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STATE ESTIMATION OF CHAOTIC TRAJECTORIES:
A HIGHER-DIMENSIONAL, GRID-BASED, BAYESIAN APPROACH

TO UNCERTAINTY PROPAGATION

Benjamin L. Hanson*, Aaron J. Rosengren*, and Thomas R. Bewley*

The current landscape of orbital uncertainty propagation methods inadequately
addresses the state-estimation problem for nonlinear systems. In relatively low-
perturbed regimes, or when measurement updates are frequent, state-estimation
methods that assume Gaussian uncertainty are valid, and errors resulting from lin-
earizing the dynamics about an estimate are often negligible. However, as novel
space-mission-design techniques exploit the chaoticity of N -body dynamics to
efficiently explore new regimes of space, the Gaussianity assumption is often vio-
lated, and linearization errors accumulate. Uncertainty propagation methods that
do not assume Gaussianity or linearize about an estimate are computationally ex-
pensive. Moreover, both classes of methods often disregard epistemic uncertainty,
or the uncertainty of the model. To address the current limitations of orbital un-
certainty propagation, we introduce a higher-dimensional extension to an existing
Bayesian-estimation algorithm that efficiently propagates the probability distribu-
tion function of a state governed by nonlinear dynamics. By adjusting the compu-
tational architecture of the algorithm and considering the dynamics of the system,
we scale the existing, three-dimensional technique with poor time complexity to
an efficient, four-dimensional one. The result is a robust, second-order accurate,
time-adaptive, explicit time-marching scheme with the capability of propagating
uncertainty governed by chaotic, nonlinear dynamics.

INTRODUCTION

Since the dawn of space exploration, orbital uncertainty propagation has seen relatively little
change. Much of the success of the Apollo lunar missions can be attributed to the work of Kalman,
specifically the extended-Kalman filter1 (EKF), the primary algorithm used by on-board systems
that determined accurate state estimates of the Apollo spacecraft.2 This foundational algorithm
ensured the feasibility of the complex trajectories essential to the Apollo lunar missions. Since
the Space Race, spaceflight has undergone a complete upheaval in almost all facets. Advances in
additive manufacturing have resulted in fully 3D-printed rocket engines and propellant tanks that
are more weight- and cost-efficient than their legacy counterparts.3, 4 Low-thrust relative transfers
have motivated the creation of novel low-thrust propulsion methods, such as ionic propulsion5 and
solar-sail systems.6 There are numerous domains of spaceflight that are almost unrecognizable
when compared with their ancestral systems. Conversely, one of the most recent NASA missions,
Artemis-1, employed the Orion Absolute Navigation System that utilized four navigation EKFs for
estimating the vehicle’s state and associated uncertainty,7 the same framework used in the Apollo
missions over 60 years ago. In a field where rapid growth is the norm, this sort of stagnation is
unprecedented.
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By no means is the prior paragraph meant to discredit the EKF. On the contrary, its persistent
utilization over the last several decades in the fields of orbit determination, conjunction analysis,
guidance, navigation, and control (GN&C), space situational awareness (SSA), etc., serves as a tes-
tament to its robustness. However, there are limitations to this robustness. For instance, the EKF
approximates the dynamics of a nonlinear system by linearizing about an estimate. This lineariza-
tion can result in the EKF underestimating uncertainty and depending heavily on precise initial
estimates. Additionally, the EKF assumes the uncertainty of an object may be described by a mul-
tivariate Gaussian distribution. In the absence of measurement updates, this holds for a period
of time, but the length of this period is dependent on the dynamics of the system. Both of these
limitations are predicated on the assumption that the measurement update frequency will be high
enough that the errors associated with linearizing are negligible and the state uncertainty stays Gaus-
sian. However, the validity of this assumption is brought into question in the presence of chaotic
dynamics, as is the case when the motion of an object with negligible mass is governed by two
massive bodies, known as the restricted three-body problem (R3BP).8 Novel space-mission-design
techniques aim to exploit the chaoticity of three- and four-body dynamics via new families of low-
energy trajectories that are more fuel efficient, longer in duration, and further in reach than their
classical counterparts.9 CAPSTONE, a CubeSat pathfinder for the Lunar Gateway and a corner-
stone of NASA’s Artemis Program, utilized a low-energy, ballistic lunar transfer10 (BLT), a family
of these low-energy transfers, to insert into its operational near-rectilinear halo orbit (NRHO) about
the L2 Earth-Moon libration point in November of 2022.11 Future proposed missions to the Jovian
and Saturnian moons9, 12 are expected to utilize the N -body dynamics of the respective systems for
low-energy trajectory design. As the standard for mission complexity increases to incorporate these
novel trajectory designs, so too does the necessity for effective state-estimation and uncertainty
propagation techniques that address the limitations of the EKF and provide more precise solutions
in these chaotic regimes.

There are other uncertainty propagation methods that attempt to address the shortcomings of the
EKF, each with their own limitations. Monte-Carlo (MC) simulations, for instance, circumvent the
assumption of Gaussianity by generating N random samples, called particles, from the initial uncer-
tainty. The state of these particles are then time-marched, governed by the dynamics of the system.13

As N → ∞, the final distribution of the samples approaches the true probability distribution. How-
ever, obtaining this true distribution requires an unknown-but-significant number of samples, and,
in especially chaotic regimes that are extremely sensitive to initial conditions, achieving this num-
ber may be computationally expensive. Additionally, current MC methods cannot viably consider
epistemic uncertainty,14 the uncertainty of the model, an important consideration for unexplored,
chaotic regimes. Another family of techniques that attempts to rectify the limitations of the EKF
are Gaussian-mixture models13 (GMMs). GMMs approximate an arbitrary PDF as a collection of
weighted Gaussian distributions, then propagate the mean and covariance of each of the distribu-
tions in the collection. However, when the true probability distribution “bananas” about a nominal
trajectory, as has been demonstrated for nonlinear systems,15 many Gaussian distributions are nec-
essary for representing the true distribution, leading to a computational bottleneck. Additionally,
determining and updating the weights of the Gaussian mixtures, as well the splitting procedure, can
be both expensive and ad hoc.

In summary, having performed a preliminary review of the landscape of methods that represent
and propagate orbital uncertainty, we have determined that there exists a need for a new class of
methods that do not assume Gaussian uncertainty, are accurate for long periods of time in the ab-
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sence of observations, are computationally efficient, consider epistemic uncertainty, and are scalable
to higher-dimensional problems. To address this need, we propose an astrodynamical extension to
an existing nonlinear, state-estimation method known as Grid-based, Bayesian estimation exploiting
sparsity16 (GBEES). GBEES efficiently solves the Fokker-Planck equation (FPE), which describes
the time-evolution of a PDF governed by nonlinear dynamics. Bayesian estimation strategies are
foundational in the way they address the state estimation problem, but have often been disregarded
due to their computational inefficiency.17 GBEES addresses this issue by considering the sparsity
of a PDF over the majority of phase space, thereby cutting down on the computational expense of
numerically solving the FPE over a large grid. However, the legacy implementation is susceptible to
computational burden at higher dimensions given its O(n2) time complexity (where n is the number
of grid cells that make up the discretized PDF), making it sub-optimal for orbital uncertainty prop-
agation. The extension we propose reduces this time complexity via efficient data structures and a
consideration of the dynamics of the system. We demonstrate the method on a 4D astrodynamical
system, and layout the possibility for expanding to higher-fidelity models.

GRID-BASED, BAYESIAN ESTIMATION EXPLOITING SPARSITY

To ensure full understanding of the proposed extension, we provide a succinct explanation of
the parent algorithm, GBEES (a complete explanation is included in Ref. 16). Consider the state
estimation of a nonlinear system

dx

dt
= f(x,w), y = h(x,v), (1)

where x is the state of the system, f(·) is the nonlinear system function, w is the state disturbance,
y is the measurement of the system, h(·) is the measurement function, and v is the measurement
noise. The evolution of the PDF px(x

′, t) of the state x is performed via mixed continuous/discrete
time-marching18 and can be described in two steps:

1. Between discrete measurements, px(x′, t) is marched via discretization of the Fokker-Planck
equation19, 20(FPE); in Einstein-summation notation:

∂px(x
′, t)

∂t
= −∂fi(x

′, t)px(x
′, t)

∂x′i
+

1

2

∂2qijpx(x
′, t)

∂x′ix
′
j

, (2a)

where qij is the (i, j)th element of the spectral density of the state disturbances, Q. When
Q = 0, the pPDE is hyperbolic.

2. At measurement interval tk, px(x′, t) is updated via Bayes’ Theorem:21

px(x
′, tk+) =

py(yk|x′)px(x
′, tk−)

C
, (2b)

where px(x
′, tk+) is the a posteriori PDF, py(yk|x′) is the distribution associated with the

measurement, px(x′, tk−) is the a priori PDF, and C is a normalization constant.

To discretize the hyperbolic form of Eq. (2a) (i.e. when Q = 0), a Godunov-type, finite-volume
method22 is utilized. In 2D (with higher-dimensional cases following as obvious extensions), this
takes the form

pn+1
ij − pnij

∆t
= −

Fn
i+1/2,j − Fn

i−1/2,j

∆x
−

Gn
i,j+1/2 −Gi,j−1/2

∆y
, (3)
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where n represents the time step, ∆x and ∆y are the grid widths in the x- and y-directions respec-
tively, pij is the probability at grid cell (i, j), and fluxes F and G are defined at the interfaces of the
grid, thus the half-step indexing. The resulting grid of Riemann problems are solved numerically
at the interfaces of each grid cell for every time step. Accounting for corner-transport upwind and
flux-limiting corrections, the result is an explicit, 2nd-order accurate, time-marching scheme that
propagates the PDF governed by the dynamics of the system f(x). To save on computational cost,
the algorithm only accounts for grid cells that have a probability above some threshold p̄, thoroughly
lessening the number of operations necessary for each time step. As the probability flows through-
out phase space, new cells are inserted about those who have surpassed the probability threshold,
and cells below p̄ without such neighbors are deleted. Thus, most of the PDF is represented with a
small percentage of the domain of phase space.

For validation, the GBEES algorithm is demonstrated on a 3D Lorenz attractor,23 a highly chaotic
solution set to the Lorenz system. In this system, uncertainty quickly transforms from Gaussian to
non-Gaussian. For the 3D Lorenz system

x =

xy
z

 ,
dx

dt
= f(x) =

 σ(y − x)
−y − xz

−bz + xy − br

 , (4)

with parameter values σ = 4, b = 1, and r = 48 resulting in a chaotic system. Figure 1 depicts
the chaotic dynamics governing the system, as well as the continuous time-evolution of an initially
Gaussian PDF in the absence of discrete measurements, with Q = 0 (assuming no uncertainty of
the system). As can be seen, the Gaussian distribution quickly becomes non-Gaussian, and even

Figure 1: The continuous time-evolution of an initially Gaussian PDF with no discrete measurement
updates. (right) The PDF is described by the blue isosurfaces of probability p = 5e−3, p = 5e−4,
and p = 5e−5 at times t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, and t = 1. The green line
represents the Lorenz attractor, the dynamics of which govern the flow of probability. The black
line represents the nominal trajectory, about which the initial uncertainty is estimated. (left) The
outermost isosurface (p = 5e−5) compared to a 1000 particle Monte-Carlo simulation with the
same initial conditions, represented by the gray trajectories and black dots. A complete list of the
simulation parameters can be found in Table A1.

becomes bimodal near t = 1, a characteristic that is indescribable by the EKF. The right subfigure
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of Figure 1 demonstrates that the outermost isosurface (p = 5e−5) of the PDF propagated by
GBEES captures the results of the Monte-Carlo simulation starting with the same initial conditions
and covariance. Due to its extreme nonlinearity, describing the final PDF using a GMM would
require a computationally expensive number of Gaussian distributions.

ADDRESSING THE O(n2) TIME COMPLEXITY

The primary issue with the legacy GBEES implementation arises as we push towards higher
dimensions. Scaling to higher-dimensional systems requires discretizing a larger domain of phase
space, leading to increases in the number of cells needed to represent a PDF. As cells are created and
deleted based on the probability threshold constraint, neighboring cells must be adjusted to consider
the information provided by the new discretization. In the legacy implementation, said adjustments
are performed through nested loops, leading to a time complexity of O(n2) for the entire algorithm,
resulting in the inefficiency at higher dimensions. The aim of the proposed extension is to eliminate
this computational bottleneck, as well as look for subprocedures that can be made more efficient. As
this is a computational limitation, the following discussion is over the modifications and adjustments
implemented to optimize the algorithm’s architecture.

Binary Search Trees

Bayesian-estimation methods are predicated on the ability to efficiently perform the grid up-
dates associated with time-marching the numerical solution to Eq. (2a). As such, utilizing efficient
data structures within the chosen finite volume method is of the utmost importance. The legacy
implementation of GBEES stores the discretized Cartesian grid in a list, which has an O(n) time
complexity for creation, deletion, and searching. As the algorithm countlessly uses all three of these
procedures throughout, improving their individual time complexities is greatly beneficial. One such
data structure that has a better time complexity (O(log n) for creation, deletion, and searching) are
binary search trees (BSTs).

Introduction to BSTs. BSTs24 sort data using a positive-integer key z. Each datum, known as a
node, stores its own key value as well as pointers to the left and right child nodes. The left child has
a value z less than the parent node, and the right child has a value z greater than the parent node.
Searching a BST to see if a key exists begins by comparing the key being searched for to the root
node, or the first node in the tree. The search then traverses left or right down the tree, depending
on if the key being searched for is less than or greater than the root node, respectively. This process
is repeated until the key being search for is reached, or a leaf node is reached (a node with no left or
right child). In this case, the key being searched for does not exist in the BST. Creation and deletion
of nodes follow in similar fashions.

Storing grid cell coordinates in a BST requires a conversion from the real coordinate set to the
positive-key value z, an unexpectedly nontrivial process; consider that the conversion function r(·)
must be able to discern between commutative coordinates (i.e. in 2D, r(a, b) ̸= r(b, a) as coordinate
(a, b) ̸= (b, a) when a ̸= b). Moreover, the conversion function must be bijective, establishing a
one-to-one mapping from the coordinate set to the key value and covering the entire domain of
possible key values, to make for an efficient, compact conversion. Of these conversion functions,
known as pairing functions, the most apt at handling high-dimensional coordinates is the Rosenberg-
Strong pairing function.
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Figure 2: Two equivalent BSTs, where the left can be
transformed into the right via a right rotation, and the
right can be transformed into the left via a left rotation.
Each letter represents the key value, thus A < b < C <
d < E. Triangle nodes represent nodes that are them-
selves BSTs.
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Figure 3: RS pairing in two dimen-
sions.

Rosenberg-Strong pairing/unpairing. The Rosenberg-Strong (RS) pairing function25 compactly
converts n-dimensional coordinates to positive, unique keys by setting the shell number equal to the
L∞ norm, or the maximum, of the coordinate set. This way, coordinates on the same shell have
similar magnitudes. In 2D, the RS pairing function r2(x, y) is

r2(x, y) =
(
max(x, y)

)2
+max(x, y) + x− y, (5a)

and the RS unpairing function in 2D r−1
2 (z) is

r−1
2 (z) =

{
(z −m2,m) if z −m2 < m

(m,m2 + 2m− z) otherwise
, (5b)

where m =
⌊√

z
⌋
.

For n-dimensional coordinates, the RS pairing function rn(x1, . . . , xn) is performed recursively

rn(x1, . . . , xn) = rn−1(x1, . . . , xn−1) +mn + (m− xn)
(
(m+ 1)n−1 −mn−1

)
, (6a)

where m = ⌊ n
√
z⌋;

and similarly, the RS unpairing function in n-dimensions r−1
n (z) is

r−1
n (z) =

(
r−1
n−1

[
z −mn −

(
(m− xn)[(m+ 1)n−1 −mn−1]

)]
, xn

)
, (6b)

where xn = m−

⌊
max(0, z −mn −mn−1)

(m+ 1)n−1 −mn−1

⌋
.

Table 1 demonstrates the importance of considering the L∞ norm for high-dimensional coordinate
sets, as other pairing functions, like the Cantor or Szduzik functions,25 do not. This can quickly
lead to computational bit overflow as the discretized grid advects away from the origin. We utilize
the RS pairing function to tractably and conveniently store the information at each grid cell in a
BST, with assurance that the high-dimensional coordinates far from the origin will not have keys
that result in bit overflow.
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Table 1: Pairing a 6-dimensional coordinate point with various pairing functions.

Coordinate Point Cantor Pairing Key (z) Szudzik Pairing Key (z) RS Pairing Key (z)
(1,1,1,1,1,1) 1.620e14 9.505e14 126

Consideration of the dynamics of the system

In addition to changing data structures, modifications to the creation and deletion subprocedures
can be made to improve the efficiency of the algorithm. The creation and deletion of cells that neigh-
bor those with probabilities above the threshold value is essential to exploiting sparsity. Decreasing
the number of cells created and deleted at each time step while preserving the true distribution of
the PDF results in a speedup at no cost. By considering the dynamics of the system at each grid
cell, the number of redundant cells created that are then immediately deleted in the subsequent time
step, and vice versa, are reduced.

Creation of cells. In the legacy algorithm, if a cell is above the probability threshold, at the fol-
lowing time step, the algorithm creates all the neighboring cells in all grid directions (assuming
they do not already exist) and inserts them into the BST. This ensures that, should the velocity of
the system advect the probability in any direction, the change is captured by a neighboring cell.
However, this method ignores the fact that the direction of the velocity at any given point is known,
thus the algorithm need only create cells in the known downwind direction. Figure 4 schematically
demonstrates how this consideration improves the creation procedure.

(i, j) (i, j) (i+ 1, j)(i− 1, j)

(i, j + 1) (i+ 1, j + 1)(i− 1, j + 1)

(i, j − 1) (i+ 1, j − 1)(i− 1, j − 1)

t = n t = n+ 1

(i, j) (i, j) (i+ 1, j)

(i, j + 1) (i+ 1, j + 1)

t = n t = n+ 1

Fi+1/2,j

G
i
,j

+
1
/
2

Figure 4: Two-dimensional schematic demonstrating the difference in the creation procedure of the
(left) legacy implementation vs. the (right) current implementation. The green cell represents one
with a probability above the threshold, and the downwind fluxes Fi+1/2,j and Gi,j+1/2 represent the
probability flow at the half-step forward x- and y-interfaces, respectively.

Deletion of cells. For the deletion process, the legacy implementation checks all directions to
ensure that a considered cell neighbors no cells with probability above threshold before deleting
it from the tree. Checking every neighbor is a redundancy that results in saving useless cells, as
only the upwind cells can advect probability into the cell of interest. Therefore, the current imple-
mentation cuts down on the number of cells checked along the entire grid for each time step, as is
demonstrated schematically in Figure 5.
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Figure 5: Two-dimensional schematic demonstrating the difference in the deletion procedure of the
(left) legacy implementation vs. the (right) current implementation. The white cell represents one
with a probability below the threshold, and the yellow cells are the neighbors checked for probability
above the threshold value by the algorithm. The upwind fluxes Fi−1/2,j and Gi,j−1/2 represent the
probability flow at the half-step back x- and y-interfaces, respectively.

Additionally, the current algorithm considers the frequency of the deletion procedure. The pur-
pose of pruning low-probability cells from the BST is to decrease the total number of Riemann
problems that need to be solved at each grid cell interface. However, the deletion procedure re-
quires an exhaustive search of the entire BST, and in certain cases, the time saved on time-marching
fewer cells is not worth the process of deletion. Therefore, the current implementation makes the
deletion frequency a parameter, and tunes it empirically.

Time-step adaptivity

Stability is an important consideration when designing numerical methods. To ensure stability
when time-marching discretized functions through phase space, the size of the time step must adhere
to the magnitude of the rate of change, so information does not “skip” grid cells, which would cause
the scheme to accumulate errors. The Courant–Friedrichs–Lewy (CFL) convergence condition26

ensures stability for time-integration schemes by defining the time step ∆t as a function of Cmax:

∆t ≤ min

[
Cmax

(
n∑

i=1

fi(x)

∆xi

)−1

∀x ∈ Ω

]
, (7)

where Cmax = 1 for explicit time schemes, and Ω represents the entire domain of phase space
where px(x

′, t) ≥ p̄. When propagating a numerical scheme governed by chaotic dynamics, there
are quiescent, slow-changing periods (|f(x)| is small) and there are chaotic, fast-changing periods
(|f(x)| is large). Fixed time-step schemes must adhere to the most chaotic period of the entire
trajectory, even through the more stable quiescent periods, where larger time steps could achieve
stability. The legacy implementation of GBEES uses this inefficient, fixed time-step method tuned
empirically to ensure stability of the scheme, a subprocedure that is also computationally wasteful.
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Therefore, to address these numerical limitations, we utilize an adaptive time-step approach, where
∆t is determined via Eq. (7) at each step.

Current vs. legacy implementation

Altogether, the changes proposed to the legacy implementation of GBEES improve the overall
time complexity of the algorithm, speeding up the process of propagating a three-dimensional PDF
in the Lorenz attractor system as demonstrated by Figure 6. Note that although the number of cells
required to describe the PDF is lower for the current implementation due to the creation and deletion
improvements, the overall shape of growth is the same. However, the shapes of the program run-
time are different, demonstrating that the current implementation has an improved time complexity
compared to the legacy counterpart. This efficiency improvement allows the algorithm to feasibly be
applied to higher-dimensional problems, specifically propagating orbital uncertainty for nonlinear,
chaotic systems.
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Figure 6: Comparison of legacy implementation with the current implementation of GBEES. This
comparison was performed on the 3D Lorenz attractor from Figure 1.

PLANAR, CIRCULAR, RESTRICTED THREE-BODY PROBLEM

The restricted three-body problem considers the motion of an object with negligible mass in a
system of two massive bodies that orbit about their respective center of mass, unaffected by the
object of negligible mass. Assuming the orbit of the two massive bodies about the center of mass
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is circular, and the motion of the object is constrained to the plane of orbit, the result is the pla-
nar, circular, restricted three-body problem8 (PCR3BP). In the barycentric, dimensionless, rotating
coordinate frame, the equations of motion of the object are

ẍ− 2 ẏ = Ωx,

ÿ + 2 ẋ = Ωy, (8)

where Ω(x, y) =
x2 + y2

2
+

1− µ

r1
+

µ

r2
+

µ(1− µ)

2
,

µ is the gravitational parameter of the two-body system, r1 is the distance to the primary body, and
r2 is the distance to the secondary body.

In the PCR3BP, there exist five equilibrium points L1–L5, known as Lagrange or libration points,9

that lie in the plane of orbit and are at rest in the synodic frame. L1, L2, and L3 are collinear, while
L4 and L5 form equilateral triangles with the two massive bodies.
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Figure 7: Schematic of the Lagrange points in the synodic, dimensionless coordinate frame.

In the vicinity of these equilibrium points, there exist initial conditions that result in quasi-
periodic orbits (QPOs) about the libration points. Multiple spacecraft have operated in these or-
bits27, 28 as they require minimal propulsion to maintain. The class of quasi-periodic orbits that lie
entirely in the plane of the two massive bodies are known as Lyapunov orbits.29 Extensive research
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has been conducted to accurately calculate the initial conditions of these orbits,30 to such an ex-
tent that precomputed catalogs, like the JPL Three-Body Periodic Orbit Catalog,31 store the initial
conditions for QPOs about all three collinear libration points for various planetary systems. As the
initial conditions for these periodic orbits are readily available, and the orbits themselves are low-
fidelity representations of true spacecraft motion, we view this as a prudent starting point for the
application of GBEES to higher dimensions.

To govern the advection term of Eq. (2a) by the equations of motion of the PCR3BP, Eq. (9)
must be converted from a 2nd-order ODE to a 1st-order ODE. In 1st-order form, the state x and the
equations of motion dx/dt of the PCR3BP become

x =


x
y
vx
vy

 ,
dx

dt
= f(x) =



vx

vy

2vy + x− µ(x−1+µ)(
(x−1+µ)2+y2

)3/2 − (1−µ)(x+µ)(
(x+µ)2+y2

)3/2

−2vx + y − µy(
(x−1+µ)2+y2

)3/2 − (1−µ)y(
(x+µ)2+y2

)3/2


. (9)

The result is a four-dimensional nonlinear system, a useful and relevant test case with increased
complexity for the new and improved GBEES algorithm. To visualize the 4D PDFs generated
and propagated, we create two 2D PDFs by integrating px(x

′, t) over the velocity space for the
position PDF p(x,y)(x

′, y′, t), and by integrating px(x
′, t) over the position space for the velocity

PDF p(vx,vy)(v
′
x, v

′
y, t):

p(x,y)(x
′, y′, t) =

∫
Ω(vx,vy)

px(x
′, t)dv′xdv

′
y, (10a)

p(vx,vy)(v
′
x, v

′
y, t) =

∫
Ω(x,y)

px(x
′, t)dx′dy′, (10b)

where Ω(x,v) and Ω(vx,vy) represent the entire domain of the PDF over position and velocity, respec-
tively. Utilizing the initial conditions precomputed in the JPL Three-Body Periodic Orbit catalog,
we possess a complete framework for propagating a four-dimensional PDF representing the uncer-
tainty of an object in a Lyapunov orbit. We now demonstrate the flexibility of this extension of
GBEES given various physical scenarios where we speculate the EKF may perform poorly.

INFREQUENTLY OBSERVED JUPITER-EUROPA TRAJECTORY

As space missions venture further into the depths of the Solar System, novel methods for guidance
and navigation become imperative due to the limitations of the legacy standard, wherein commands
are uplinked based on downlinked measurements received prior, communicated via the Deep Space
Network (DSN). One such limitation is that, at such extreme distances from Earth, data communi-
cation between spacecraft and ground control has significant light time delays (i.e., approximately
an hour and a half at Jupiter) that complicate navigation in environments where uncertain dynamics
require trajectory control on timescales under the light time delay (i.e., repeated low altitude fly-
bys of a Jovian or Saturnian moon). Second, a non-autonomous approach requires a reserved DSN
antenna for uplink and downlink, which may not always be feasible as the number of deep-space
missions grows.32, 33 NASA’s Deep Space 134, 35 (DS1) avoided these limitations by employing an
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autonomous navigation system, AutoNav, that utilized on-board imagery of nearby asteroids to au-
tonomously determine its trajectory in space and compute necessary maneuvers (a.k.a. OpNav).
One drawback of utilizing OpNav using main belt asteroids is that cataloged asteroids beyond the
main belt are fewer and far between, making measurements updates less frequent (DS1 planned to
utilize AutoNav at roughly weekly intervals36). In chaotic regimes, this will result in the uncertainty
of a spacecraft spreading widely over phase space. To maintain custody of spacecraft operating in
QPOs in these regimes using autonomous navigation, operational orbits must be relatively stable
such that infrequent measurements will not result in accidental reentry or escape.

Given the physical scenario described, the nominal trajectory chosen for uncertainty propagation
will be relatively stable and discrete measurement updates will be infrequent. The EKF assumes
that the errors in estimation due to the utilization of a linearized propagation model are corrected
via frequent measurement updates.37 However, in the trajectory we have outlined, measurement
updates partially rely upon the presence of nearby cataloged asteroids, thereby diminishing our
confidence in the assumption of frequency. Conversely, conducting uncertainty propagation via a
MC simulation requires an unknown-but-substantial number of particles to ensure a sufficient level
of confidence in the approximated distribution. Without knowledge of the posterior distribution
prior to the following measurement update, defining what qualifies as “substantial” may be fairly
unpredictable. For normal distributions, there are formulae following from the Central Limit The-
orem that provide the number of particles required to achieve some confidence level of the final,
approximated distribution.38 However, for non-Gaussian distributions, determining this optimal
number is less straightforward.39 This often leads to an excessive number of initialized particles,
ultimately squandering computational resources.

We utilize a set of initial conditions that result in a Lyapunov orbit about the L3 Jupiter-Europa
libration point, sourced from the JPL Three-Body Periodic Orbit catalog (initial conditions can be
found in Table 2 and are relative to the Jupiter-Europa barycenter). We assume an initial uncer-
tainty in position of 103 km and velocity of 10−1 km/s, as is the assumed a priori uncertainty for
spacecraft near Jupiter utilizing autonomous navigation.40 To test both the accuracy and efficiency
of GBEES, we initialize a MC simulation with the same initial conditions and uncertainty. We
propagate the uncertainty using both GBEES and the MC simulation through one full period of the
Lyapunov orbit (∼ 3.5 days), with a discrete measurement update every 1/3 of the orbit (∼ 1.17
days). Measurements are assumed to be the state of the nominal trajectory at the given epoch, with
uncertainty in position and velocity of the measurement being equal to the initial uncertainty.

Table 2: Initial conditions of a L3 Jupiter-Europa Lyapunov trajectory.

x0 ±∆x0 (km) y0 ±∆y0 (km) vx0 ±∆vx0 (km/s) vy0 ±∆vy0 (km/s)
(−9.55341± 0.01)e5 (0.00± 0.01)e5 (0.00± 0.01)e1 (1.09711± 0.01)e1

Figure 8 depicts the results of the described L3 Jupiter-Europa Lyapunov trajectory simulation.
The initially Gaussian uncertainty beginning from the M1 epoch rapidly spreads over phase space
(the uncertainty in y goes from being on the order of 103 km to 105 km after only about 1.17 days).
Via comparison with the MC simulation, we validate that GBEES has accurately propagated the
uncertainty between measurement updates. Figure 9 provides the computational efficiency compar-
ison of a RK4 time-marching MC simulation with GBEES over the trajectory of interest. To ensure
the MC simulation provides the same “quantity of information” at each measurement epoch Mi for
i = 1, 2, 3, we set the number of particles in the MC simulation equal to number of cells with prob-
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Figure 8: Initially Gaussian uncertainty time-marched with GBEES governed by the PCR3BP in
the Jupiter-Europa system. (top) The contour plots represent the PDF propagated by GBEES about
the nominal trajectory. M1, M2, and M3 denote the epochs where discrete measurement updates
take place, with M1 being the initialization of the simulation. Note that the colors of the contours
representing the magnitude of the probability of a PDF are not relative to other PDFs, but instead are
representative of probability differences throughout the individual distributions. (bottom) GBEES
compared with a 500 particle MC simulation, to confirm the accuracy of the method. A complete
list of the simulation parameters can be found in Table A1.

ability above threshold in the final PDF at Mi for i = 1, 2, 3. Unlike GBEES, which propagates a
discretized grid that grows in size with the uncertainty, MC simulations have no mechanism for re-
fining the distribution it is propagating as it spreads over phase space. Therefore, the MC simulation
has the disadvantage of having to time-march a large quantity of particles even when the uncertainty
is relatively small so that it may represent the uncertainty when it is relatively large. The discrete
changes in the number of cells for both methods in Figure 9 is representative of discrete Bayesian
updates in the case of GBEES and resamplings from the new measurements in the case of the MC
simulation. This is another important consideration when comparing the results of the two sim-
ulation methods; GBEES uses Bayes’ theorem to update based on a discrete measurement, which
considers both the a priori distribution as well as the measurement update. Conversely, the MC sim-
ulation disregards the prior distribution completely and resamples based on the new measurement
update. We consider this to be a potential cause for the slight divergence of the final distributions of
GBEES and the MC simulation at each Mi in Figure 8.
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Figure 9: Comparing the computational time of GBEES vs. MC when propagating uncertainty for
the trajectory from Figure 8. Discrete jumps in the number of cells tracked by each uncertainty
propagation method are representative of discrete Bayesian updates in GBEES’s case and resam-
plings in the MC simulation’s case.

CONSIDERATION OF EPISTEMIC UNCERTAINTY FOR SOLAR PROBES

Of the limitations of existing uncertainty propagation methods, the most concerning for space
missions delving into unexplored domains may be their failure to consider epistemic uncertainty.
Epistemic uncertainty, or uncertainty of the model, may be negligible in regimes where perturba-
tions from solar radiation pressure, atmospheric drag, zonal harmonics, etc., are either well-defined
or relatively small. However, this may not be true for all realms of space. Consider the Parker Solar
Probe,41 a NASA spacecraft designated with the task of flying through the Sun’s upper atmosphere
to take measurements and expand our understanding of solar wind. In this unexplored regime (the
Parker Solar probe flies seven times closer to the Sun than any spacecraft has ever flown), the effect
of solar radiation pressure on the motion of the spacecraft is not well-defined, thus the model rep-
resenting the motion of the probe has some non-negligible, associated uncertainty. To account for
this, Eq. (2a) includes the diffusion term (i.e. Q ̸= 0) which is representative of random motion. In
2D (with higher-dimensional cases following as obvious extensions), the diffusion term is added to
Eq. (3) by updating the fluxes such that, for all (i, j),

Fn
i+1/2,j+ = µ̄x

∆pni+1/2,j

∆x
, (11a)

Gn
i,j+1/2+ = µ̄y

∆pni,j+1/2

∆y
, (11b)

14



where µ̄ = [µ̄x µ̄y] is the coefficient of diffusion and can be tuned depending on how uncertain the
model definition is.

We choose a set of initial conditions that result in a Lyapunov orbit about the L3 libration point
of the Sun-Earth system, (initial conditions can be found in Table 3 and are relative to the Sun-Earth
barycenter). This specific set of initial conditions takes the spacecraft to a distance of nearly 7 mil-
lion km from the Sun at perihelion (the Parker Solar Space probe’s closest approach is 6.16 million
km from the Sun). Considering epistemic uncertainty is non-negligibile, we include the diffusion
term in the numerical solution of Eq. (2a) and set µ̄ = [1e−5 1e−5 1e−5 1e−5] (this choice of
diffusion coefficient is proportional to the grid width and was tuned empirically). To test the limi-
tations of GBEES, we assume an unrealistic, worst-case scenario initial uncertainty in position of
104 km and velocity of 1 km/s. This measurement uncertainty is much larger than is estimated for
the Parker Solar Probe a priori uncertainties.42 We initialize a MC simulation with the same initial
conditions and uncertainty. From the entire orbit of the chosen initial conditions, we propagate un-
certainty through a portion of the close approach, as this section of the orbit will be most affected
by epistemic uncertainty. No discrete measurement updates are taken in this simulation.

Table 3: Initial conditions of a L3 Sun-Earth Lyapunov trajectory.

x0 ±∆x0 (km) y0 ±∆y0 (km) vx0 ±∆vx0 (km/s) vy0 ±∆vy0 (km/s)
Full orbit (-2.91781 ± 0.0001)e8 (0.0 ± 0.0001)e8 (0 ± 100)e−2 (6.01321 ± 100)e−2

Close approach (-0.25536 ± 0.001)e7 (1.19445 ± 0.001)e7 (-8.98694 ± 0.1)e1 (-11.0549 ± 0.1)e1
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Figure 10: (left) Position and (right) velocity in barycentric, synodic coordinate frame of L3 Sun-
Earth Lyapunov trajectory with initial conditions from Table 3. Period of full Lyapunov orbit is
365.2554 days, and total time of close approach trajectory is 1.8263 days.

Figure 11 provides the results of propagating the uncertainty of a solar probe through a close
approach. To emphasize the effects of the inclusion of the diffusion term, we provide Figure 12,
which compares the final position distributions of the Sun-Earth simulation excluding diffusion (i.e.
Q = 0) and including diffusion (i.e. Q ̸= 0). Figure 13 compares the simulation times of GBEES
vs. a MC simulation of similar resolution (note that epistemic uncertainty is not considered in the
MC simulation).
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Figure 11: Initially Gaussian uncertainty time-marched through a close approach of the Sun. To
model epistemic uncertainty, the coefficient of diffusion µ̄ = [1e−5 1e−5 1e−5 1e−5]. (top) The
contour plots represent the PDF propagated by GBEES about the nominal trajectory. Note that the
colors of the contours representing the magnitude of the probability of a PDF are not relative to
other PDFs, but instead are representative of probability differences throughout the individual dis-
tributions. (bottom) GBEES compared with a 500 particle MC simulation, to confirm the accuracy
of the method. A complete list of the simulation parameters can be found in Table A1.

CONCLUSION

We have presented a higher-dimensional extension to a grid-based, Bayesian-estimation algo-
rithm that accurately and efficiently propagates uncertainty for nonlinear systems. The proposed
method attempts to address the limitations of the EKF, as well as other commonly-used state es-
timation methods that propagate uncertainty. To improve the poor time complexity of the legacy
implementation, the proposed extension employs a binary search tree that efficiently stores the dis-
cretized PDF. Additionally, the algorithm considers the dynamics of the system when handling the
grid creation and deletion procedures. The theorized speedup of the extension was validated via ap-
plication to a chaotic, three-dimensional system; namely, the Lorenz attractor. Having confirmed the
improved efficiency of the new algorithm, we developed two realistic scenarios where the dynamics
of the PCR3BP (a four-dimensional, nonlinear system where the motion of a negligible mass is
governed by two massive bodies) would be utilized for the state estimation of various spacecraft in
different regimes of space. These scenarios represent areas where existing uncertainty propagation
methods may be lacking, either due to the infrequency of measurement updates or non-negligible
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Figure 12: Final position distributions of Sun-Earth close approach simulation with exclusion
of diffusion (left) and inclusion of diffusion (right), where the coefficient of diffusion is µ̄ =
[1e−5 1e−5 1e−5 1e−5]. For the left distribution, the x-limits (km) are [−3.414e6, −1.764e6]
and the y-limits (km) are [−1.242e7, −1.142e7], and for the right, the x-limits (km) are
[−3.584e6, −1.584e6] and the y-limits (km) are [−1.251e7, −1.135e7]. The number of cells in
the left distribution is 379,762, and the number of cells in the right distribution is 643,941.

epistemic uncertainty. The results of applying the proposed algorithm to these two scenarios are
compared with high-resolution MC simulations to validate their accuracy. As the primary limita-
tion of Bayesian estimation is the computational burden, we also compared the program run time
of GBEES with the high-resolution MC simulations. To ensure that both techniques were on equal
footing for a valid computational efficiency comparison, we set the number of particles in each
MC simulation equal to the number of grid cells above the probability threshold value in the final
discretized PDF, prior to obtaining a measurement update at each Mi.

We acknowledge that there is still work to be done if we are to reasonably argue that the standard
for orbit uncertainty propagation be replaced with our proposed Bayesian-estimation technique.
Said technique was applied to two scenarios where we speculated that the EKF would perform
poorly, either due to the infrequency of measurement updates or non-negligible epistemic uncer-
tainty. Having said this, we have yet to conduct a full investigation of the conditions under which
the EKF fails. Contemporary mission design is predicated on the measurement duty cycle being
frequent enough that the errors of the EKF from linearizing the dynamics are negligible. How-
ever, we anticipate that future missions to the Jovian and Saturnian moons will operate spacecraft
in chaotic trajectories that require more frequent measurement duty cycles than currently feasible.
Confirming this speculation will require a comprehensive review of the EKF applied to the R3BP
compared with other estimation techniques (Bayesian estimation, particle filters, GMMs, MC, etc.).
This will establish the limitations of the EKF when estimating chaotic trajectories. Additionally,
as demonstrated by the computational efficiency comparisons, GBEES fails to reach the speed of
the MC simulations for both scenarios. However, we emphasize that for a true MC simulation, the
spread of the final distribution will be unknown; in the examples provided, the MC simulations uti-
lized information from the GBEES distribution to provide a reasonable approximated distribution.
If the final distribution is unknown, the number of particles may be overestimated to ensure enough
are created to form an accurate approximation. That being said, computational efficiency is still the
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Figure 13: Comparing the computational time of GBEES vs. MC when propagating uncertainty for
the trajectory from Figure 11.

primary limitation of Bayesian estimation.

To address the computational limitation, future work will focus on improving the efficiency of
the algorithm in all facets. Concerning computational efficiency, our intention is to parallelize the
currently serial algorithm. The probability update step is embarrassingly parallelizable and could
easily be sped up by distributing the procedure over a GPU. Concerning the analytical formulation
of the problem, time-marching in the Cartesian system is susceptible to inefficiencies, due to the
number of fast-changing variables. Rapid, nonlinear changes in state require extremely fine time
steps to preserve stability of the scheme. Conversely, orbit elements do not exhibit the normal
variability of anomalistic motion as do the coordinates; and these parameters possess a geometric
significance clearer than that which can be deduced from the coordinates. By performing calcula-
tions in an orbital-element space, uncertainties remain close to linear for longer periods, improving
efficiency. Recent work has derived a local action-angle orbit element set for the CR3BP; employing
this coordinate system should result in a drastic improvement of computation speed.

APPENDIX

Listed in Table A1 are the parameters for each GBEES simulation. The code to recreate all of the
results provided in this paper can be found at:

https://github.com/bhanson10/GBEES.
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Table A1: GBEES simulation parameters
Simulation Grid Parameters Trajectory Parameters

{∆x, ∆y, ∆z} (LU, LU, LU) p̄ Initial Epoch (LU, LU, LU) Std. (LU, LU, LU) T (TU) Misc.

3D Lorenz Attractor {0.5, 0.5, 0.5} 2E-5 {-11.5, -10, 9.5} {1, 1, 1} 1
σ = 4
b = 1
r = 48

{∆x, ∆y, ∆vx, ∆vy} (km, km, km/s, km/s) p̄ Initial Epoch (km, km, km/s, km/s) Std. (km, km, km/s, km/s) T (d) Misc.

PCR3BP, Jupiter-Europa {1000, 1000, 0.1, 0.1} 3E-7 {-9.55341E5, 0, 0, 10.9711} {1000, 1000, 0.1, 0.1} 3.531
µ =2.5280E-5
µ̄ ={0, 0, 0, 0}

PCR3BP, Sun-Earth {1E4,1E4,1, 1} 1.5E-7 {-2.55364E6, 1.19445E7, -89.8694, -110.549} {1E4, 1E4, 1, 1} 1.826
µ =3.0542E-6

µ̄ ={1e−5, 1e−5, 1e−5, 1e−5}
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