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Decoupled Translational and Rotational Flight Control Designs
of Canted-Rotor Hexacopters

Pengcheng Cao∗, James R. Strawson†, Thomas R. Bewley ‡, and Falko Kuester §

University of California San Diego, La Jolla, CA 92093, USA

The mainstream designs of the multi-rotor UAVs typically arrange their motors and pro-
pellers near or in the same plane, imposing limitations on their control maneuvers due to
under-actuation. The limited control maneuvers cause the multi-rotors to have to pitch and
roll in order to perform lateral translations. These multi-rotor aerial vehicles also lose the ca-
pability of keeping their center-of-mass stationary in the air while rotating by a certain pitch or
roll angle due to the thrusts generated along rotated vertical axis in the body frame. This paper
presents the mathematical model of a hexacopter with rotor-axes tilted to enhance the control
maneuverability of conventional multi-rotor UAVs. Based on the Newton-Euler formalism of
dynamics, we propose the path tracking controller and the tilt-hovering controller for canted-
rotor hexacopters. First, the path tracking controller decouples lateral movements from pitch
and roll rotations of the vehicle. Second, the tilt-hovering controller stabilizes the position of
the center of mass of the vehicle as well as its orientation while it is rotated by a certain pitch or
roll angle. Numerical simulations are performed to corroborate the mathematical model and
control designs, and to compare with the performance of conventional multi-rotor UAVs.

I. Nomenclature

F� = Earth-fixed inertial frame
F� = hexacopter body frame
F<8

= local frame of i-th rotor (motor-propeller group)
O� = hexacopter center of mass (CoM) and origin of F�
O� = origin of F� , coincident with O� before hexacopter takes off
O<8

= center of each rotor and origin of F<8

R�� = rotation matrix from F� to F�
T�� = body rotation angles transformation matrix from F� to F�
R�<8

= rotation matrix from F<8
to F�, where 8 = 1 . . . 6

p�<8
= the positions of O<8

in body frame F�, where 8 = 1 . . . 6
q8 = rotor-axis rotation angle around X-axis of F<8

, where 8 = 1 . . . 6
\8 = rotor-axis rotation angle around Y-axis of F<8

, where 8 = 1 . . . 6
k8 = the 8-th rotor arm’s yaw angle with respect to the body --axis, where 8 = 1 . . . 6
+8 = unit vector indicating orientation of 8-th rotor-axis, where 8 = 1 . . . 6, +8 ∈ R3
Φ = 3-tuple of (q1, q2, q3)
Θ = 3-tuple of (\1, \2, \3)
Ω = the intermediate force vector consisting of the square of each rotor’s rotary speed, Ω ∈ R6
b = [G� , H� , I� ]) , the linear displacement/position vector in F�
I� = the moments of inertia matrix in F�, I� ∈ R3×3
[� = the vehicle’s angular velocity in F�, [� ∈ R3
[� = the vehicle’s angular velocity in F� , [� ∈ R3
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 b = the gain matrix for translational control
 ' = the gain matrix for rotational control

II. Introduction
Multi-rotors are currently one of the most prevalent types of Unmanned Aerial Vehicle (UAV) platforms applied to

various research, commercial, industrial, or hobbyist purposes. They are frequently deployed and utilized for applications
in areas including aerial imaging [1] and manipulation [2]. Among all multi-rotors, although the vehicles with the
configuration of 4 rotors, namely quadcopters, are advantageous due to its simplicity of design and manufacturing, the
6-rotor configuration drones, namely hexacopters, perform better in reliability due to the tolerance to the failure of one
or two motors [3], and generally with greater agility due to more thrust provided by 2 extra motors. Moreover, the
standard quadcopters have to rely on rolling and pitching to generate lateral forces, result in an under-actuated system
which cannot track an arbitrary flight path in its 6 degrees of freedom (DoF). Although some researchers have proposed
canted-rotor quadcopter designs [4][5], their involvement of extra actuators for extra DoFs can increase the battery
consumption and control latency and complexity.

While hexacopters, on the other hand, can be rendered as a fully-actuated system if it is configured with canted
rotor-axes[6]. A standard hexacopter design align all its six propellers in parallel axes, thus maximizing the vertical
thrust force and improving its redundancy and capability of carrying payload. However, this configuration can only
produce an input force parallel to the vertical axis in its body frame. In order to exert lateral forces on the vehicle,
the spinning speed of each propeller is controlled to generate roll and pitch torques to rotate the vehicle around --
and . -axis in the body frame, respectively. The re-oriented vehicle body obtains lateral force components in the
-. -plane of the inertial frame as discussed in [7]. The standard multi-rotor configurations result in the vehicle dynamics
coupling the pitch and role angles with both lateral and vertical force components in the inertial frame. In this case, the
hexacopter’s pitch and roll angles cannot be controlled at will without affecting its translational motions, such that the
lateral translations of the hexacopter are not directly controlled. In order to decouple hexacopter’s lateral translations
from pitching and rolling, some of the canted-rotor hexacopters are installed with extra actuators to realize fully actuated
maneuvers[8], while others obtain full 6-DoF control authorities via specific rotor layout targeting omni-directional
flight[9], or via deviating the rotor axes from the vertical axes by optimized canted and dihedral angles[10]. Moreover,
although the coupled multicopter dynamics is proven to be deferentially flat thus making it capable of tracking smooth
trajectories [11], the hexacopter configuration with the ability to directly control its 6 DoFs is shown in Sec. §IV to
perform better in path tracking than do the standard multicopters.

In this paper, the canted-rotor configuration of fixed-tilt hexacopters [6] is defined and illustrated in Sec. §III.A, and
each rotor axis defines the rotor’s position and orientation in the body frame via a position vector and a rotation matrix,
respectively. Theses rotor-to-body position vectors and rotation matrices are later involved in the vehicle’s equations of
motion in Sec. §III.D.

This paper presents the mathematical model of the canted-rotor hexacopters. The control designs are also formulated
to realize path tracking control and unique tilt-hovering control maneuvers for canted-rotor hexacopter UAVs using
the linear quadratic regulator (LQR) design technique. In Sec. §III, the canted rotor-axes and forces and control input
are defined, and the UAV dynamics are derived using the Newton-Euler formalism [12]. In Sec. §IV, the hexacopter
dynamics is linearized, and the tracking errors of translational and rotational DoFs are defined in order to design linear
controllers using LQR method. In Sec. §V, the simulation results of both path tracking and tilt-hovering controllers are
presented and evaluated. And In Sec. §VI, the conclusions are reached that the simulated control designs live up to the
authors’ expection, and future work for this project is discussed.

III. System Modeling
In order to describe the dynamics of canted-rotor hexacopters, we define the Earth-fixed inertial frame F� :

{O�–X�Y�Z� }, the body frame F� : {O�–X�Y�Z�}, and the local frame of the 8-th rotor F<8
: {O<8

–X<8
Y<8
Z<8
}

with 8 = 1 . . . 6 as Cartesian coordinate systems. The Earth-fixed inertial frame F� denotes the inertial frame of
reference fixed on the earth and its origin and three axes align with those of the body frame respectively before the
vehicle takes off. The body frame F� is fixed on the vehicle body and its origin coincides with the center of mass(CoM)
of the vehicle. The three axes of body frame conform to the NED convention [13], with X-axis pointing out the nose of
the vehicle, Z-axis pointing out the bottom of the vehicle, and Y-axis pointing to the right. The origin of each rotor’s
local frame is located at the center of this motor-propeller group, while its three axes are determined by its tilting angles
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as defined in Sec.§III.A. Once the coordinate systems are defined, the equations of motions of the hexacopter UAV are
derived in Sec.§III.D.

A. Canted Rotor-Axes Definitions
The definition of the 8-th rotor-axis orientation vector with 8 = 1 . . . 6 is schematically demonstrated in Fig. 1.The

body frame F� is centered at point O�, which is the center of mass of the vehicle. And the -�-axis of F� points out
the hexacopter’s nose, the /�-axis points out the bottom, and .� points out the right side. Point O<8

is the center of
mass of the motor-propeller group, which also defines the origin of the 8-th local frame F<8

. Since O<8
is defined to

be on the -. -plane of F�, the length of the 8-the rotor arm !0A< and the 8-th rotor arm’s yaw angle k8 are sufficient
to locate the position of O<8

in F� as in Eq. 2. And the 8-th rotor-axis vector before tilting +8 is defined by a unit
vector of the coordinates [0, 0,−1]) in the body frame. At first, the thrust vector is rotated by an angle q8 around the
first imaginary pivot axis which passes through point O<8

and is parallel to X-axis of the body frame, which gives a
vector + ′

8
= [0, sinq8 ,−cosq8]) . Secondly, the rotor-axis vector is rotated by an angle \1 around the second imaginary

pivot axis passing through point O<8
and parallel to Y-axis of the body frame. The final orientation vector of 8-th

motor-propeller group is + ′′
8
= [−cosq8sin\8 ,−sinq8 ,−cosq8cos\8]) .

The rotated rotor-axis orientation vector also helps define the three axes of the 8-th local frame, with + ′′
8
pointing out

the direction [0, 0,−1]) in the local frame, thus defining the /<8
-axis. The -<8

-axis of 8-th local frame is perpendicular
to both + ′′

8
and the rotation pivot of \8 . Since the \8 pivot is parallel to .�-axis of the body frame, we can calculate the

cross product between + ′′
8
and . -axis unit vector to find the unit vector indicating the --axis of 8-th local frame to be

[cos\8 , 0,−sin\8]) in the body frame. And the . -axis unit vector in 8-th local frame is calculated by taking the cross
product between /<8

- and .<8
-axis unit vector, rendered as [−sinq8sin\8 , cosq8 ,−sinq8cos\8]) in the body frame.

O� -�

/�

.�

+8 + ′
8

Rotation Pivot of q8

Rotation Pivot of \8

+ ′′
8

/<8

-<8

.<8

O<8

q8

\8

Aircraft Center Mass

Rotor Arm

Motor

Propeller

k8

Figure 1 The illustration of canted rotor-axes.

After defining the rotor-axis orientation vectors, each rotor-axis can be characterized by a pair of rotation angles
(q8 , \8). An illustration of a rotor-axis layout with defined orientation vectors +8 in the body frame is presented in Fig. 2.
The rotor-axis notation numbers 1 through 6 are defined along the counter-clockwise sequence when looking from
above (negative Z-direction in the body frame).

In the equations of motion that are introduced in Sec.§III.D, the characterizations of the canted-rotor axes are needed
in matrix form to describe the directions of force and moment generated by each motor-propeller group. Thus, the
rotation matrix R�<8

∈ R3×3 with 8 = 1 . . . 6 is formulated such that the force and moment in the local frame of 8-th
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rotor can be transformed into the body frame:

R�<8
=


cos\8 sinq8 sin\8 cosq8sin\8
0 −cosq8 sinq8

−sin\8 cos\8 sinq8 cosq8 cos\8

 (1)

Due to the fact that each rotor-axis has 2 rotational degrees of freedom based on the definition above, all 6 rotor axes
can introduce a total of 12 degrees of freedom which increases the complexity of the hexacopter layout definition. For
simplification, the symmetry about the X-Z plane of the body frame is adopted such that all the rotor-axis orientations
can be described by two 3-tuples � = (q1, q2, q3) and � = (\1, \2, \3) of the rotation angles around their rotation
pivots:

q1 = −q6, q2 = −q5, q3 = −q4;
\1 = \6, \2 = \5, \3 = \4.

In addition, we also need to locate the positions of 8-th rotor center O<8
with 8 = 1 . . . 6 in the body frame F� for

dynamic modelling. The position of each O<8
in F� is described by a vector p�<8

. For simplicity, we set all rotor
arms to be equally long and all O<8

to be coplanar with the origin of the body frame O�, thus leaving 2 degrees of
freedom in p�<8

. In order to determine p�<8
, we need the rotor arm length !0A< and the 8-th rotor arm’s yaw angle k8

in --. plane of F� as illustrated in Fig. 1. For a layout of normal hexagonal rotor positions, the 8-th rotor arm’s yaw
angle is k8 = c/6 + (8 − 1) · c/3 with respect to the body --axis. And the 8-th rotor’s position vector p�<8

in F� can be
calculated via:

p�<8
=


cosk8 −sink8 0
sink8 cosk8 0
0 0 1

 ·

!0A<

0
0

 (2)

B. Transformation Matrices
The transformation matrix for linear positions, velocities, and accelerations components from the hexacopter’s body

frame to the Earth-fixed inertial frame needs to be derived based on the rotation angles about the North, East, and Down
directions of the inertial frame. Given that the NED convention of the inertial frame corresponds to the real-world
North, East, and Down directions, and the body frame is defined by pointing out the nose, the right side, and the bottom
of the vehicle body, the body-to-inertial transformation matrix R�� can be represented by:

R�� =


2\2k B\Bq2k − 2qBk 2qB\2k + BqBk
Bk2\ BqB\Bk + 2q2k BkB\2q − 2kBq
−B\ 2\Bq 2q2\

 (3)

where "2" and "B" represent "cos()" and "sin()" in Eq. (3), respectively, and \, q, k are the pitch, roll, and yaw body
rotation angles between the body frame’s North, East, Down axes and those of the frame, respectively. Similarly, the
rotation angles, angular rates and accelerations measured in the body frame need to be transformed to the inertial frame
by another transformation matrix:

T�� =


1 sinq tan\ cosq tan\
0 cosq −sinq

0
sinq
cos\

cosq
cos\

 (4)

C. Forces and Control Input
Next, the thrust forces generated by 8-th motor-propeller group, where 8 = 1 . . . 6, is derived. For each rotor, the

propulsive force produced by the spinning of its propeller is approximated by a quadratic equation of the angular speed
of the propeller:

4



Figure 2 An example of canted rotor-axes layout in the body frame

)8 = : 5 · l28 (5)

where : 5 is a coefficient related to the area of the rotor disk and air density, which is regarded as a constant in our
scenario. l8 is the angular speed of the 8-th propeller. In a thrust testing experiment of the selected motor-propeller
group in this paper, the measured thrusts of a rotor fit well with a second-order equation the angular speed where : 5
estimated to be 9.23 × 10−7 # · B2/A032, thus verifying Eq. (5).

Each rotor also generates a moment due to the propeller’s drag, which acts in the opposite direction of the propeller
angular speed. This moment of 8-th motor-propeller group can be approximated by:

"8 = −:< · l8 |l8 | (6)

where :< is the dragmoment coefficient, which calculated via an equation based on the blade element theory incorporating
air density, angle of resultant flow, propeller chord length, total blade area, and propeller drag coefficient[14]. In case
of the selected motor-propeller assembly in this paper, :< is calculated to be 2.73 × 10−8 #< · B2/A032. In order to
determine the signs of l8 with 8 = 1 . . . 6, we use a typical hexacopter rotation pattern, with 1 and -1 indicating the
counter-clockwise and clockwise rotation direction with respect to the /-axis of the 8-th local frame F<8

:

sgn(l8) = (−1)8 , 8 = 1 . . . 6 (7)

In the 8-th local frame F<8
, both vectors of F<8

∈ R3 and M<8
∈ R3 are along /-direction, such that:

F<8
=


0
0

−: 5 l28

 , M<8
=


0
0

(−1)8+1:<l28

 (8)

We notice that both F<8
and M<8

are proportional to the square of the spinning speed 8-th propeller l8 , thus the
intermediate force vector Ω ∈ R6 of the system is defined as:

Ω = [l21 l
2
2 l

2
3 l

2
4 l

2
5 l

2
6]
) (9)

The brushless DC motor dynamics is set to be controlled by a electronic speed controller (ESC) via pulse width
modulation (PWM) duty cycles. The ESC receives PWM signals from 1000 `B to 2000 `B in each 20 <B cycle to
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control the voltage input to the motor, thus controlling the angular speed. In another thrust testing experiment conducted
by authors, the selected rotor group is investigated to collect data point of PWM signals and l2 at various steady states.
We found for the selected motor-propeller assembly, l2 fits well in a second-order polynomial of the PWM signals as:

l2 = 0 · %,"2 + 1 · %," + 2 (10)
where l is in the unit A03/B and %," is in `B, 0, 1, and 2 are polynomial coefficients, while in the 2 case studies in
this paper, the motor and propeller are selected to be Lumenier RX2206-11 2350kv brushless motor and Lumenier
5x4.5” 2-blade propeller, respectively, and their coefficients are found to be 3.5191, −4.2585 × 103, and 8.0159 × 105,
respectively. However, the brushless motors are identified to be first-order filter in its response to PWM signals[15],
such that we assume this motor-propeller group is also a first-order dynamic system when responding to the %,"
inputs which adjusts the input voltage. The corresponding first-order transfer function is modelled as:

� (B) = l(B)
%," (B) =

 

g0B + 1
(11)

Setting  = 1 and estimating g0 = 0.2 B from experimental data, we map the intermediate force vector Ω to the
%," input of each motor by:

Ω(%,"8 , C) =



l21,C01
+ (1 − 4−0.2(C−C01 ) ) · (l21,C − l

2
1,C01
)

l22,C02
+ (1 − 4−0.2(C−C02 ) ) · (l22,C − l

2
2,C02
)

...

l26,C06
+ (1 − 4−0.2(C−C06 ) ) · (l26,C − l

2
6,C06
)


(12)

where C08 is the moment of receiving the latest PWM command in 8-th channel.

D. Newton-Euler Equations of Motion

1. Translational Dynamics
We express the translational dynamics of the canted-rotor hexacopter model in the inertial frame F� , using the

standard Newton-Euler equation:

< ¥b = <

0
0
6

 + R��
6∑
8=1

R�<8
F<8
+ F4GC (13)

where < is the mass of the aircraft, b ∈ R3 is the hexacopter’s linear position [G� , H� , /� ]) in the inertial frame F� ,
6 is the gravitational acceleration, and F4GC ∈ R3 is the external disturbance forces. In our case, F4GC consists of the
in-flight drag force acting in the opposite direction of the linear velocities, and unmodelled aerodynamic and structural
effects as:

F4GC = R��


−��G

· ¤G� | ¤G� |
−��H

· ¤H� | ¤H� |
−��I

· ¤I� | ¤I� |

 + unmodelled effects (14)

where ��G
, ��H

, ��I
are the coefficients to calculate drag forces in the body frame F� as modelled in [16], ¤G�, ¤H�, ¤I�

are the velocity components in F�.

2. Rotational Dynamics
Adding up the inertial term, the torques produced by rotor thrusts and drag moments, and the external disturbances

on the right-hand side, we can formulate the rotational dynamics of the hexacopter in the body frame F� using the
Newton-Euler equation of motion:

IB ¤[� = −[� × I�[� +
6∑
8=1

p�<8
× R�<8

F<8
+
6∑
8=1

R�<8
M<8

+ g4GC (15)
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Figure 3 Hexacopter control scheme architecture.

where I� ∈ R3×3 is the hexacopter inertia matrix in F�, [� ∈ R3 is the the angular rates [?, @, A]) in F�, and g4GC ∈ R3
accounts for the external disturbances torques. The rotational rates and accelerations in F� can be transformed to those
in F� by left multiplying T�� in Eq. (4):

¤[� = T�� · ¤[�, [� = T�� · [� (16)

This transformation equation is applied primarily in the tilt-hovering control as discussed in Sec.§IV.E, but can be
neglected when applying path tracking control since the roll and pitch angles remain close to zero making T�� nearly
identity matrix.

IV. Control Design
In this section, the control strategies of the both path tracking controller and tilt-hovering controller are described.

The overall block diagram of the feedback control system is shown in Fig. 3. The purpose of control designs here is to
decouple the translational and rotational dynamics of the hexacopter, and to ensure that the hexacopter can follow a
desired path of its translational states without performing pitch and roll rotations in the "path tracking" mode, as well as
tracking a controlled purely rotational trajectory of vehicles’ states while keeping its center-of-mass stationary in the
inertial frame when switched to the "tilt-hovering" mode.

A. Model Linearization
In order to rapidly compute the desired control input, the system model is linearized between the output states ¥b, ¤[�

and intermediate force vector Ω which further maps to the %," commands as system input. First, since both F<8
and

M<8
are linearly dependent on l8 , we can formulate the linear terms in Eq. (13) and (15) as:

B�Ω(%,"8 , C) =
1
<

R��
6∑
8=1

R�<8
F<8

BgΩ(%,"8 , C) = I−1� (
6∑
8=1

p�<8
× R�<8

F<8
+
6∑
8=1

R�<8
M<8
)

(17)

where B� ∈ R3×6 and Bg ∈ R3×6 are linear mapping matrices for 
. In this case, we ignore the non-linear disturbances
terms in (13) and (15), combine overall linear and rotational accelartions to vector a ∈ R6, and view gravitational and
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inertial-related angular acceleration terms as generalized internal forces and formulate them as vector q ∈ R6 :

a =

[
¥b [3×1]
¤[� [3×1]

]
,q =


0
0
6

−I−1
�
([� × I�[�) [3×1]


(18)

thus the dynamic equations in (13) and (15) can be linearized as:

a − q = BΩ (19)
where B = [B� Bg]) ∈ R6×6. When B is of full rank, Ω can be calculate by left multiplying B−1 on both sides. Even
if B is rank-deficient, Ω could still be solved using Moore-Penrose pseudo-inverse. Once the desired Ω is found, the
desired PWM command for each motor can be mapped using (10), and the saturation limits of each motor shall be met
as well.

B. Tracking Error Dynamics
The proportional-integral-derivative (PID) feedback control strategy is implemented to track the reference signals

and stabilize the hexacopter states. Since the lateral body force components in
∑6
8=1 R�<8

F<8
can be decoupled from

the pitch and roll angles, we can discard the traditional multicopter control architecture in which the attitude control
serves as lower-level controller. Instead, the attitude controller and position controller can track uncorrelated reference
signals. In this case, tracking errors in all 6 DoFs are needed in order to design the state feedback controllers. The
position, linear velocity and acceleration errors of the hexacopter in the inertial frame F� are:

4G = G − GA4 5 , ¤4G = ¤G − ¤GA4 5 , ¥4G = ¥G − ¥GA4 5
4H = H − HA4 5 , ¤4H = ¤H − ¤HA4 5 , ¥4H = ¥H − ¥HA4 5
4I = I − IA4 5 , ¤4I = ¤I − ¤IA4 5 , ¥4I = ¥I − ¥IA4 5

(20)

thus we can formulate a position error state vector eb and introduce the error input vector ub in terms of the second-order
error as:

eb =
[
4G ¤4G

∫ C
C0
4G3C 4H ¤4H

∫ C
C0
4H3C 4I ¤4I

∫ C
C0
4I3C

])
, ub =

[
¥4G ¥4H ¥4I

])
, (21)

such that the dynamics of position tracking error in F� is formulated in the similar pattern of state-space equation as in
[7]:

¤eb = �b eb + �bub , (22)
where

�b =



0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0



,�b =



0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0



. (23)

In this scenario, the controllability matrix C(�b , �b ) is of full rank, such that (�b , �b ) is controllable. Similarly,
an orientation error state vector can be formulated as e' = [4q , ¤4q ,

∫ C
C0
4q3C, 4\ , ¤4\ ,

∫ C
C0
4\3C, 4k , ¤4k ,

∫ C
C0
4k3C]) ,

the rotational error vector can be given as u' = [ ¥4q , ¥4\ , ¥4k]) , and the dynamics of orientation tracking error is
rendered as:

¤e' = �'e' + �'u', (24)
with �' = �b , �' = �b .
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C. Linear Quadratic Control Design
In order to design a state feedback controller u = − e where  ∈ R3×9 to stabilize the error dynamics and converge

fast, we implement the optimal control design approach of Linear Quadratic Regulator [17]. In order to minimize a cost
function

� =

∫ ∞

0
e)&e + u) 'u3C, (25)

with & and ' selected based on control requirements, the gain matrix  is determined by  = '−1�) %, where % matrix
is the solution to the continuous-time algebraic Ricatti equation

�) % + %� − %�'−1�) % +& = 0. (26)

Applying LQR to our PID control scheme, the obtained gain matrix  includes the gain for each of the proportional,
integral, and derivative tracking errors in each of the 3 DoFs. Take the translational 3 DoFs as an example, the gain
matrix can be written as:

 b =


: ?,G :3,G :8,G 0 0 0 0 0 0
0 0 0 : ?,H :3,H :8,H 0 0 0
0 0 0 0 0 0 : ?,I :3,I :8,I

 (27)

such that the second-order state vector to be controlled is given as:

¥b =


¥GA4 5 − : ?,G4G − :3,G ¤4G − :8,G

∫ C
C0
4G3C

¥HA4 5 − : ?,H4H − :3,H ¤4H − :8,H
∫ C
C0
4H3C

¥IA4 5 − : ?,I4I − :3,I ¤4I − :8,I
∫ C
C0
4I3C


(28)

Similarly, ¤[� can also be controlled using gains obtained from LQR design approach as well, and these control
signals can be used to solve for Ω vector as in Eq. (19), and Ω can be mapped to discretized %," commands to control
6 rotors.

D. Path Tracking Controller
In order to track the 3-dimensional position trajectories, the controllers need to possess enough authority and control

bandwith to generate flat output states tracking closely reference signals in - , . , / and yaw directions in F� [11], while
the pitch and yaw controller only serve to track zero setpoints and resist disturbance torque. For the path tracking case
study in this paper, whose Φ and Θ-tuple are (0.1364, 0,−0.1364) and (0.1627,−0.3268,−0.1627), respectively, and
!0A< = 0.207 <, the & b and 'b matrices are selected to be

& b = 3806( [200, 2000, 10, 200, 2000, 10, 4000, 200, 5]) ), 'b = 2 · �3, (29)

which renders the gain matrix  b for translational 3 degrees of freedom to be

 b =


15.6081 32.1126 2.2361 0 0 0 0 0 0
0 0 0 15.6081 32.1126 2.2361 0 0 0
0 0 0 0 0 0 45.2066 13.7990 1.5811

 . (30)

While the &' and '' matrices for the orientation control are

&' = 3806( [100, 2000, 10, 100, 2000, 10, 1000, 2 × 105, 100]) ), '' = 2 · �3, (31)

which renders the gain matrix  ' for rotational 3 degrees of freedom to be

 ' =


13.9059 32.0595 2.2361 0 0 0 0 0 0
0 0 0 13.9059 32.0595 2.2361 0 0 0
0 0 0 0 0 0 30.7992 401.2302 7.0711

 (32)
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E. Tilt-Hover Controller
The concept of tilt-hover controller is based on the expectation to hover the hexacopter at a certain altitude and rotate

it to a pose with certain pitch or roll angle, while the its center of mass can remain stationary because of the special
configuration of the canted-rotor hexacopter. This objective requires the hexacopter to have special configuration of
rotor-axes canted to adequate amount according to the desired rotation angle, and its controller to have enough control
authority and bandwith in pitch and roll rotational direction. For the tilt-hover control case study in this paper, whose Φ
and Θ-tuple are (0.4115, 0,−0.4115) and (0.3338,−0.6971,−0.3338), respectively, and !0A< = 0.207 <, the & b and
'b matrices are selected to be

& b = 3806( [50, 200, 1, 50, 200, 1, 4000, 200, 5]) ), 'b = 2 · �3, (33)

which renders the translational gain matrix  b :

 b =


6.3253 10.6137 0.7071 0 0 0 0 0 0
0 0 0 6.3253 10.6137 0.7071 0 0 0
0 0 0 0 0 0 45.2066 13.7990 1.5811

 (34)

While the &' and '' matrices for the orientation control in tilt-hovering mode are selected as

&' = 3806( [1 × 105, 2 × 106, 100, 1 × 105, 2 × 106, 100, 1000, 2 × 104, 10]) ), '' = 2 · �3, (35)

which produce the rotational gain matrix  ' for tilt-hovering:

 ' =


253.2700 1000.253 7.0711 0 0 0 0 0 0
0 0 0 253.2700 1000.253 7.0711 0 0 0
0 0 0 0 0 0 30.7992 100.3075 2.2361

 (36)

V. Simulation Results

A. Path Tracking Simulations

Figure 4 Comparison of square path tracking.

The validation of the path tracking controller designed in Sec. §IV.D is conducted with a simulation tracking a
50< × 50< square path and another simulation tracking a circular path of 1.5< radius at 1.5< altitude above ground
(I� = −1.5< in NED coordinates). As shown in Fig. 4, the square path consists of waypoints in a sequence of
[0, 0,−1.5]) , [50, 0,−1.5]) , [50, 50,−1.5]) , [0, 50,−1.5]) , [0, 0,−1.5]) . And the circular path with its center located

10



at [−0.25, 0,−1.5]) is shown in Fig. 5. For the path tracking case study in this paper, the canted-rotor hexacopter
to be simulated with its Φ and Θ-tuple to be (0.1364, 0,−0.1364) and (0.1627,−0.3268,−0.1627), respectively,
and !0A< = 0.207 <. The mass of the canted-rotor hexacopter is < = 0.754:6, and the moments of inertia
I� = 3806( [5.5× 10−3, 5.8× 10−3, 1.09× 10−2]) ):6 ·<2. The standard hexacopter is of the same size, mass, moments
of inertia, and thrust range of the canted-rotor one.

Figure 5 Circular path tracking.

In the square path simulation, the desired path is marked by 4, 000 look-ahead points [18] with a look-ahead distance
of 10< to avoid significant overshoots. For both canted-rotor and standard hexacopters, the maximum velocity is set to
be 5</B and the time scope of both simulations is 80 seconds. And the F4GC is modelled according to Eq. 14 with
each ��8

selected as 0.1. As shown in Fig. 4, the canted-rotor hexacopter outperforms the standard one which has the
identical mass, moments of inertia, and thrust range of the canted-rotor one, and also incorporates carefully tuned PID
control gains. The trajectory of canted-rotor hexcopter has an average cross-track error of 0.266< with respect to the
entire path, while the standard hexacopter has an average cross-track error of 2.238<.

In the circular path simulation, the desired path is marked by 100 look-ahead points with a look-ahead distance of
0.5<. For both canted-rotor and standard hexacopters, the maximum velocity is set to be 1</B and the time scope of
both simulations is 40 seconds. As shown in Fig. 5, the canted-rotor hexacopter also outperforms the standard one with
smoother trajectory and lower cross-track errors. The canted-rotor hexcopter’s average cross-track error is 4.2 × 10−2<
along the path, and the standard one has an average cross-track error of 7.1 × 10−2<. The oscillations on the trajectory
of the standard hexacopter might be caused by the fact that it needs to frequently alternate the pitch and roll angles to
output relatively small linear accelerations along the path.

B. Tilt-Hover Simulations
In order to test the tilt-hovering controller, the case study hexacopter is set to have Φ = (0.4115, 0,−0.4115)

and Θ = (0.3338,−0.6971,−0.3338), < = 0.754:6, I� = 3806( [5.5 × 10−3, 5.8 × 10−3, 1.09 × 10−2]) ):6 · <2, and
!0A< = 0.207 <. The simulation rotates the drone by a certain pitch or roll angle while hovering its center of mass
stationary at [0, 0,−1.5]) in F� . Fig. 6 shows the step response plot of qA4 5 = −0.3A03 with respect to F� , and Fig. 7
illustrates the simulation results of \A4 5 = 0.3A03, both are shown to reach steady state within 5 seconds. Although the
hexacopter successfully hovers at the origin of F� with tilted orientations, the oscillations appear to be considerable. In
Fig.7, the hexacopter first overshoots beyond −0.2A03 then oscillates till stabilizing at 0.3A03. This might be caused by
relatively large proportional gains compared to derivative gains in the pitch direction.

VI. Conclusions
This paper demonstrates the mathematical model of canted-rotor hexacopter in order to enhance the control

maneuverability of conventional multi-rotor systems. The system dynamics is then linearized and the tracking error
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Figure 6 Tilt-hover simulation with qA4 5 = −0.3A03

Figure 7 Tilt-hover simulation with \A4 5 = 0.3A03

dynamics is formulated to implement the linear quadratic control design technique, based on which the path tracking
and tilt-hover controllers are designed and fine-tuned. The path tracking controller decouples the lateral movements
from the pitch and roll rotations of the vehicle, and the tilt-hover controller stabilizes the position of the center of mass
of the vehicle as well as its heading while it is rotated by a certain pitch or roll angle, decoupling pitch and roll from
lateral translations as well. Numerical simulations are then performed to corroborate the mathematical model and
control designs. The path tracking controller of the canted-rotor hexacopter performs better than do the linear controller
of standard hexacopter as presented in Sec. §V.A. And the tilt-hover controller lives up to the expected performance as
shown in Sec. §V.B.

Despite the satisfactory simulation results, the proposed model and controllers will need to be implemented on
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real-world hexacopter UAV systems with canted-rotors to be further validated in the future work. The sim-to-real gap
between simulation and real-world implementation remains challenging to be resolved. The future work will also
involve the path tracking and tilt-hovering experiments using data from onboard sensor and motion capture system, as
well as a series of maneuvers to explore the functionality of canted-rotor hexacopters.
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