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Chaotic systems are characterized by long-term unpredictaility. Existing methods designed to estimate
and forecast such systems, such as Extended Kalman filteri@ “sequential” or “incremental” matrix-based
approach) and 4Dvar (a “variational” or “batch” vector-bas ed approach), are essentially based on the as-
sumption that Gaussian uncertainty in the initial state, sate disturbances, and measurement noise leads to
uncertainty of the state estimate at later times that is weldescribed by a Gaussian model. This assumption
is not valid in chaotic systems with appreciable uncertainkes. A new method is thus proposed that combines
the speed and LQG optimality of a sequential-based methodht non-Gaussian uncertainty propagation of
an ensemble-based method, and the favorable smoothing pregies of a variational-based method. This new
approach, referred to as Ensemble Variational Estimation EnVE), is an extension of algorithms currently
being used by the weather forecasting community. EnVE is a Hyrid method leveraging sequential precondi-
tioning of the batch optimization steps, simultaneous backards-in-time marches of the system and its adjoint
(eliminating the checkpointing normally required by 4Dvar), a receding-horizon optimization framework, and
adaptation of the optimization horizon based on the estimat uncertainty at each iteration. If the system is lin-
ear, EnVE is consistent with the well-known Kalman filter, with all of its well-established optimality properties.
The strength of EnVE is its remarkable effectiveness in higly uncertain nonlinear systems, in which EnVE
consistently uses and revisits the information containechirecent observations with batch (that is, variational)
optimization steps, while consistently propagating the ucertainty of the resulting estimate forward in time.

[. Introduction

The estimation and forecasting of chaotic, multiscale,eutain fluid systems is one of the most highly visible
computational grand challenge problems of our generaB8pecifically, this class of problems includes weather fore-
casting, climate forecasting, and flow control. The finarioi@act of a hurricane passing through a major metropolitan
center regularly exceeds a billion dollars. Improved fasting techniques provide early and accurate warningghwhi
are critical to minimize the impact of such events. On lortgee scales, the estimation and forecasting of changes in
ocean currents and temperatures is essential for an imghtoaerstanding of changes to the earth’s weather systems.
On shorter time scales, feedback control of fluid systems@asons such as minimizing drag, maximizing harvested
energy, etc.) in mechanical, aerospace, environmentdichemical engineering settings lead to a variety of similar
estimation problents. While this paper makes no claims with regards to solvindhsoportant problems, it does
address a new hybrid technique for the estimation and fetiegpeof such multiscale uncertain fluid systems that might
one day have a significant impact in all of these areas.

The two most prevalent data assimilation strategies fonthkiscale uncertain systems of interest are the Ensem-
ble Kalman Filtef (EnKF) and the 4DVarmethod. The Ensemble Kalman Filter is a sequential datandation
method useful for nonlinear multiscale systems with sutigthuncertainties. In practice, it has been shown repeat-
edly to provide significantly improved state estimates iategns for which the more traditional Extended Kalman
Filter breaks down. The statistics of the estimation emothie EnKF are not propagated via a covariance matrix,
but rather are implicitly approximated via the appropriatalinear propagation of several perturbed trajectolies-(
semble members”) centered about the ensemble mean. Theetonil of these ensemble members (itself called the
“ensemble”), propagates the statistics of the estimatimor eaccurately in many problems even when a relatively mal
number of ensemble members is used. The 4Dvar method is la ®ateariational” method which propagates state
and sensitivity or “adjoint” simulations back and forth @ss a time horizon of interest. An optimization is performed
based on these marches order to minimize a cost functiondiatathe misfit of the estimate with the measurements,
together with a “background” term which accounts for the suieaments and corresponding estimate obtained before
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this time window. For more information see our associatéighper on this topitand the extensive review contained
therein.

Il. The EnVE Algorithm

The new Ensemble Variational Estimation (EnVE) algo-
rithm is now presented as a consistent hybrid of the two afor
mentioned assimilation schemes, EnKF and 4DVar. Assume, ]
without loss of generality, that an EnKF estimate;|_; ex-
ists at some past tine;. This ensemble represents the bes
estimate at time ; given measurements up to and including 1o
y_;. Atthis point, available measurements ugptare consid- ,,re-ceo0020.002 °e N
ered. The EnVE algorithm is initialized via a traditionat se
guential march of the EnKF up to the time of the most curren
measurementy. This provides the current, best-estimate en
semble,)A(o‘o, and all of its corresponding implicit statisticsx®f -~/ T
The mean of the estimate is denoﬁgg, and is found by tak- 1
ing the average of all the ensemble members. This is the best o6 02 o2 o o0z o4  os
estimate at timey given measurements up to and includinggure 1. EnVE is initialized by marching a traditional EnKF forward
this time. Doing a traditional KF march over this intervdfrough the available observations, making the appropriae updates. This

X R ) provides the current, best-estimate of the state of the sysin x At this

for a linear system would produce the optimal estimatg.at

0j0°
. . . point, it may be beneficial to revisit past measurements to ugate the tra-
However, errors due to the nonlinearity of the chaotic syistéectory of the estimate in light of the more recent measuremets.

and approximations due to the finite size of the ensemble ult

mately lead to a suboptimal estimate via the EnKF approach.
For forecasting applications, the most important estimate— - / **********************
is the one at the most recent measurement tyylgecause it ]
is this which is used as an initial condition for any foreaagt | X108 =
calculation. With a linear system, any type of smoothing a o,qogo,o,oM ‘ 7777777777777777777

this stage in the EnKF algorithm would have no effect on the
estimate atp. The smoother would simply reduce the errorf
in the past estimates, for some time: tp, using the infor- |
mation in the observations betweeandty. However, fora | _________ ) S
nonlinear system, smoothing affects the entire estimate tr \\/
jectory, even the most recent estimatéaf his is due to the [
dependence of the evolution of the estimate uncertainty on . ' o
the trajectory of the estimate itself. For a linear systdme, tcf ot e e e encembie ahe current
covariance propagation is independent of trajectory, @muaf time is marched backwards using the system equations untihe trajec-
nonlinear system, changes in a past estimate (via Smogthiff"ic gues the current best cimate atthe past i« -+
will impact the future trajectory of the estimate and itsass e
ciated covariance. This motivates the consistent rengsibif s e te te tr o
past measurements to help improve the resulting forecast.
To this end, the ensembfebm is marched backwards, us-
ing only the model equations. In so doing, the estimate re- =zf
tains the information captured by the measurements during o
the forward EnKF march. Thus, any point on this resultirgy
trajectory is conditioned on all available measurements. A 1}
the conclusion of this backwards march, the ensemble mean ,|
and implicit statistics are known at some past time, tspy
This retrograde march is monitored in such a way as to de- %5 3 o3 oz g o
fine the width of the observation window for the variational ' - ' '
step of the ENVE algorithm. If the initial estimate fatis {023 Thesceuriaton o e betvecn e simate et end
poor, then a lot of useful information may be deduced frovpon reaching a critical bias B, the retrograde march is stopped. This
a small time window Containing only a few observations. ||1.ir_ne t_ defines the width of the subsequent variational window.
cluding more observations in this case is superfluous, and in
fact unnecessarily increases the complexity of the opttion surface. Conversely, if the initial estimategs very
accurate, then a significantly longer variational window,@nd should, be included in the analysis.
The backwards march defines the window width by looking atcthreelation between the initial estimate’s tra-
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jectory and the past measurement history. Poor estimatesgei quickly from the measurements and should be
analyzed with short optimization windows; conversely,uaate estimates march much further back in time before
they begin to diverge from the measurements, and shoulddlgzad with longer optimization windows. To quantify

this divergence, a “bias” measurd = || zj;ko(yj —HX,,)||,, is calculated during the backward march. Through

experimentation, a critical bid® is defined such that the ensemble mean is deemed significimtisgent from the
observations past this period. With the variational windbwy,tg] so defined, the initial best smoothed estimate of
the state?ﬁKIO is given as the mean of the ensemﬁIeK‘o. At this point, variational methods are used to improve
this estimate in a consistent manner. To this end, the toadit 4DVar cost function is defined with a background
estimate and covariancetaf. The background term of the cost function must now be defiaeefally, as the correct
background term is essential for EnVE to be consistent. erotvords, properly defining the background terms in
the variational cost function guarantees that erroneodateg are not made by using an observation more than once,
and ensures that the result obtained reduces to that ottaynthe Kalman Filter in the special case that the system
considered happens to be linear.

Therefore, the background terms must be determined by
returning to the original ensembl&o‘o, and marching it |
backwards again to the left edge of the windoy, this time |
removing the effect of the measurements along the way.

A suitable formula for removing the effect of a measure-| _
ment can be found by rearranging the standard forward KF Xuo
update equations for the mean and covaridhthis removal ,
formula (combined with a suitable backwards march of the
system) may be used to produce the background ensemble
)A(_KI_K at the left edge of the variational window. From |
this background ensemble, the background megn, and xsf-—---------\----— -}/ -
background covarianczeffmK can be extracted and used to | I
define the variational cost function. Because the backgtoun -0s 04 -02 o o2 o4 o6
terms of the cost function are consistently defined (in tinat,rigure 4. In order to fully define the variational cost function, the back-
the linear setting, they incorporate no information frore th;round terms Eitth must be recalled. This is done by marching the orig-
observations in the variational window), the correspogdin 78 ensembiefoo backuris oudh e widow sequental remor:
dimensional optimization surface is, in the linear casenid ensembleX _;_« at the left edge of the window of interest. From this
tical to what would have been used had no sequential magtggmble, the background mean and covariance can be infede
through those observations been completed. The global min-
imum of this surface is independent of any previous updates
to the estimate within the variational window that have be&h—"
computed. -

With the cost function appropriately defined in this man-|
ner, a variational iteration can now be performed, simitar t
ADVar. With traditional 4DVar, the first iteration is typiba *®
initialized using the background term,= x_g|_g. How- |
ever, with EnVE, a better estimate than this is already known
namelyi,K‘o. This is one of the strengths of EnVE; it initial-xs
izes the variational iteration with an estimate that is know
to be significantly better than the background. In eitheecas [ ‘ ,
the optimization surface is identical, but with EnVE, the in -06  -04  -02 0 02 0.4 0.6
tial estimate fow is much closer to the global minimum than . o ! . '
the original background term. Consequently,if any SignifiS b omie o vrsiers teraton e o o
cant improvement can be made upon the original best estivard to the old current time t,. No measurement updates are done
mate, it will be discovered in the first variational iteratio du1ing this march, as all observations have been accountedi Upon

. . . . . reaching the front edge of the window, the new ensemble estate X is
Further, the orlgmal estimate Is more “kely to be in the r@équentially marched forward using the EnKF to account for any addi-
gion of attraction of this global minimum, so the probayiIit:galr:lﬁissuifé?;%gﬁ received during the computation time equired for
of erroneous convergence to spurious local minima can '
substantially reduced.

In practice, the estimate only exists as the average of ther‘eble)A(,K‘o. Hence, once the gradient and step
size is determined from the variational step, each membéhefensemble is “shifted” in phase space the same
amount, effectively shifting the ensemble mean withowetfhg the higher-order ensemble statistics. In fact, aith
adjusted estimate of this sort, a modified, if not improvevztamiance?fm would be expected as well. However, as
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variational methods do not provide a means for trackingetusmnges, EnVE must simply use this shifted ensemble
representation, which is a bit conservative. Note, thotlgt, this is a significant improvement over 4Dvar in which
rigorous methods to march are essentially unavailable. In contrast, with EnVE, theat@ance associated with the
original smoothed estimate is available, so it can be etlizZThough this is a conservative estimate of the covariance
that does not account for the correction to the estimatealthestvariational step, it correctly captures the main fiestu

of the covariance matrix, including the principle direatsoof estimate uncertainty.

To cycle the algorithm, the updated ensemble is marchedafohio the front of the window. Note that the
ensemble already accounts for the measurement in the wjrstowach ensemble member is propagated forward
using the system equations only, with no additional measearg updates. This gives an improved best estimate at
to, )?0‘0. During the period of this iteration, some new measureméys- - y, } will usually become available due

to the computational time required to complete the vantictep. The ensembfebm can thus be marched forward
again, using the EnKF to account for these new measuremantisthe new current timg, is reached. At this point,
time is resetp < t;, and the algorithm is repeated. Note that a significant caatipmal burden can be avoided by

storing the updated estimate at the previous current ﬁAm‘@, This point can serve as the initial condition for finding

the background terms of the variational cost function, gsospd to using?m. Depending on the relative widths
of the next variational window and the time elapsed durirgdtirrent variational step, using this saved background
initial condition will result in either a shorter backwarBaKF march (very beneficial due to the ill-posed nature of
such a march) or possibly even a forward EnKF march (a wededanarch) to the left edge of the new variational
window. This simple storage trick reduces the computationat of the algorithm significantly and shortens (or
removes altogether) one of the ill-posed backwards marches

IILA. EnVE Consistency

Ultimately, sequential methods (EnKF) and variationallmet
ods (4DVar) are used to solve the same problem. Both meth-
ods work to minimize a cost function to optimize the estimate |
attp conditioned on all available measurements. Thus, when
these cost functions are defined appropriately, it is p@essib: -
to switch back and forth between sequential and variatiorfal
methods consistently, as EnVE does. For a linear system with
a set of measurements definedbn , to], the smoothed KF
estimate at the back edge of the windoﬁyk‘0 (found by
marching a KF forward through the observations and march-|

EnKF updates EnKF updates

log(

variational update

ing the resulting estimate backwardsttQ) is identical to variational update
the solution of a converged 4DVar algorithm with appropri- ‘ ‘ ‘
ately defined background terms. In other words, the optimal time —

smoothed KF estimatg is the global minimum of the Figure 6. A cartoon illustrating the expected error for EnVE performed
. . Ko . on a chaotic system. Exponential growth (linear growth in smi-log coor-
4DVar cost function in the case of a linear system. For anih'ates) in the expected error occurs during forward marches. Discrete

linear systems, this re|ationship is still true, but theimla] reduction in the expected error occur at both the sequentialipdates and
. . . the variational update. Note that with a linear system, the wariational up-

smoothed KF estimate can not necessarlly be found via ahkris necessarily zero, returning the estimate to its origal value upon
quentia| estimator. completion of the variational step.

This relationship is what EnVE attempts to exploit to im-
prove the estimate. Marching an Ensemble Kalman SmootméSEwill not produce the optimal smoothed estimate
ZKIO because of the nonlinearities in the system and the appatidns required for the ensemble framework. How-
ever, by removing the effect of the measurements and apptelyr defining the 4DVar cost function background
terms, this sub-optimal smoothed estimate can be used agtiahdondition for the variational step. If the smoothed
estimatelKIO happens to be optimal, then the variational iteration isaaly converged and will produce a zero update
to the estimate. Thus, EnVE uses the EnKS to initialize thea¢dptimization, but does not reuse the information in
the observations inconsistently. Thus, EnVE reduces texpected optimal results of the Kalman Smoother (KS) for
a linear system with both Gaussian measurement noise anddiaces.

A cartoon of the expected estimation error as EnVE progsefgse typical chaotic system is shown in Figure 6.
Due to the chaotic nature of the system, any forward marcim @stimate will lead to expected exponential growth
of the estimation error (shown linearly in semi-log cooat#s). Each EnKF measurement update creates a discrete
drop in the expected estimation error. When a variatioeshtton is performed, the estimate is marched backwards.
This causes an exponential decrease in the expected etrajeasories of the chaotic system will converge (along the
attractor) during the backwards march. Then, a variatiopdhte is made, further reducing the expected error, and the
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resulting estimate is propagated forward again to the neilable measurement. Recall that with a linear system, the
update due to the variational step will have zero lengtts tleturning the estimate back to its original state to carmtin
the sequential march. This helps illustrate the consistature of EnVE.

lll.  Advantages

By combining the statistical capabilities of the EnKF alamith the batch processing/smoothing capabilities of a
variational method, EnVE builds a better estimate of theéesys possibly in real-time, at a justifiable computational
cost. Using the EnKF to initialize a 4DVar-like iterationlaals for fewer iterations because full convergence is
not required and the initial estimate is more accurate thanbackground estimate alone. The intrinsic ability of
the EnKF to represent the statistical properties of themegé allows EnVE to repeatedly and consistently revisit
past measurements and update the central trajectory ohtegrile about which the system can be linearized when
considering its covariance evolution, based on new measts.

Two of the main objectives for the development of EnVE wasdésire for a multiscale-in-time algorithm com-
bined with a receding horizon optimization framework. Tlwantages of these properties are highlighted in the
following section. Combined, these two exclusive propartof EnVE create a dynamic optimization surface that
tends to have desirable convergence properties for higiilimear systems.

IIILA. Multiscale in Time

Because the variational window in EnVE is defined from
the right (current time) by marching the current estimate ~
backwards until divergence, the width of this window can
be selected during the iteration. In contrast, with tradi-.
tional 4DVar, this window width must be specified in ad-
vance. The variable variational window widths of EnVE
can be used as a tool to precondition the optimization prob--
lem appropriately by coordinating this width with the ac-
curacy of the initial estimate, as discussed previously.

Due to the noise in the measurements, a short window ) _ ) ) S
containing only a few observations is prone to inaccura€fiaces for  short varational window (fft) and & long vaiational window
That is, the g|oba| minimum of the cost function definedght). Also shown is the known truth model global minimum, which is more

. [T . . _.cclosely related to the global minimum of the highly irregular optimization
over only a few observations is likely to deviate signifistace of the longer window.
cantly from the ‘truth’. However, because only a few mea-
surements are included in this short window (with corre-
sponding short marches of the chaotic system) this opti-
mization surface tends to be more regular with a larger
region of attraction for the global minimum. The size of
the region of attraction is important with gradient-based
algorithms, as they are prone to converge to local minima.

As the estimate improves, longer windows with more
included observations can be utilized. This will tend to
make the optimization surface more irregular and shrink
the region of attraction for the global minimum, and thus - - L ‘ :
this extension of the variational window needs to be doagure s. The accumulated forecast error from two forecastss shown. The
gradually enough that the improved estimate remains,Jies Soctel notel S o8 e BV Wit a receding
this reduced region of attraction. Because more measu#fzon framework. Note the difference in the accumulated &ors of each
ments are included in this window, the effect of sensgitEe & e o B T Cinfcarty educer in he
noise is diminished from the shorter window, making thfsceding-horizon framework, forecasts made a certain amant of time into

global minimum more accurate with respect to the ‘truthfe future are greatly improved.

u;

ll1.B. Receding Horizon

A receding-horizon approach is defined by nudging the viariat window forward in time to incorporate the most re-
cent measurements obtained during each iteration of th&tizaral optimization. Simplistic approaches to variatib
data assimilation leave the optimization window fixed ucihvergence. In contrast, EnVE redefines the optimization
problem slightly at each iteration, updating it to inclue hewly-obtained measurements. As this modification cause
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the optimization surface to constantly shift, the algarithever completely converges. However, the receding-boriz
optimization framework updates the current estimate at @acation with maximal efficiency, as it is constantly wgin

the most up-to-date information available. Further, tleilttng dynamic evolution of the optimization surface iotfa

helps to nudge the estimate out of the local minima into whtiafight otherwise settle.

A typical contrast between the error of two forecasts (oneegated with a 4DVar algorithm and the other with
EnVE) is shown in Figure 8. Unlike EnVE, due to the computatiequired for convergence of the 4DVar algorithm,
the corresponding variational window has slipped into & pBecause of the chaotic nature of the systems of inerest
any forecast will begin to exponential diverge. Consedygentuch of the relevant range of the 4DVar forecast is
wasted predicting events that have already taken place.

llI.C. Parallel State/Adjoint Marches

Another advantageous side effect of posing the variatioptinization problem in a retrograde setting deals with the
numerical implementation of EnVE. The adjoint equation erahed backwards in time (frotgtot_, ) forced using

the trajectoryX(t). Typically, this trajectory is found by marching the inlt@onditionX_, = u forward through the
window (fromt_, totg). Especially for the multiscale systems of interest, thisgs a large storage constraint on the
problem because the adjoint is forced by the whole trajgctart in reverse order. In other words, the trajectory of
X(t) needs to be computed and saved over the entire intervaldosferadjoint march can begin. Attempts to circum-
vent this problem for large atmospheric scale systems diectte checkpointing algorithm, in which the trajectory is
stored only on coarse time grid points, and is either recdatpor linearly interpolated onto the fine time grid points
when necessary. However, checkpointing still requiresatsimtial amount of storage and also significantly increase
the computation required to compute the adjoint. Note thtit &nVE, though, this required trajectory has already
been computed in the second phase during the retrogradé wfdite original estimate. In fact, because the estimate
trajectory is determined backwards in time, coupled witn fict that neither the background terms nor the width of
the variational window need to be known a priori, a parallaroh of all three systems (the estimate with the mea-
surements, the adjoint, and the estimate without the meamants) is facilitated. Computationally, this is extreynel
efficient as there are no additional storage requirementh&adjoint march. Because they are marched in parallel,
the estimate trajectory is immediately available to appeately force the adjoint ‘on the fly’. Then, when the mean
of the ensemble diverges significantly from the observatitre parallel march can be halted, immediately providing
the necessary gradient information from the adjoint, wisatalculated at the same time.

IV.  Summary and Conclusions

In this paper, a new hybrid data assimilation method is suriz@@ Ensemble Variational Estimation (EnVE).
For a more detailed discussion, please see the associatewljjarticle’ The new method leverages the nonlinear
statistical propagation properties of the sequential BEKKS to initialize and properly define an appropriate varia
tional iteration, similar to 4DVar. This variational itei@n is posed in such a way as to allow for a multiscale-inetim
receding-horizon optimization framework. The smootheaheste from the EnKF is used as an accurate initial condi-
tion for the variational iteration, thus improving its oaéliperformance. The multiscale-in-time framework is avied
via aretrograde march of the current estimate over theablaibbservations, and appropriately preconditions thie va
ational step. This also allows for a concurrent, parallelahaf the appropriate adjoint equation, which is forced by
the backwards march of the estimate. Thus, no additionedgds required for the gradient computation, as is typical
with a 4DVar implementation. Because the variational wimdwaidth is a function of the accuracy of the estimate,
EnVE tends to update poor estimates with short windows an@ mccurate estimates with longer windows. Finally,
EnVE is a consistent and convenient hybrid of the basic Enikd=4DVar algorithms already in wide use that reduces
to the KF in the linear setting. Thus, much of the current wiarthe EnKF and 4DVar may be applied to the EnVE
algorithm while maintaining its desirable properties andsistency. It is only with such combined efforts that it may
be possible to develop significantly improved large-scala @ssimilation algorithms in the years to come.
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