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Model Predictive Control leveraging Ensemble Kalman Forecasting
for optimal power take-off in wave energy conversion systems
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Abstract— Although solar and wind energy are the dominant
sources of renewable energy production today, attention is
increasing towards other solutions, such as marine Wave Energy
Conversion (WEC). High installation costs and the relatively
low efficiency of current power take-off mechanisms currently
prevent WEC from being competitive with solar and wind
energy production. One potential way to overcome this is by
implementing an active control strategy which optimizes WEC
power takeoff in real time, thereby extracting the maximum
energy possible from each individual wave. Accomplishing this
requires an estimation problem to be solved, since oncoming
sea waves are not known a priori—they come from multiple
directions, and generally arrive in sets. In the present work,
a parallel Ensemble Kalman forecasting algorithm leveraging
a pseudospectral wave model for time propagation of the
ensemble members is developed to estimate and forecast the
wavefield based on data assimilated from a Doppler wave radar
system. This forecast of the future wavefield is then exploited in
a linear Model Predictive Control (MPC) setting for the online
optimization of power take-off of a one-body point-absorber
WEC system subject to motion and machinery constraints.
Simulations over a realistic sea state exhibit a trade-off between
control efficiency and forecast accuracy, with power losses in
the prediction-based setting not exceeding 16% of the power
take-off obtained using MPC under the ideal assumption of
complete knowledge of the oncoming wavefield.

I. INTRODUCTION

Most discussions of renewable energy production focus on
solar and wind. Only recently has increased attention turned
towards wave energy conversion (WEC) in the ocean. WEC
is zero-emission and essentially non-intermittent, as opposed
to solar and wind energy sources, and can be implemented
with minimal visual and environmental impact. However,
the installation and maintenance costs of modern WEC
devices, together with their relatively low energy production,
currently prevent WEC from being competitive with more
mature fields of renewable energy production. One way to
overcome this is to improve the power take-off strategy in
such devices, which currently relies on a suboptimal tuning
approach designed to match the resonance frequency of
the device to the peak of the average wave spectrum at
the operating location, and limits the motion of the device
based on a highly-conservative estimate of worst-case wave
heights at the current sea state. By implementing an active
controller which adapts the power take-off parameters to the
oncoming wavefield, the performance of WEC devices can
be significantly improved.
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Over the years, many active control schemes have ap-
peared in literature, though the majority of them do not
realistically facilitate implementation, due to the simplifying
assumptions upon which their theoretical derivation is based,
eventually leading to suboptimal solutions to the power take-
off tuning problem. One of the earliest results, denoted
complex-conjugate control (see [1] for a review), considers
the optimization of the energy absorption of a point-absorber
WEC device oscillating in heave only, which is obtained by
matching the machinery impedance Z,,(w) with the com-
plex conjugate of the device’s intrinsic impedance Z;(w).
The control law so derived is inherently noncausal, and
practical implementation appears infeasible. Several attempts
have been made to modify this formulation to produce a
causal realization of such a control approach. One of the
most promising such approaches, denoted optimal velocity
tracking, calculates the optimal velocity v°P* to impose
to the device with respect to the wave excitation force
F,(w) acting on the device due to its interaction with the
wavefield. Denoting with R;(w) the radiation resistance of
the device, the optimal device velocity is determined as
vPt = F,(w)/(2 Ri(w)). Due to the noncausality of the
excitation force, a concept that will be explained in greater
detail in Section II, this control approach does not lead to
a practical implementation, unless knowledge of the future
excitation force is available. Moreover, all of the approaches
just mentioned, which are also referred to as reactive control,
do not handle well the case in which the WEC device is
composed by multiple bodies, or it is subject to machinery
and motion constraints.

Other control approaches which instead do not require
reactive power, are latching and clutching control. The
basic idea underlying latching control is to lock the device
motion when the device velocity becomes zeros during the
wave oscillating cycle (latching) and let the device free to
oscillate in phase with the excitation force in other parts
of the wave cycle (unlatching). Clutching control, instead,
works by repeatedly coupling and decoupling (clutching) the
machinery load during the oscillating cycle according to a
defined control rule. Such control techniques present how-
ever obvious structural implementation problems. Besides,
the determination of the unlatching or clutching instants is
strongly affected by the regularity of the oncoming waves
and has been observed to change according to the wave
height and wave period, further precluding a straightforward
implementation.

Model Predictive Control (MPC), on the other side,
represents an extremely flexible approach, in which the
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optimal control maximizing the WEC power take-off over
a predefined control optimization horizon 7}, is calculated
through the online solution of an optimization problem. In
this framework, any WEC device subject to linear dynamics
and linear constraints can be handled in the same way,
and the determination of the optimal control law requires
at each instant the solution of a quadratic programming
problem. Moreover, in [2] a comparison of the control
schemes here briefly described has been performed, and
simulations considering a one-body point absorber WEC
device under representative sea conditions have proved that
MPC is the solution providing, on average, maximum power
take-off. However, a practical implementation of such ap-
proach requires knowledge of the future excitation force
for the correct representation of the system dynamics over
the control horizon, hence a forecasting problem arises.
Interestingly, few attempts have appeared so far in literature
at providing a reliable estimate of wave interaction force to
be leveraged in the MPC setting. Amongst them, Hals et
al [3] developed an augmented Kalman filter with a damped
harmonic oscillator as model for the propagation of a one-
dimensional wavefield.

The present work aims at deriving a feasible MPC ap-
proach leveraging actual wave measurements for the predic-
tion of the excitation force over the control horizon. The
organization of the paper is as follows: Section II describes
the dynamic model of a one-body point-absorber WEC in
heave. Such model will be used to assess the performance of
our prediction-based MPC approach. Section III introduces
Ensemble Kalman Forecasting (EnKF) for the estimation of
the future wavefield leveraging wave data measurement. In
Section IV, wave prediction is leveraged in a Model Pre-
dictive Control framework in order to calculate the optimal
control law maximizing the power take-off of a WEC device.
Finally, in Section V, we analyze the effect that EnKF wave
forecasting, coupled with MPC, has on the power take-off of
a one-body point-absorber, and we compare the results with
the case in which the future wavefield is known a priori.

II. WAVE ENERGY CONVERTER MODEL

Many WEC topologies have appeared in literature, a few
of them allowing the possibility of an active controller.
Among these, the linear one-body point-absorber subject
to heave motion only, due to the simplicity of the power
extraction mechanism, has received the greatest attention in
literature. This converter is composed by a semisubmerged
floating body, which is fixed to the sea bottom through a
connection containing a linear drive actuator. Such device, in
the hypothesis of negligible nonlinear effects, is subject to an
inertial force, a viscous force, due to hydrodynamic friction,
a buoyancy force, proportional to the device displacement
according to Archimedes’ principle, a radiation force fr(t)
capturing the effect that the device motion has on a volume
of still water in which it is immersed, and an excitation force
fe(t) which represents the effect that the wavefield has on
the device, considered still. Besides, a control force u(t) is
considered to be applied to the device. Denoting with z(t)
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Fig. 1: Model of a one-body point absorber WEC device

the WEC heaving displacement, the balance of forces on the
device, as shown in Figure 1, gives:

mEt) +r2(t) + k2(t) = fr(t) +u(t) + fo(t) (1)

where m is the device mass, r is the viscous damping, and &
is the buoyancy stiffness, defined as k = pg.S, where p is the
water density, ¢g the gravitational constant, and S the water
plane area. The radiation force fg(t), according to [4], can
be expressed as

Fr(t) = —mec £(t) = fr(1)
“most) = [ et O

— 00

where m., is the added mass, f,.(t) is the reduced radiation
force, and h,.(t) is the impulse response function of the
reduced radiation force. For simplicity, in the rest of the
paper we will refer to the term f,.(¢) as the radiation force.
The excitation force f.(t) is expressed as

—+oo
fe(t) = / he(t —7)7(7) dr 3)
— 00

where h(t) is the excitation force impulse response function,
and 7)(t) is the wave elevation time series at the device
location. As mentioned in [4], the impulse response function
relating the wave elevation to the excitation force affecting
the device happens to be noncausal. The main reason is
that the chosen input, i.e. the wave elevation at the device
location, is not the direct cause of the output, i.e. the
interaction force between the wavefield and the device. The
actual cause of the output may be a storm far away, and the
interposed wavefield is only a means through which such
input propagates, hence the loss of causality.

In order to recast the system dynamics into state-space
form, the radiation force f,.(¢) in (2) can be discretized
through the following state-space realization [4]:

X, (t) = A, X,.(t) + B, 4(t) @
fr(t) =C, Xr(t) + D, Z(t)
This leads to the following state-space model:
(t) = Az(t) + Bu(t) + B fe(t) 5)
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with

A, 0 B, 0
A= 0 0 1 , B= 0 (6)
_ Cr _ k _ _r+D, 1
m—+meo m+meo m+meo m—+meo

where z is the state-space vector containing the dummy
variables X, used to discretize the radiation force, the
position p and the velocity v of the device.

This model shows that wave elevation affects the device
dynamics through (3), hence accurate knowledge of the
wavefield is necessary whenever the dynamic behavior of
the WEC device needs to be computed.

ITIT. ENSEMBLE OCEAN WAVE FORECASTING

Ensemble Kalman Filtering is a powerful data assimilation
scheme which has received growing appreciation in the
weather forecasting community over the years, since the
seminal paper by Evensen [5]. The extension to ocean wave
forecasting is rather straightforward. A specified number of
ensemble members Ny is initially generated by randomly
sampling a sea spectrum assumed to approximately represent
the actual sea state. Then, a mathematical model of the
wave process is employed to advance each member inde-
pendently over time. Whenever new measurements of the
wavefield becomes available, first and second order statistics
are calculated from the ensemble set to perform the Kalman
Filter assimilation step. Afterward, the updated members are
again propagated in time until new measurements become
available.

In the present work, the dynamic model adhibited to the
time propagation of the actual and ensemble wavefields has
been derived from linear wave theory. Under the assumption
of inviscid flow, finite-depth water, linear wave interaction,
and constant atmospheric pressure at the interface between
air and water, wave dynamics is completely described by the
following pair of equations

9= —L[®] ;
0v _ @)
at gn

where 7)(x, y, t), is the the wave elevation and ®(z, y, t)
is the surface scalar flow potential at the horizontal spatial
coordinates 2: and y over time ¢. The operator £ [®] is defined
as

L[®] = —F ' [k tanh (k h)F [®]] (8)

in which F[-] denotes Fourier transform, % is the spatial
wavenumber spanning Fourier domain, and h is the sea
depth. In order to simplify the computation of the operator
L[], a pseudospectral approach is adopted for the numerical
implementation. This allows to leverage Fast Fourier Trans-
form (FFT) routines resulting in increased computational
speed. Introducing the state vector xxr = [n?, ®7]7 and
denoting with Zxp its Fourier transform, the system of
equations in (7) can be expressed as

0 ktanh(kh)] .

xLKF(t) = —g 0 IKF(t) 9)

In this way, the propagation of the ensemble members can
be carried out entirely in Fourier domain and transformation
back to the physical space is needed only to perform the
assimilation step.

In order to initialize the simulation of the actual sea
state and the propagation of the ensemble members, the
initial wave elevation 7o(x, y) and flow potential ®q(x, y)
need to be defined. In order to generate a wavefield which
is representative of a realistic sea condition, we assume
that the initial wavefield spectrum follows a JONSWAP
distribution [6]. This semi-empirical model has been proved
to provide a good approximation of the frequency spectrum
of wind-generated waves in deep water. Following [7], the
JONSWAP spectrum is defined as:

2 -9
S(w) = 155 L2 ¢TFe5 Y
() T}w ’
—(0.191 w Tp—1)?
with Y —e  ze20 (10)
007, w<5.24/T,
and o = { 0.09, w>5.24/T,

where H, /3 is the significant wave height, T}, the dominant
wave period, and v the peak enhancement factor, which
ranges from 1 for fully-developed sea states to 3.3 for
developing sea state. The initial wavefield is then obtained
by randomly selecting NV,, harmonic components from the
JONSWAP distribution in (10) and adding a uniformly
random phase shifting to each component. The initial sea
state 7o (x, y) is then defined as

Ny
oz, y) = Z 1/25(w;)Aw cos(k; cos g z+
j=1

+kjsinyo y +¢5)

Y

where Aw is the spectrum frequency resolution, g ac-
counts for the direction of the wave propagation, ¢; is a
uniformly random phase shift ranging from 0 to 27, and
k; is the wavenumber associated to each selected frequency
component w; through the linear finite-depth wave dispersion

relationship
wj = 4/ gk; tanh(k;h)

The initial flow potential ®y(z, y) is then obtained through
the solution of the linear wave propagation problem for the
time series in (11):

12)

Ny

;%1/ (wj)Aw sin(k; cos g z+ (13)

+kj sin g y + Ej)

Likewise, the ensemble members are generated through
Equations (11) and (13) by randomly sampling a perturbed
version of the JONSWAP spectrum defined to generate the
actual initial wavefield.

For the data assimilation step, measurements are supposed
to be provided by a Doppler radar positioned at the device
location. Such wave radar gives the radial component of
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the wavefield velocity v, (r, 8,¢), with respect to the radar
local coordinates, at a specified sampling time. From the
radar velocity, it is possible to directly calculate the surface
potential within the radar range, through integration over the
radial coordinate, i.e.

T
D, (r, 0, 1) :/ ve(p, 0, t)dp, for r € [0, ryaxl

’ (14)
in which ry,y is the radar range. For simplicity, the center
of the polar reference system is considered at the wave radar
location. A linear interpolation is then performed in order to
switch from the radar reference system to the Cartesian grid
defined for the numerical simulation of the wave propagation
equations. In order to represent the actual signal-to-noise ra-
tio of a real wave radar measurements, which is known from
theory to degrade with the fourth power of the distance from
the center of the radar, a distance-dependent gaussian noise
is introduced. Hence, the measurement noise covariance 012%
is defined as:

4
a%m=a+6( T) (15)
Tmax

The data assimilation step is then performed using Kalman

Filter update equations. Denoting with X the matrix

containing the ensemble set, the assimilation of radar mea-

surements is performed at each sampling time, according to
the following:

_ 1
1 -1 (16)
———(CV)(CV)" +R| (Y —CXgp)
Nigp—1

where superscript — indicates the prior Ensemble Kalman
estimation, while superscript + denotes the posterior En-
semble Kalman estimation, C' is the measurement matrix
relating radar measurements to the state-space vector T r,
R the measurement noise covariance matrix defined accord-
ing to (15), and Y is the matrix obtained after perturbing
N times the radar measurement vector with random noise
consistent with the measurement noise statistics. Besides, we
have

V=Xgr—E(Xgp) (17
where F (XI_( F) represents the first order statistics associ-
ated to the prior ensemble set.

Calculating the first order statistics of the ensemble set
over the predefined control horizon, provides an estimate for
the wave elevation at the device location 7j(¢) in (3), to be
leveraged in the MPC framework.

IV. MODEL PREDICTIVE CONTROL FOR OPTIMAL
WEC POWER TAKE-OFF

Under the assumption of no losses in the power generation
process, optimizing the WEC device average power take-off
P, at a given instant ¢y over a defined control horizon T},

can be achieved by determining the optimal control sequence
u(t) maximizing the following cost function:

B 1 to+Th

P,=—=
a Th "
where v is the device velocity. The minus sign is due to the
convention of considering absorbed energy with a negative
sign. After discretizing the integral in (18) and changing sign,
the optimization problem now requires the minimization of

v(t) u(t) dt (18)

=
T T
J= > af ST uk (19)
k=0

in which N is the number of time interval over the control
horizon T}, and S, is a linear operator extracting the WEC
velocity from the state-space vector. The control force and
state vector, however, are not independent variables, and
they are constrained by the dynamics equations of the WEC
derived in (5), which in discrete time are defined as

Tpy1 = Agxk+Baur+Ba fer, k=0,..., N-1 (20)

with assigned initial condition xg = Zy. In order to preserve
mechanical and structural integrity, motion and machinery
constraints are imposed, which limit the maximum actuation
force and the WEC device velocity and vertical displacement
for structural safety, i.e.

k=0,...,N—1
k=1,...,N
k=1,...,N

Umin < Uk < Umax,

Pmin < Sp T < Pmax; (21)

Umin S Sv Tk S Umax;

where S}, is a linear operator extracting the WEC displace-
ment from the state vector. The cost function in (19), together
with the constraints in (20) and (21) represents a linear MPC
problem in its standard formulation, as described in [8].
A more compact formulation can be obtained by defining
the following vectors
X = [:vrf, i, x%]T

U= [ug, u{, R u]:@_l}T

In this way, the cost function can then be expressed as

1
J==x"sTu 22
i v (22)
The inequality constraints become
D, U < d,
(23)
D, X <d,
with
[ I umax
el | ] el
[ S;D Pmax
_ _SP _ | 7Pmin
Dw n 871 d:l; B vmax
__S’U —Umin

in which &, and &, are block-diagonal matrices having the
velocity extraction matrix S, and the position extraction
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matrix S, respectively, on the main block-diagonal. By
recursively applying the discrete-time dynamics equations
in (20), it is possible to express X as a function of the
control vector U/, the excitation force vector F., and the
initial condition T, as done also in [3] and [9]:

X =AqZo+ Bald + By Fe (24)
where
Aq By 0 0 0
Ai Ag By By 0 0
Ag = Ba = . )
: : : i 0
Al]iv Aév_le A(]iv_zBd -+ By
T
Fe=[flos 15, fina]

Replacing relation (24) into (22) and (23) allows to rewrite
the MPC problem as

min U BYST U+ (Sy AaZo + Sy BaF.)" U
(25)
D, U< Cgu
DzJu B dm_DwAde_Dde]:e

Provided the Hessian of the cost function in (25) is positive
definite, the maximization of power take-off requires the
solution of a constrained convex optimization problem, for
which well-consolidated routines, such as interior-point or
active-set methods are available in literature (see [10] for
an extensive review). As already observed in [3], positive
definiteness of the Hessian is in general always guaranteed
for the optimization of a point-absorber device, unless the
time step chosen for the conversion of the continuous time
model into discrete time turns out to be too large to represent
the actual dynamic behavior of the WEC device.

At each timestep, an MPC problem like (25) needs to be
solved, and the first value of the optimal solution vector I/*
is applied to the system. In this way, it is possible to achieve
a real-time instantaneous optimization of the WEC device
average power take-off. It has to be noticed, however, that,
since the state vector = also contains the dummy variables
used for the state space realization of the radiation force,
the whole state is in general not available, and the initial
condition Zy in the MPC optimization is not known and
needs to be reconstructed through a state observer based
on sensors placed on the device. Furthermore, as already
mentioned in Section II, the excitation force vector F, is not
available in real applications and needs to be estimated. The
purpose of the Ensemble Kalman Filtering method derived
in Section III is to provide an estimate F. over the MPC
control horizon T7},.

V. RESULTS

We investigate the effect of ensemble wave forecasting
on the MPC of the WEC device introduced in Section II
for power take-off optimization. The structural parameters
appearing in (6) have been defined as m + mq, = 2 - 109,
r =7-10% k = 3 - 109 whereas radiation and excitation
force impulse response functions h,.(t) and h.(t) in (2)

and (3), respectively, have been derived using the boundary
element code WAMIT [11]. For the simulation of the actual
wavefield, a Cartesian domain of 4000 m x 4000 m and a
number of gridpoints equal to 256 in both directions is
considered. The sea depth & is assumed constant and equal
to 100 m.

For the propagation of the ensemble members a domain
half of the size of the simulation domain is considered, while
the spatial resolution is unchanged. For simplicity, the center
of both domains have been placed at the device location.
The overall simulation time is 200s. An explicit fourth-
order Runge-Kutta scheme has been implemented with a
fixed timestep At = 0.2 s for the time integration. The initial
wavefield 7o(x, y) in (11) has been obtained by randomly
sampling the JONSWAP spectrum in (10) with Hy/;3 =
2m, T, = 8s, and v = 3.3, while the initial ensemble
members are obtained by sampling the same spectrum with a
a randomly uniform perturbation of +20% of the significant
wave height H,,3 and dominant period T,,. A number of
ensemble members N = 200 has been employed. For the
Doppler radar model, a range ryax = 500 m is considered,
with a radial and azimuthal resolution of 15m and 2°,
respectively. The sampling time is 2 s. For the measurement
noise characterization in (15), we assume o = 8 = 1072
In the MPC formulation, we impose actuator saturation at
Umax = —Umin = 107 N, and motion constraints Pmax =
—Pmin = 5m and Umax = —VUmin = bm/s. The control
horizon T}, has been varied between one dominant wave
period T}, and three times such period.

Results in Figure 2 show that EnKF provides overall
good results with errors in the proximity of the device
ranging from 5% of the actual wave elevation in case of
pure estimation, up to 20% for forecasting at three times the
dominant wave period. Interestingly, it is possible to observe
the formation of a downstream wave of low-error estimation,
due to the convection of the ensemble wavefield region of
assimilation due to wave propagation.

The actual and estimated wave elevation at the device
location 7j(t) and 7(t) over the simulation time is shown in
Figure 3. An average phase and amplitude error of nearly 2%
and 10%, respectively, has been observed. The average power
take-off of the WEC device obtained over the simulation
time leveraging MPC with full knowledge of the actual
wavefield P, and with ensemble forecasting Pa are shown
in Figure 4 as a function of the control horizon 7},. Values
have been normalized according to the asymptotic value
of maximum power take-off, which has been calculated
through the unconstrained infinite-time optimization of the
continuous-time cost function in (18) in the linear optimal
control setting. Results show that in case of full knowledge
of the actual wavefield, a longer horizon always leads to
better performance, eventually converging to the optimal
control solution in the absence of active constraints. When
the ensemble-based forecast is leveraged, a loss of 10% is
observed for control optimization horizons 7} up to two
dominant wave periods, and performance degrades to 16%
for longer control optimization horizons, as the estimate
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Fig. 2: Wave elevation prediction error (in meters) after 100 s
of simulation time at different forecast times. The white
circle represents the WEC device, the white dashed line the
radar range. Waves propagates from left to right, and the
dominant wave period is 7}, = 8 sec.
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Fig. 3: Wave elevation at the device location: actual (solid
black) and estimated (dashed red).
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Fig. 4: Normalized WEC average power take-off: MPC with
complete knowledge of the wavefield (solid black), and
with ensemble forecasting (dashed red) with respect to the
unconstrained infinite-time solution (dash-dotted blue).

of the wakefield further into the future is degraded. This
is consistent to what found in [3]. A way to improve the
performance of the coupled EnKF/MPC approach would be
to increase the number of ensemble members Ny g, at the
cost of increased computational time, or increase the radar
range, or work with a wave measurement device with lower
noise covariance, such as an array of measurement buoys
placed upstream with respect to the WEC device.

VI. CONCLUSIONS

This paper represents one of the first attempts at develop-
ing a realistic MPC framework for the real-time optimization
of the power take-off of a WEC device, through the im-
plementation of an EnKF algorithm which assimilates data
provided by a wave radar. Linear wave propagation theory
is leveraged to forecast the wave elevation over the control
optimization horizon, and an estimate of the excitation force
is provided for the solution of the MPC problem. Results
have shown that EnKF provides overall good results when
applied to radar data assimilation for ocean wave prediction.

Simulations performed over a realistic sea state show that
the power take-off obtained via MPC with exact knowledge
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of the actual excitation force approaches its maximum value
when a control optimization horizon of at least three times
the dominant wave period is considered, while when the
EnKF estimation of such force is leveraged, a trade-off is
present, since a longer control optimization horizon depends
in a more sensitive fashion on the accuracy of the wavefield
estimate.

The combined approach of ensemble wave forecasting
and model predictive control of the WEC can easily be
generalized to handle different scenarios. For example, the
linear wave propagation model used here might prove inade-
quate at appropriately capturing the wave dynamics in certain
settings, and a nonlinear wave interaction model or shallow
water wave propagation model over an uneven bottom might
be required. Different wave measurement devices can also
be incorporated in the EnKF assimilation step, such as an
array of wave measurement buoys surrounding the device.
Moreover, the optimization of the power take-off of different
WEC topologies allows an active control implementation to
be handled in the linear MPC setting. In the case a linear
approximation of the WEC device dynamics is insufficient,
or in the presence of nonlinear constraints, the linear MPC
formulation may be replaced by a more flexible nonlinear
MPC approach. These extensions are currently underway,
and will be reported in future publications.
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