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Abstract— Although solar and wind energy are the dominant
sources of renewable energy production today, attention is
increasing towards other solutions, such as marine Wave Energy
Conversion (WEC). High installation costs and the relatively
low efficiency of current power take-off mechanisms currently
prevent WEC from being competitive with solar and wind
energy production. One potential way to overcome this is by
implementing an active control strategy which optimizes WEC
power takeoff in real time, thereby extracting the maximum
energy possible from each individual wave. Accomplishing this
requires an estimation problem to be solved, since oncoming
sea waves are not known a priori—they come from multiple
directions, and generally arrive in sets. In the present work,
a parallel Ensemble Kalman forecasting algorithm leveraging
a pseudospectral wave model for time propagation of the
ensemble members is developed to estimate and forecast the
wavefield based on data assimilated from a Doppler wave radar
system. This forecast of the future wavefield is then exploited in
a linear Model Predictive Control (MPC) setting for the online
optimization of power take-off of a one-body point-absorber
WEC system subject to motion and machinery constraints.
Simulations over a realistic sea state exhibit a trade-off between
control efficiency and forecast accuracy, with power losses in
the prediction-based setting not exceeding 16% of the power
take-off obtained using MPC under the ideal assumption of
complete knowledge of the oncoming wavefield.

I. INTRODUCTION

Most discussions of renewable energy production focus on

solar and wind. Only recently has increased attention turned

towards wave energy conversion (WEC) in the ocean. WEC

is zero-emission and essentially non-intermittent, as opposed

to solar and wind energy sources, and can be implemented

with minimal visual and environmental impact. However,

the installation and maintenance costs of modern WEC

devices, together with their relatively low energy production,

currently prevent WEC from being competitive with more

mature fields of renewable energy production. One way to

overcome this is to improve the power take-off strategy in

such devices, which currently relies on a suboptimal tuning

approach designed to match the resonance frequency of

the device to the peak of the average wave spectrum at

the operating location, and limits the motion of the device

based on a highly-conservative estimate of worst-case wave

heights at the current sea state. By implementing an active

controller which adapts the power take-off parameters to the

oncoming wavefield, the performance of WEC devices can

be significantly improved.
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Over the years, many active control schemes have ap-

peared in literature, though the majority of them do not

realistically facilitate implementation, due to the simplifying

assumptions upon which their theoretical derivation is based,

eventually leading to suboptimal solutions to the power take-

off tuning problem. One of the earliest results, denoted

complex-conjugate control (see [1] for a review), considers

the optimization of the energy absorption of a point-absorber

WEC device oscillating in heave only, which is obtained by

matching the machinery impedance Zm(ω) with the com-

plex conjugate of the device’s intrinsic impedance Z∗
i (ω).

The control law so derived is inherently noncausal, and

practical implementation appears infeasible. Several attempts

have been made to modify this formulation to produce a

causal realization of such a control approach. One of the

most promising such approaches, denoted optimal velocity

tracking, calculates the optimal velocity vopt to impose

to the device with respect to the wave excitation force

Fe(ω) acting on the device due to its interaction with the

wavefield. Denoting with Ri(ω) the radiation resistance of

the device, the optimal device velocity is determined as

vopt = Fe(ω)/(2Ri(ω)). Due to the noncausality of the

excitation force, a concept that will be explained in greater

detail in Section II, this control approach does not lead to

a practical implementation, unless knowledge of the future

excitation force is available. Moreover, all of the approaches

just mentioned, which are also referred to as reactive control,

do not handle well the case in which the WEC device is

composed by multiple bodies, or it is subject to machinery

and motion constraints.

Other control approaches which instead do not require

reactive power, are latching and clutching control. The

basic idea underlying latching control is to lock the device

motion when the device velocity becomes zeros during the

wave oscillating cycle (latching) and let the device free to

oscillate in phase with the excitation force in other parts

of the wave cycle (unlatching). Clutching control, instead,

works by repeatedly coupling and decoupling (clutching) the

machinery load during the oscillating cycle according to a

defined control rule. Such control techniques present how-

ever obvious structural implementation problems. Besides,

the determination of the unlatching or clutching instants is

strongly affected by the regularity of the oncoming waves

and has been observed to change according to the wave

height and wave period, further precluding a straightforward

implementation.

Model Predictive Control (MPC), on the other side,

represents an extremely flexible approach, in which the
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optimal control maximizing the WEC power take-off over

a predefined control optimization horizon Th is calculated

through the online solution of an optimization problem. In

this framework, any WEC device subject to linear dynamics

and linear constraints can be handled in the same way,

and the determination of the optimal control law requires

at each instant the solution of a quadratic programming

problem. Moreover, in [2] a comparison of the control

schemes here briefly described has been performed, and

simulations considering a one-body point absorber WEC

device under representative sea conditions have proved that

MPC is the solution providing, on average, maximum power

take-off. However, a practical implementation of such ap-

proach requires knowledge of the future excitation force

for the correct representation of the system dynamics over

the control horizon, hence a forecasting problem arises.

Interestingly, few attempts have appeared so far in literature

at providing a reliable estimate of wave interaction force to

be leveraged in the MPC setting. Amongst them, Hals et

al [3] developed an augmented Kalman filter with a damped

harmonic oscillator as model for the propagation of a one-

dimensional wavefield.

The present work aims at deriving a feasible MPC ap-

proach leveraging actual wave measurements for the predic-

tion of the excitation force over the control horizon. The

organization of the paper is as follows: Section II describes

the dynamic model of a one-body point-absorber WEC in

heave. Such model will be used to assess the performance of

our prediction-based MPC approach. Section III introduces

Ensemble Kalman Forecasting (EnKF) for the estimation of

the future wavefield leveraging wave data measurement. In

Section IV, wave prediction is leveraged in a Model Pre-

dictive Control framework in order to calculate the optimal

control law maximizing the power take-off of a WEC device.

Finally, in Section V, we analyze the effect that EnKF wave

forecasting, coupled with MPC, has on the power take-off of

a one-body point-absorber, and we compare the results with

the case in which the future wavefield is known a priori.

II. WAVE ENERGY CONVERTER MODEL

Many WEC topologies have appeared in literature, a few

of them allowing the possibility of an active controller.

Among these, the linear one-body point-absorber subject

to heave motion only, due to the simplicity of the power

extraction mechanism, has received the greatest attention in

literature. This converter is composed by a semisubmerged

floating body, which is fixed to the sea bottom through a

connection containing a linear drive actuator. Such device, in

the hypothesis of negligible nonlinear effects, is subject to an

inertial force, a viscous force, due to hydrodynamic friction,

a buoyancy force, proportional to the device displacement

according to Archimedes’ principle, a radiation force fR(t)
capturing the effect that the device motion has on a volume

of still water in which it is immersed, and an excitation force

fe(t) which represents the effect that the wavefield has on

the device, considered still. Besides, a control force u(t) is

considered to be applied to the device. Denoting with z(t)

Fig. 1: Model of a one-body point absorber WEC device

the WEC heaving displacement, the balance of forces on the

device, as shown in Figure 1, gives:

m z̈(t) + r ż(t) + k z(t) = fR(t) + u(t) + fe(t) (1)

where m is the device mass, r is the viscous damping, and k
is the buoyancy stiffness, defined as k = ρgS, where ρ is the

water density, g the gravitational constant, and S the water

plane area. The radiation force fR(t), according to [4], can

be expressed as

fR(t) = −m∞ z̈(t)− fr(t)

= −m∞ z̈(t)−

∫ t

−∞

hr(t− τ) ż(τ) dτ
(2)

where m∞ is the added mass, fr(t) is the reduced radiation

force, and hr(t) is the impulse response function of the

reduced radiation force. For simplicity, in the rest of the

paper we will refer to the term fr(t) as the radiation force.

The excitation force fe(t) is expressed as

fe(t) =

∫ +∞

−∞

he(t− τ) η̄(τ) dτ (3)

where he(t) is the excitation force impulse response function,

and η̄(t) is the wave elevation time series at the device

location. As mentioned in [4], the impulse response function

relating the wave elevation to the excitation force affecting

the device happens to be noncausal. The main reason is

that the chosen input, i.e. the wave elevation at the device

location, is not the direct cause of the output, i.e. the

interaction force between the wavefield and the device. The

actual cause of the output may be a storm far away, and the

interposed wavefield is only a means through which such

input propagates, hence the loss of causality.

In order to recast the system dynamics into state-space

form, the radiation force fr(t) in (2) can be discretized

through the following state-space realization [4]:

{

Ẋr(t) = ArXr(t) +Br ż(t)

fr(t) = CrXr(t) +Dr ż(t)
(4)

This leads to the following state-space model:

ẋ(t) = Ax(t) +B u(t) +B fe(t) (5)
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with

A =





Ar 0 Br

0 0 I
−

Cr

m+m∞

−

k

m+m∞

−

r+Dr

m+m∞



, B =





0
0
1

m+m∞



 (6)

where x is the state-space vector containing the dummy

variables Xr used to discretize the radiation force, the

position p and the velocity v of the device.

This model shows that wave elevation affects the device

dynamics through (3), hence accurate knowledge of the

wavefield is necessary whenever the dynamic behavior of

the WEC device needs to be computed.

III. ENSEMBLE OCEAN WAVE FORECASTING

Ensemble Kalman Filtering is a powerful data assimilation

scheme which has received growing appreciation in the

weather forecasting community over the years, since the

seminal paper by Evensen [5]. The extension to ocean wave

forecasting is rather straightforward. A specified number of

ensemble members NKF is initially generated by randomly

sampling a sea spectrum assumed to approximately represent

the actual sea state. Then, a mathematical model of the

wave process is employed to advance each member inde-

pendently over time. Whenever new measurements of the

wavefield becomes available, first and second order statistics

are calculated from the ensemble set to perform the Kalman

Filter assimilation step. Afterward, the updated members are

again propagated in time until new measurements become

available.

In the present work, the dynamic model adhibited to the

time propagation of the actual and ensemble wavefields has

been derived from linear wave theory. Under the assumption

of inviscid flow, finite-depth water, linear wave interaction,

and constant atmospheric pressure at the interface between

air and water, wave dynamics is completely described by the

following pair of equations
{

∂η
∂t = −L [Φ]

∂Φ
∂t = −g η

(7)

where η(x, y, t), is the the wave elevation and Φ(x, y, t)
is the surface scalar flow potential at the horizontal spatial

coordinates x and y over time t. The operator L [Φ] is defined

as

L [Φ] = −F−1 [k tanh (k h)F [Φ]] (8)

in which F [·] denotes Fourier transform, k is the spatial

wavenumber spanning Fourier domain, and h is the sea

depth. In order to simplify the computation of the operator

L[·], a pseudospectral approach is adopted for the numerical

implementation. This allows to leverage Fast Fourier Trans-

form (FFT) routines resulting in increased computational

speed. Introducing the state vector xKF = [ηT , ΦT ]T and

denoting with x̂KF its Fourier transform, the system of

equations in (7) can be expressed as

˙̂xKF (t) =

[

0 k tanh (k h)
−g 0

]

x̂KF (t) (9)

In this way, the propagation of the ensemble members can

be carried out entirely in Fourier domain and transformation

back to the physical space is needed only to perform the

assimilation step.

In order to initialize the simulation of the actual sea

state and the propagation of the ensemble members, the

initial wave elevation η0(x, y) and flow potential Φ0(x, y)
need to be defined. In order to generate a wavefield which

is representative of a realistic sea condition, we assume

that the initial wavefield spectrum follows a JONSWAP

distribution [6]. This semi-empirical model has been proved

to provide a good approximation of the frequency spectrum

of wind-generated waves in deep water. Following [7], the

JONSWAP spectrum is defined as:

S(ω) = 155
H2

1/3

T 4
pω

5
e

−944

T4
p ω5

γY ,

with Y = e
−(0.191 ω Tp−1)2

2 σ2 ,

and σ =

{

0.07, ω ≤ 5.24/Tp
0.09, ω > 5.24/Tp

(10)

where H1/3 is the significant wave height, Tp the dominant

wave period, and γ the peak enhancement factor, which

ranges from 1 for fully-developed sea states to 3.3 for

developing sea state. The initial wavefield is then obtained

by randomly selecting Nw harmonic components from the

JONSWAP distribution in (10) and adding a uniformly

random phase shifting to each component. The initial sea

state η0(x, y) is then defined as

η0(x, y) =

Nw
∑

j=1

√

2S(ωj)∆ω cos(kj cosψ0 x+

+kj sinψ0 y + εj)

(11)

where ∆ω is the spectrum frequency resolution, ψ0 ac-

counts for the direction of the wave propagation, εj is a

uniformly random phase shift ranging from 0 to 2π, and

kj is the wavenumber associated to each selected frequency

component ωj through the linear finite-depth wave dispersion

relationship

ωj =
√

gkj tanh(kjh) (12)

The initial flow potential Φ0(x, y) is then obtained through

the solution of the linear wave propagation problem for the

time series in (11):

Φ0(x, y) =

Nw
∑

j=1

g

ωj

√

2S(ωj)∆ω sin(kj cosψ0 x+

+kj sinψ0 y + εj)

(13)

Likewise, the ensemble members are generated through

Equations (11) and (13) by randomly sampling a perturbed

version of the JONSWAP spectrum defined to generate the

actual initial wavefield.

For the data assimilation step, measurements are supposed

to be provided by a Doppler radar positioned at the device

location. Such wave radar gives the radial component of
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the wavefield velocity vr(r, θ , t), with respect to the radar

local coordinates, at a specified sampling time. From the

radar velocity, it is possible to directly calculate the surface

potential within the radar range, through integration over the

radial coordinate, i.e.

Φm(r, θ, t) =

∫ r

0

vr(ρ, θ, t) dρ, for r ∈ [0, rmax]

(14)

in which rmax is the radar range. For simplicity, the center

of the polar reference system is considered at the wave radar

location. A linear interpolation is then performed in order to

switch from the radar reference system to the Cartesian grid

defined for the numerical simulation of the wave propagation

equations. In order to represent the actual signal-to-noise ra-

tio of a real wave radar measurements, which is known from

theory to degrade with the fourth power of the distance from

the center of the radar, a distance-dependent gaussian noise

is introduced. Hence, the measurement noise covariance σ2
R

is defined as:

σ2
R(r) = α+ β

(

r

rmax

)4

(15)

The data assimilation step is then performed using Kalman

Filter update equations. Denoting with XKF the matrix

containing the ensemble set, the assimilation of radar mea-

surements is performed at each sampling time, according to

the following:

X+
KF = X−

KF +
1

NKF − 1
V (CV )T

[

1

NKF − 1
(CV )(CV )T +R

]−1

(Y − CX−

KF )

(16)

where superscript − indicates the prior Ensemble Kalman

estimation, while superscript + denotes the posterior En-

semble Kalman estimation, C is the measurement matrix

relating radar measurements to the state-space vector xKF ,

R the measurement noise covariance matrix defined accord-

ing to (15), and Y is the matrix obtained after perturbing

NKF times the radar measurement vector with random noise

consistent with the measurement noise statistics. Besides, we

have

V = X−

KF − E
(

X−

KF

)

(17)

where E
(

X−

KF

)

represents the first order statistics associ-

ated to the prior ensemble set.

Calculating the first order statistics of the ensemble set

over the predefined control horizon, provides an estimate for

the wave elevation at the device location η̄(t) in (3), to be

leveraged in the MPC framework.

IV. MODEL PREDICTIVE CONTROL FOR OPTIMAL

WEC POWER TAKE-OFF

Under the assumption of no losses in the power generation

process, optimizing the WEC device average power take-off

P̄a at a given instant t0 over a defined control horizon Th

can be achieved by determining the optimal control sequence

u(t) maximizing the following cost function:

P̄a = −
1

Th

∫ t0+Th

t0

v(t)u(t) dt (18)

where v is the device velocity. The minus sign is due to the

convention of considering absorbed energy with a negative

sign. After discretizing the integral in (18) and changing sign,

the optimization problem now requires the minimization of

J =
1

N

N−1
∑

k=0

xTk+1S
T
v uk (19)

in which N is the number of time interval over the control

horizon Th, and Sv is a linear operator extracting the WEC

velocity from the state-space vector. The control force and

state vector, however, are not independent variables, and

they are constrained by the dynamics equations of the WEC

derived in (5), which in discrete time are defined as

xk+1 = Ad xk+Bd uk+Bd fe k, k = 0, . . . , N−1 (20)

with assigned initial condition x0 = x̄0. In order to preserve

mechanical and structural integrity, motion and machinery

constraints are imposed, which limit the maximum actuation

force and the WEC device velocity and vertical displacement

for structural safety, i.e.

umin ≤ uk ≤ umax, k = 0, . . . , N − 1

pmin ≤ Sp xk≤ pmax, k = 1, . . . , N

vmin ≤ Sv xk≤ vmax, k = 1, . . . , N

(21)

where Sp is a linear operator extracting the WEC displace-

ment from the state vector. The cost function in (19), together

with the constraints in (20) and (21) represents a linear MPC

problem in its standard formulation, as described in [8].

A more compact formulation can be obtained by defining

the following vectors

X =
[

xT1 , x
T
2 , . . . , x

T
N

]T

U =
[

uT0 , u
T
1 , . . . , u

T
N−1

]T

In this way, the cost function can then be expressed as

J =
1

N
X TST

v U (22)

The inequality constraints become

Du U ≤ du

Dx X ≤ dx
(23)

with

Du =

[

I
−I

]

du =

[

umax

−umin

]

Dx =









Sp

−Sp

Sv

−Sv









dx =









pmax

−pmin

vmax

−vmin









in which Sv and Sp are block-diagonal matrices having the

velocity extraction matrix Sv and the position extraction
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matrix Sp, respectively, on the main block-diagonal. By

recursively applying the discrete-time dynamics equations

in (20), it is possible to express X as a function of the

control vector U , the excitation force vector Fe, and the

initial condition x̄0, as done also in [3] and [9]:

X = Ad x̄0 + Bd U + BdFe (24)

where

Ad =











Ad

A2
d

...

AN
d











Bd =











Bd 0 0 0
AdBd Bd 0 0

...
...

. . . 0

AN−1
d Bd AN−2

d Bd · · · Bd











Fe =
[

fT
e 0, f

T
e 1, . . . , f

T
eN−1

]T

Replacing relation (24) into (22) and (23) allows to rewrite

the MPC problem as

min
U

UT BT
d S

T
v U + (Sv Ad x̄0 + Sv BdFe)

T
U

[

Du

Dx Ju

]

U ≤

[

du
dx −DxAd x̄0 −Dx BdFe

] (25)

Provided the Hessian of the cost function in (25) is positive

definite, the maximization of power take-off requires the

solution of a constrained convex optimization problem, for

which well-consolidated routines, such as interior-point or

active-set methods are available in literature (see [10] for

an extensive review). As already observed in [3], positive

definiteness of the Hessian is in general always guaranteed

for the optimization of a point-absorber device, unless the

time step chosen for the conversion of the continuous time

model into discrete time turns out to be too large to represent

the actual dynamic behavior of the WEC device.

At each timestep, an MPC problem like (25) needs to be

solved, and the first value of the optimal solution vector U∗

is applied to the system. In this way, it is possible to achieve

a real-time instantaneous optimization of the WEC device

average power take-off. It has to be noticed, however, that,

since the state vector x also contains the dummy variables

used for the state space realization of the radiation force,

the whole state is in general not available, and the initial

condition x̄0 in the MPC optimization is not known and

needs to be reconstructed through a state observer based

on sensors placed on the device. Furthermore, as already

mentioned in Section II, the excitation force vector Fe is not

available in real applications and needs to be estimated. The

purpose of the Ensemble Kalman Filtering method derived

in Section III is to provide an estimate F̂e over the MPC

control horizon Th.

V. RESULTS

We investigate the effect of ensemble wave forecasting

on the MPC of the WEC device introduced in Section II

for power take-off optimization. The structural parameters

appearing in (6) have been defined as m +m∞ = 2 · 106,

r = 7 · 104, k = 3 · 106, whereas radiation and excitation

force impulse response functions hr(t) and he(t) in (2)

and (3), respectively, have been derived using the boundary

element code WAMIT [11]. For the simulation of the actual

wavefield, a Cartesian domain of 4000m × 4000m and a

number of gridpoints equal to 256 in both directions is

considered. The sea depth h is assumed constant and equal

to 100m.

For the propagation of the ensemble members a domain

half of the size of the simulation domain is considered, while

the spatial resolution is unchanged. For simplicity, the center

of both domains have been placed at the device location.

The overall simulation time is 200 s. An explicit fourth-

order Runge-Kutta scheme has been implemented with a

fixed timestep ∆t = 0.2 s for the time integration. The initial

wavefield η0(x, y) in (11) has been obtained by randomly

sampling the JONSWAP spectrum in (10) with H1/3 =
2m, Tp = 8 s, and γ = 3.3, while the initial ensemble

members are obtained by sampling the same spectrum with a

a randomly uniform perturbation of ±20% of the significant

wave height H1/3 and dominant period Tp. A number of

ensemble members NKF = 200 has been employed. For the

Doppler radar model, a range rmax = 500m is considered,

with a radial and azimuthal resolution of 15m and 2o,

respectively. The sampling time is 2 s. For the measurement

noise characterization in (15), we assume α = β = 10−2.

In the MPC formulation, we impose actuator saturation at

umax = −umin = 107N , and motion constraints pmax =
−pmin = 5m and vmax = −vmin = 5m/s. The control

horizon Th has been varied between one dominant wave

period Tp and three times such period.

Results in Figure 2 show that EnKF provides overall

good results with errors in the proximity of the device

ranging from 5% of the actual wave elevation in case of

pure estimation, up to 20% for forecasting at three times the

dominant wave period. Interestingly, it is possible to observe

the formation of a downstream wave of low-error estimation,

due to the convection of the ensemble wavefield region of

assimilation due to wave propagation.

The actual and estimated wave elevation at the device

location η̄(t) and η̂(t) over the simulation time is shown in

Figure 3. An average phase and amplitude error of nearly 2%
and 10%, respectively, has been observed. The average power

take-off of the WEC device obtained over the simulation

time leveraging MPC with full knowledge of the actual

wavefield P̄a and with ensemble forecasting P̂a are shown

in Figure 4 as a function of the control horizon Th. Values

have been normalized according to the asymptotic value

of maximum power take-off, which has been calculated

through the unconstrained infinite-time optimization of the

continuous-time cost function in (18) in the linear optimal

control setting. Results show that in case of full knowledge

of the actual wavefield, a longer horizon always leads to

better performance, eventually converging to the optimal

control solution in the absence of active constraints. When

the ensemble-based forecast is leveraged, a loss of 10% is

observed for control optimization horizons Th up to two

dominant wave periods, and performance degrades to 16%
for longer control optimization horizons, as the estimate
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(a) Current estimation error
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(b) Forecasting error 8 sec in the future.
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(c) Forecasting error 16 sec in the future.
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(d) Forecasting error 24 sec in the future.

Fig. 2: Wave elevation prediction error (in meters) after 100 s
of simulation time at different forecast times. The white

circle represents the WEC device, the white dashed line the

radar range. Waves propagates from left to right, and the

dominant wave period is Tp = 8 sec.
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Fig. 3: Wave elevation at the device location: actual (solid

black) and estimated (dashed red).
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Fig. 4: Normalized WEC average power take-off: MPC with

complete knowledge of the wavefield (solid black), and

with ensemble forecasting (dashed red) with respect to the

unconstrained infinite-time solution (dash-dotted blue).

of the wakefield further into the future is degraded. This

is consistent to what found in [3]. A way to improve the

performance of the coupled EnKF/MPC approach would be

to increase the number of ensemble members NKF , at the

cost of increased computational time, or increase the radar

range, or work with a wave measurement device with lower

noise covariance, such as an array of measurement buoys

placed upstream with respect to the WEC device.

VI. CONCLUSIONS

This paper represents one of the first attempts at develop-

ing a realistic MPC framework for the real-time optimization

of the power take-off of a WEC device, through the im-

plementation of an EnKF algorithm which assimilates data

provided by a wave radar. Linear wave propagation theory

is leveraged to forecast the wave elevation over the control

optimization horizon, and an estimate of the excitation force

is provided for the solution of the MPC problem. Results

have shown that EnKF provides overall good results when

applied to radar data assimilation for ocean wave prediction.

Simulations performed over a realistic sea state show that

the power take-off obtained via MPC with exact knowledge
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of the actual excitation force approaches its maximum value

when a control optimization horizon of at least three times

the dominant wave period is considered, while when the

EnKF estimation of such force is leveraged, a trade-off is

present, since a longer control optimization horizon depends

in a more sensitive fashion on the accuracy of the wavefield

estimate.

The combined approach of ensemble wave forecasting

and model predictive control of the WEC can easily be

generalized to handle different scenarios. For example, the

linear wave propagation model used here might prove inade-

quate at appropriately capturing the wave dynamics in certain

settings, and a nonlinear wave interaction model or shallow

water wave propagation model over an uneven bottom might

be required. Different wave measurement devices can also

be incorporated in the EnKF assimilation step, such as an

array of wave measurement buoys surrounding the device.

Moreover, the optimization of the power take-off of different

WEC topologies allows an active control implementation to

be handled in the linear MPC setting. In the case a linear

approximation of the WEC device dynamics is insufficient,

or in the presence of nonlinear constraints, the linear MPC

formulation may be replaced by a more flexible nonlinear

MPC approach. These extensions are currently underway,

and will be reported in future publications.
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