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Abstract— Chaotic systems are characterized by long-term
unpredictability. Previous methods designed to estimate and
forecast such systems, such as extended Kalman filtering
[a matrix-based approach] and 4Dvar [aka Moving-Horizon
Estimation (MHE), a vector-based approach], are essentially
based on the assumption that Gaussian uncertainties in the
initial state estimate and Gaussian disturbances to the state
and measurements lead to uncertainty on the state estimate at
later times that is well described by a Gaussian model. This
assumption is not valid in chaotic nonlinear systems. A new
method is thus proposed which revisits past measurements in
order to reconcile them with more recent measurements of
the system. This new approach, which we refer to as Model
Predictive Estimation (MPE), is a straightforward extension
of 4Dvar/MHE, an operational algorithm recently adopted by
the weather forecasting community. Our new method leverages
backwards-in-time (aka,“retrograde”) time marches of the sys-
tem, a receding-horizon optimization framework, and adaptive
adjustment of the optimization horizon based on the quality of
the estimate at each iteration.

I. INTRODUCTION

The key assumption upon which the Kalman filter is

based is that Gaussian initial uncertainty of the state estimate

and Gaussian disturbances and measurement noise result in

Gaussian uncertainty of later state estimates. (This allows

the Kalman filter to summarize all past measurements with

a single state estimate of dimension N, and covariance

estimate of dimension N2.) Though true for infinitesimal

uncertainties in smooth nonlinear systems, this assumption

fails dramatically for the estimation errors which are typical

in such systems. Thus, a new approach is warranted to

handle this class of problems. We have developed such a new

approach and conclusively demonstrated its effectiveness on

the simplest of all chaotic systems (the Lorenz equation) and

a slightly more complicated 1D chaotic PDE (the Kuramoto-

Sivashinsky equation). We present this method as a sequence

of straightforward modifications to the existing 4Dvar/MHE

algorithm (recently adopted by the weather forecasting com-

munity). Essentially, it is a rearrangement of the order in

which calculations are performed that leads to no more

algorithm complexity. Thus, we begin by highlighting the

key features of this existing algorithm.

A. Background: The 4D-Variational Assimilation Method

The 4D-Variational Assimilation Method (4Dvar) is a

gradient-based approach. It is designed to harness observa-
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Fig. 1. Demonstration of the nominal trajectory of the state estimate (left,
dark), and several perturbed trajectories (right) initiated at a point in the
Lorenz system characterized by a large local Lyapunov exponent. In this
test, the initial perturbations of the perturbed trajectories are very small and
distributed in a Gaussian fashion. The final distribution of the perturbed
trajectories, however, is highly non-Gaussian.

tions distributed in both time and space to minimize the

estimate of the state constrained to be on a trajectory of

the system. For sufficiently large systems, it is preferable to

traditional matrix-based methods (such as Extended Kalman

Filtering) because it avoids expensive costs of propagating

covariance (and resulting gain) matrices. Due to its structure,

these calculations are implicitly and iteratively computed

using only the integration of vectors in time. Unlike the

Extended Kalman Filter, however, the 4Dvar algorithm is not

an infinite-time-horizon algorithm. Consequently, estimation

calculations cannot be done online.

The 4Dvar algorithm is initiated with an estimate of the

state, u, at a past time, t = −T (where t = 0 is the current

time). The best unbiased estimator minimizes the cost (a

function of the estimate, u, at t =−T ),

J(u) = (u−uB)∗B−1(u−uB)+
Z 0

−T
[y(t)−Hx̂(t)]∗R−1[y(t)−Hx̂(t)]dt, (1)

where uB is the background (or initial) estimate of the state

at t = −T , B is its associated covariance, and x̂(t) is the

trajectory of system with initial conditions x̂(−T ) = u.

This minimizer is iteratively found using the gradient of

the cost function and a steepest descent method. Obtaining

the gradient of the cost function requires the introduction of

the adjoint operator.

For a general nonlinear system, the estimator equation is

given by:
˙̂x = n(x̂) on t ∈ [−T,0] (2)

Taking perturbations (u← u + u ′, x̂← x̂ + x̂ ′, J ← J + J ′)
and linearizing about the trajectory x̂(t) gives:

˙̂x ′ = A x̂ ′ ⇔ L x̂ ′ = 0 (3)

x̂ ′(−T ) = x ′ (4)

J ′(u ′) = (u−uB)∗B−1u ′−
Z 0

−T
[y(t)−Hx̂(t)]∗R−1x̂ ′(t) dt. (5)
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Defining the adjoint identity (6), allows us to derive the

adjoint operator as follows:

〈 r, x̂ ′ 〉 =

Z 0

−T
r(t)∗ x̂ ′(t)dt, (6)

〈 r, L x̂ ′ 〉 = 〈 L∗ r, x̂ ′ 〉+ b (7)

=⇒ L∗ = −(d/dt + A∗), b = [ r∗x̂ ′ ]
t=0

t=−T
(8)

which gives the final adjoint equation as:

L∗r = −H∗(y−Hx̂) ⇐⇒

−ṙ = A∗r−H∗(y−Hx̂) where r(0) = 0 (9)

Hence, a single forward integration of the estimate and a

single backward integration of the adjoint, over the estima-

tion window, provide the gradient of (1) as follows:

J ′(u ′) =

[

(u−uB)∗B−1− r(−T)

]

u ′ (10)

J ′(u ′) =
[

▽ J(u)
]

u ′ (11)

=⇒▽J(u) = (u−uB)∗B−1− r(−T) (12)

where r is the adjoint operator. At each iteration, the suitable

forward and backward integrations are performed to find the

gradient, and then a line search,

uk+1 = uk + αpk where pk =−▽ J(uk), (13)

is performed to best update the estimate for the next iteration.

This process is then repeated until convergence.

For a linear system, it can be shown that 4Dvar converges

to the optimal solution, in the sense that it best balances the

observations taken (and their associated covariance) with the

previous knowledge of the state. Therefore, it is equivalent to

the Kalman Smoothing algorithm performed over the same

interval with identical initial conditions.

II. MODEL PREDICTIVE ESTIMATION ALGORITHM

While the advantages (over traditional matrix-based meth-

ods) of 4Dvar have been conclusively demonstrated for

large order systems, it is evident that for highly chaotic

systems (and for systems where the perturbations to the

state estimate are likely large,) 4Dvar falls short of the

performance required.

A. Receding Optimization Horizon

A property of chaotic systems is the exponential diver-

gence of the trajectories of perturbed initial conditions. The

first fundamental flaw of the standard 4Dvar approach is

that, if the computer speed is finite (say, if the computer

can simulate the evolution of the system model less than

1000 times faster than the system itself actually evolves),

then by the time the involved iteration process converges,

the optimization window has slid so far into the past that

the problem solved is no longer a problem of interest.

Even if this estimate is known very accurately, any forecast

developed from this estimate will already have begun to

diverge from the truth before being propagated out to the

present time.

One modification to reduce this problem is to redefine the

optimization window before each iteration begins in order

to stay as close to the real time operation of the system as

possible. That is, if an iteration of the algorithm is performed

on the window t = [−T , 0 ], this window will fall back in

time by an amount ∆. This elapsed time is a function of the

computing speed of the computer. Now before beginning the

next iteration we will shift our optimization window forward

to t = [−T + ∆ , ∆ ] (where the current time is now t = ∆).

Additionally, our estimate must be propagated forward (via

the system equations) by an amount ∆.

B. Retrograde Time Marches

The receding optimization horizon previously described

serves the purpose of keeping the optimization window valid.

However, even with the addition of a receding optimization

horizon, the 4Dvar algorithm is optimizing an estimate that

is always a distance t = −T into the past. A forecast from

this estimate still experiences exponential divergence prior

to becoming a ‘true’ forecast. That is, the forecast diverges

from the known measurements in the past before propagating

into the future to provide useful information. This presents

a difficult problem when deciding upon the width (T ) of the

optimization window. It must be sufficiently small such that

the exponential divergence over t = [−T , 0 ] is not severe,

but it must be sufficiently large such that the cost function

computed over this interval is based on a sufficient number

of (noisy) measurements to accurately reflect the problem we

need to solve.

Hence, it is desirable to solve a new problem where the

estimate being optimized is on the most recent end of the

optimization window. To do this, we define a modified cost

function,

J
R
(u) =

Z −T

0
[ y(t)−H x̂(t) ]∗ R−1 [ y(t)−H x̂(t) ] dt, (14)

where the optimization window remains t = [−T , 0 ], but

now the estimate, u, is taken at t = 0 (the current time)

as opposed to t = −T . The retrograde cost function is then

defined by propagating the estimate at the front of the interval

backwards in time over the observations.

Additionally, one should note the disappearance of the

background term from the original cost function, (1). Due to

the nature of chaotic systems, some spurious behavior can

be eliminated by removing the ‘inertia’ from the previous

estimate. When it becomes apparent that our estimate is

bifurcating from the observations, we don’t want to place

a penalty on a large update to the estimate to correct for

this. While it is noted that the removal of the background

term can introduce other instabilities into the algorithm, we

seek to alleviate any adverse behavior by including sufficient

observations in our optimization window. On a side note,

the propagation of the estimate covariance is, at this time,

ill-defined for the receding horizon problem being framed.

Derivation of the gradient of the retrograde cost function

requires a similar introduction of the adjoint as previously

described, however, the retrograde adjoint is initialized to r =
0 at t =−T and marched forward through the optimization

window. The resulting gradient is similar to the standard
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4Dvar case (minus the contributions from the background

term):

▽JR(u) = − r(0). (15)

The update to the estimate is still of the form:

uk+1 = uk + αpk where pk =−▽ JR(uk), (16)

and requires a suitable line search minimization.

Note that, in a system dominated by convection-like

behavior, such as the Lorenz system, the exponential rate

of divergence of perturbed trajectories (along the attractor)

when we march the system forward in time is commensurate

with the exponential rate of divergence of perturbed trajec-

tories (perpendicular to the attractor) when we march the

system backward in time. That is, for short time marches, it

is essentially no more difficult to march the system backward

in time than it is to march the system forward in time.

Computationally, these retrograde time marches require

the same amount of effort as the traditional time marches

in the 4Dvar algorithm. The net effect, though, is that

the algorithm is working to minimize an estimate at the

current time, so that any forecasts from the estimate are,

in fact, forecasts of the system beyond the current time. It

is worth noting, however, that for a linear system, we know

that 4Dvar (and accordingly our new algorithm) converge

to a global minimizer of the cost function. Therefore, the

optimum estimate of the state is found along all values in

the optimization window, and all points in the window are

equivalent in time (i.e. they all lie along the same trajectory

of the system). As a result, a forecast from any one of

these points will result in the identical future prediction. For

the chaotic systems of interest, though, it is unlikely that

either algorithm will converge to anything other than a local

minimum, thus the resulting forecasts from these estimates

will begin to diverge immediately–which gives prudence to

the objective of optimizing the estimate of the current time.

C. Multiscale Analysis in Time

With the traditional 4Dvar algorithm, the width of the

optimization window must be determined offline. This is

due to the fact that the estimate is taken at t =−T and the

cost function is computed by integrating forward in time. As

discussed previously, the selection of this interval width is

crucial to the performance of the algorithm: too small and

not enough information is gained to make an accurate update,

too large and the computations take too long to be of any

significant value.

An added advantage of the retrograde time marches is that

the retrograde cost function, (14), is evaluated by integrating

the estimate backward in time from t = 0 to t =−T . Hence,

the width of the optimization window does not need to be

determined prior to the start of the backwards propagation of

the estimate. In fact, the width can be continually determined

on the fly. This allows us to march the estimate backward

until enough information is obtained about its quality. At that

point we can stop the integration, initialize the adjoint, and

march the adjoint forward to obtain the gradient. Conceptu-

ally, this is done by looking at the deviation between our esti-

mated trajectory and the observations. If the estimate seems

to be nearly unbiased as it passes backwards through the

observation sequence, then we can extend the width of our

optimization window to capture more data points. However,

if our estimation begins to diverge from the observations,

then the two will become quickly uncorrelated, and we can

no longer gain valuable information by extending the width

of the window. At this point we stop the backwards march.
Mathematically, we define a bias measure, B(t), as

B(t) =

∣

∣

∣

∣

Z −t

0
[ y−Hx̂(τ) ] dτ

∣

∣

∣

∣

L1

where
∣

∣ y
∣

∣

L1
= |y1|+ · · ·+ |yn|. (17)

We define (through experimentation) a critical bias value (B̄),

such that we deem the estimate ’sufficiently’ uncorrelated

from the observations, and at that point the estimation is

stopped. This defines the width (T ) of the estimation window

as

−T = max{ t | B(t) > B̄ }. (18)

Fig. 2 shows a graphical representation of the accumulated

bias. The trajectories begin to significantly depart at about

t =−0.5. After about t =−0.8 the estimation is completely

diverged from the observations; this is the point at which

the backwards march would be halted. For this example, the

critical bias is B̄ = 1.25 and the width of the optimization

window is T = 0.8.

A discussion of how this online multiscale analysis win-

dow affects the performance of the new algorithm (specifi-

cally the optimization surface) is left for a latter section.

D. Summary of the Proposed Algorithm

When all the modifications are included together, the

resulting algorithm can be described as follows. Begin by

initializing the iteration count, k = 0, and a preliminary

estimate of the state at the current time, u0.

1) March the estimate, uk, backward until sufficient diver-

gence ( i.e. B(t) > B̄ ). Save the estimated trajectory.

2) Use the saved trajectory to march the adjoint, rk,

forward from t =−T to t = 0.

3) Compute the gradient, ▽J
R
(uk) = −rk(0), and the

direction of descent, pk =−▽ J
R
(uk).

4) Perform a suitable line search on αk so as to minimize

the cost function, J
R
(uk + αpk). Update the estimate,

uk+1 = uk + αkpk.

5) Determine the elapsed time since the start of the

iteration, ∆k, and march the current estimate, uk+1 up

to the current time. Increment k← k + 1.

6) Repeat from step 1 (algorithm will not converge).

On a semantic note, one might call the resulting algorithm

multiscale retrograde receding-horizon model predictive es-

timation (MPE) in order to draw attention to its close
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Fig. 2. A graphical representation of the diverging estimated trajectory
from the observations. The plot on the left shows the estimate (light line)
diverging from the truth model and observations. The plot on the right shows
the value of B(t) as the divergence between the estimate and observations.

analogy with the well-known strategy of model predictive

control (MPC). The former approach consistently starts from

the present time and scans backward in time to determine the

best state estimate, whereas the latter approach consistently

starts from the present time and scans forward in time to

determine the best control distribution.

III. MODEL PREDICTIVE ESTIMATION ADVANTAGES

As presented, Model Predictive Estimation (MPE) is de-

fined as a natural sequence of modifications to the existing

data assimilation method known as 4Dvar. Thus, implicitly,

MPE retains the basic advantage of 4Dvar over Kalman

filtering and its tangents: MPE is a vector based method.

Computationally, this is a huge advantage over any matrix

based method for sufficiently large systems. In practice, all

systems of interest are large enough to make any matrix-

based method infeasible. Unlike 4Dvar, though, MPE has the

added advantages of begin able to revisit past measurements

in light of new data, update an estimate of the current time,

and dynamically change the optimization surface.

A. Revisit Measurements in Light of New Data

At the sacrifice of the background term, MPE is able

to repeatedly revisit know observations to help shape the

optimization problem. Measurements that at one time seemed

noisy and spurious, could at a later time help define the bifur-

cation of the estimate from the truth model. The retrograde

time marches along with the multiscale optimization window

allow the algorithm to go back and utilize these observations

as deemed necessary. In contrast, 4Dvar remains iterating on

the same fixed window until convergence, and then it moves

on–never to revisit the observations in that time window

again.

B. Update Estimate of Current Time

By definition, chaotic systems will always be limited in

their ability to be predicted. Due to observation noise, model

noise, and many other complex factors, an exact estimate

of the state is impossible to obtain. Therefore any forecast

of the estimate will immediately begin to diverge from the

truth and will always be limited in length. Hence, it follows

naturally that the forecast should start from the present time;

doing anything else places some of the useful width of the

forecast in the past. The MPE algorithm, along with sufficient

computational power, achieves this real-time goal.

C. Dynamic Optimization Surface

The traditional 4Dvar method makes no guarantee of

global convergence, and, in fact, for highly nonlinear system

(such as chaotic systems) it is extremely likely that 4Dvar

will get hung up in local minima. The optimization surface

defined by the cost function (1) is static throughout the

iteration process.

Perhaps one of the more subtle, yet significant conse-

quences of the MPE algorithm, is its effect on the con-

vergence of the estimate. In fact, the MPE algorithm is

guaranteed to never converge. At each iteration, because

of the receding horizon optimization framework and the

multiscale analysis, the optimization surface is modified. In

a sense, the MPE algorithm does not iterate each surface

until convergence, but rather takes one steepest descent step,

and then redefines the problem. One can think of the MPE

algorithm as a continuous stepping towards the bottom of

a dynamically changing surface. Consequently, the estimate

never converges to the minimum because the minimum is

constantly changing.

This dynamic optimization is desired because it keeps the

problem being solved valid, but it also keeps the estimate

out of local minima. When 4Dvar converges to a local

minima, the algorithm is complete, and–good or bad–no

more information can be gained from repeated iterations.

With MPE, the estimate never converges to any minima

(local or global), so when it approaches a local minima, the

optimization surface eventually changes enough to force the

estimate out of the local area.

In addition to the optimization surface changing with

time, it is also highly dependent on the width of the

optimization window. Small windows tend to yield much

smoother optimization surfaces with fewer local minima.

But, the global minimum of these types of surfaces also

tends to be inaccurate. Larger windows produce a more

accurate global minimum, but they produce highly irregular

optimization surfaces, fullof local minima. Thus, shorter

windows are preferred to more easily pull the estimate close

to the solution, and longer windows are used to improve

the accuracy of an already sufficiently close estimate. The

difference in these surfaces is depicted in Fig. 3.
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Fig. 3. Demonstration of how the multiscale approach preconditions
the optimization problem. The figure at left corresponds to the short
optimization interval T = 0.2, whereas the figure at the right corresponds
to the long optimization interval T = 0.8. In both figures, the curves denote
isosurfaces of the optimization surface, assuming u2 = x2(0) is known
precisely for the purpose of making an intelligible plot, and the × denotes
the actual value of the underlying (but unobserved) “truth model” of the
system, x1(0) and x3(0).
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IV. THE LORENZ EQUATION

As a logical first test case, we examine the simplest of

all chaotic systems: the Lorenz equation. This ODE models

the dynamic convection of a fluid cell being warmed from

below and cooled from above. A deep understanding of our

newly-proposed forecasting strategy can be obtained in this

low dimensional setting, where the chaotic attractor is easily

visualized. For purposes of reference, the system dynamics

are given by:

ẋ = n(x) where x =

(

x1

x2

x3

)

, n(x) =

(

σ(x2− x1)
−x2− x1x3

−bx3 + x1x2−br

)

(19)

where σ, b, and r are constant parameters of the system.

An experiment was constructed to compare the new MPE

method against the traditional 4Dvar assimilation. Both

methods were initialized with noisy measurements of only

the second state. The 4Dvar window was selected to be one

time unit in length, and at the onset of the experiment, this

window was placed as near as possible to the current time. As

the experiment ran, both MPE and 4Dvar iterated at the same

rate, with the 4Dvar window sliding back into the past as

governed by the computational speed of the computer. MPE

was performed as highlighted in Section II-D. The iterations

of both algorithms were stopped when 4Dvar converged to

a solution (remember that MPE will never converge) and

then forecasts were computed out from each estimate. For

comparison of these forecasts, we define an accumulated

error in (20).

E(t) =
1

γ

Z t

t
0

‖x f (τ)−xt(τ)‖
2

2
dτ for t ≥ t

0
, (20)

where t
0

is the time the forecast began, x f (t) is the time-

history of the forecast, xt(t) is the time-history of the truth-

model, and γ is a constant normalizing parameter.

Fig. 4 shows a typical result from this experiment. As

expected, both forecasts begin to exponentially diverge.

However, The forecast from the MPE algorithm remains

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1
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t

E
(t

)

Accumulated Forecast Error:  Lorenz Equation

 

 

MPE

4Dvar

Fig. 4. Accumulated forecast error for parallel 4Dvar and MPE assimilation
example. Both algorithms were run for the same system and terminated upon
4Dvar convergence. Forecasts were done from the computed estimate and
compared against the known truth model. MPE, by construction, forecasts
out from the current time (t = 0, light vertical line), while 4Dvar forecasts
out from the left edge of the optimization window (t =−1.05).

Fig. 5. Cartoon depicting the MPE forecasting algorithm synthesized with a
modified parameter ID algorithm, indicating the relation of the time intervals
used for identifying the parameters and obtaining the estimate of the current
time.

valid until 2.5-3 time units into the future. In contrast, the

4Dvar forecast is useless after 1 time unit into the future.

Remember that the 4Dvar forecast starts from the estimate in

the past (which for this example is at t =−1.05). The 4Dvar

algorithm provides an excellent forecast over the window

t = [−1.05, 0 ], but this forecast of the past is essentially

wasted information. Note that at the onset of the algorithm,

the 4Dvar estimate was at the back edge of the window

(t =−1), so with this simple system, convergence happened

relatively quick (∆t = 0.05). Even so, the width of the 4Dvar

window places the estimate far enough back in time to

significantly impact the validity of its forecast. In addition to

the shift in estimate times, one can also note that the length of

valid forecast time for MPE ( 2.5-3 time units) is longer than

that of 4Dvar ( 2 time units). This can be attributed to the

other algorithm modifications (receding horizon, multiscale

analysis, etc.).

A GUI has been developed to illustrate the MPE algorithm

working on the Lorenz system. Additionally, it incorporates

a receding horizon, multiscale parameter ID analysis to

estimate the quasi-constants (σ, b, and r) of the system.

V. THE 1D KURAMOTO-SIVASHINKSKY EQUATION

The 1D Kuramoto-Sivashinksky (KS) equation is an ideal

case study because it is both well known by researchers and

non-trivial in most applications. The KS equation describes

the following chaotic systems: hydrodynamic instability in

a laminar flame [6], diffusion induced chaos in reaction

systems [3], and the growth of thermodynamically unstable

crystal surfaces [1]. For the scope of this paper the 1D KS

system with periodic boundary conditions is considered:

ut + uux +(u + uxx )xx = 0 where ux =
∂u

∂x
, (21)

u(t,0) = u(t,L), and u(0,x) = f (x). (22)

The MPE algorithm is performed on this system as has

been previously described. Thus, extracting the gradient for

the steepest descent method becomes a march of two partial

differential equations. However, some care must be taken

when doing retrograde marches of a PDE system.
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A. Regularization of PDE Analysis

Regularization, or ”smoothing,” in the adjoint analysis of

PDE systems is a subtle issue. The advantages gained in

performing the PDE adjoint analysis forward in time requires

that the PDE state equations be marched backward in time.

This algorithm construction is ill-posed. To stabilize this

system, a mixed time-space derivative must be introduced

to dampen any dominant unstable terms. This topic, called

quasi-reversibility, is well known (and regularly applied)

throughout the forecasting community. One might claim

that because this regularization technique is required to

ensure a well-posed problem, the accuracy of the forecast is

reduced. In fact, even in well-posed forecasts of multiscale

systems on coarse grids, a time-space derivative is added to

artificially dampen length-scale fluctuations and stabilize the

system. Additionally, the adverse effects of reversibility are

further minimized by the multiscale horizon. So, where other

assimilation techniques would blindly use inaccurate states,

MPE has the ability to reduce the number of estimates to a

smaller, more accurate set. The 1D Kuramoto-Sivashinksky

equation is dominated by an unstable 4th order linear term.

As a result of the system being ill-posed these regularization

techniques are required.

B. Comparison to 4Dvar

An identical case study to the Lorenz system described

in Section IV was done for the KS equation. Fig. 6 shows

error comparisons of each algorithm after providing the same

initial/boundary conditions to each system. A typical run

shows that MPE provides forecasts which are significantly

more accurate than 4DVar.

Note that, just as in the Lorenz case, both forecasts are

exponentially diverging from the actual system states, but

the MPE forecast remains valid for a much longer forecast

length. The accumulated error of 4DVar becomes significant

as the forecast reaches into the actual future (t ≥ 0), whereas
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Fig. 6. Accumulated forecast error for parallel 4Dvar and MPE assimilation
example. Both algorithms were run for the same system and terminated upon
4Dvar convergence. Forecasts were done from the computed estimate and
compared against the known truth model. MPE, by construction, forecasts
out from the current time (t = 0, light vertical line), while 4Dvar forecasts
out from the left edge of the optimization window (t =−10).

MPE can accurately forecast up to 25 time units ahead (this is

approximately 80 times larger than the optimization window

used by the algorithm.)

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A new method for data assimilation has been presented,

aptly named Model Predictive Estimation (MPE). MPE is

developed as a sequence of straightforward modifications to

an existing vector-based method known as 4Dvar. The new

method utilizes a receding-horizon optimization along with

retrograde time marches and a multiscale analysis to work

towards an improved forecast of a nonlinear chaotic system.

MPE has been developed to handle these types of systems

where gaussian initial uncertainties of the state estimate and

gaussian disturbances and measurement noise do not result

in gaussian uncertainties of later state estimates. This is

accomplished via revisiting past measurements in light of

new data, optimizing an estimate of the most recent time,

and creating a dynamic optimization surface. The benefits of

such an algorithm have been conclusively demonstrated for

two well known chaotic systems.

B. Future Work

From this point, this research will explore two important

directions. First off, we intend to extend our MPE algorithm

to more complex PDE systems. This is in an effort to work

towards a real-life application, such as a forecast of the

2D shallow water equation and potentially the Navier-Stokes

equation.

Another area that we will explore actively is the relation

between the proposed retrograde approach (with backward-

in-time state marches) and the Kalman smoothing approach

(with backward-in-time sweeps of the relevant Ricatti equa-

tion linearized each time about updated state trajectories).

This is the natural counterpart to the relation between the

traditional forward in time (4Dvar) approach and Kalman

filtering, and is a subject area that is quite intriguing and

promising, at least for systems in which matrix-based analy-

ses (or reduced rank approximations thereof) are numerically

tractable.
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