/(aIMk,k−1 ∆t)

z← z+ aEX
k,k−1 ∆tg(y, tn + cEX

k−1∆t)

y← x+ (aIMk,k−1 − bIMk−1)∆t Ay + (aEX
k,k−1 − bEX

k−1)∆tg(y, tn + cEX
k−1∆t)

end

z← (I − aIMk,k ∆t A)−1 z

x← x+ bIMk ∆t A z+ bEX
k ∆tg(z, tn + cEX

k ∆t)

x̂← x̂+ b̂IMk ∆t A z+ b̂EX
k ∆tg(z, tn + cEX

k ∆t)

end

(13)

In this case, considering the possibility of storing the inverse of matrix A, one linear system, four ma-
trix/vector products and three nonlinear function evaluations must be computed per stage, otherwise three
linear systems, two matrix/vector products and three nonlinear function evaluations have to be performed,
to which we must add one more matrix/vector product and one nonlinear function evaluation in case the
embedded scheme is adopted for error control.
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2 The classical 2nd-order, 3-stage, A-stable CN/RKW3 scheme

The classical second-order, A-stable CN/RKW3 method may easily be written in the low-storage IMEXRK
Butcher tableaux form (7) (albeit with the bIMi = bEX

i = bi constraint relaxed) with the four-stage IMEX
Butcher tableaux

0 0
8/15 4/15 4/15
2/3 4/15 1/3 1/15
1 4/15 1/3 7/30 1/6

4/15 1/3 7/30 1/6

0 0
8/15 8/15 0
2/3 1/4 5/12 0
1 1/4 0 3/4 0

1/4 0 3/4 0

(14)

A DIRK scheme with c1 = 0 and cs = 1 [such as that shown at left in (14)] is known as a first-same-as-last
(FSAL) scheme. In such a scheme, the implicit part of the last stage of one timestep is precisely the implicit
part of the first stage of the next timestep, and thus an FSAL scheme, such as the implicit part of the
CN/RKW3 scheme shown above, actually incorporates only s − 1 implicit solves per timestep. Note also
that, since bEX

s = 0 above, g s actually never needs to be computed. Thus, though CN/RKW3 is written
above as a four-stage IMEX Butcher tableaux, a careful implementation of CN/RKW3 actually incorporates
only three implicit stages and three explicit stages per timestep.

The stability boundaries of the constituent CN and RKW3 schemes of (14) are shown in Figures 1a-1b;
the CN scheme, applied over each of three stages, is A stable, and the stability of the RKW3 scheme is that
of any third-order, three-stage ERK scheme, with (denoting z = zEX) a stability function of

σEX(z) = 1+z
∑ 4

i=1
bi+z2

∑ 4

i=1
bi ci+z3

∑ 4

i,j=1
bi a

EX
ij cj+z4

∑ 4

i,j,k=1
bi a

EX
ij aEX

jk ck = 1+z+z2/2+z3/6,

where, again, |σEX(z)| ≤ 1 indicates the stability region.

3 A simple 2nd-order, 2-stage implicit, 3-stage explicit, L-stable

scheme

The CN/RKW3 scheme was initially developed simply by joining together two existing schemes, CN and
RKW3, in an IMEXRK fashion. It was, e.g., not designed with the constraints (4i)-(4n) in mind, and thus
leaves significant room for improvement. For example, a remarkably simple second-order, three-stage, 2-
register alternative to CN/RKW3 which requires fewer flops per timestep to implement than CN/RKW3 and
comes with a first-order embedded scheme and whose implicit part is L-stable, dubbed IMEXRK23S[2R]L,
is given by5

0 0
2/5 0 2/5
1 0 5/6 1/6

0 5/6 1/6
0 4/5 1/5

0 0
2/5 2/5 0
1 0 1 0

0 5/6 1/6
0 4/5 1/5

(15)

The explicit component of this scheme also satisfies the strong-stability preserving (SSP) property, under
the condition

∆t ≤ c∆tFE , (16)

where ∆tFE is the maximum ∆t allowed by a forward Euler discretization of the ODE (see [14] and [15]
for a detailed description of strong-stability property). The coefficient c for strong stability in (16) is c = 1,
which is the maximum attainable as proved in [5]. As noted in [6], a simplifying condition which, if AIM

is nonsingular, ensures that an A-stable DIRK scheme is in fact L-stable [i.e., that σ(∞) = 0] is as,i = bi

5For details on how this scheme was discovered, see §4, which applies the same techniques used to discover (15) to the
3rd-order, 3-stage implicit, 4-stage explicit, L-stable case.
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for i = 1, . . . , s; this condition is known as “stiff accuracy” [since aIM11 = 0 in our schemes, AIM is singular,
and thus stiff accuracy alone does not ensure that an A-stable scheme is in fact L-stable; the stiff accuracy
condition is still a useful simplifying assumption, however, as discussed further in §4—see (A)-(B) and
surrounding discussion]. Applying stiff accuracy to (4a) and (6), it follows that cs = 1. Together with
the condition c1 = 0, it follows that all IMEX schemes developed herein with DIRK components achieving
L-stability via the stiff accuracy condition, such as (15), are FSAL, and thus require only s−1 implicit solves
per timestep. This is especially apparent in (15), in which the entire first column of the Butcher tableau of
the implicit component equals zero.

The stability boundaries of the constituent DIRK and ERK components of (15) are shown in Figures
1c-1d.

The remainder of this paper focuses on third-order schemes of the two-register IMEXRK form given in
(7).

4 Three 3rd-order, 3-stage implicit, 4-stage explicit, L-stable schemes

In order to achieve L-stability of the DIRK component, as noted in §3 and [6], a useful (but, for singular
AIM, not sufficient) simplifying assumption is the “stiff accuracy” condition as,i = bi for i = 1, . . . , s [and
hence, by (4a) and (6), cs = 1]. Taking s = 4 and defining aIMii = αi for i = 2, 3, the Butcher tableaux (7)
reduce to the following form (with, again, an FSAL implicit part):

0 0
c2 c2 − α2 α2

c3 b1 c3 − b1 − α3 α3

1 b1 b2 b3 b4
b1 b2 b3 b4
b̂IM1 b̂IM2 b̂IM3 b̂IM4

0 0
c2 c2 0
c3 b1 c3 − b1 0
1 b1 b2 1− b1 − b2 0

b1 b2 b3 b4
b̂EX
1 b̂EX

2 b̂EX
3 b̂EX

4

(17a)

In order to impose third-order accuracy, five order constraints must again be imposed. To achieve
L-stability of the DIRK component, a further simplification of (17a) is motivated. To understand this
simplification, we may rewrite the stability function of the scheme as a rational function of zIM and zEX, as
suggested by (5) and (9), as

σ(zIM; zEX) =
1 +

∑ 2
i=1 pi(z

EX) [zIM]i +
(

p̂30 + p̂31z
EX

)

[zIM]3 + p̂40 [z
IM]4

1 +
∑ s−1

i=1 qi [zIM]i
,

where the pi, p̂ij , and qi are polynomials in the Butcher tableaux parameters. Due to stiff accuracy, p̂40 = 0;
thus, in order to impose L-stability of the DIRK component [i.e., limzIM→∞ σ(zIM; zEX) = 0], it is sufficient
to impose that q3 = α2 α3 b4 6= 0 and

τ L-stability
1 = p̂30 =− α2 α3 b1 − α2 α3 b2 − α2 α3 b3 + α3 b2 c2 + α3 b3 c2 + b1 b3 c2 + α2 b3 c3 − b3 c2 c3 = 0,

(A)

τ L-stability
2 = p̂31 =− α2 α3 b4 + α3 b4 c2 + b1 b4 c2 − α3 b1 b4 c2 − b21 b4 c2 − b1 b2 b4 c2 + α2 b4 c3

− α2 b1 b4 c3 − α2 b2 b4 c3 − b4 c2 c3 + b1 b4 c2 c3 + b2b4 c2 c3 = 0. (B)

As noted [6] and [7], suppressing the first column of the DIRK component, by imposing b1 = 0 and α2 = c2
in (17a), satisfies both (A) and (B) identically; we thus incorporate these additional simplifications in the
two subsections that follow.

4.1 Maximizing the extent of stability of the ERK component over the negative
real axis

A final (sixth) constraint is obtained by maximizing the stability envelope of the ERK component over the
negative real axis. Using Cramer’s rule, we may rewrite the stability function of the third-order, four-stage
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Figure 1: Stability regions |σ(z)| ≤ 1 for the low-storage IMEXRK schemes considered in this paper.

ERK component as

σEX(z; δ) = 1 + z bT (I − z AEX)−1111 = 1 + z + z2/2 + z3/6 + δ z4 where δ =
∑ 4

i,j,k=1
bi a

EX
ij aEX

jk ck.

For z on the negative real axis, the stability region |σEX(z; δ)| ≤ 1 is defined by the two conditions

−1 ≤ 1 + z + z2/2 + z3/6 + δ z4 ≤ 1.

For

δ > δcrit =
(

139− 5255/
3

√

−210253+ 60928
√
51 +

3

√

−210253+ 60928
√
51

)

/6144 = 0.0184557,
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the condition−1 ≤ σEX(z; δ) is satisfied everywhere in this interval; we thus choose δ = 1/54 = 0.0185 > δcrit,
which gives |σEX(z)| ≤ 1 for −6.00 < z < 0, as larger values of δ reduce the extent of stability.

Parametric variation reveals that the extent of the stability region along the imaginary axis is relatively
insensitive to changes in δ. Among the third-order, four-stage IMEXRK scheme available in literature, the
one with the widest stability region of the ERK part, which is the (full-storage) ARK3(2)4L[2R]SA scheme
developed in [7], has a maximum extent along the negative real axis which is ∼ 40% less than that of that of
the present scheme, and a maximum extent along the imaginary axis which is only ∼ 5% greater than that of
the present scheme; the stability characteristics of the present scheme are thus seen to be quite competitive.

Thus, in order to determine the parameters of the Butcher tableaux, we impose our final (sixth) constraint
as

τ δ=1/54 =
∑ 4

i,j,k=1
bi a

EX
ij aEX

jk ck − 1/54 = 0. (C)

Finding solution(s) of such a set of six nonlinear constraint equations is difficult even for commercially
available numerical solvers. For this reason, the solution of this nonlinear system has been recast as a
global optimization problem leveraging the Delaunay-based Derivative-free Optimization via Global Surro-
gate (∆DOGS) algorithm developed by our group. After assembling the unknowns {α3, b2, b3, b4, c2, c3} as
a parameter vector x, a cost function J(x) is defined by summing the square of the LHS of each of the
six constraints. Thus, though nonconvex, J(x) ≥ 0, and J(x) = 0 corresponds to a solution. The domain
searched is {αi, bi} ∈ [−1, 1] and {ci} ∈ [0, 1]. Our optimization routine, which will be discussed else-
where, finds several local minima with J(x) > 0, but finally leads to a solution for which J(x) = 0, dubbed
IMEXRK34S[2R]Lσ, given by

α2 = 0.7458175396027730, α3 = 0.6206610736335834,

b1 = 0, b2 = 0.2885514426131443, b3 = 0.5784565900123583, b4 = 0.1329919673744975,

c2 = 0.7458175396027730, c3 = 0.2624247147805739.

(17b)

The associated second-order embedded scheme has the following coefficients:

b̂IM1 = 0, b̂IM2 = 0.33510152222762435, b̂IM3 = 0.5624145479249864, b̂IM4 = 0.10248392984738919,

b̂EX
1 = 0.3889537200272892, b̂EX

2 = 0, b̂EX
3 = 0.15055585809070993, b̂EX

4 = 0.4604904218820009

The stability boundaries of the constituent DIRK and ERK components are shown in Figures 1e-1f. Moreover
this scheme is SSP under condition (16) with c = 0.7027915. This result can be improved up to c = 0.7703947,
which is achieved by replacing condition (C) with

τ δ=0 =
∑ 4

i,j,k=1
bi a

EX
ij aEX

jk ck − 0 = 0. (C’)

However, this constraint does not lead to an IMEXRK scheme with L-stable implicit component, but it
is possible to choose a positive δ small enough to guarantee L-stability and a nearly optimal value c for
strong stability. Choosing δ = 1/10000, for example, gives a scheme, named IMEXRK34S[2R]Lπ, with
the following choice of parameters:

α2 = 0.8920138295341937, α3 = 0.7118592498085877,

b1 = 0, b2 = 0.3507710822962850, b3 = 0.6486283917251868, b4 = 0.0006005259785281534,

c2 = 0.8920138295341937, c3 = 0.2875403235378705,

(17c)

and the associated second-order embedded scheme:

b̂IM1 = 0, b̂IM2 = 0.35101071959085495, b̂IM3 = 0.6485920703520673, b̂IM4 = 0.0003972100570779,

b̂EX
1 = 0.4996459562094747, b̂EX

2 = 0, b̂EX
3 = 0.0004969316892197, b̂EX

4 = 0.4998571121013055

The coefficient for strong stability is c = 0.7701444. The stability boundaries of the associated DIRK and
ERK components are shown in Figures 1g-1h. Since δ is chosen close to zero, the stability region of the ERK
component closely resembles that of a third-order three-stage explicit Runge-Kutta scheme.
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4.2 Maximizing accuracy of the ERK component

An alternative third-order four-stage 2-register L-stable strategy, with closed-form parameter values and
a stability region for the ERK part which coincides with the stability region of the standard 4-step RK4
scheme, is given by replacing the final constraint, (C), with

τ δ=1/24 =
∑ 4

i,j,k=1
bia

EX
ij aEX

jk ck − 1/24 = 0, (C”)

which results in a scheme, dubbed IMEXRK34S[2R]Lα, given by

0 0
1/3 0 1/3
1 0 1/2 1/2
1 0 3/4 −1/4 1/2

0 3/4 −1/4 1/2

0 0
1/3 1/3 0
1 0 1 0
1 0 3/4 1/4 0

0 3/4 −1/4 1/2

(18)

A second-order embedded scheme having all third-order truncation terms could not be achieved because of
assumption (C”). Moreover, since b3 < 0 the scheme is not SSP. The stability boundaries of the constituent
DIRK and ERK components are shown in Figures 1i-1j; IMEXRK34S[2R]Lα has improved accuracy but
reduced stability on the negative real axis as compared with IMEXRK34S[2R]Lσ.

5 A 4th-order, 6-stage, L-stable scheme

Solving the nonlinear equations associated with the requirement of fourth-order accuracy is a difficult task.
For this reason, after imposing the same bi and ci over the explicit and implicit components and stiff accuracy
for the implicit component, we invoke the so-called simplifying assumptions, as described in [6]. In particular,
we restrict such assumptions to the parameters of the implicit component only, by setting:

s
∑

j=1

aIMij cj = c2i ?2, i = 2, 3, . . . , s− 1 (19)

which is equivalent to require stage-order two for the implicit component. This reduces the number of
nonlinear equations from fourteen, i.e. one for first order, one for second, three for third and nine for fourth
order, to only ten, to which we have to add two constraints for L-stability, 2(s − 2) constraints for stage-
order two for the implicit component and (s− 1) constraints for stage-order one for the explicit component.
Using a six-stage 3-register IMEXRK scheme, we have 30 degrees of freedom to satisfy 25 constraints. Since
determining the ci coefficients can be troublesome since we want them to be inside the range [0, 1], we exploit
the remaining degrees of freedom to impose such coefficients. In particular, we set:

c1 = 0, c2 = 1/10, c3 = 2/5, c4 = 3/5, c5 = 9/10, c6 = 1. (20)

As done in §4, we leverage ∆DOGS algorithm to find a solution to the system of nonlinear equations. The
scheme hence developed, dubbed IMEXRK46S[3R]L is reported below:

0 0
c2 aIM21 aIM22
c3 aIM31 aIM32 a33
c4 b1 aIM42 aIM43 aIM44
c5 b1 b2 aIM53 aIM54 aIM55
1 b1 b2 b3 b4 b5 b6

b1 b2 b3 b4 b5 b6

0 0
c2 aEX

21 0
c3 aEX

31 aEX
32 0

c4 b1 aEX
42 aEX

43 0
c5 b1 b2 aEX

53 aEX
54 0

1 b1 b2 b3 aEX
64 aEX

65 0
b1 b2 b3 b4 b5 b6

(21)
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where

aIM31 = 0.16036818466407831073, aIM32 = 0.05284242044789558570, aIM33 = 0.186789394888026103575,

aIM42 = 0.26765292855424752582, aIM43 = −0.4806631563015242346, aIM44 = 0.57583328277530823545,

aIM53 = 2.4049192562328432369, aIM54 = −3.0133537881037294103, aIM55 = 1.4048985145990107267,

aEX
31 = −0.28122430371955223659, aEX

32 = 0.68122430371955223659,

aEX
42 = −0.18908270367987563237, aEX

43 = 0.55190575870790715902,

aEX
53 = −0.18135366450888254458, aEX

54 = 0.97781764723700709797,

aEX
64 = 0.20444384824133449118, aEX

65 = 0.30254485081172593969,

b1 = 0.23717694497196847336, b2 = −0.13364092770009302675, b3 = 0.38947528367506412252,

b4 = 0.41044138083424541514, b5 = −0.14761832580621388850, b6 = 0.24416564402502890423.

The stability boundaries of the DIRK and ERK components are shown in Figures 1k-1l. As we can observe,
the scheme is only L(α) stable with α = 70◦. Furthermore, the scheme is not SSP.

What follows is a thorough analysis of the computational cost of the schemes here developed applied to
a model problem, in comparison with the state-of-the-art CN/RKW3.

6 Application to a model problem

To illustrate the relative computational costs of our new low-storage IMEXRK schemes on a representative
PDE model problem discretized on N ≫ 1 gridpoints, we now compare the three- and two-register imple-
mentations, (10) and (11), of each of the methods developed herein to CN/RKW3 and five full-storage IMEX
Runge-Kutta schemes available in literature, implemented as in (3). We consider as a model PDE problem
the one-dimensional Kuramoto Sivashinsky equation

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
(22)

over the domain x ∈ [−L/2, L/2] with u = ∂u/∂x = 0 at x = ±L/2, where L is the width of the domain.
The RHS of (22) consists of a nonlinear convective term, treated explicitly, and two linear derivative terms,
treated implicitly.

Following a five-point central finite-difference approach on a uniform grid, (22) can be approximated as

du

dt
= Au+ g(u),

where A is a pentadiagonal Toeplitz matrix obtained by discretizing the last two terms on the RHS of (22),
and gi(u) = −ui(ui−2 − 8ui−1 +8ui+1− ui+2)/(12∆x). As an example, using the 3-register implementation
(10) of the CN/RKW3 method (14), 6N flops times 3 stages are required for the evaluation of the nonlinear
term, 19N flops times 3 stages are required for the implicit (pentadiagonal) solves, and 40N additional flops
are required for basic product/sum operations; thus, 115N flops per timestep are required.

Following a pseudospectral approach, with nonlinear products computed in physical space and spatial
derivatives computed in Fourier space, (22) can be written in wavenumber space as

dûn

dt
= −ikxn

(̂u · u)n + (k2xn

− k4xn

)ûn (23)

where i =
√
−1, kxn

= 2πn/L is the wavenumber, and (̂u · u)n denotes the n’th wavenumber component of
the function computed by transforming u to physical space on N = 2p equispaced gridpoints, computing
u · u at each gridpoint, and transforming the result back to Fourier space. Since computing FFTs requires
∼ 5N logN real flops while all other operations are linear in N , the number of FFTs performed represents the

13

D
ow

nl
oa

de
d 

by
 A

ir
 F

or
ce

 A
ca

de
m

y 
on

 J
an

ua
ry

 1
0,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

30
94

 



leading-order computational cost for large N . As an example, the 3-register implementation of CN/RKW3
requires 2 FFTs per stage for each of three stages.

The other schemes may be counted similarly; results are summarized in Tables 1 and 2. It is seen that,
if computational cost is naively characterized simply by the number of floating point operations required
per timestep, the present low-storage IMEXRK schemes are in fact competitive with both CN/RKW3
and all of the full-storage IMEXRK schemes available in the literature of the corresponding order. The
fact that CN/RKW3 and all of our low-storage IMEXRK schemes admit two-register and three-register
implementations, however, bestows them with a distinct advantage for high-dimensional ODE discretizations
of PDE systems. Further specifics of the comparisons between our low-storage IMEXRK schemes and
CN/RKW3 are discussed in §7.

7 Conclusions

We have developed five new IMEX Runge-Kutta schemes with low-storage requirements:

(A) IMEXRK23S[2R]L (15) is a simple SSP second-order, two-stage implicit, three-stage explicit, L-stable
scheme with closed-form parameter values.

(B) IMEXRK34S[2R]Lσ (17b) is a SSP third-order, three-stage implicit, four-stage explicit, L-stable
scheme with parameter values found numerically to maximize the domain of stability of the ERK
component on the negative real axis.

(C) IMEXRK34S[2R]Lπ (17c) is a SSP third-order, three-stage implicit, four-stage explicit, L-stable scheme
with parameter values found numerically in order to optimize the CFL limit for strong stability.

(D) IMEXRK34S[2R]Lα (18) is a non-SSP third-order, three-stage implicit, four-stage explicit L-stable
scheme with closed-form parameter values selected to maximize the accuracy of the ERK component
of the scheme.

(E) IMEXRK46S[3R]L (21) is a non-SSP fourth-order, six-stage L-stable scheme with parameter values
found numerically.

Various properties of these schemes, and some competing full-storage IMEXRK scheme, are given in Tables
1 and 2. The particular measure of truncation error of a scheme of order q used in the tables, adapted from
[7], is

A(q+1) =

√

∑

i

(

τ
IM(q+1)
i

)2

+
∑

i

(

τ
EX(q+1)
i

)2

+
∑

i

(

τ
IMEX(q+1)
i

)2

.

In comparison with the venerable CN/RKW3 scheme,

• All our second- and third-order schemes, like CN/RKW3, admit both two-register and three-register
implementations, with the three-register implementations requiring fewer flops.
• Scheme (A) is the same order of accuracy as CN/RKW3 (second), while the remaining schemes are a
higher order of accuracy (third).
• Schemes (A), (B), (C) and (D) schemes are L-stable (note that CN/RKW3 is only A-stable).
• Schemes (A) generally requires fewer floating-point operations per timestep than CN/RKW3, whereas
schemes (B), (C), & (D) generally require slightly more.
• Schemes (E) requires more floating point operations and one more register with respect to CN/RKW3,
while it benefits from higher accuracy and better stability properties.

As for future developments, an analysis of the order reduction of the present IMEXRK schemes ap-
plied to our test ODE is highly desired in order to check their robustness with respect to stiff problems.
Implementation of all of the present schemes into our benchmark DNS code is also underway.
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Scheme: CN/RKW3 IMEXRK23S[2R]L
IMEXRK34S[2R]Lσ
IMEXRK34S[2R]Lπ
IMEXRK34S[2R]Lα

IMEXRK46S[3R]L

Accuracy second-order second-order third-order fourth-order

Stability of DIRK part A-stable L-stable L-stable L(α)-stable, α = 70◦

Stability of ERK part
on negative real axis −2.51 ≤ z

EX
≤ 0 −5.81 ≤ z

EX
≤ 0

σ: −6.00 ≤ z
EX

≤ 0
π: −2.52 ≤ z

EX
≤ 0

α: −2.79 ≤ z
EX

≤ 0

−2.96 ≤ z
EX

≤ 0

σ(zIM → ∞; zEX) −1 0 0 0

SSP - Yes σ: Yes π: Yes α: No No

Embedded Scheme No Yes σ: Yes π: Yes α: No No

Truncation error A
(3) = 0.0387 A

(3) = 0.114
σ: A(4) = 0.113
π: A(4) = 0.207
α: A(4) = 0.0824

A
(5) = 0.123

Cost - Finite Difference
115N flops (3-reg)
127N flops (2-reg)

90N flops (3-reg)
101N flops (2-reg)

133N flops (3-reg)
157N flops (2-reg)

264N flops (4-reg)
504N flops (3-reg)

Cost - Pseudospectral 6 FFTs (3-reg) 6 FFTs (3-reg) 8 FFTs (3-reg) 12 FFTs (4-reg)

Table 1: Summary of the two- and three-register IMEXRK schemes considered in this paper, and their leading-order computational cost per timestep
for efficient implementation (using R+ 1 or R registers in the implementation) on the 1D KS equation.

Scheme: Ascher(2, 3, 3) Ascher(3, 4, 3) Ascher(4, 4, 3) LIRK3 ARK3(2)4L[2]SA

Accuracy third-order third-order third-order third-order third-order

Stability of DIRK part strongly A-stable L-stable L-stable L-stable L-stable

Stability of ERK part
on negative real axis −2.51 ≤ z

EX
≤ 0 −2.78 ≤ z

EX
≤ 0 −2.14 ≤ z

EX
≤ 0 −2.21 ≤ z

EX
≤ 0 −3.66 ≤ z

EX
≤ 0

σ(zIM → ∞; zEX) −0.732 − 0.732 zEX 0.106 zEX 0 0 0

SSP - - No No No

Embedded scheme No No No No Yes

Truncation error A
(4) = 0.206 A

(4) = 0.103 A
(4) = 0.163 A

(4) = 0.100 A
(4) = 0.0722

Number of registers
used in implementation 7 9 10 9 10

Cost - Finite Difference 92N flops 141N flops 190N flops 139N flops 159N flops

Cost - Pseudospectral 6 FFTs 8 FFTs 8 FFTs 8 FFTs 8 FFTs

Table 2: Some competing full-storage third-order IMEX schemes, and their leading-order computational cost per timestep for efficient implementation
on the 1D KS equation. The Ascher schemes are from [2], the LIRK3 scheme is from [4], and the ARK3(2)4L[2]SA scheme is from [7].
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