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Chaotic systems are characterized by long-term unpredictability. Existing methods designed to estimate
and forecast such systems, such as Extended Kalman filtering(a “sequential” or “incremental” matrix-based
approach) and 4Dvar (a “variational” or “batch” vector-bas ed approach), are essentially based on the as-
sumption that Gaussian uncertainty in the initial state, state disturbances, and measurement noise leads to
uncertainty of the state estimate at later times that is welldescribed by a Gaussian model. This assumption
is not valid in chaotic systems with appreciable uncertainties. A new method is thus proposed that combines
the speed and LQG optimality of a sequential-based method, the non-Gaussian uncertainty propagation of
an ensemble-based method, and the favorable smoothing properties of a variational-based method. This new
approach, referred to as Ensemble Variational Estimation (EnVE), is an extension of algorithms currently
being used by the weather forecasting community. EnVE is a hybrid method leveraging sequential precondi-
tioning of the batch optimization steps, simultaneous backwards-in-time marches of the system and its adjoint
(eliminating the checkpointing normally required by 4Dvar), a receding-horizon optimization framework, and
adaptation of the optimization horizon based on the estimate uncertainty at each iteration. If the system is lin-
ear, EnVE is consistent with the well-known Kalman filter, with all of its well-established optimality properties.
The strength of EnVE is its remarkable effectiveness in highly uncertain nonlinear systems, in which EnVE
consistently uses and revisits the information contained in recent observations with batch (that is, variational)
optimization steps, while consistently propagating the uncertainty of the resulting estimate forward in time.

I. Introduction

The estimation and forecasting of chaotic, multiscale, uncertain fluid systems is one of the most highly visible
computational grand challenge problems of our generation.Specifically, this class of problems includes weather fore-
casting, climate forecasting, and flow control. The financial impact of a hurricane passing through a major metropolitan
center regularly exceeds a billion dollars. Improved forecasting techniques provide early and accurate warnings, which
are critical to minimize the impact of such events. On longertime scales, the estimation and forecasting of changes in
ocean currents and temperatures is essential for an improved understanding of changes to the earth’s weather systems.
On shorter time scales, feedback control of fluid systems (for reasons such as minimizing drag, maximizing harvested
energy, etc.) in mechanical, aerospace, environmental, and chemical engineering settings lead to a variety of similar
estimation problems1 . While this paper makes no claims with regards to solving such important problems, it does
address a new hybrid technique for the estimation and forecasting of such multiscale uncertain fluid systems that might
one day have a significant impact in all of these areas.

The two most prevalent data assimilation strategies for themultiscale uncertain systems of interest are the Ensem-
ble Kalman Filter2 (EnKF) and the 4DVar3 method. The Ensemble Kalman Filter is a sequential data assimilation
method useful for nonlinear multiscale systems with substantial uncertainties. In practice, it has been shown repeat-
edly to provide significantly improved state estimates in systems for which the more traditional Extended Kalman
Filter breaks down. The statistics of the estimation error in the EnKF are not propagated via a covariance matrix,
but rather are implicitly approximated via the appropriatenonlinear propagation of several perturbed trajectories (“en-
semble members”) centered about the ensemble mean. The collection of these ensemble members (itself called the
“ensemble”), propagates the statistics of the estimation error accurately in many problems even when a relatively small
number of ensemble members is used. The 4Dvar method is a batch or “variational” method which propagates state
and sensitivity or “adjoint” simulations back and forth across a time horizon of interest. An optimization is performed
based on these marches order to minimize a cost function balancing the misfit of the estimate with the measurements,
together with a “background” term which accounts for the measurements and corresponding estimate obtained before
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this time window. For more information see our associated full paper on this topic4 and the extensive review contained
therein.

II. The EnVE Algorithm
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Figure 1. EnVE is initialized by marching a traditional EnKF forward
through the available observations, making the appropriate updates. This
provides the current, best-estimate of the state of the system x̄

0|0
. At this

point, it may be beneficial to revisit past measurements to update the tra-
jectory of the estimate in light of the more recent measurements.
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Figure 2. To determine the accuracy of the current estimate (that is, its
correlation with the recent measurements), the ensemble atthe current
time is marched backwards using the system equations until the trajec-
tory of the ensemble mean is significantly divergent from theobserva-
tions. This gives the current best estimate at the past time,̄x

−K|0
.
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Figure 3. The accumulation of “bias” between the estimate trajectory and
the observations is shown as the original estimate is marched backwards.
Upon reaching a critical bias B̄, the retrograde march is stopped. This
time t

−K defines the width of the subsequent variational window.

The new Ensemble Variational Estimation (EnVE) algo-
rithm is now presented as a consistent hybrid of the two afore-
mentioned assimilation schemes, EnKF and 4DVar. Assume,
without loss of generality, that an EnKF estimateX̂− j|− j ex-
ists at some past timet− j . This ensemble represents the best
estimate at timet− j given measurements up to and including
y− j . At this point, available measurements up tot0 are consid-
ered. The EnVE algorithm is initialized via a traditional se-
quential march of the EnKF up to the time of the most current
measurement,t0. This provides the current, best-estimate en-
semble,X̂0|0, and all of its corresponding implicit statistics.
The mean of the estimate is denotedx̄

0|0
, and is found by tak-

ing the average of all the ensemble members. This is the best
estimate at timet0 given measurements up to and including
this time. Doing a traditional KF march over this interval
for a linear system would produce the optimal estimate att0.
However, errors due to the nonlinearity of the chaotic system
and approximations due to the finite size of the ensemble ulti-
mately lead to a suboptimal estimate via the EnKF approach.

For forecasting applications, the most important estimate
is the one at the most recent measurement timet0, because it
is this which is used as an initial condition for any forecasting
calculation. With a linear system, any type of smoothing at
this stage in the EnKF algorithm would have no effect on the
estimate att0. The smoother would simply reduce the error
in the past estimates, for some timet < t0, using the infor-
mation in the observations betweent andt0. However, for a
nonlinear system, smoothing affects the entire estimate tra-
jectory, even the most recent estimate att0. This is due to the
dependence of the evolution of the estimate uncertainty on
the trajectory of the estimate itself. For a linear system, the
covariance propagation is independent of trajectory, but for a
nonlinear system, changes in a past estimate (via smoothing)
will impact the future trajectory of the estimate and its asso-
ciated covariance. This motivates the consistent revisiting of
past measurements to help improve the resulting forecast.

To this end, the ensemblêX0|0 is marched backwards, us-
ing only the model equations. In so doing, the estimate re-
tains the information captured by the measurements during
the forward EnKF march. Thus, any point on this resulting
trajectory is conditioned on all available measurements. At
the conclusion of this backwards march, the ensemble mean
and implicit statistics are known at some past time, sayt−K .
This retrograde march is monitored in such a way as to de-
fine the width of the observation window for the variational
step of the EnVE algorithm. If the initial estimate att0 is
poor, then a lot of useful information may be deduced from
a small time window containing only a few observations. In-
cluding more observations in this case is superfluous, and in
fact unnecessarily increases the complexity of the optimization surface. Conversely, if the initial estimate att0 is very
accurate, then a significantly longer variational window can, and should, be included in the analysis.

The backwards march defines the window width by looking at thecorrelation between the initial estimate’s tra-

2 of 6

American Institute of Aeronautics and Astronautics



jectory and the past measurement history. Poor estimates diverge quickly from the measurements and should be
analyzed with short optimization windows; conversely, accurate estimates march much further back in time before
they begin to diverge from the measurements, and should be analyzed with longer optimization windows. To quantify
this divergence, a “bias” measure,Bk =

∥∥ ∑−k
j=0(y j −H x̄

j|0
)
∥∥

1, is calculated during the backward march. Through
experimentation, a critical bias̄B is defined such that the ensemble mean is deemed significantlydivergent from the
observations past this period. With the variational window[t−K ,t0 ] so defined, the initial best smoothed estimate of

the statēx
−K|0

is given as the mean of the ensembleX̂−K|0. At this point, variational methods are used to improve
this estimate in a consistent manner. To this end, the traditional 4DVar cost function is defined with a background
estimate and covariance att−K . The background term of the cost function must now be defined carefully, as the correct
background term is essential for EnVE to be consistent. In other words, properly defining the background terms in
the variational cost function guarantees that erroneous updates are not made by using an observation more than once,
and ensures that the result obtained reduces to that obtained by the Kalman Filter in the special case that the system
considered happens to be linear.
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Figure 4. In order to fully define the variational cost function, the back-
ground terms at t

−K must be recalled. This is done by marching the orig-

inal ensembleX̂0|0 backwards through the window, sequentially remov-
ing the effect of each measurement. This march results in a background
ensembleX̂−K|−K at the left edge of the window of interest. From this
ensemble, the background mean and covariance can be inferred.
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Figure 5. Upon completion of a variational iteration, the improved en-
semble estimateX̂−K|0 at the back edge of the window is propagated
forward to the old current time t0. No measurement updates are done
during this march, as all observations have been accounted for. Upon
reaching the front edge of the window, the new ensemble estimate X̂0|0 is
sequentially marched forward using the EnKF to account for any addi-
tional measurements received during the computation time required for
the previous iteration.

Therefore, the background terms must be determined by
returning to the original ensemble,̂X0|0, and marching it
backwards again to the left edge of the windowt−K , this time
removing the effect of the measurements along the way.

A suitable formula for removing the effect of a measure-
ment can be found by rearranging the standard forward KF
update equations for the mean and covariance.4 This removal
formula (combined with a suitable backwards march of the
system) may be used to produce the background ensemble
X̂
−K|−K

at the left edge of the variational window. From
this background ensemble, the background meanx̄

−K|−K
and

background covarianceP e
−K|−K

can be extracted and used to
define the variational cost function. Because the background
terms of the cost function are consistently defined (in that,in
the linear setting, they incorporate no information from the
observations in the variational window), the correspondingn-
dimensional optimization surface is, in the linear case, iden-
tical to what would have been used had no sequential march
through those observations been completed. The global min-
imum of this surface is independent of any previous updates
to the estimate within the variational window that have been
computed.

With the cost function appropriately defined in this man-
ner, a variational iteration can now be performed, similar to
4DVar. With traditional 4DVar, the first iteration is typically
initialized using the background term,u = x̄−K|−K . How-
ever, with EnVE, a better estimate than this is already known,
namelyx̄−K|0. This is one of the strengths of EnVE; it initial-
izes the variational iteration with an estimate that is known
to be significantly better than the background. In either case,
the optimization surface is identical, but with EnVE, the ini-
tial estimate foru is much closer to the global minimum than
the original background term. Consequently, if any signifi-
cant improvement can be made upon the original best esti-
mate, it will be discovered in the first variational iteration.
Further, the original estimate is more likely to be in the re-
gion of attraction of this global minimum, so the probability
of erroneous convergence to spurious local minima can be
substantially reduced.

In practice, the estimate only exists as the average of the ensembleX̂−K|0. Hence, once the gradient and step
size is determined from the variational step, each member ofthe ensemble is “shifted” in phase space the same
amount, effectively shifting the ensemble mean without affecting the higher-order ensemble statistics. In fact, withan
adjusted estimate of this sort, a modified, if not improved covarianceP e

−K|0
would be expected as well. However, as
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variational methods do not provide a means for tracking these changes, EnVE must simply use this shifted ensemble
representation, which is a bit conservative. Note, though,that this is a significant improvement over 4Dvar in which
rigorous methods to marchP are essentially unavailable. In contrast, with EnVE, the covariance associated with the
original smoothed estimate is available, so it can be utilized. Though this is a conservative estimate of the covariance
that does not account for the correction to the estimate due to the variational step, it correctly captures the main features
of the covariance matrix, including the principle directions of estimate uncertainty.

To cycle the algorithm, the updated ensemble is marched forward to the front of the window. Note that the
ensemble already accounts for the measurement in the window, so each ensemble member is propagated forward
using the system equations only, with no additional measurement updates. This gives an improved best estimate at
t0, X̂0|0. During the period of this iteration, some new measurements{y1 · · · yJ} will usually become available due

to the computational time required to complete the variational step. The ensemblêX0|0 can thus be marched forward
again, using the EnKF to account for these new measurements,until the new current timetJ is reached. At this point,
time is resett0← tJ , and the algorithm is repeated. Note that a significant computational burden can be avoided by
storing the updated estimate at the previous current time,X̂0|0. This point can serve as the initial condition for finding

the background terms of the variational cost function, as opposed to usinĝXJ|J . Depending on the relative widths
of the next variational window and the time elapsed during the current variational step, using this saved background
initial condition will result in either a shorter backwardsEnKF march (very beneficial due to the ill-posed nature of
such a march) or possibly even a forward EnKF march (a well-posed march) to the left edge of the new variational
window. This simple storage trick reduces the computational cost of the algorithm significantly and shortens (or
removes altogether) one of the ill-posed backwards marches.

II.A. EnVE Consistency
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Figure 6. A cartoon illustrating the expected error for EnVE performed
on a chaotic system. Exponential growth (linear growth in semi-log coor-
dinates) in the expected error occurs during forward marches. Discrete
reduction in the expected error occur at both the sequentialupdates and
the variational update. Note that with a linear system, the variational up-
date is necessarily zero, returning the estimate to its original value upon
completion of the variational step.

Ultimately, sequential methods (EnKF) and variational meth-
ods (4DVar) are used to solve the same problem. Both meth-
ods work to minimize a cost function to optimize the estimate
at t0 conditioned on all available measurements. Thus, when
these cost functions are defined appropriately, it is possible
to switch back and forth between sequential and variational
methods consistently, as EnVE does. For a linear system with
a set of measurements defined on[t−K , t0 ], the smoothed KF
estimate at the back edge of the window,x̄

−K|0
(found by

marching a KF forward through the observations and march-
ing the resulting estimate backwards tot−K ) is identical to
the solution of a converged 4DVar algorithm with appropri-
ately defined background terms. In other words, the optimal
smoothed KF estimatēx

−K|0
is the global minimum of the

4DVar cost function in the case of a linear system. For non-
linear systems, this relationship is still true, but the optimal
smoothed KF estimate can not necessarily be found via a se-
quential estimator.

This relationship is what EnVE attempts to exploit to im-
prove the estimate. Marching an Ensemble Kalman Smoother (EnKS) will not produce the optimal smoothed estimate
x̄
−K|0

because of the nonlinearities in the system and the approximations required for the ensemble framework. How-
ever, by removing the effect of the measurements and appropriately defining the 4DVar cost function background
terms, this sub-optimal smoothed estimate can be used as an initial condition for the variational step. If the smoothed
estimatēx

−K|0
happens to be optimal, then the variational iteration is already converged and will produce a zero update

to the estimate. Thus, EnVE uses the EnKS to initialize the 4DVar optimization, but does not reuse the information in
the observations inconsistently. Thus, EnVE reduces to theexpected optimal results of the Kalman Smoother (KS) for
a linear system with both Gaussian measurement noise and disturbances.

A cartoon of the expected estimation error as EnVE progresses for a typical chaotic system is shown in Figure 6.
Due to the chaotic nature of the system, any forward march of an estimate will lead to expected exponential growth
of the estimation error (shown linearly in semi-log coordinates). Each EnKF measurement update creates a discrete
drop in the expected estimation error. When a variational iteration is performed, the estimate is marched backwards.
This causes an exponential decrease in the expected error astrajectories of the chaotic system will converge (along the
attractor) during the backwards march. Then, a variationalupdate is made, further reducing the expected error, and the
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resulting estimate is propagated forward again to the next available measurement. Recall that with a linear system, the
update due to the variational step will have zero length, thus returning the estimate back to its original state to continue
the sequential march. This helps illustrate the consistentnature of EnVE.

III. Advantages

By combining the statistical capabilities of the EnKF alongwith the batch processing/smoothing capabilities of a
variational method, EnVE builds a better estimate of the system, possibly in real-time, at a justifiable computational
cost. Using the EnKF to initialize a 4DVar-like iteration allows for fewer iterations because full convergence is
not required and the initial estimate is more accurate than the background estimate alone. The intrinsic ability of
the EnKF to represent the statistical properties of the estimate allows EnVE to repeatedly and consistently revisit
past measurements and update the central trajectory of the ensemble about which the system can be linearized when
considering its covariance evolution, based on new measurements.

Two of the main objectives for the development of EnVE was thedesire for a multiscale-in-time algorithm com-
bined with a receding horizon optimization framework. The advantages of these properties are highlighted in the
following section. Combined, these two exclusive properties of EnVE create a dynamic optimization surface that
tends to have desirable convergence properties for highly nonlinear systems.

III.A. Multiscale in Time
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Figure 7. A cartoon illustrating the change in complexity ofthe optimization
surfaces for a short variational window (left) and a long variational window
(right). Also shown is the known truth model global minimum, which is more
closely related to the global minimum of the highly irregular optimization
surface of the longer window.

−4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Time

E
rr

or

Accumulated Forecast Error

Figure 8. The accumulated forecast error from two forecastsis shown. The
left-most variational window is due to a typical 4DVar without a receding
horizon framework. The right-most window is due to EnVE with a receding
horizon framework. Note the difference in the accumulated errors of each
of forecast is due in large part to the time the forecast is ahead of the lat-
est optimization window used. As this time is significantly reduced in the
receding-horizon framework, forecasts made a certain amount of time into
the future are greatly improved.

Because the variational window in EnVE is defined from
the right (current time) by marching the current estimate
backwards until divergence, the width of this window can
be selected during the iteration. In contrast, with tradi-
tional 4DVar, this window width must be specified in ad-
vance. The variable variational window widths of EnVE
can be used as a tool to precondition the optimization prob-
lem appropriately by coordinating this width with the ac-
curacy of the initial estimate, as discussed previously.

Due to the noise in the measurements, a short window
containing only a few observations is prone to inaccuracy.
That is, the global minimum of the cost function defined
over only a few observations is likely to deviate signifi-
cantly from the ‘truth’. However, because only a few mea-
surements are included in this short window (with corre-
sponding short marches of the chaotic system) this opti-
mization surface tends to be more regular with a larger
region of attraction for the global minimum. The size of
the region of attraction is important with gradient-based
algorithms, as they are prone to converge to local minima.

As the estimate improves, longer windows with more
included observations can be utilized. This will tend to
make the optimization surface more irregular and shrink
the region of attraction for the global minimum, and thus
this extension of the variational window needs to be done
gradually enough that the improved estimate remains in
this reduced region of attraction. Because more measure-
ments are included in this window, the effect of sensor
noise is diminished from the shorter window, making this
global minimum more accurate with respect to the ‘truth’.

III.B. Receding Horizon

A receding-horizon approach is defined by nudging the variational window forward in time to incorporate the most re-
cent measurements obtained during each iteration of the variational optimization. Simplistic approaches to variational
data assimilation leave the optimization window fixed untilconvergence. In contrast, EnVE redefines the optimization
problem slightly at each iteration, updating it to include the newly-obtained measurements. As this modification causes
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the optimization surface to constantly shift, the algorithm never completely converges. However, the receding-horizon
optimization framework updates the current estimate at each iteration with maximal efficiency, as it is constantly using
the most up-to-date information available. Further, the resulting dynamic evolution of the optimization surface in fact
helps to nudge the estimate out of the local minima into whichit might otherwise settle.

A typical contrast between the error of two forecasts (one generated with a 4DVar algorithm and the other with
EnVE) is shown in Figure 8. Unlike EnVE, due to the computation required for convergence of the 4DVar algorithm,
the corresponding variational window has slipped into the past. Because of the chaotic nature of the systems of interest,
any forecast will begin to exponential diverge. Consequently, much of the relevant range of the 4DVar forecast is
wasted predicting events that have already taken place.

III.C. Parallel State/Adjoint Marches

Another advantageous side effect of posing the variationaloptimization problem in a retrograde setting deals with the
numerical implementation of EnVE. The adjoint equation is marched backwards in time (fromt0 to t−K ) forced using
the trajectorỹx(t). Typically, this trajectory is found by marching the initial condition x̃−K = u forward through the
window (fromt−K to t0). Especially for the multiscale systems of interest, this poses a large storage constraint on the
problem because the adjoint is forced by the whole trajectory, but in reverse order. In other words, the trajectory of
x̃(t) needs to be computed and saved over the entire interval before the adjoint march can begin. Attempts to circum-
vent this problem for large atmospheric scale systems include the checkpointing algorithm, in which the trajectory is
stored only on coarse time grid points, and is either recomputed or linearly interpolated onto the fine time grid points
when necessary. However, checkpointing still requires a substantial amount of storage and also significantly increases
the computation required to compute the adjoint. Note that with EnVE, though, this required trajectory has already
been computed in the second phase during the retrograde march of the original estimate. In fact, because the estimate
trajectory is determined backwards in time, coupled with the fact that neither the background terms nor the width of
the variational window need to be known a priori, a parallel march of all three systems (the estimate with the mea-
surements, the adjoint, and the estimate without the measurements) is facilitated. Computationally, this is extremely
efficient as there are no additional storage requirements for the adjoint march. Because they are marched in parallel,
the estimate trajectory is immediately available to appropriately force the adjoint ‘on the fly’. Then, when the mean
of the ensemble diverges significantly from the observations, the parallel march can be halted, immediately providing
the necessary gradient information from the adjoint, whichis calculated at the same time.

IV. Summary and Conclusions

In this paper, a new hybrid data assimilation method is summarized: Ensemble Variational Estimation (EnVE).
For a more detailed discussion, please see the associated journal article.4 The new method leverages the nonlinear
statistical propagation properties of the sequential EnKF/EnKS to initialize and properly define an appropriate varia-
tional iteration, similar to 4DVar. This variational iteration is posed in such a way as to allow for a multiscale-in-time,
receding-horizon optimization framework. The smoothed estimate from the EnKF is used as an accurate initial condi-
tion for the variational iteration, thus improving its overall performance. The multiscale-in-time framework is achieved
via a retrograde march of the current estimate over the available observations, and appropriately preconditions the vari-
ational step. This also allows for a concurrent, parallel march of the appropriate adjoint equation, which is forced by
the backwards march of the estimate. Thus, no additional storage is required for the gradient computation, as is typical
with a 4DVar implementation. Because the variational window width is a function of the accuracy of the estimate,
EnVE tends to update poor estimates with short windows and more accurate estimates with longer windows. Finally,
EnVE is a consistent and convenient hybrid of the basic EnKF and 4DVar algorithms already in wide use that reduces
to the KF in the linear setting. Thus, much of the current workin the EnKF and 4DVar may be applied to the EnVE
algorithm while maintaining its desirable properties and consistency. It is only with such combined efforts that it may
be possible to develop significantly improved large-scale data assimilation algorithms in the years to come.
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