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ABSTRACT

Using two different approaches to optimal
control in channel flow an effort is made to try
to identify differences and similarities. One ap-
proach is to use the Navier—Stokes equations
and apply a gradient based optimization tech-
nique to find the optimal control. The other
approach is to make use of the linearized equa-
tions known as the Orr—Sommerfeld—Squire
equations to compute the optimal control.
Limiting ourselves to look only at oblique wave
perturbations we compare the resulting energy
evolution from application of the respective
control strategies. Qualitatively the perfor-
mance of the two approaches are similar, at
least when they work under comparable con-
ditions. The non-linear control can be more
aggressive initially since there is no direct lim-
itation on the time derivative of the control
even though the discretization implicitly en-
forces some degree of penalty. Adjusting the
parameters properly we can show that the con-
trol from the two approaches are very similar.
Also we try to quantify the performance of the
estimator based control, or compensation, us-
ing only measurements on the wall, compared

to the full-state information control. The per-
formance of the compensator is found to be
good for small perturbations, especially if a
good initial guess can be provided.

INTRODUCTION

The goal of this work is to develop meth-
ods to prevent transition to turbulence. We
determine how to do control in the optimal
way given the method of controlling the flow,
and an objective function describing the fea-
tures of the flow to be controlled. The method
of actuation chosen here is blowing and suc-
tion at the walls, since it is a fairly simple way
of acting on the flow, and also because it is
a technique that is widely used. Blowing and
suction has successfully been used for similar
problems, namely control of turbulence, where
complete relaminarization was obtained in Be-
wley et al.(1999). The blowing and suction
is applied to flow in a channel, where we can
find many of the interesting bypass transition
scenarios. We use two different approaches to
optimal control, one based on the non-linear
Navier Stokes equations and one on the 3D
Orr—Sommerfeld—Squire equations.



In the non-linear case, we use the adjoint
equation to compute objective function gra-
dients. It is an efficient method in the sense
that only two computations are required for
each optimization iteration independent of the
number of degrees of freedom of the control.
First the state equation ( Navier—Stokes ) is
solved and then this solution is used as input
to the adjoint equation that is solved next and
gives the gradient of the objective function.
Optimization is performed with a limited mem-
ory quasi Newton method described in Byrd et
al.(1994). The resulting control will be optimal
for the specific perturbation and time domain
studied.

In the linear case, optimal (Hs) controllers
and estimators are developed for the 3D Orr-
Sommerfeld-Squire equations at a large array
of wavenumber pairs {k;,k,}, using a tech-
nique closely related to that described by Be-
wley & Liu (1998) , and transformed to the
physical domain. The feedback gains for both
the control and estimation problems are shown
to be represented by well-resolved, spatially-
localized convolution kernels, see Hogberg and
Bewley (2001). The resulting control kernels
represent the optimal feedback strategy for an
arbitrary perturbation to minimize the energy
over the infinite time domain. The physical-
space controller, estimator, and compensator
which combines them are then applied in (non-
linear) direct numerical simulations of flow in
a channel with oblique wave perturbations.
The different transition scenarios in channel
flow have been bench-marked by Reddy et al.
(1998).

CONTROL PROBLEM

An adjoint direct numerical simulation
(DNS) code has been developed based on a
existing spectral channel flow code by Lund-
bladh et al. (1992) to perform the non-linear as
well as the linear control computations. Tem-
poral DNS are performed. Fourier modes are
used for the span-wise and stream-wise direc-
tions and Chebyshev collocation in the wall
normal direction. The modification necessary
to solve the adjoint equations involves a change
in what corresponds to the non-linear terms
for the Navier-Stokes solver to forcing terms
depending on the choice of objective function.
Solution of the adjoint equation requires full
information about the solution of the Navier
Stokes equation in space and time. Based on
previous findings we have used a discretization
of the continuous equations instead of an ex-

act discrete adjoint, see Hogberg & Berggren
(2001). For simulation with an estimator or
compensator a similar code bench-marked by
Bewley et al. (1999) with finite differences in
the wall normal direction is used.
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Figure 1: Geometry for control of channel flow.

The flow geometry is the one in figure 1 with
blowing and suction applied at both walls of
the channel and periodic boundary conditions
on the stream-wise and span-wise directions.
For the non-linear optimization the objective
function J,; is,
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where the control ¢ is applied from time ¢ =
Tco to Terp on the boundary T' and the en-
ergy of the deviation from the laminar profile
Ulam 18 measured from time ¢t = Tgo to Tgr
in the computational domain 2. The spatial
resolution of the control is the same as for the
simulation and temporally the control is lin-
early interpolated in time. In the linear case
the objective function J; is,
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and the controllers are computed by solving an
optimal control problem for each wavenumber
pair separately. In short a Riccati equation
containing the Orr-Sommerfeld-Squire matri-
ces, the energy measure matrix and the forcing
matrix is solved to find the optimal controller.
For further details see Hogberg and Bewley
(2001). The estimator used is an extended
Kalman filter and is computed in a way similar
to that of the linear controller. The objective
function in this case measures the energy of



the state error and of the forcing used. The
penalty parameter for the forcing is denoted
a. A low value of alpha should be used when
the measurements are expected to be free from
noise and a high value for noisy measurement
data. Notice that the linear controllers and es-
timators are computed off-line once and for all
and then applied online in the simulations.

SIMULATIONS, RESULTS AND DISCUS-
SION

All simulations are performed at Re =
U.h/v = 2000 where the Reynolds number
is based on the half channel height A and
the centerline velocity U.. The resolution is
8% 65x8 Fourier x Chebyshev x Fourier modes
in x X y x z respectively. For the code with
finite differences in the wall normal direction
81 points are used. In all simulations the same
particular oblique wave perturbation is used as
initial condition at ¢ = 0. Control is applied in
all Fourier modes on both the upper and lower
wall of the channel, and for the estimator case
measurements are done in all Fourier modes
at both walls. The control is parameterized in
the non-linear case to a specific number of de-
grees of freedom with equispaced distance At
while in the linear case it is free to change ar-
bitrarily at every time step. For the non-linear
optimal control computations about 200 veloc-
ity fields are saved during the solution of the
flow, and these are then linearly interpolated
when used in the solution of the adjoint equa-
tions. The penalty parameter ¢ is zero in the
non-linear computations since the correspond-
ing objective function for the linear controller
does not add extra penalty on the control ve-
locity.

Non-linear control

We have computed linear controls and cor-
responding non-linear controls for comparison
in terms of performance to investigate how
close the optimal linear control is to the opti-
mal non-linear control, with a similar objective
function. To allow for comparison between the
two different controls we need to make sure
that the time interval is long enough to be con-
sidered as infinite by the non-linear controller.
We also need to adjust the time resolution of
the control to get a comparable penalty on
the time-derivative. Even if we adjust the pa-
rameters to give similar objective functions the
non-linear controller still has the advantage of
being able to adjust to the particular pertur-
bation an make use of non-linear effects. In
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Figure 2: Energy evolution of controlled cases with linear
control for different values of the penalty parameter ¢ =
0.01,0.05,0.1,0.2,0.5 as solid, dash, dash-dot, dash-dot-dot,
dot respectively.

figure 2 the energy evolution of the perturba-
tion is plotted for different values of the penalty
on the time-derivative of the linear control. A
similar restriction can be put on the non-linear
controller by changing the time resolution of
the control. In figure 3 the effect of chang-
ing this resolution for the non-linear controller
is plotted. One can say that there is a quali-
tative correspondence between the penalty on
the time-derivative in the linear case and the
time-resolution of the control in the non-linear
case. Notice that the resolution of the con-
troller in time is not related to the time step
in the simulations. Two cases, one with linear
control and one with non-linear, with similar
behavior initially are compared in terms of the
energy evolution if figure 4. Except for the
small difference initially it is hard to distin-
guish one curve from the other. It seems as
the linear controller does an almost as good
job as the non-linear one in this case. Evalu-
ating the objective functions gives a 2% higher
value for the linear controller in this case.
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Figure 3: Energy evolution of optimally controlled cases
with non-linear control for different time resolution of the
control. Using 300,150,75,37 degrees of freedom in time as
solid, dash, dash-dot, dot respectively.

Linear control
In the linear case we have pre-computed
convolution kernels that are applied online in
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Figure 4: Energy evolution of optimal linear control case
with € = 0.05 ( solid ) and optimal non-linear control with
150 degrees of freedom in time ( dash ).

the DNS. The controller, utilizing full informa-
tion of the flow-field, can prevent transition at
perturbation levels well above the uncontrolled
transition thresholds computed by Reddy et
al.(1998), see Hogberg and Bewley (2001). The
estimator converges exponentially to the cor-
rect state of the flow as shown in figure 5.
Unfortunately the rate of this convergence is
somewhat low, and there was no way of speed-
ing it up further using the present formulation
of the estimation problem. In figure 6 the effect
of changing the penalty parameter « is shown.
It turns out that it is favorable to decrease it
to obtain speedup of the convergence, but only
up to a certain limit. Estimation of the oblique
wave perturbation with o = 0.01 is illustrated
in figure 7. There is a time lag in the energy
evolution of the estimator compared to the true
state, but eventually the estimator gets closer
and closer.

time
Figure 5: Energy of state error in estimation for @ = 0.01.

Combining the estimator and controller into
a compensator where the flow is controlled
based only on wall measurements is the next
step. With perfect initial data for the estima-
tor the performance would be the same as for
full information control. Starting with a un-
perturbed flow in the estimator is more of a
challenge, and the result from this is plotted in
figure 8. The compensator is able to lower the
energy growth substantially but not as much
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Figure 6: Energy evolution in estimator with different values
on the penalty parameter a= 0.001, 0.01, 0.05, 0.1, as dash-
dot, solid, dotted, dashed respectively.
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Figure 7: Energy evolution of the estimator with a = 0.01
(solid ) and the true uncontrolled state ( dash ).
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Figure 8: Full information linear controller ( dashed ) and
compensator ( solid ) performance compared to the uncon-
trolled ( dotted ) energy evolution.

as the full information controller. In a spatial
case one could imagine having the estimator
upstream of the controller. Here that would
correspond to giving the estimator a head start
before applying control. Estimating the flow
until £ = 50 and then applying the compen-
sator and comparing it to the full information
controller applied at ¢ = 50 shows that the
compensator performance is now close to that
of the full information controller. In figure 9
the energy evolution for the full information
control case is compared to that of the “head
started” compensator and the regular compen-
sator with zero perturbation as initial guess at
t = 50.
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Figure 9: Full information controller ( dash ) and “head
started” compensator ( solid ) and regular compensator
(dash-dot ) performance compared to the uncontrolled ( dot)
energy evolution.
Conclusions

The action of the optimal linear controller
is very similar to that of the optimal non-
linear control. A comparison with a nonlinear
optimal controller, based on iterative adjoint
computations, shows only small differences to
the controllers based on the linearized equa-
tions. The perturbation evolution can be re-
produced from wall measurements online, us-
ing an estimator with exponential convergence
rate after some initial transients. When bas-
ing the control on wall measurements only the
performance is not as good, but still energy
growth is reduced. Giving the compensator a
better initial guess improves the performance
substantially. One future focus for linear com-
pensation should be development of better es-
timators with fast convergence.
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