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Optimal (H2) linear feedback controllers are computed for the Orr-Sommerfeld/Squire
equations for an array of wavenumber pairs {k;,k.} and then inverse-transformed to the
physical domain, as recommended by Bewley & Liu (JFM 365, 1998) and using the general
method outlined therein. The feedback kernels so computed are effective at minimizing
both transient energy growth and the relevant input-output transfer function norms in the
controlled linear system representing small perturbations to a laminar channel flow.

The important new result of the present paper is the demonstration that this calculation
yields feedback convolution kernels with localized support in the physical domain. These
localized kernels eventually decay exponentially with distance from the actuator location, al-
lowing them to be truncated a finite distance from each actuator while retaining any desired
degree of accuracy in the feedback computation. The truncated, spatially compact convolu-
tion kernels may then be used in decentralized control implementations on the distributed
flow system. Spatial localization of H2/H feedback for this type of system was predicted
theoretically by Bamieh, Paganini, & Dahleh (IEEE TAC, submitted) and D’Andrea &
Dullerud (IEEE TAC, submitted) in related work. Spatial localization provides the critical
link which connects controllers designed for the (artificial) spatially periodic model system
to application on physical systems, which are spatially evolving. Unfortunately, not all for-
mulations of the present control problem lead to physical-space controllers with localized
spatial support.

The feedback convolution kernels so determined are then implemented in direct numerical
simulations of transitional lows with both random and oblique-wave finite magnitude initial
- flow perturbations, per the cases of particular physical significance enumerated by Reddy et
al. (JFM 365, 1998). The ability of the linear control feedback to stabilize the nonlinear flow
system is demonstrated for finite initial flow perturbations with magnitudes well beyond the

threshold which induces transition to turbulence in the uncontrolled system.

I. INTRODUCTION

The process of transition of a laminar flow to turbu-
lence is only partially understood. This process is of cen-
tral importance in many practical engineering systems in-
volving fluid flows; recent reviews on this active research
topic can be found in Trefethen et al. (1993), Berlin,
Wiegel, & Henningson (1999), and Schmid & Henningson
(2000). Feedback control strategies designed to delay or
eliminate transition which have been based on this lim-
ited physical understanding have been largely unfruitful.
The present work is one in a series of several investiga-
tions to derive transition control strategies directly from
first principles, bypassing phenomenological descriptions
of transition which are still incomplete. Actuation via a
distribution of wall-normal blowing and suction over the
walls is chosen as a canonical problem—the derivation of
control schemes utilizing more practical actuation strate-
gies should follow from this work as a straightforward ex-
tension. It is also assumed in the present work that the
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entire state of the system can be measured; the problem
of state estimation is dual to the control problem consid-
ered here, and will be addressed in a future paper. It is
hoped that this research, in addition to providing direct
information about how laminar to turbulent transition
may be effectively controlled, will also provide indirect
evidence about the nature of the physical phenomenon
of transition itself by identifying the fluid motions tar-
geted by effective control strategies.

II. OBJECTIVE: PREVENT TRANSITION

The objective of the present study is to minimize the
energy growth (due to the non-normality of the stable
linear system) from nonzero, finite-amplitude initial con-
ditions in order to prevent transition to turbulence. The
minimization of transfer function norms quantifying the
flow response to both structured and unstructured exter-
nal disturbances is closely related, as discussed by Be-
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wley & Liu (1998). In sub-critical flows which are lin-
early stable, the non-normal nature of the operators gov-
erning the evolution of the system lead to mechanisms
for very large transient energy growth (Butler & Farrell
1992) and, thereby, nonlinear instability due to small ini-
tial flow perturbations of particularly deleterious struc-
ture. In this paper, we make an important step towards
showing how flow perturbations with sufficiently large
magnitude to induce such nonlinear instability may be
inhibited by the application of decentralized linear feed-
back control.

The mechanisms for energy growth in the uncontrolled
system are strictly linear, as the nonlinear terms in the
equation governing the system only redistribute the en-
ergy between different modes of flow perturbations. This
observation motivates application of linear control feed-
back to the finite but small perturbations leading to non-
linear instability in transitional flows; if the linear con-
trol feedback stabilizes the system in the correct way,
transient energy growth will be reduced, and thus both
large flow perturbations and nonlinear instability will be
avoided. This observation has also motivated some re-
searchers to speculate about the possible application of
linear control feedback to the large-amplitude flow per-
turbations present in turbulent flows (Farrell & Ioannou
1993). Further speculation in this regard is deferred to
Bewley (1999), and will be discussed further in the con-
text of the present control formulation in a future paper.

III. MODEL SYSTEM: PERIODIC CHANNEL

i

FIG. 1. Geometry of the flow domain.

Small perturbations {u,v,w} to a laminar flow U(y)
in a channel (Figure 1) are governed by the Orr-
Sommerfeld/Squire equations. These equations are de-
rived from the Fourier transform (in the z and z di-
rections) of the Navier-Stokes equation linearized about
a mean flow profile U(y), and may be written at each
wavenumber pair {k;,k.} as :

Ab={-ik,UA+ik,U" + A(A/Re)} b (1a)
& ={-ik. U} 0+ {—iko U+ A/Re} &, (1b)

where A = §2/8y? — k2 — k2 and hat (") denotes Fourier
" coefficients. The Reynolds number Re = U h/v param-

eterizes the problem, where h is the half-width of the
channel, U, is the centerline velocity, and v is the kine-
matic viscosity of the fluid. Without loss of generality,
we assume the walls are located at y = £1.

At each wavenumber pair, a state vector may be de-
fined by discretization of the wall-normal velocity 4 and
the wall-normal vorticity & on several grid points in the
y direction. A Chebyshev collocation technique is used
in the y direction with differentiation matrices obtained
from the Matlab Differentiation Matrix Suite of Weide-
man & Reddy (1999). Boundary conditions are handled
in the construction of the differentiation matrices in such
a way that spurious eigenvalues are eliminated, as sug-
gested by Huang and Sloan (1993). Invocation of the
homogeneous boundary conditions on 99/dy (resulting
from the no-slip condition 4 = w = 0 at the wall and
the continuity equation ik,4 + 80/8y + ik, = 0) al-
lows inversion of the Laplacian on the LHS of (1a) and
expression of (1) in matrix form:

RO
—_
Xf N Xs

Control is applied via blowing and suction at the channel
walls. A lifting technique is used to formulate the con-
trol equations in state-space form. To accomplish this,
decompose the flow perturbation such that

Xf =X; +Xp. . 3)

The inhomogeneous part x; is taken to satisfy the
nonzero boundary conditions and numerically convenient
equations on the interior of the domain; in the present
case, we choose the steady-state equation Nx; = 0. As-
sembling the controls (i.e., the values of the ¢ at the up-
per and lower walls) into a control vector ¢, this system
may easily be solved for arbitrary ¢ and written as

X; = Z¢ (4)

The ‘part x;, therefore satisfies homogeneous boundary
conditions, and the interior equation governing x; may
be found by substitution of (3) into (2). Noting (4), the
result may be written

x A X B u

We have arrived at the desired state-space form. Note
that the control u is the time derivative of the normal
velocity at the upper and lower walls, and the state x
is the control ¢ appended the homogeneous vector xj.
Note also that, for the convenient lifting we have defined
and used here, we may take NZ = 0 in the above expres-
sion, since Nx; = NZ¢ = 0.
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The energy in the flow perturbation is measured as
the integral of the square of the velocities over the flow
domain. Rewriting the energy measure in v — w form
gives

1 2, .2 2 1 2 2 2
E=—/(u o tw )dQ:—/(v - Av? +02)dQ,

2/ 2/
which, incorporating Parseval’s theorem, is easily written
in matrix form as E = x} @ x; for the contribution from
each wavenumber pair. Noting the decomposition (3),
the energy of the flow perturbation at each wavenumber
pair may be written in terms of the state variable x as

E =x" (Z?Q Z?5Z> x2x*0x.

IV. OPTIMAL CONTROL STRATEGY

We now seek the control u which, with limited con-
trol effort, minimizes the flow perturbation energy on
t € [0,00). This is a standard optimal control problem.
Defining the objective function

o]
J=/ (x* Qx + £ u*u)dt,
0

the control u which minimizes J is given by

1
where K = ) B*X
and where X is the positive definite solution to the Ric-
cati equation - :

u = Kx,

XA+A*X—XB—}2—B*X+ Q=0

Note that #2 is used as an adjustable parameter which
scales the penalty on the control effort in the cost func-
tion, and that this penalty term is a function of |@|? in
the present formulation. Due to the continuity of the ve-
locity field, excursions ‘of |@|? are penalized naturally in
the x* @ x term of the cost function, and no additional
penalty on |¢|? was found to be necessary in the present
work.

The optimal control problem described above has been
derived for each wave number pair {k;,k.} indepen-
dently. By assembling the corresponding physical space
controller via an inverse Fourier transform, we may de-
rive feedback convolution kernels that can be used to
compute the control input in the physical domain. The
convolution integral by which the control is computed in
physical space is given by

¢:§:1(zy Z) = -/Q(kv,:lzl(z - i:,?j,z - 2) U(jvg’ 2)+

kw,:l:l(m - i:?jvz - 2) w(:iyga 2)) dz dgdi

where k, +1 and k,, +, are the result of the inverse Fourier
transform of the feedback gains on v and w respectively.

V. RESULTS

Linear analysis

The linearized system may be analyzed at each
wavenumber pair separately due to the complete decou-
pling of the problem at distinct wavenumber pairs when
the control problem is formulated correctly. Upon per-
forming such an analysis, it is seen that the feedback
kernels computed via the present strategy significantly
reduce both transient energy growth and the relevant
input-output transfer function norms in the controlled
linear system representing small perturbations to a lam-
inar channel flow, as documented in detail by Bewley &
Liu (1998).

Spatial localization

As shown in Figures 2 and 3, the feedback convolu-
tion kernels for v and w computed using the technique
described above are found to be spatially localized with
exponential decay far from the actuator. This exponen-
tial decay implies that they can be truncated with a pre-
scribed degree of accuracy at a finite distance from each
actuator, arriving at spatially compact convolution ker-
nels that can be computed and applied in a decentralized
fashion on arbitrarily large arrays of sensors and actua-

- tors. Note that, for the kernels shown in Figures 2 and 3,

the kernels were computed at Re = 4196 for a 4™ x 2 x 27
box at a resolution of 170 x 90 x 170 modes with £ =1,
and a mean flow profile U(y) = 1 — y? was used.

Note that the convolution kernels for both v and w an-
gle away from the wall in the upstream direction. Cou-
pled with the mean flow profile indicated in Figure 1,
this accounts for the convective delay required to antic-
ipate flow perturbations on the interior of the domain
with actuation on the wall somewhere downstream.

The convolution kernels shown in Figures 2 and 3 are
independent of the box size in which they were com-
puted, so long as the computational box is sufficiently
large. Thus, for the purpose of implementation, we may
effectively assume that they were derived in an infinite-
sized box, thereby relaxing the nonphysical assumption
of spatial periodicity used in their calculation. Further,
the feedback gains in the present work are well behaved
at high spatial wavenumbers; the physical-space convo-
lution kernels are well resolved on computational grids
which are appropriate for the simulation of the physical
system of interest.
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Effectiveness for transition

Direct Numerical Simulations of the nonlinear Navier—
Stokes equation (using the DNS code benchmarked by
Bewley, Moin, & Temam 2000) were first used to confirm
the results from linear analysis, showing good agreement
in terms of maximum transient energy growth for small
initial perturbations. For oblique wave and initially ran-
dom flow perturbations with energy densities of 225x and
15x (respectively) the transition thresholds reported by
Reddy et al. (1998), the controller prevents transition
and brings the flow back to the laminar state, as shown
in Figure 4. The simulations reported here have been
performed at Re = 2000. The initial energy density for
the oblique waves is 5.275 - 10~* plus 1% random noise.
For the random disturbance, the initial energy density
is 1.025 - 1072, The box size is 27 x 2 x 27 with suffi-
cient resolution - the same as that used to compute the
transition thresholds by Reddy et al. (1998) - to resolve
the flows under consideration. In the uncontrolled simu-
lations, both initial conditions lead to transition to tur-
bulence, whereas for the controlled system the flows are
returned to the laminar state. For the controlled cases
shown in Figure 4, initial conditions with even higher
energy fail to relaminarize, while initial conditions with
lower energy relaminarize earlier.

VI. DISCUSSION
Physical systems lack spatial periodicity

Transition phenomena in physical systems, such as
boundary layers and plane channels, are not spatially
periodic, though it is often useful to characterize the re-
sponse of such systems with Fourier transforms. Appli-
cation of Fourier-space controllers which assume spatial
periodicity in their formulation to physical systems which
are not spatially periodic, as proposed by Cortelezzi &
Speyer (1998), will be corrupted by Gibbs phenomenon,
the well-known effect in which a Fourier transform is
spoiled across all frequencies when the data one is trans-
forming is not itself spatially periodic.

In order to correct for this phenomenon in formula-
tions which are based on Fourier-space computations of
the control, windowing functions such as the Hanning
window are appropriate. Windowing functions filter the
measured signals such that they are driven to zero near
the edges of the physical domain under consideration,
thus artificially imposing spatial periodicity on the non-
spatially periodic measurement vector. In essence, such
windowing functions impose a degree of spatial compact-
ness (of a width equal to some fraction of the full width of
the spatial domain under consideration) on control feed-
back rules which are not themselves naturally spatially
localized, significantly corrupting the control feedback
computation.

Decentralized control is beneficial for large systems

Though the windowing approach suggested above
might alleviate the corruption due to Gibbs phenomenon
in the application of Fourier-space feedback control to
non-spatially periodic systems, application of such con-
trol strategies (via on-line FFTs of the complete measure-
ment vector and inverse FFTs of the complete control
vector) still require centralized controllers. For massive
arrays of actuators in distributed spatially invariant sys-
tems, it is highly desirable to localize the computation
of the feedback to functions of nearby state variables
only, rather than requiring centralized coordination of
the entire system, which becomes unmanageable both in
terms of computational and communication requirements
as the array size grows. Physical-space convolution ker-
nels with compact spatial support lend themselves nat-
urally to decentralized control. Fourier-space feedback
computations, which require on-line FFTs and iFFTs,
do not.

VII. CONCLUSIONS

Spatially localized convolution kernels for the feedback
control of transitional flows have been determined. These
kernels have been found via inverse Fourier transform of
a set of optimal feedback controllers determined for the
Orr-Sommerfeld/Squire system on an array of wavenum-
ber pairs {k;, k;}. The kernels have been shown to ef-
fectively prevent transition in the Direct Numerical Sim-
ulation of the nonlinear Navier-Stokes equation for ini-
tial conditions which rapidly lead to transition to tur-
bulence when feedback control is not applied. These lo-
calized kernels eventually decay exponentially with dis-
tance from the actuator location, allowing them to be
truncated a finite distance from each actuator while re-
taining any desired degree of accuracy in the feedback
computation. The truncated, spatially compact convo-
lution kernels may then be used in decentralized control
implementations on the distributed flow system.

The importance of the spatial localization of the
present result, and the subsequent truncation to spatially
compact kernels with finite support which this localiza-
tion facilitates, can not be over-emphasized. This is the
critical link which connects feedback controllers deter-
mined for artificial, spatially periodic model systems to
implementable, spatially compact feedback kernels appli-
cable for the decentralized control of physical, spatially
evolving distributed flow systems.
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FIG. 2. Physical-space feedback convolution kernel for v. Contours in an zy plane at 2 = 0 (top) and a 2y plane at z = 0
(bottom) are shown on the left (positive contours solid, negative contours dashed), and two isosurfaces of the convolution kernel

are shown on the right (one positive and one negative).
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FIG. 3. Physical-space feedback convolution kernel for w. Contours of an zy plane at z = —~0.3 (top) and a 2y plane at z = 0
{(bottom) are shown on the left, and two isosurfaces of the convolution kernel are shown on the right.
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FIG. 4. Control of oblique waves (left) and an initially random flow perturbation (right). The magnitude of the initial flow
perturbations in these simulations significantly exceed the thresholds reported by Reddy et al. (1998) that lead to transition
to turbulence in an uncontrolled flow (by 225x for the oblique waves and by 15x for the random initial perturbation). Solid
lines indicate the energy evolution in the controlled case, dashed lines indicate the energy evolution in the uncontrolled case.
Both of the uncontrolled simulations result in transition to turbulence whereas both of the controlled systems relaminarize.
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