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Abstract-In this work, we propose a lightweight dynamic 
object filtering algorithm for building LiDAR-based static point 
cloud maps in real-time. On one hand, we propose an egocentric 
motion detection method of using improved ICP to register 3D 
clusters and extract their poses and twists to identify dynamic 
objects. One the other hand, we connect the proposed dynamic 
object IDter with LiDAR-based SLAM algorithms to build point 
cloud maps and validate the effectiveness of the proposed 
methodology on both our custom dataset and SemanticKITTI. 
We also compare the performance of the proposed method 
against state-of-the-art methods in terms of both filtering 
accuracy and processing time. As experimentally verified on 
SemanticKITTI, our method yields promising performance with 
relatively small time costs and therefore has great potential to 
be used as point cloud data source for a number of LiDAR­
inertial-visual fusion mapping methods. 

Keywords- Mapping, perception, LiDAR, SLAM. 

I. INTRODUCTION 

In recent years, the use of mobile robotic vehicles has witnessed 
significant growth in perception and mapping. From autonomous 
ground vehicles navigating complex urban [1]-[3] or unstructured 
environments [4]-[6] to drones charting unexplored terrains [7] [8], 
the fusion of perception and mapping capabilities has unleashed a 
new era of possibilities. 

construction, dynamic objects can cause ghost trail effect and 
therefore leave residual or noise points to become part of the final 
generated static map [21]. To overcome this challenge, researchers 
have proposed a number of state-of-the-art algorithms, including 
ERASOR [21], Removert [22], and Peopleremover [23]. All of these 
methods, however, require a prior map to be created before filtering 
out dynamic objects points in the post-processing. There has been 
no outstanding findings or methods in removing dynamic objects 
on the fly when a prior map is generated known to the authors. 

To fill this research gap, we develop a fast real-time dynamic 
object detection and filtering algorithm. The contributions of this 
work are three-fold. First, we give the problem definition of cleaning 
dynamic objects points while building the "prior" map and con­
sider it as a component of LiDAR-Inertial-Visual fused mapping 
algorithm. Second, we propose an egocentric motion detection 
method of for point cloud clusters and estimate their poses and 
twists to identify dynamic objects. Last but not least, we connect 
the proposed filter with LiDAR-based SLAM algorithms to build 
point cloud maps and validate the effectiveness of the proposed 
methodology on both our custom dataset and SemanticKITTI [24]. 

II. METHODOLOGY 

In this section, we are going to introduce the problem definition 
and workflow of the proposed cluster-based dynamic object filtering 
method. Note that the methods proposed in this work most likely 
apply to LiDAR sensors mounted on the ground vehicles or near­
ground flying vehicles perceiving indoor or outdoor environments. 
Thus noise filtering for aerial-to-ground imaging or air-to-air per­
ception is beyond the scope of this work. 

On the sensor side, 3D LiDAR technology plays an essential role 
in the field of mapping and perception in autonomous systems. Its 
ability to reconstruct dense 3D point clouds of the environment has 
paved the way for various applications. The popularity of LiDAR 
has also foster the research in mapping algorithms, including the 
Iterative Closest Point (ICP) [9] [10], Simultaneous Localization 
and Mapping (SLAM) with LiDAR alone [ 1 1] [12] and fusing 
LiDAR with other sensors [13]-[15]. Among these, LiDAR-inertial 
odometry-based SLAM has the advantages of being able to mitigate 
accumulated drifts [1], relatively low computational cost [12], [14], 
[15], and maintain accuracy over long-distance travel [16] [17]. 
Therefore, LiDAR-inertial odometry is often used in the scenarios 
with impaired visual features or where long-term real-time stable 
motion estimation is required such as autonomous driving. 

A. Problem Definition 

However, one of the significant challenges in utilizing LiDAR 
data for mapping and navigation is the presence of dynamic objects 
within the environment [18]. On one hand, during the point cloud 
registration, dynamic objects may introduce inconsistencies in static 
maps by occluding the static part of environment [19] and drifting 
away the odometry to cause misalignment when registering multiple 
scans into a single map [20]. On the other hand, regarding map 
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First we start with the definition of a generic yoint cloud mapping 
algorithm. Let S!can = {pi, Pt p§, ... , Pn} be the set of all 
points in LiDAR's current frame of scan, where each point with 
timestamp t is a vector of P% = [xk, Yk, Zk]T if we assume 
other information like intensity and RGB values is not available. 
And let Sb be the set of points in the keyframe or being queried 
at timestamp t. If we assume the beginning pose of the LiDAR 
corresponds to the origin and axes definition of the inertail frame, 
we can compute the SE(3) world-to-local transformation for this 
query w T� at timestamp t. Therefore, for a mapping algorithm 
with raw point cloud streaming, the map Mraw can be obtained 
by: 

Mraw= u{wT�·P%iP%ESb,k=1,2, ... ,n} (1) 
tErQ 
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Fig. 1: LiDAR-inertial-visual fused SLAM system overview. 

where rq represents the set of timestamps when a query scan 
is obtained. Note that Mraw may contain dynamic objects and 
is mounted on the cartesian coordinate systems origined at the 
LiDAR's initial pose. 

In post-processing algorithms like ERASOR [21], the problem 
formulation may be considered as removing the estimated dynamic 
object points after the Mraw is built, such as: 

- u w t � Mstatic = Mraw- Tq 0Sdyn> 
tErQ 

(2) 

where S�yn represents the set of estimated dynamic object points at 
timestamp t, and 0 here indicates point-wise multiplications similar 
to the operation in Eq. (1). 

However, since we are attempting to filter out the dynamic points 
at the very time when the query scan is received, our problem is 
defined in a different way. We attempt to subtract the points directly 
from each query scan before unioning the query scans instead of 
subtracting the estimated dynamic objects after the raw map is built, 
such as: 

- u w t "t "t Mstatic = Tq 0 (Sq- Sdyn)· 
tETQ 

(3) 

Therefore, as the query or keyframe point clouds are illtered at 
the time they are achieved, it is made possible that we can build an 
estimated static point cloud map in real-time if the filters can have 
relative low computational time for each keyframe. 

B. Potential Dynamic Objects 

As we are proposing a dynamic object filtering algorithm mainly 
focus on near-ground objects, we observed a number of dynamic 
object clusters in various datasets and need to make reasonable 
assumptions before proposing the cluster-based filtering method. We 
discuss the outcome of observations and assumptions as follows. 

Observation 1: The dynamic objects in both indoor and outdoor 
environments are most likely in contact with the ground plane. 
The categories of these objects include but are not limited to 
pedestrians, moving furniture, carts, bike and scooter riders, non­
airborne animals, and vehicles etc. 
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Observation 2: The dynamic objects are most likely rigid 
bodies whose cross-section on XY-plane at each Z-level can be 
contained in convex hulls with the centroid of cross-section of this 
object inside its convex hull. 

With the above mentioned statements, we can construct six 
possible cases for each of the detected object cluster: 

• Case 1: A moving object cluster is in contact with the ground 
plane and is observed in both S�yn and Sb, and therefore 
identified as a moving object. This is considered true positive 
(TP). 

• Case 2: A static object cluster is in contact with the ground 
plane and is observed in Sb but not in S�yn• and therefore 
identified as a static object. This is considered true negative 
(TN). 

• Case 3: A static object cluster is in contact with the ground 
plane and is observed in Sb and S�yn• and therefore identified 
as a moving object. This is considered false positive (FP). 

• Case 4: A moving object cluster is in contact with the ground 
plane and is observed in Sb but not in S�yn• and therefore 
identified as a static object. This is considered false negative 
(FN). 

• Case 5: A static or moving object cluster is not in contact 
with the ground plane. This cluster is not considered in the 
scope of this work and therefore not admissible to either Sb 

"t or Sdyn· 
• Case 6: A static or moving object cluster is in contact with 

the ground plane but not observed in either Sb or S�yn· This 
may be caused by the flaw of clustering algorithm being used. 

According to the derivation of error metrics in [21], it is possible 
that the number of static points falsely predicted as moving objects 
(FP) in a map can be much larger than correctly predicted moving 
objects (TP). Therefore, we adopt two novel quantatative metrics 
named as Rejection Rate (RR) and Preservation Rate (PR) as 
follows: 
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Fig. 2: Dynamic object filter design. 

PR = 
# of preserved static points 

ground truth of static points 
TN + ground plane 

TN + FN + ground plane ' 
RR = # of removed dynamic points 

ground truth of dynamic points 
TP 

TP + FP  

C. Cluster-based Object Detection 

(4) 

Since we only consider objects connected to the ground plane, it 
is suitable to build a clustering pipeline for the environment once we 
can easily fit and extract the points on or close to the ground plane. 
Mathematically, a distinct cluster can be defined as a set of points 
Cf, and we also define another cluster Cj if all points pj E Cj: 

min l iP} - P� 1 1 2  2 d�J for all p� E Cf , (5) 

where �j is the distance threshold between points in clusters c; 
and Cj. In this work, we use a kd-tree representation-based nearest 
neighbors queries to partition keyframe LiDAR scans into clusters. 
The details of the Euclidean distance based clustering method can 
be found in [25]. 

D. Egocentric Motion Detection for Clusters 

In LiDAR based SLAM algorithm, Since we have the esti­
mated localization and self-motion streamed from odometry, we 
can compute the estimation of LiDAR keyframe pose w T� and 
corresponding twist (tv at timestamp t. With the time sequence of 
wT� and (tv characterizing LiDAR's ego-motion, one can estimate 
the motion of identified clusters in the environment as well. 

In this work, we propose an adapted version of ICP-based algo­
rithm for object motion detection as in Algorithm 1 depending on 
the time step length between two keyframes. By taking advantage of 
multiple processor cores onboard, it's possible to achieve near-real­
time performance, especially with well-optimized implementations 
and capable hardware. However, for more complex environments or 
resource-constrained devices, real-time processing might be more 
challenging to achieve. 

After obtaining the motion estimations of clusters at each time 
step, we can identify dynamic objects by inspecting the list of object 
to check their inconsistency with the inversed self-motion of the 
LiDAR query scans w T� - l .  It is quite obvious that the static 
objects ought to have trivial twist estimation in the world frame, 
while dynamic object cluster can have varying twists estimation 

Algorithm 1 Egocentric Motion Detection of Environmental 
Object Clusters in One Time Step 

Require: Original query data Sb at time t - h and t 
Require: LiDAR or fused odometry w T� and (iv at time 

t - h and t  
Require: List of object clusters { Cf I i = 1,  . . .  , m} at time 

t - h and t, where m is the number of clusters 
1: Init empty list of object poses {Wi't I i = 1,  . . .  , m} 
2: Init empty list of object twists { (f,w I i = 1 , . . .  , m} 
3: for each object cluster Cf do 

W A t 4: Initialize transformation Ti,init based on 
w A t-h Ti,refined 

5: Apply ICP to align points in Cf using Wi'Lmt 
6: Set Wi't refined as the ICP-refined transfo�tion 'w A t w A t {w A t 1 7: Replace Ti init with Ti refined in Ti i 

1, . . .  , m} 
' ' 

8: Compute using poses of t - h and t and Add the twist 
At t t At • (i,W = (vi , wi ) to {(i,W I z = 1 , . . .  , m} 

9: end for 
10: return {wTt I i = 1 , . . . , m}, {(f,w I i = 1, . . .  , m} 

and changing poses the world frame. We use this principle to filter 
out the dynamic object clusters by setting the threshold for twist 
variations. 

(a) Before filtering. (b) After filtering. 

Fig. 3: Ghost trail removal on reconstructed UCSD Calit2 
tunnel. 
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Fig. 4: Dynamic objects removal (red) on SemanticKITTI 
Sequence 01. 

Ill. RESULTS AND DISCUSSION 

In this section, we present the results of evaluating our dynamic 
object filtering algorithm on both our custom rosbag SLAM dataset 
and the publicly available SemanticKITII sequences [24]. We assess 
the effectiveness of the algorithm in identifying and filtering out 
dynamic objects from LiDAR scans. 

A. Custom dataset 

We conducted preliminary case study tests using our custom 
research robotic platform DamBot-Mini. The dataset is simulating a 
tunnel environment with a mix of dynamic and static objects. There­
fore, we apply our dynamic object filtering algorithm to perform 
LiDAR-inertial-visual mapping from the LiDAR scans to remove 
the "ghost trails" left by pedestrians from the static environment. 
In Fig.3, we can tell the ghost trails have been removed and the 
precision of the map is improved from a qualitative perspective. 

B. SemanticKIITI 

We extend our evaluation to the widely used SemanticKITTI 
dataset using a segment of Sequence 01 (frame no. 150 to 250). We 
convert the The algorithm's performance was assessed qualitatively 
by visually comparing the detected dynamic object regions with 
the point cloud sequences. Fig. 4 illustrate the effectiveness of our 
dynamic object filter applied to the sequence of selected frames 
of Sequence 01. We also apply the change detection method using 
CloudCompare's M3C2 algorithm [26] and mark the removed points 
in red as shown in Fig. 4. We also perform comparsons of different 
dynamic objects removing methods on the same sequnce using 
OctoMap [27], Peopleremover [23], Removert [22], and ERASOR 
[21] as shown in Table I. Our proposed methodology has the shortest 
runtime compared to the other SOTA dynamic points cleaning 
methods. 
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TABLE 1: Quantitative Comparisons on SemanticKITTI Se-
quence 01 (102 frames, bag time 10.4s). 

Method RR [%] PR [%] Runtime [s] 

OctoMap[4] 99.863 20.777 120.254 

People-

remover[ 51 93. 1 16 36.349 1 12.412 

Removert[ 6] 57.077 95.815 95.131 

ERASOR[1] 95.383 91.487 17.866 

Proposed 94.231 93.427 10.706 

IV. CONCLUSION 

In conclusion, this paper attempts to address a critical challenge 
in point cloud mapping, namely removing dynamic objects points 
from query LiDAR scans. We take a step forward by proposing a 
novel and lightweight dynamic object filtering algorithm, designed 
to facilitate the real-time generation of LiDAR-based static point 
cloud maps. 

The method outlined in this paper holds great potential as a 
reliable point cloud data source for diverse LiDAR-inertial-visual 
fusion mapping approaches. Future work may involve studying 
the pros and cons of deep learning based, transformer based, and 
distanced cluster based methods for identifying dynamic objects. 
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