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Optimal (X2) linear feedback controllers are computed for the Orr-Sommerfeld/Squire 
equations for an array of wavenumber pairs { kz, kz} and then inverse-transformed to the 
physical domain, as recommended by Bewley & Liu (JFM 365, 1998) and using the general 
method outlined therein. The feedback kernels so computed are effective at minimizing 
both transient energy growth and the relevant input-output transfer function norms in the 
controlled linear system representing small perturbations to a laminar channel flow. 

The important new result of the present paper is the demonstration that this calculation 
yields feedback convolution kernels with localized support in the physical domain. These 
localized kernels eventually decay exponentially with distance from the actuator location, al- 
lowing them to be truncated a finite distance from each actuator while retaining any desired 
degree of accuracy in the feedback computation. The truncated, spatially compact convolu- 
tion kernels may then be used in decentralized control implementations on the distributed 
flow system. Spatial localization of X 2 / X ,  feedback for this type of system was predicted 
theoretically by Bamieh, Paganini, & Dahleh (IEEE TAC, submitted) and D'Andrea & 
Dullerud (IEEE TAC, submitted) in related work. Spatial localization provides the critical 
link which connects controllers designed for the (artificial) spatially periodic model system 
to application on physical systems, which are spatially evolving. Unfortunately, not all for- 
mulations of the present control problem lead to physical-space controllers with localized 
spatial support. 

The feedback convolution kernels so determined are then implemented in direct numerical 
simulations of transitional flows with both random and oblique-wave finite magnitude initial 
flow perturbations, per the cases of particular physical significance enumerated by Reddy et 
al. (JFM 365, 1998). The ability of the linear control feedback to stabilize the nonlinear flow 
system is demonstrated for finite initial flow perturbations with magnitudes well beyond the 
threshold which induces transition to turbulence in the uncontrolled system. 

I. INTRODUCTION 

The process of transition of a laminar flow to turbu- 
lence is only partially understood. This process is of cen- 
tral importance in many practical engineering systems in- 
volving fluid flows; recent reviews on this active research 
topic can be found in Tkefethen et al. (1993), Berlin, 
Wiegel, & Henningson (1999), and Schmid & Henningson 
(2000). Feedback control strategies designed to delay or 
eliminate transition which have been based on this lim- 
ited physical understanding have been largely unfruitful. 
The present work is one in a series of several investiga- 
tions to derive transition control strategies directly from 
first principles, bypassing phenomenological descriptions 
of transition which are still incomplete. Actuation via a 
distribution of wall-normal blowing and suction over the 
walls is chosen as a canonical problem-the derivation of 
control schemes utilizing more practical actuation strate- 
gies should follow from this work as a straightforward ex- 
tension. It is also assumed in the present work that the 

entire state of the system can be measured; the problem 
of state estimation is dual to the control problem consid- 
ered here, and will be addressed in a future paper. It is 
hoped that this research, in addition to providing direct 
information about how laminar to turbulent transition 
may be effectively controlled, will also provide indirect 
evidence about the nature of the physical phenomenon 
of transition itself by identifying the fluid motions tar- 
geted by effective control strategies. 

11. OBJECTIVE: PREVENT TRANSITION 

The objective of the present study is to minimize the 
energy growth (due to the non-normality of the stable 
linear system) from nonzero, finite-amplitude initial con- 
ditions in order to prevent transition to turbulence. The 
minimization of transfer function norms quantifying the 
flow response to both structured and unstructured exter- 
nal disturbances is closely related, as discussed by Be- 
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wley & Liu (1998). In sub-critical flows which are lin- 
early stable, the non-normal nature of the operators gov- 
erning the evolution of the system lead to mechanisms 
for very large transient energy growth (Butler & Farrell 
1992) and, thereby, nonlinear instability due to small ini- 
tial flow perturbations of particularly deleterious struc- 
ture. In this paper, we make an important step towards 
showing how flow perturbations with sufficiently large 
magnitude to induce such nonlinear instability may be 
inhibited by the application of decentralized linear feed- 
back control. 

The mechanisms for energy growth in the uncontrolled 
system are strictly linear, as the nonlinear terms in the 
equation governing the system only redistribute the en- 
ergy between different modes of flow perturbations. This 
observation motivates application of linear control feed- 
back to the finite but small perturbations leading to non- 
linear instability in transitional flows; if the linear con- 
trol feedback stabilizes the system in the correct way, 
transient energy growth will be reduced, and thus both 
large flow perturbations and nonlinear instability will be 
avoided. This observation has also motivated some re- 
searchers to speculate about the possible application of 
linear control feedback to the large-amplitude flow per- 
turbations present in turbulent flows (Farrell & Ioannou 
1993). Further speculation in this regard is deferred to 
Bewley (1999), and will be discussed further in the con- 
text of the present control formulation in a future paper. 

111. MODEL SYSTEM: PERIODIC CHANNEL 

YQ 

w- 

FIG. 1. Geometry of the flow domain. 

Small perturbations {u ,v ,w} to a laminar flow U(y) 
in a channel (Figure 1) are governed by the Orr- 
Sommerfeld/Squire equations. These equations are de- 
rived from the Fourier transform (in the 2 and z di- 
rections) of the Navier-Stokes equation linearized about 
a mean flow profile U(y), and may be written at each 
wavenumber pair {IC,, ICz } as 

(la) A 6 = { -i IC, U A + i k, U" + A ( A/Re) } 6 

b = {-i IC, U'}  6 + {-i IC, U + A/Re} G, (lb) 

where A d2//dy2 - IC: - IC: and hat (^) denotes Fourier 
coefficients. The Reynolds number Re = U,h/u param- 

eterizes the problem, where h is the half-width of the 
channel, U, is the centerline velocity, and U is the kine- 
matic viscosity of the fluid. Without loss of generality, 
we assume the walls are located at y = fl.  

At each wavenumber pair, a state vector may be de- 
fined by discretization of the wall-normal velocity 6 and 
the wall-normal vorticity G on several grid points in the 
y direction. A Chebyshev collocation technique is used 
in the y direction with differentiation matrices obtained 
from the Matlab Differentiation Matrix Suite of Weide- 
man & Reddy (1999). Boundary conditions are handled 
in the construction of the differentiation matrices in such 
a way that spurious eigenvalues are eliminated, as sug- 
gested by Huang and Sloan (1993). Invocation of the 
homogeneous boundary conditions on /dG/dy (resulting 
from the no-slip condition fi = 6 = 0 at the wall and 
the continuity equation ik,4 + a6/ay + ik,w = 0) al- 
lows inversion of the Laplacian on the LHS of ( la )  and 
expression of (1) in matrix form: 

Control is applied via blowing and suction at  the channel 
walls. A lifting technique is used to formulate the con- 
trol equations in state-space form. To accomplish this, 
decompose the flow perturbation such that 

X f  = xi + x h .  

The inhomogeneous part xi is taken to satisfy the 
nonzero boundary conditions and numerically convenient 
equations on the interior of the domain; in the present 
case, we choose the steady-state equation Nxi  = 0. As- 
sembling the controls (Le., the values of the 6 at  the up- 
per and lower walls) into a control vector @, this system 
may easily be solved for arbitrary 4 and written as 

(3) 

xi = 24. (4) 

The 'part X h  therefore satisfies homogeneous boundary 
conditions, and the interior equation governing xh may 
be found by substitution of (3) into (2). Noting (4), the 
result may be written 

N N Z  - -+ -v 
x A X B u  

We have arrived at  the desired state-space form. Note 
that the control U is the time derivative of the normal 
velocity at  the upper and lower walls, and the state x 
is the control @ appended the homogeneous vector Xh. 
Note also that, for the convenient lifting we have defined 
and used here, we may take N Z  = 0 in the above expres- 
sion, since Nxi = N Z @  = 0. 
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The energy in the flow perturbation is measured as 
the integral of the square of the velocities over the flow 
domain. Rewriting the energy measure in v - w form 
gives 

* P  - 4 F  

(u2 + U' + w2)dR = (U' - AV' + w')dR, 

which, incorporating Parseval's theorem, is easily written 
in matrix form as E = xi Q xf for the contribution from 
each wavenumber pair. Noting the decomposition (3), 
the energy of the flow perturbation at each wavenumber 
pair may be written in terms of the state variable x as 

E = x* (Z*Q Q Z*QZ) QZ X!iX*QX. 

IV. OPTIMAL CONTROL STRATEGY 

We now seek the control U which, with limited con- 
trol effort, minimizes the flow perturbation energy on 
t 6 [O ,oo ) .  This is a standard optimal control problem. 
Defining the objective function 

J = Lmix* Q x + c2 u*u) dt ,  

the control U which minimizes J is given by 

1 u = K x ,  where K = - - B * X  

and where X is the positive definite solution to  the Ric- 
cati equation 

e 2  

1 X A  + A*X - X B F B * X  + Q = 0. 

Note that C2 is used as an adjustable parameter which 
scales the penalty on the control effort in the cost func- 
tion, and that this penalty term is a function of in 
the present formulation. Due to  the continuity of the ve- 
locity field, excursions of / + I 2  are penalized naturally in 
the x* &x term of the cost function, and no additional 
penalty on 1 + 1 2  was found to be necessary in the present 
work. 

The optimal control problem described above has been 
derived for each wave number pair {k,, k,} indepen- 
dently. By assembling the corresponding physical space 
controller via an inverse Fourier transform, we may de- 
rive feedback convolution kernels that can be used to 
compute the control input in the physical domain. The 
convolution integral by which the control is computed in 
physical space is given by 

k,,*1(~ - %,jj, z - Z) w(Z ,  jj, Z) dZ djj dZ ) 
where k,,rtl and kw,fl are the result of the inverse Fourier 
transform of the feedback gains on v and w respectively. 

V. RESULTS 

Linear analysis 

The linearized system may be analyzed at each 
wavenumber pair separately due to  the complete decou- 
pling of the problem at distinct wavenumber pairs when 
the control problem is formulated correctly. Upon per- 
forming such an analysis, it is seen that the feedback 
kernels computed via the present strategy significantly 
reduce both transient energy growth and the relevant 
input-output transfer function norms in the controlled 
linear system representing small perturbations to a lam- 
inar channel flow, as documented in detail by Bewley & 
Liu (1998). 

Spatial localization 

As shown in Figures 2 and 3, the feedback convolu- 
tion kernels for v and w computed using the technique 
described above are found to  be spatially localized with 
exponential decay far from the actuator. This exponen- 
tial decay implies that they can be truncated with a pre- 
scribed degree of accuracy at a finite distance from each 
actuator, arriving at spatially compact convolution ker- 
nels that can be computed and applied in a decentralized 
fashion on arbitrarily large arrays of sensors and actua- 
tors. Note that, for the kernels shown in Figures 2 and 3, 
the kernels were computed at  Re = 4196 for a 47r x 2 x 27r 
box at a resolution of 170 x 90 x 170 modes with C = 1, 
and a mean flow profile U(y) = 1 - y2 was used. 

Note that the convolution kernels for both U and w an- 
gle away from the wall in the upstream direction. Cou- 
pled with the mean flow profile indicated in Figure 1, 
this accounts for the convective delay required to  antic- 
ipate flow perturbations on the interior of the domain 
with actuation on the wall somewhere downstream. 

The convolution kernels shown in Figures 2 and 3 are 
independent of the box size in which they were com- 
puted, so long as the computational box is sufficiently 
large. Thus, for the purpose of implementation, we may 
effectively assume that they were derived in an infinite- 
sized box, thereby relaxing the nonphysical assumption 
of spatial periodicity used in their calculation. Further, 
the feedback gains in the present work are well behaved 
at high spatial wavenumbers; the physical-space convo- 
lution kernels are well resolved on computational grids 
which are appropriate for the simulation of the physical 
system of interest. 
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Effectiveness for transition 

Direct Numerical Simulations of the nonlinear Navier- 
Stokes equation (using the DNS code benchmarked by 
Bewley, Moin, & Temam 2000) were first used to confirm 
the results from linear analysis, showing good agreement 
in terms of maximum transient energy growth for small 
initial perturbations. For oblique wave and initially ran- 
dom flow perturbations with energy densities of 225 x and 
15x (respectively) the transition thresholds reported by 
Reddy e t  al. (1998), the controller prevents transition 
and brings the flow back to the laminar state, as shown 
in Figure 4. The simulations reported here have been 
performed at  Re = 2000. The initial energy density for 
the oblique waves is 5.275. plus 1% random noise. 
For the random disturbance, the initial energy density 
is 1.025 - The box size is 2~ x 2 x 2n with suffi- 
cient resolution - the same as that used to compute the 
transition thresholds by Reddy e t  al. (1998) - to resolve 
the flows under consideration. In the uncontrolled simu- 
lations, both initial conditions lead to transition to tur- 
bulence, whereas for the controlled system the flows are 
returned to the laminar state. For the controlled cases 
shown in Figure 4, initial conditions with even higher 
energy fail to relaminarize, while initial conditions with 
lower energy relaminarize earlier. 

VI. DISCUSSION 

Physical systems lack spatial periodicity 

Transition phenomena in physical systems, such as 
boundary layers and plane channels, are not spatially 
periodic, though it is often useful to characterize the re- 
sponse of such systems with Fourier transforms. Appli- 
cation of Fourier-space controllers which assume spatial 
periodicity in their formulation to physical systems which 
are not spatially periodic, as proposed by Cortelezzi & 
Speyer (1998), will be corrupted by Gibbs phenomenon, 
the well-known effect in which a Fourier transform is 
spoiled across all frequencies when the data one is trans- 
forming is not itself spatially periodic. 

In order to correct for this phenomenon in formula- 
tions which are based on Fourier-space computations of 
the control, windowing functions such as the Hanning 
window are appropriate. Windowing functions filter the 
measured signals such that they are driven to zero near 
the edges of the physical domain under consideration, 
thus artificially imposing spatial periodicity on the non- 
spatially periodic measurement vector. In essence, such 
windowing functions impose a degree of spatial compact- 
ness (of a width equal to some fraction of the full width of 
the spatial domain under consideration) on control feed- 
back rules which are not themselves naturally spatially 
localized, significantly corrupting the control feedback 
computation. 

I 

Decentralized control is beneficial for large systems 

Though the windowing approach suggested above 
might alleviate the corruption due to Gibbs phenomenon 
in the application of Fourier-space feedback control to 
non-spatially periodic systems, application of such con- 
trol strategies (via on-line FFTs of the complete measure- 
ment vector and inverse FFTs of the complete control 
vector) still require centralized controllers. For massive 
arrays of actuators in distributed spatially invariant sys- 
tems, it is highly desirable to localize the computation 
of the feedback to functions of nearby state variables 
only, rather than requiring centralized coordination of 
the entire system, which becomes unmanageable both in 
terms of computational and communication requirements 
as the array size grows. Physical-space convolution ker- 
nels with compact spatial support lend themselves nat- 
urally to decentralized control. Fourier-space feedback 
computations, which require on-line FFTs and iFFTs, 
do not. 

VII. CONCLUSIONS 

Spatially localized convolution kernels for the feedback 
control of transitional flows have been determined. These 
kernels have been found via inverse Fourier transform of 
a set of optimal feedback controllers determined for the 
Orr-Sommerfeld/Squire system on an array of wavenum- 
ber pairs {kz, kz}. The kernels have been shown to ef- 
fectively prevent transition in the Direct Numerical Sim- 
ulation of the nonlinear Navier-Stokes equation for ini- 
tial conditions which rapidly lead to transition to tur- 
bulence when feedback control is not applied. These lo- 
calized kernels eventually decay exponentially with dis- 
tance from the actuator location, allowing them to be 
truncated a finite distance from each actuator while re- 
taining any desired degree of accuracy in the feedback 
computation. The truncated, spatially compact convo- 
lution kernels may then be used in decentralized control 
implementations on the distributed flow system. 

The importance of the spatial localization of the 
present result, and the subsequent truncation to spatially 
compact kernels with finite support which this localiza- 
tion facilitates, can not be over-emphasized. This is the 
critical link which connects feedback controllers deter- 
mined for artificial, spatially periodic model systems to 
implementable, spatially compact feedback kernels appli- 
cable for the decentralized control of physical, spatially 
evolving distributed flow systems. 
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FIG. 2. Physical-space feedback convolution kernel for v. Contours in an xy plane at z = 0 (top) and a zy plane at x = 0 
(bottom) are shown on the left (positive contours solid, negati\le contours dashed), and two isosurfaces of the convolution kernel 
are shown on the right (one positive and one negative). 
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FIG. 3. Physical-space feedback convolution kernel for w .  Contours of an zy plane at z = -0.3 (top) and a zy plane at 2 = 0 
(bottom) are shown on the left, and two isosurfaces of the convolution kernel are shown on the right. 

FIG. 4. Control of oblique waves (left) and an initially random flow perturbation (right). The magnitude of the initial flow 
perturbations in these simulations significantly exceed the thresholds reported by Reddy et al. (1998) that lead to transition 
to turbulence in an uncontrolled flow (by 225x for the oblique waves and by 15x for the random initial perturbation). Solid 
lines indicate the energy evolution in the controlled case, dashed lines indicate the energy evolution in the uncontrolled case. 
Both of the uncontrolled simulations result in transition to turbulence whereas both of the controlled systems relaminarize. 
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