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Abstract—In this work, we propose a lightweight dynamic
object filtering algorithm for building LiDAR-based static point
cloud maps in real-time. On one hand, we propose an egocentric
motion detection method of using improved ICP to register 3D
clusters and extract their poses and twists to identify dynamic
objects. One the other hand, we connect the proposed dynamic
object filter with LiDAR-based SLAM algorithms to build point
cloud maps and validate the effectiveness of the proposed
methodology on both our custom dataset and SemanticKITTI.
We also compare the performance of the proposed method
against state-of-the-art methods in terms of both filtering
accuracy and processing time. As experimentally verified on
SemanticKITTI, our method yields promising performance with
relatively small time costs and therefore has great potential to
be used as point cloud data source for a number of LiDAR-
inertial-visual fusion mapping methods.

Keywords— Mapping, perception, LIDAR, SLAM.

I. INTRODUCTION

In recent years, the use of mobile robotic vehicles has witnessed
significant growth in perception and mapping. From autonomous
ground vehicles navigating complex urban [1]-[3] or unstructured
environments [4]—-[6] to drones charting unexplored terrains [7] [8],
the fusion of perception and mapping capabilities has unleashed a
new era of possibilities.

On the sensor side, 3D LiDAR technology plays an essential role
in the field of mapping and perception in autonomous systems. Its
ability to reconstruct dense 3D point clouds of the environment has
paved the way for various applications. The popularity of LiDAR
has also foster the research in mapping algorithms, including the
Iterative Closest Point (ICP) [9] [10], Simultaneous Localization
and Mapping (SLAM) with LiDAR alone [11] [12] and fusing
LiDAR with other sensors [13]-[15]. Among these, LiDAR-inertial
odometry-based SLAM has the advantages of being able to mitigate
accumulated drifts [1], relatively low computational cost [12], [14],
[15], and maintain accuracy over long-distance travel [16] [17].
Therefore, LiDAR-inertial odometry is often used in the scenarios
with impaired visual features or where long-term real-time stable
motion estimation is required such as autonomous driving.

However, one of the significant challenges in utilizing LiDAR
data for mapping and navigation is the presence of dynamic objects
within the environment [18]. On one hand, during the point cloud
registration, dynamic objects may introduce inconsistencies in static
maps by occluding the static part of environment [19] and drifting
away the odometry to cause misalignment when registering multiple
scans into a single map [20]. On the other hand, regarding map
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construction, dynamic objects can cause ghost trail effect and
therefore leave residual or noise points to become part of the final
generated static map [21]. To overcome this challenge, researchers
have proposed a number of state-of-the-art algorithms, including
ERASOR [21], Removert [22], and Peopleremover [23]. All of these
methods, however, require a prior map to be created before filtering
out dynamic objects points in the post-processing. There has been
no outstanding findings or methods in removing dynamic objects
on the fly when a prior map is generated known to the authors.
To fill this research gap, we develop a fast real-time dynamic
object detection and filtering algorithm. The contributions of this
work are three-fold. First, we give the problem definition of cleaning
dynamic objects points while building the “prior” map and con-
sider it as a component of LiDAR-Inertial-Visual fused mapping
algorithm. Second, we propose an egocentric motion detection
method of for point cloud clusters and estimate their poses and
twists to identify dynamic objects. Last but not least, we connect
the proposed filter with LiDAR-based SLAM algorithms to build
point cloud maps and validate the effectiveness of the proposed
methodology on both our custom dataset and SemanticKITTI [24].

II. METHODOLOGY

In this section, we are going to introduce the problem definition
and workflow of the proposed cluster-based dynamic object filtering
method. Note that the methods proposed in this work most likely
apply to LiDAR sensors mounted on the ground vehicles or near-
ground flying vehicles perceiving indoor or outdoor environments.
Thus noise filtering for aerial-to-ground imaging or air-to-air per-
ception is beyond the scope of this work.

A. Problem Definition

First we start with the definition of a generic point cloud mapping
algorithm. Let St..,, = {p}, P, P5,---, Pa} be the set of all
points in LiDAR’s current frame of scan, where each point with
timestamp ¢ is a vector of p, = [rk, Yk, zk|° if we assume
other information like intensity and RGB values is not available.
And let ng be the set of points in the keyframe or being queried
at timestamp t. If we assume the beginning pose of the LiDAR
corresponds to the origin and axes definition of the inertail frame,
we can compute the SE(3) world-to-local transformation for this
query WTb at timestamp ¢. Therefore, for a mapping algorithm
with raw point cloud streaming, the map M4 can be obtained
by:

Mraw = |J{" TG Pk | PL€SG,k=1,2,...,n} (D)
teTQ
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Fig. 1: LiDAR-inertial-visual

where 7g represents the set of timestamps when a query scan
is obtained. Note that M,4,, may contain dynamic objects and
is mounted on the cartesian coordinate systems origined at the
LiDAR’s initial pose.

In post-processing algorithms like ERASOR [21], the problem
formulation may be considered as removing the estimated dynamic
object points after the M4, is built, such as:

Mstatic - Mraw - U Wng © Séyru (2)

teTq

where Sfiyn represents the set of estimated dynamic object points at
timestamp ¢, and ©® here indicates point-wise multiplications similar
to the operation in Eq. (1).

However, since we are attempting to filter out the dynamic points
at the very time when the query scan is received, our problem is
defined in a different way. We attempt to subtract the points directly
from each query scan before unioning the query scans instead of
subtracting the estimated dynamic objects after the raw map is built,
such as:

Mstatic = U WTE) © (322 - Séyn)

teTQ

3

Therefore, as the query or keyframe point clouds are filtered at
the time they are achieved, it is made possible that we can build an
estimated static point cloud map in real-time if the filters can have
relative low computational time for each keyframe.

B. Potential Dynamic Objects

As we are proposing a dynamic object filtering algorithm mainly
focus on near-ground objects, we observed a number of dynamic
object clusters in various datasets and need to make reasonable
assumptions before proposing the cluster-based filtering method. We
discuss the outcome of observations and assumptions as follows.

Observation 1: The dynamic objects in both indoor and outdoor
environments are most likely in contact with the ground plane.
The categories of these objects include but are not limited to
pedestrians, moving furniture, carts, bike and scooter riders, non-
airborne animals, and vehicles etc.

fused SLAM system overview.

Observation 2: The dynamic objects are most likely rigid
bodies whose cross-section on XY-plane at each Z-level can be
contained in convex hulls with the centroid of cross-section of this
object inside its convex hull.

With the above mentioned statements, we can construct six
possible cases for each of the detected object cluster:

o Case I: A moving object cluster is in contact with the ground
plane and is observed in both den and S, and therefore
identified as a moving object. This is considered true positive
(TP).

o Case 2: A static object cluster is in contact with the ground
plane and is observed in SQ but not in den, and therefore
identified as a static object. This is considered true negative
(TN).

o Case 3: A static object cluster is in contact with the ground
plane and is observed in SQ and den, and therefore identified
as a moving object This is considered false positive (FP).

o Case 4: A moving object cluster is in contact with the ground
plane and is observed in SQ but not in den, and therefore
identified as a static object. This is considered false negative
(FN).

o Case 5: A static or moving object cluster is not in contact
with the ground plane. This cluster is not considered in the
scope of this work and therefore not admissible to either ng
or Sfi -

o Case 6 A static or moving object cluster is in contact with
the ground plane but not observed in either SQ or den This
may be caused by the flaw of clustering algorithm being used.

According to the derivation of error metrics in [21], it is possible
that the number of static points falsely predicted as moving objects
(FP) in a map can be much larger than correctly predicted moving
objects (TP). Therefore, we adopt two novel quantatative metrics
named as Rejection Rate (RR) and Preservation Rate (PR) as
follows:
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C. Cluster-based Object Detection

Since we only consider objects connected to the ground plane, it
is suitable to build a clustering pipeline for the environment once we
can easily fit and extract the points on or close to the ground plane.
Mathematically, a distinct cluster can be defined as a set of points
Cf, and we also define another cluster C} if all points p§ € Ci:

PR

“

>

3 t t th t t
min ||pj — pil|, > dij for all p; € Cy, (5)
where dﬁ;’ is the distance threshold between points in clusters C}
and C}. In this work, we use a kd-tree representation-based nearest
neighbors queries to partition keyframe LiDAR scans into clusters.
The details of the Euclidean distance based clustering method can

be found in [25].

D. Egocentric Motion Detection for Clusters

In LiDAR based SLAM algorithm, Since we have the esti-
mated localization and self-motion streamed from odometry, we
can compute the estimation of LiDAR keyframe pose WTﬁg and
corresponding twist éév at timestamp ¢. With the time sequence of
WTE? and C};; characterizing LIDAR’s ego-motion, one can estimate
the motion of identified clusters in the environment as well.

In this work, we propose an adapted version of ICP-based algo-
rithm for object motion detection as in Algorithm 1 depending on
the time step length between two keyframes. By taking advantage of
multiple processor cores onboard, it’s possible to achieve near-real-
time performance, especially with well-optimized implementations
and capable hardware. However, for more complex environments or
resource-constrained devices, real-time processing might be more
challenging to achieve.

After obtaining the motion estimations of clusters at each time
step, we can identify dynamic objects by inspecting the list of object
to check their inconsistency with the inversed self-motion of the
LiDAR query scans WTEfl. It is quite obvious that the static
objects ought to have trivial twist estimation in the world frame,
while dynamic object cluster can have varying twists estimation

Algorithm 1 Egocentric Motion Detection of Environmental
Object Clusters in One Time Step

Require: Original query data 822 at time ¢t — h and ¢
Require: LiDAR or fused odometry WTtQ and f{/V at time
t—handt
Require: List of object clusters {C! | i = 1,...,m} at time
t — h and ¢, where m is the number of clusters
1: Init empty list of object poses {"WT! |i=1,...,m}
2: Init empty list of object twists {éfw li=1,...,m}
3: for each object cluster C! do
4:  Initialize  transformation WTZimt based on
Wt —h
i,refined R
5: Apply ICP to align points in C; using "'T%, o
6. Set Wt ;4 as the ICP-refined transformation
7. Replace W’i‘g,init with WTE’reﬁned in (VT | i =
1,...,m}
8:  Compute using poses of ¢t —h and ¢ and Add the twist
z‘t,W = (Vf>wlt) to {Czt,W |i=1,...,m}
9: end for
10: return (VT [i=1,...om} {Cy li=1,...,m}

and changing poses the world frame. We use this principle to filter
out the dynamic object clusters by setting the threshold for twist
variations.

(a) Before filtering.

(b) After filtering.

Fig. 3: Ghost trail removal on reconstructed UCSD Calit2
tunnel.
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Fig. 4: Dynamic objects removal (red) on SemanticKITTI
Sequence 01.

III. RESULTS AND DISCUSSION

In this section, we present the results of evaluating our dynamic
object filtering algorithm on both our custom rosbag SLAM dataset
and the publicly available SemanticKITTI sequences [24]. We assess
the effectiveness of the algorithm in identifying and filtering out
dynamic objects from LiDAR scans.

A. Custom dataset

We conducted preliminary case study tests using our custom
research robotic platform DamBot-Mini. The dataset is simulating a
tunnel environment with a mix of dynamic and static objects. There-
fore, we apply our dynamic object filtering algorithm to perform
LiDAR-inertial-visual mapping from the LiDAR scans to remove
the “ghost trails” left by pedestrians from the static environment.
In Fig.3, we can tell the ghost trails have been removed and the
precision of the map is improved from a qualitative perspective.

B. SemanticKITTI

We extend our evaluation to the widely used SemanticKITTI
dataset using a segment of Sequence 01 (frame no. 150 to 250). We
convert the The algorithm’s performance was assessed qualitatively
by visually comparing the detected dynamic object regions with
the point cloud sequences. Fig. 4 illustrate the effectiveness of our
dynamic object filter applied to the sequence of selected frames
of Sequence 01. We also apply the change detection method using
CloudCompare’s M3C2 algorithm [26] and mark the removed points
in red as shown in Fig. 4. We also perform comparsons of different
dynamic objects removing methods on the same sequnce using
OctoMap [27], Peopleremover [23], Removert [22], and ERASOR
[21] as shown in Table I. Our proposed methodology has the shortest
runtime compared to the other SOTA dynamic points cleaning
methods.
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TABLE I: Quantitative Comparisons on SemanticKITTI Se-
quence 01 (102 frames, bag time 10.4s).

Method RR [%] PR [%] Runtime [s]
OctoMap[4] 99.863 20.777 120.254
People-
remover|[5] 93.116 36.349 112.412
Removert[6] 57.077 95.815 95.131
ERASOR[1] 95.383 91.487 17.866
Proposed 94.231 93.427 10.706

IV. CONCLUSION

In conclusion, this paper attempts to address a critical challenge
in point cloud mapping, namely removing dynamic objects points
from query LiDAR scans. We take a step forward by proposing a
novel and lightweight dynamic object filtering algorithm, designed
to facilitate the real-time generation of LiDAR-based static point
cloud maps.

The method outlined in this paper holds great potential as a
reliable point cloud data source for diverse LiDAR-inertial-visual
fusion mapping approaches. Future work may involve studying
the pros and cons of deep learning based, transformer based, and
distanced cluster based methods for identifying dynamic objects.
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