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1 Introduction

Flow control of fluid mechanical systems has received much interest in recent
years due to the possible benefits. By, for example, extending the laminar flow
region over a wing huge savings in terms of fuel consumption could be made.
Many different strategies to control and reduce the drag in turbulent flows have
been proposed and attempted. Over the years the approaches have gone from
more intuition based toward more systematic and automated approaches. When
computing optimal feedback control based on modern control theory complete
flow state is required which is not accessible in real applications. However within
the same framework one can formulate the related estimation problem where
the flow is reconstructed based on only limited information about the flow, for
example, wall measurements. Reviews on recent efforts in flow control with
model-based feedback control as well as other strategies can be found in, for
example, Bewley [1], Kim [7], and in Hogberg et al. [5].

This work aims at estimating a turbulent channel flow at Re, = 100 based on
a time history of noisy wall measurements of the flow. We do this by applying an
extended Kalman filter based on the linearized Navier—Stokes equations together
with a stochastic model based on statistics gathered from a direct numerical
simulation (DNS) of the same turbulent flow we aim to estimate. By using
relevant statistical information when constructing the stochastic model we get
well resolved estimation gains for all measurements and we get an improved
estimation process compared with simpler choices of stochastic models.

The present work is divided in three parts. In the first part statistical data is
collected from DNS of turbulent Poiseuille flow. That data is used in the second
part of the study where we compute optimal estimation gains. In the third part
the gains are tested when estimating a turbulent flow.

2 Theory

To apply linear control and estimation theory to the Navier—Stokes equations,
we need to represent the equations with a stochastic dynamic system which can
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be written on the form
= Au+ Bf, u(0)=uo,

1
y=Cu+g, W)

where u is the state, A is the linear operator including the dynamics of the
system, B is the operator acting on the forcing f to the system, and ug is the
initial condition. Operator C' extracts the measurements from the state and g
adds stochastic measurement noise with given statistical properties which leaves
the actual measured quantity in y. See for example Lewis and Syrmos [8] for
details on linear control theory.

By linearizing the Navier—Stokes equations about a turbulent mean flow pro-
file we can identify operator A as the Orr—Sommerfeld/Squire operator. An
important issue when estimating a system like (1) is the modelling of the ran-
dom forcing f. In previous studies where similar estimation techniques have been
applied to fluid mechanical problems, for example, Bewley and Liu [2], Hogberg
et al. [5], and [6] f has been assumed to be uncorrelated in space. The aim with
this study however, is to construct the covariance R of the random forcing f,
such that it in a statistical sense, represents as much as possible of the physics
neglected in the linearized model and subsequently to quantify what impact it
will have on the estimation process. In Heepffner et al. [4] f is modelled for
transitional flows.

We define the estimator of system (1) as
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where 4 is the estimated state, F'(4) contains the terms left out when linearizing
Navier-Stokes equations (extended Kalman filter), and § is the measurement
of the estimated flow. The volume forcing v = L(y — ¢) drives the estimator
towards the real flow by multiplying the precomputed optimal gains L with
the measurement error between the real and estimated flow. By improving the
stochastic model of f the idea is that the new estimation gains will work more
efficiently than the ones computed with a simpler stochastic model. In [3] details
about the estimation and control problem can be found.

3 Results and discussion

The covariance of the forcing term f = (f1, fa2, f3)T is sampled during a long
DNS calculation to make the second-order statistics converge. In Figure 1 the
real (left) and imaginary part (right) of the covariance of f for wavenumber (k, =
1.5,k, = 6.0) is plotted. The variance of the forcing terms are stronger toward
the walls as expected and the covariance quickly decreases as the wall-normal
distance between points increases. Covariance data for other wavenumber pairs
show the same qualitative behavior.
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Figure 1: Covariance data for wavenumber pair k, = 1.5, k, = 6.0. The nine
squares correspond to the correlation between different components of the forcing
vector. From top to bottom the squares are f1, fo, and f3 on each axis. The
side of each square represents the channel flow width.

The covariance data is used when we compute the optimal estimation gains
L. The simpler stochastic model used in previous studies causes problem when
solving the estimation problem and it is not possible to get proper realization of
estimation gains for all wall measurements that we can actually measure in an
experiment whereas with our physically relevant stochastic model we can retrieve
gains for all measurements. Using all gains improves the estimator performance
markedly.

To evaluate the performance of the estimator we run two DNS in parallel with
roughly uncorrelated initial conditions. One simulation represents the real flow
and the other represents the estimated flow where the volume force is applied
based on the precomputed estimation gains together with wall measurements in
both flows. When the measurements in the two flows converge the volume force
becomes weaker. The time averaged correlation between the real and estimated
flow is shown in Figure 2 for the cases when using both our improved stochastic
model and the older model. The correlation in the figure is defined as

fOL’” fOLz utt dzdz

corr(u, @) = . i, . T
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4 Conclusion

By making use of statistical information about the full nonlinear system and
including that information into the estimation gain computation we get a better
estimator both measured in terms of maximum correlation as well as how far
into the channel the correlation reaches.
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Figure 2: Correlations between real and estimated flow, along the y-axis. The
solid line denotes estimation performed with three measurements and gains based
on turbulence statistics. The dash-dotted line denotes the estimator performance
using only one measurement as considered in Hogberg et al. [5] where a spatially
uncorrelated stochastic model was used.

References

[1]

2]

[7]

8]

Bewley, T. R. 2001 Flow control: new challenges for a new renaissance.
Progress in Aerospace Sciences 37, 21-58.

Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of
linear paths to transition. J. Fluid Mech. 365, 305-349.

Henningson, D. S. 2004 Optimal feedback control applied to boundary layer
flow. Proceedings of the 10th FEuropean Turbulence Conference, Trondheim,
Norway.

Heepfiner, J., Chevalier, M., Bewley, T. R. & Henningson, D. S. 2004 State
estimation in wall-bounded flow systems. J. Fluid Mech. Submitted.

Hogberg, M., Bewley, T. R. & Henningson, D. S. 2003 Linear feedback
control and estimation of transition in plane channel flow. J. Fluid Mech.
481, 149-175.

Hogberg, M., Chevalier, M. & Henningson, D. S. 2003 Linear compen-
sator control of a pointsource induced perturbation in a Falker—Skan—Cooke
boundary layer. Phys. Fluids 15 (8), 2449-2452.

Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15 (5),
1093-1105.

Lewis, F. L. & Syrmos, V. L. 1995 Optimal control. Wiley-Interscience.



