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Multiscale Retrograde Estimation and Forecasting of
Chaotic Nonlinear Systems

J. Cessna, C. Colburn, and T.R. Bewley

Abstract— Chaotic systems are characterized by long-term
unpredictability. Previous methods designed to estimate and
forecast such systems, such as extended Kalman filtering
[a matrix-based approach] and 4Dvar [aka Moving-Horizon
Estimation (MHE), a vector-based approach], are essentially
based on the assumption that Gaussian uncertainties in the
initial state estimate and Gaussian disturbances to the state
and measurements lead to uncertainty on the state estimate at
later times that is well described by a Gaussian model. This
assumption is not valid in chaotic nonlinear systems. A new
method is thus proposed which revisits past measurements in
order to reconcile them with more recent measurements of
the system. This new approach, which we refer to as Model
Predictive Estimation (MPE), is a straightforward extension
of 4Dvar/MHE, an operational algorithm recently adopted by
the weather forecasting community. Our new method leverages
backwards-in-time (aka,““retrograde’) time marches of the sys-
tem, a receding-horizon optimization framework, and adaptive
adjustment of the optimization horizon based on the quality of
the estimate at each iteration.

I. INTRODUCTION

The key assumption upon which the Kalman filter is
based is that Gaussian initial uncertainty of the state estimate
and Gaussian disturbances and measurement noise result in
Gaussian uncertainty of later state estimates. (This allows
the Kalman filter to summarize all past measurements with
a single state estimate of dimension N, and covariance
estimate of dimension N2.) Though true for infinitesimal
uncertainties in smooth nonlinear systems, this assumption
fails dramatically for the estimation errors which are typical
in such systems. Thus, a new approach is warranted to
handle this class of problems. We have developed such a new
approach and conclusively demonstrated its effectiveness on
the simplest of all chaotic systems (the Lorenz equation) and
a slightly more complicated 1D chaotic PDE (the Kuramoto-
Sivashinsky equation). We present this method as a sequence
of straightforward modifications to the existing 4Dvar/MHE
algorithm (recently adopted by the weather forecasting com-
munity). Essentially, it is a rearrangement of the order in
which calculations are performed that leads to no more
algorithm complexity. Thus, we begin by highlighting the
key features of this existing algorithm.

A. Background: The 4D-Variational Assimilation Method

The 4D-Variational Assimilation Method (4Dvar) is a
gradient-based approach. It is designed to harness observa-
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Fig. 1. Demonstration of the nominal trajectory of the state estimate (left,
dark), and several perturbed trajectories (right) initiated at a point in the
Lorenz system characterized by a large local Lyapunov exponent. In this
test, the initial perturbations of the perturbed trajectories are very small and
distributed in a Gaussian fashion. The final distribution of the perturbed
trajectories, however, is highly non-Gaussian.

tions distributed in both time and space to minimize the
estimate of the state constrained to be on a trajectory of
the system. For sufficiently large systems, it is preferable to
traditional matrix-based methods (such as Extended Kalman
Filtering) because it avoids expensive costs of propagating
covariance (and resulting gain) matrices. Due to its structure,
these calculations are implicitly and iteratively computed
using only the integration of vectors in time. Unlike the
Extended Kalman Filter, however, the 4Dvar algorithm is not
an infinite-time-horizon algorithm. Consequently, estimation
calculations cannot be done online.

The 4Dvar algorithm is initiated with an estimate of the

state, u, at a past time, t = —7T (where t = 0 is the current
time). The best unbiased estimator minimizes the cost (a
function of the estimate, u, at t = —T),

) = (w8 (ww)+ [ (50~ HSOPR 30— HE0)ar, (1

where up is the background (or initial) estimate of the state
at t = —T, B is its associated covariance, and X(¢) is the
trajectory of system with initial conditions %(—7) = u.

This minimizer is iteratively found using the gradient of
the cost function and a steepest descent method. Obtaining
the gradient of the cost function requires the introduction of
the adjoint operator.

For a general nonlinear system, the estimator equation is
given by:

£=n(X) on rc[-T,0 )

Taking perturbations (u «+—u+u’, R — K+8', J —J+J")
and linearizing about the trajectory %(z) gives:

¥ = A% & L¥'=0 3)
R(-T) = x “
0
J'(w) = (u—uB)*B—'u’—/ [y(r) = HR(O]*R™'%/(r) dt. (5)
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Defining the adjoint identity (6), allows us to derive the
adjoint operator as follows:

0
(rs') = [ x080a ®
-T
(rLg") = (L'r&)+b @
— ' = —(dJdi+A"), b=[r%]". ®

which gives the final adjoint equation as:
L'r —H*(y—HX) <=
—f = A'r—H'(y—H%X) where r(0)=0 (9)
Hence, a single forward integration of the estimate and a

single backward integration of the adjoint, over the estima-
tion window, provide the gradient of (1) as follows:

J' () = |(u—wp)B'=r(-T)| v (10)
J'() = [vJw]u (11)
— J(u) = (u—wup)*B ' —r(-T) (12)

where r is the adjoint operator. At each iteration, the suitable
forward and backward integrations are performed to find the
gradient, and then a line search,

where pr=—vJ(w), (13)

is performed to best update the estimate for the next iteration.
This process is then repeated until convergence.

For a linear system, it can be shown that 4Dvar converges
to the optimal solution, in the sense that it best balances the
observations taken (and their associated covariance) with the
previous knowledge of the state. Therefore, it is equivalent to
the Kalman Smoothing algorithm performed over the same
interval with identical initial conditions.

Uiy = Uy + 0Pk

II. MODEL PREDICTIVE ESTIMATION ALGORITHM

While the advantages (over traditional matrix-based meth-
ods) of 4Dvar have been conclusively demonstrated for
large order systems, it is evident that for highly chaotic
systems (and for systems where the perturbations to the
state estimate are likely large,) 4Dvar falls short of the
performance required.

A. Receding Optimization Horizon

A property of chaotic systems is the exponential diver-
gence of the trajectories of perturbed initial conditions. The
first fundamental flaw of the standard 4Dvar approach is
that, if the computer speed is finite (say, if the computer
can simulate the evolution of the system model less than
1000 times faster than the system itself actually evolves),
then by the time the involved iteration process converges,
the optimization window has slid so far into the past that
the problem solved is no longer a problem of interest.
Even if this estimate is known very accurately, any forecast
developed from this estimate will already have begun to
diverge from the truth before being propagated out to the
present time.

One modification to reduce this problem is to redefine the
optimization window before each iteration begins in order
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to stay as close to the real time operation of the system as
possible. That is, if an iteration of the algorithm is performed
on the window t = [T , 0 ], this window will fall back in
time by an amount A. This elapsed time is a function of the
computing speed of the computer. Now before beginning the
next iteration we will shift our optimization window forward
tot=[-T+A, A] (where the current time is now ¢ = A).
Additionally, our estimate must be propagated forward (via
the system equations) by an amount A.

B. Retrograde Time Marches

The receding optimization horizon previously described
serves the purpose of keeping the optimization window valid.
However, even with the addition of a receding optimization
horizon, the 4Dvar algorithm is optimizing an estimate that
is always a distance t = —7 into the past. A forecast from
this estimate still experiences exponential divergence prior
to becoming a ‘true’ forecast. That is, the forecast diverges
from the known measurements in the past before propagating
into the future to provide useful information. This presents
a difficult problem when deciding upon the width (7') of the
optimization window. It must be sufficiently small such that
the exponential divergence over r = [—T , 0 ] is not severe,
but it must be sufficiently large such that the cost function
computed over this interval is based on a sufficient number
of (noisy) measurements to accurately reflect the problem we
need to solve.

Hence, it is desirable to solve a new problem where the
estimate being optimized is on the most recent end of the
optimization window. To do this, we define a modified cost
function,

) = [ Y0~ HRO) 1 R [0 - HSO) L, 14)

where the optimization window remains ¢t = [-7 , 0 |, but
now the estimate, u, is taken at r = O (the current time)
as opposed to t = —T. The retrograde cost function is then
defined by propagating the estimate at the front of the interval
backwards in time over the observations.

Additionally, one should note the disappearance of the
background term from the original cost function, (1). Due to
the nature of chaotic systems, some spurious behavior can
be eliminated by removing the ‘inertia’ from the previous
estimate. When it becomes apparent that our estimate is
bifurcating from the observations, we don’t want to place
a penalty on a large update to the estimate to correct for
this. While it is noted that the removal of the background
term can introduce other instabilities into the algorithm, we
seek to alleviate any adverse behavior by including sufficient
observations in our optimization window. On a side note,
the propagation of the estimate covariance is, at this time,
ill-defined for the receding horizon problem being framed.

Derivation of the gradient of the retrograde cost function
requires a similar introduction of the adjoint as previously
described, however, the retrograde adjoint is initialized to r =
0 at t = —T and marched forward through the optimization
window. The resulting gradient is similar to the standard
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4Dvar case (minus the contributions from the background
term):

VJr(w) = —r(0). (15)
The update to the estimate is still of the form:
W =w+ap,  where  pp=—vJr(w), (16)

and requires a suitable line search minimization.

Note that, in a system dominated by convection-like
behavior, such as the Lorenz system, the exponential rate
of divergence of perturbed trajectories (along the attractor)
when we march the system forward in time is commensurate
with the exponential rate of divergence of perturbed trajec-
tories (perpendicular to the attractor) when we march the
system backward in time. That is, for short time marches, it
is essentially no more difficult to march the system backward
in time than it is to march the system forward in time.

Computationally, these retrograde time marches require
the same amount of effort as the traditional time marches
in the 4Dvar algorithm. The net effect, though, is that
the algorithm is working to minimize an estimate at the
current time, so that any forecasts from the estimate are,
in fact, forecasts of the system beyond the current time. It
is worth noting, however, that for a linear system, we know
that 4Dvar (and accordingly our new algorithm) converge
to a global minimizer of the cost function. Therefore, the
optimum estimate of the state is found along all values in
the optimization window, and all points in the window are
equivalent in time (i.e. they all lie along the same trajectory
of the system). As a result, a forecast from any one of
these points will result in the identical future prediction. For
the chaotic systems of interest, though, it is unlikely that
either algorithm will converge to anything other than a local
minimum, thus the resulting forecasts from these estimates
will begin to diverge immediately—which gives prudence to
the objective of optimizing the estimate of the current time.

C. Multiscale Analysis in Time

With the traditional 4Dvar algorithm, the width of the
optimization window must be determined offline. This is
due to the fact that the estimate is taken at r = —7 and the
cost function is computed by integrating forward in time. As
discussed previously, the selection of this interval width is
crucial to the performance of the algorithm: too small and
not enough information is gained to make an accurate update,
too large and the computations take too long to be of any
significant value.

An added advantage of the retrograde time marches is that
the retrograde cost function, (14), is evaluated by integrating
the estimate backward in time from t =0 to t = —T. Hence,
the width of the optimization window does not need to be
determined prior to the start of the backwards propagation of
the estimate. In fact, the width can be continually determined
on the fly. This allows us to march the estimate backward
until enough information is obtained about its quality. At that
point we can stop the integration, initialize the adjoint, and
march the adjoint forward to obtain the gradient. Conceptu-
ally, this is done by looking at the deviation between our esti-
mated trajectory and the observations. If the estimate seems
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to be nearly unbiased as it passes backwards through the
observation sequence, then we can extend the width of our
optimization window to capture more data points. However,
if our estimation begins to diverge from the observations,
then the two will become quickly uncorrelated, and we can
no longer gain valuable information by extending the width
of the window. At this point we stop the backwards march.
Mathematically, we define a bias measure, B(t), as

B(t) = ‘/07 [y—H&(t) ] dt where |y \L] =il+- vl A7

il

We define (through experimentation) a critical bias value (B),
such that we deem the estimate ’sufficiently’ uncorrelated
from the observations, and at that point the estimation is
stopped. This defines the width (T') of the estimation window
as

—T=max{t|B(t)>B }. (18)

Fig. 2 shows a graphical representation of the accumulated
bias. The trajectories begin to significantly depart at about
t = —0.5. After about + = —0.8 the estimation is completely
diverged from the observations; this is the point at which
the backwards march would be halted. For this example, the
critical bias is B = 1.25 and the width of the optimization
window is T = 0.8.

A discussion of how this online multiscale analysis win-
dow affects the performance of the new algorithm (specifi-
cally the optimization surface) is left for a latter section.

D. Summary of the Proposed Algorithm

When all the modifications are included together, the
resulting algorithm can be described as follows. Begin by
initializing the iteration count, k = 0, and a preliminary
estimate of the state at the current time, ug.

1) March the estimate, uy, backward until sufficient diver-
gence ( i.e. B(t) > B). Save the estimated trajectory.

2) Use the saved trajectory to march the adjoint, ry,
forward from ¢t = —T to t = 0.

3) Compute the gradient, /J,(ux) = —rg(0), and the
direction of descent, py = — 57 J, ().

4) Perform a suitable line search on o so as to minimize
the cost function, J, (ux + apg). Update the estimate,
Uj ] = Uy + O Pk

5) Determine the elapsed time since the start of the
iteration, Ay, and march the current estimate, ;| up
to the current time. Increment k < k+ 1.

6) Repeat from step 1 (algorithm will not converge).
On a semantic note, one might call the resulting algorithm

multiscale retrograde receding-horizon model predictive es-
timation (MPE) in order to draw attention to its close
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Fig. 2. A graphical representation of the diverging estimated trajectory
from the observations. The plot on the left shows the estimate (light line)
diverging from the truth model and observations. The plot on the right shows
the value of B(t) as the divergence between the estimate and observations.

analogy with the well-known strategy of model predictive
control (MPC). The former approach consistently starts from
the present time and scans backward in time to determine the
best state estimate, whereas the latter approach consistently
starts from the present time and scans forward in time to
determine the best control distribution.

III. MODEL PREDICTIVE ESTIMATION ADVANTAGES

As presented, Model Predictive Estimation (MPE) is de-
fined as a natural sequence of modifications to the existing
data assimilation method known as 4Dvar. Thus, implicitly,
MPE retains the basic advantage of 4Dvar over Kalman
filtering and its tangents: MPE is a vector based method.
Computationally, this is a huge advantage over any matrix
based method for sufficiently large systems. In practice, all
systems of interest are large enough to make any matrix-
based method infeasible. Unlike 4Dvar, though, MPE has the
added advantages of begin able to revisit past measurements
in light of new data, update an estimate of the current time,
and dynamically change the optimization surface.

A. Revisit Measurements in Light of New Data

At the sacrifice of the background term, MPE is able
to repeatedly revisit know observations to help shape the
optimization problem. Measurements that at one time seemed
noisy and spurious, could at a later time help define the bifur-
cation of the estimate from the truth model. The retrograde
time marches along with the multiscale optimization window
allow the algorithm to go back and utilize these observations
as deemed necessary. In contrast, 4Dvar remains iterating on
the same fixed window until convergence, and then it moves
on—never to revisit the observations in that time window
again.

B. Update Estimate of Current Time

By definition, chaotic systems will always be limited in
their ability to be predicted. Due to observation noise, model
noise, and many other complex factors, an exact estimate
of the state is impossible to obtain. Therefore any forecast
of the estimate will immediately begin to diverge from the
truth and will always be limited in length. Hence, it follows
naturally that the forecast should start from the present time;
doing anything else places some of the useful width of the
forecast in the past. The MPE algorithm, along with sufficient
computational power, achieves this real-time goal.
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C. Dynamic Optimization Surface

The traditional 4Dvar method makes no guarantee of
global convergence, and, in fact, for highly nonlinear system
(such as chaotic systems) it is extremely likely that 4Dvar
will get hung up in local minima. The optimization surface
defined by the cost function (1) is static throughout the
iteration process.

Perhaps one of the more subtle, yet significant conse-
quences of the MPE algorithm, is its effect on the con-
vergence of the estimate. In fact, the MPE algorithm is
guaranteed to never converge. At each iteration, because
of the receding horizon optimization framework and the
multiscale analysis, the optimization surface is modified. In
a sense, the MPE algorithm does not iterate each surface
until convergence, but rather takes one steepest descent step,
and then redefines the problem. One can think of the MPE
algorithm as a continuous stepping towards the bottom of
a dynamically changing surface. Consequently, the estimate
never converges to the minimum because the minimum is
constantly changing.

This dynamic optimization is desired because it keeps the
problem being solved valid, but it also keeps the estimate
out of local minima. When 4Dvar converges to a local
minima, the algorithm is complete, and—good or bad—no
more information can be gained from repeated iterations.
With MPE, the estimate never converges to any minima
(local or global), so when it approaches a local minima, the
optimization surface eventually changes enough to force the
estimate out of the local area.

In addition to the optimization surface changing with
time, it is also highly dependent on the width of the
optimization window. Small windows tend to yield much
smoother optimization surfaces with fewer local minima.
But, the global minimum of these types of surfaces also
tends to be inaccurate. Larger windows produce a more
accurate global minimum, but they produce highly irregular
optimization surfaces, fullof local minima. Thus, shorter
windows are preferred to more easily pull the estimate close
to the solution, and longer windows are used to improve
the accuracy of an already sufficiently close estimate. The
difference in these surfaces is depicted in Fig. 3.

ut

Fig. 3. Demonstration of how the multiscale approach preconditions
the optimization problem. The figure at left corresponds to the short
optimization interval 7 = 0.2, whereas the figure at the right corresponds
to the long optimization interval 7 = 0.8. In both figures, the curves denote
isosurfaces of the optimization surface, assuming uz = x2(0) is known
precisely for the purpose of making an intelligible plot, and the x denotes
the actual value of the underlying (but unobserved) “truth model” of the
system, x1(0) and x3(0).
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IV. THE LORENZ EQUATION

As a logical first test case, we examine the simplest of
all chaotic systems: the Lorenz equation. This ODE models
the dynamic convection of a fluid cell being warmed from
below and cooled from above. A deep understanding of our
newly-proposed forecasting strategy can be obtained in this
low dimensional setting, where the chaotic attractor is easily
visualized. For purposes of reference, the system dynamics
are given by:

X1 (e} (xz — X1 )
x=n(x) where x= <x2> , n(x)= ( —X) — X1X3 > (19)
X3 —bxz +x1xp — br
where o, b, and r are constant parameters of the system.
An experiment was constructed to compare the new MPE
method against the traditional 4Dvar assimilation. Both
methods were initialized with noisy measurements of only
the second state. The 4Dvar window was selected to be one
time unit in length, and at the onset of the experiment, this
window was placed as near as possible to the current time. As
the experiment ran, both MPE and 4Dvar iterated at the same
rate, with the 4Dvar window sliding back into the past as
governed by the computational speed of the computer. MPE
was performed as highlighted in Section II-D. The iterations
of both algorithms were stopped when 4Dvar converged to
a solution (remember that MPE will never converge) and
then forecasts were computed out from each estimate. For
comparison of these forecasts, we define an accumulated
error in (20).

t
E(t):%/ Ix/(0) - % (@) |} dt for 131
f

>1,, (20)
where 7, is the time the forecast began, x(¢) is the time-
history of the forecast, x,(z) is the time-history of the truth-
model, and Y is a constant normalizing parameter.

Fig. 4 shows a typical result from this experiment. As
expected, both forecasts begin to exponentially diverge.
However, The forecast from the MPE algorithm remains

Accumulated Forecast Error: Lorenz Equation
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Fig. 4. Accumulated forecast error for parallel 4Dvar and MPE assimilation
example. Both algorithms were run for the same system and terminated upon
4Dvar convergence. Forecasts were done from the computed estimate and
compared against the known truth model. MPE, by construction, forecasts
out from the current time (f = 0, light vertical line), while 4Dvar forecasts
out from the left edge of the optimization window (r = —1.05).
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Fig. 5. Cartoon depicting the MPE forecasting algorithm synthesized with a
modified parameter ID algorithm, indicating the relation of the time intervals
used for identifying the parameters and obtaining the estimate of the current
time.

valid until 2.5-3 time units into the future. In contrast, the
4Dvar forecast is useless after 1 time unit into the future.
Remember that the 4Dvar forecast starts from the estimate in
the past (which for this example is at t = —1.05). The 4Dvar
algorithm provides an excellent forecast over the window
t = [-1.05, 0], but this forecast of the past is essentially
wasted information. Note that at the onset of the algorithm,
the 4Dvar estimate was at the back edge of the window
(t = —1), so with this simple system, convergence happened
relatively quick (At = 0.05). Even so, the width of the 4Dvar
window places the estimate far enough back in time to
significantly impact the validity of its forecast. In addition to
the shift in estimate times, one can also note that the length of
valid forecast time for MPE ( 2.5-3 time units) is longer than
that of 4Dvar ( 2 time units). This can be attributed to the
other algorithm modifications (receding horizon, multiscale
analysis, etc.).

A GUI has been developed to illustrate the MPE algorithm
working on the Lorenz system. Additionally, it incorporates
a receding horizon, multiscale parameter ID analysis to
estimate the quasi-constants (G, b, and r) of the system.

V. THE 1D KURAMOTO-SIVASHINKSKY EQUATION

The 1D Kuramoto-Sivashinksky (KS) equation is an ideal
case study because it is both well known by researchers and
non-trivial in most applications. The KS equation describes
the following chaotic systems: hydrodynamic instability in
a laminar flame [6], diffusion induced chaos in reaction
systems [3], and the growth of thermodynamically unstable
crystal surfaces [1]. For the scope of this paper the 1D KS
system with periodic boundary conditions is considered:

U+ utt+ (Ut ) = 0 where  u, = (2D

ou
ox’

u(t,0) = u(t,L), and u(0,x) = f(x). (22)

The MPE algorithm is performed on this system as has
been previously described. Thus, extracting the gradient for
the steepest descent method becomes a march of two partial
differential equations. However, some care must be taken
when doing retrograde marches of a PDE system.
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A. Regularization of PDE Analysis

Regularization, or ”smoothing,” in the adjoint analysis of
PDE systems is a subtle issue. The advantages gained in
performing the PDE adjoint analysis forward in time requires
that the PDE state equations be marched backward in time.
This algorithm construction is ill-posed. To stabilize this
system, a mixed time-space derivative must be introduced
to dampen any dominant unstable terms. This topic, called
quasi-reversibility, is well known (and regularly applied)
throughout the forecasting community. One might claim
that because this regularization technique is required to
ensure a well-posed problem, the accuracy of the forecast is
reduced. In fact, even in well-posed forecasts of multiscale
systems on coarse grids, a time-space derivative is added to
artificially dampen length-scale fluctuations and stabilize the
system. Additionally, the adverse effects of reversibility are
further minimized by the multiscale horizon. So, where other
assimilation techniques would blindly use inaccurate states,
MPE has the ability to reduce the number of estimates to a
smaller, more accurate set. The 1D Kuramoto-Sivashinksky
equation is dominated by an unstable 4th order linear term.
As a result of the system being ill-posed these regularization
techniques are required.

B. Comparison to 4Dvar

An identical case study to the Lorenz system described
in Section IV was done for the KS equation. Fig. 6 shows
error comparisons of each algorithm after providing the same
initial/boundary conditions to each system. A typical run
shows that MPE provides forecasts which are significantly
more accurate than 4DVar.

Note that, just as in the Lorenz case, both forecasts are
exponentially diverging from the actual system states, but
the MPE forecast remains valid for a much longer forecast
length. The accumulated error of 4DVar becomes significant
as the forecast reaches into the actual future (¢ > 0), whereas

; Accumulated Forecast Error: 1D K-S Equation
T T T T T T T
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— — —4Dvar ’,
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Fig. 6. Accumulated forecast error for parallel 4Dvar and MPE assimilation
example. Both algorithms were run for the same system and terminated upon
4Dvar convergence. Forecasts were done from the computed estimate and
compared against the known truth model. MPE, by construction, forecasts
out from the current time (f = 0, light vertical line), while 4Dvar forecasts
out from the left edge of the optimization window (1 = —10).
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MPE can accurately forecast up to 25 time units ahead (this is
approximately 80 times larger than the optimization window
used by the algorithm.)

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

A new method for data assimilation has been presented,
aptly named Model Predictive Estimation (MPE). MPE is
developed as a sequence of straightforward modifications to
an existing vector-based method known as 4Dvar. The new
method utilizes a receding-horizon optimization along with
retrograde time marches and a multiscale analysis to work
towards an improved forecast of a nonlinear chaotic system.
MPE has been developed to handle these types of systems
where gaussian initial uncertainties of the state estimate and
gaussian disturbances and measurement noise do not result
in gaussian uncertainties of later state estimates. This is
accomplished via revisiting past measurements in light of
new data, optimizing an estimate of the most recent time,
and creating a dynamic optimization surface. The benefits of
such an algorithm have been conclusively demonstrated for
two well known chaotic systems.

B. Future Work

From this point, this research will explore two important
directions. First off, we intend to extend our MPE algorithm
to more complex PDE systems. This is in an effort to work
towards a real-life application, such as a forecast of the
2D shallow water equation and potentially the Navier-Stokes
equation.

Another area that we will explore actively is the relation
between the proposed retrograde approach (with backward-
in-time state marches) and the Kalman smoothing approach
(with backward-in-time sweeps of the relevant Ricatti equa-
tion linearized each time about updated state trajectories).
This is the natural counterpart to the relation between the
traditional forward in time (4Dvar) approach and Kalman
filtering, and is a subject area that is quite intriguing and
promising, at least for systems in which matrix-based analy-
ses (or reduced rank approximations thereof) are numerically
tractable.
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