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NON-GAUSSIAN RECURSIVE BAYESIAN FILTERING FOR OUTER
PLANETARY ORBILANDER NAVIGATION

Benjamin L. Hanson; Aaron J. Rosengren] Thomas R. Bewley:
and Todd A. Ely*

Gaussian estimation filters have successfully aided spacecraft navigation for decades.
However, future deep-space missions plan to operate orbilanders in unstable quasi-
periodic orbits and perform low-altitude flybys of outer planetary moons. These
complex trajectories may necessitate non-Gaussian filtering for accurate estima-
tion over realistic measurement cadences. To mitigate the inherent risk associated
with testing novel navigation software, non-Gaussian filters must be accurate, ef-
ficient, and robust. A novel Eulerian approach, Grid-based, Bayesian Estimation
Exploiting Sparsity, along with the contemporary landscape of filters, are evalu-
ated on these criteria through a Bayesian investigation, wherein the state uncer-
tainty of a Saturn-Enceladus Distant Prograde Orbit is propagated.

I. INTRODUCTION

Navigation has long adhered to an established assumption that is often underappreciated: space-
craft (S/C) uncertainty remains Gaussian on the time scale of the measurement updates.! This
assumption, while nontrivial, is operationally validated via frequent telecommunication with the
S/C, dividing the nominal (nonlinear) trajectory into rectilinear segments. Adequate measurement
cadences are assured for near-Earth S/C, but deep space missions pose advanced challenges. To
thoroughly explore outer planetary systems, mission designers often leverage unstable, periodic or-
bits, the dynamics of which are often highly chaotic.>* Such chaoticity, dominated by third- and
fourth-body perturbations, make linearizations accurate on much shorter time scales, thus requir-
ing more frequent measurement updates and station-keeping maneuvers. However, in deep space
regimes, ground-based communication has significant round-trip light-time delays, making com-
munication with the Deep Space Network (DSN) potentially insufficient.

A complement to the DSN, Autonomous Navigation (AutoNav), an onboard optical-based nav-
igation system,* has been successfully utilized for multiple small body flyby missions, but appli-
cation to missions beyond the asteroid belt prove more challenging due to the limited number of
optical targets. Moreover, the S/C that utilized AutoNav followed near-linear, cruising trajectories,
in contrast to the highly nonlinear tours conducted by outer planetary explorers like Cassini,” Juno®
and Juice.” Another such explorer, a proposed (now cancelled) Europa orbilander, planned to op-
erate in a 5:6 resonance trajectory in the Jupiter-Europa system prior to approaching Europa for
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Figure 1. The proposed Europa lander trajectory, where the leveraging maneuver
results in a low-energy capture. Image sourced from Hernandez-Doran et al., 2021.

either direct landing or capture.® Figure 1 demonstrates the single leveraging maneuver required
to insert into the Lo Lyapunov orbit along the stable manifold. From here, an exit maneuver along
the unstable manifold is performed to directly land on, or be captured by, Europa. However, from
the leveraging maneuver to Lo insertion, state uncertainty becomes highly non-Gaussian. For this
study, orbit determination was performed via UD filter.” To avoid divergence, the S/C planned to
receive frequent measurement updates and perform small, statistical maneuvers at the most sensitive
points of the orbit. To summarize, the mission design for the Europa orbilander was constrained by
an insufficiently robust estimation strategy, in turn limiting the potential for scientific return.

The decision to operate S/C in unstable trajectories that would require new estimation techniques
relies on the delicate balance of the potential for scientific discovery with the inherent added risk
of instability. Historically, deep space S/C have flown on ballistic trajectories to reach their des-
tination, transferring to stable, two-body orbits upon arrival. However, future missions to outer
planetary systems, such as the Enceladus mission, conclude that the potential outweighs the risk.
The Enceladus S/C is expected to operate in an unstable, near-rectilinear halo orbit (NRHO) and
perform a flyby within 10 km of the surface to perform in situ analysis of the plumes of gas ejecting
from the moon’s surface.'® As such, it is likely that the instability of these conditions will cause the
state uncertainty to become non-Gaussian faster than can be corrected by measurement updates.

Another orbit family of interest that leverages the chaotic dynamics of the circular restricted three-
body problem (CR3BP) to efficiently explore the three-body system is the Distant Prograde Orbits
(DPOs).'! DPOs are planar, Ms-centered, stable/unstable periodic orbits whose invariant manifolds
provide heteroclinic connections between L and Lo Lyapunov orbits, meaning a substantial volume
of the three-body system may be explored by forming chains of unstable periodic orbits connected
by low-energy transfers.'>!3 Figure 2 provides two trajectories in the Earth-Moon planar CR3BP
(or PCR3BP), one where the unstable manifold of an L; orbit is connected directly to the stable
manifold of an Ls orbit and another where a DPO is chained between the two. Depending on the
energy of the third-body, the DPO may be unstable, but operation there may be advantageous, as the
L1 —DPO-—Ls chain efficiently traverses different volumes of phases space with the option to idle
for multiple orbits between L1 and Lo. Due to the instability, uncertainty propagation for this orbit
family is best handled by non-Gaussian filters.

This investigation is arranged into six sections. Section I introduces the limitations of the current
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Figure 2. (left) An L, — L5 heteroclinic connection and (right) an L; —DPO— L het-
eroclinic chain in the Earth-Moon PCR3BP. Image sourced from Gupta et al., 2021.

S/C navigation methods exposed by future deep-space missions. Section II presents a comprehen-
sive analysis of the contemporary landscape of filtering methods, classifying the filters based on
their respective methodologies. Section III provides rationale for the filters compared in this study,
while also presenting a novel Bayesian approach to comparing the results of the approximations
propagated by filters, an alternative to the frequentist approach that is often followed. Section IV
defines the nonlinear dynamics and measurement models used in the Saturn-Enceladus DPO exam-
ple, the numerical results of which are presented in Section V. Section VI discusses in-depth the
results of the investigation and comments on the efficacy of the selected filters.

II. OVERVIEW OF THE LANDSCAPE OF RECURSIVE BAYESIAN FILTERS

Recursive Bayesian Filters (RBFs) are typically categorized as either linear or nonlinear based on
their prediction step. However, the ‘nonlinear’ label can be misleading, as it inherently implies that
the filter can adequately propagate uncertainty for nonlinear systems. The Unscented Kalman Filter
(UKF),'* for instance, is often classified as a nonlinear filter due to its prediction step integrating
the true, nonlinear dynamics of the system. While more effective than a linear KF which uses an
analytical linearization for prediction, such as the Extended Kalman Filter (EKF) does, the UKF
performs a statistical linearization at the correction step which limits its efficacy when uncertainty
becomes non-Gaussian.'>!® Therefore, we deem it appropriate to more broadly label RBFs as either
Gaussian or non-Gaussian, indicating whether they can represent uncertainty as non-Gaussian. This
distinction will be utilized throughout the remainder of the paper.

The evolution of the probability density function (PDF) p(z, t) of a stochastic process X (t) € R?
governed by a combination of deterministic and random forces can be described by the Fokker-
Planck equation:

op(x,t) ofi(x,t)p 9?Qij(z,t) p(z, 1)
o Z 8:6 Z Z 0x;0x; M

=1 21]1

where = (21,...,2q), fi(x,1) is the i component of the deterministic system dynamics f at
realization z and time ¢, and Q;;(x, t) is the (i, j)™ element of the stochastic state disturbances Q.
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Figure 3. A thorough categorization of the contemporary landscape of RBFs.
Underlined labels are the methodologies, italicized labels further subdivide the filters

within their groupings, and large labels represent the filters compared in this paper.

In general, Equation (1) is non-integrable, and p(x,t) cannot be described by a finite number of
parameters. The optimal solution assimilates data via Bayes’ theorem:
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where p(z, t*1)) is the a posteriori, p(y® |x) is the measurement likelihood, p(zx, (7)) is the a
priori, and C' is a normalization constant. Again, in general, the number of parameters necessary to
represent p(, t(k+)) is not finite. Thus, the goal of the RBF is to approximate and propagate the
full PDF with as few parameters as possible while incorporating information from measurements
updates. We now outline the different methodologies that shape the contemporary landscape of
RBFs, depicted schematically in Figure 3.

Kalman Approach

In the Kalman approach, uncertainty is approximated as Gaussian, or as a mixture of Gaussians.'
For linear systems with linear measurements, Gaussian uncertainty remains Gaussian globally. In
this case, the optimal solution may be represented as the first and second central moments of a
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In the presence of nonlinearities, Gaussian filters are nonoptimal, but uncertainty may remain nearly
Gaussian should the measurement update frequency be high relative to the speed with which
changes. Analytical linearizations of the dynamics and/or measurement models, a la the EKF or
the UD filter, or statistical linearizations of the point distribution representation, a /a the UKF or the
Ensemble Kalman Filter (EnKF),!” are performed to approximate the full PDF as Gaussian. How-
ever, when measurement updates are sparse, uncertainty can be become highly non-Gaussian, and
Gaussian filters are no longer adequate. Mixture filters propagate sets of first and second moments,
p; and 33;, representing non-Gaussian uncertainty as the weighted superposition of the Gaussian
components:

M M
p(x) = Zai./\/'(a: | pi; ;) where Zai =1 and o; >0.
i=1 i=1

The standard of these mixture variants, the Gaussian Sum Filter (GSF),'® predicts and corrects
each Gaussian component separately via the Kalman formulation. When the number of Gaussian
components M is sufficiently high, the standard GSF provides a near-optimal approximation to
the full PDF. A limitation of this filter is that the weights of the Gaussian components «; are in-
variant. Adaptive entropy-based Gaussian mixture information synthesis (AEGIS)'® addresses this
limitation via a splitting algorithm triggered by an entropy flag that monitors the nonlinearity of
the dynamics. In this manner, the effect of nonlinearity is treated by systematically increasing the
number of Gaussian components.

Lagrangian Approach

In the Lagrangian approach, uncertainty is modeled as an ensemble of particles and propagated
via the evolution of the particles subject to the underlying dynamics.”’ In particular, the Monte
Carlo (MC) method approximates the full PDF as a point-mass representation, i.e., a weighted
superposition of Dirac delta functions:

M M
p(x) = Z a;6(x —x;) where Zai =1 and o; >0.
i=1 i=1

Standard MC assigns an equal weight (a; = 1/M) to each sample x;, but requires knowledge of the
true distribution to sample from. To address this, Sequential Importance Sampling (SIS) algorithms
assign weight based on an importance sampling distribution. Measurement updates are incorporated
in the form of weight adjustments, but this often leads to sample degeneracy, where the majority of
the probability is concentrated to a small number of samples. Particle filters use a resampling step
to disperse probability across a new, focused ensemble; variants differ mainly in either their choice
of importance sampling distribution or resampling method. Bootstrap Particle Filtering (BPF),”!
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Figure 4. 2D schematic depicting the notation of GBEES.

for instance, chooses the transition prior as the importance distribution. Another variation, Auxil-
iary Particle Filtering (APF),?? exploits the latest measurement in the prior prediction step to favor
particles with higher likelihoods when sampling the a priori. Ensemble Gaussian Mixture Filtering
(EnGMF),?? a combination of a mixture filter and an SIS filter (thus the overlap in Figure 3), asso-
ciates a Gaussian kernel with each particle. The Gaussian kernels are updated in the same manner
as the GSF, and resampling is performed on the resultant Gaussian mixture.

Eulerian Approach

The Eulerian approach considers fixed points in space and evolves probability at said points.?’
Assuming dX (t) is near-deterministic, i.e. @ is relatively small (as is the case for most astrody-
namic systems), Equation (1) is hyperbolic and satisfies the conservative form of the d-dimensional



advection equation:
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The fluid mechanics community has devoted significant effort to developing sufficient methods
for numerically discretizing and time-marching hyperbolic PDEs, but rarely have such methods
been applied to uncertainty propagation. One such filter, Grid-based Bayesian Estimation Ex-
ploiting Sparsity (GBEES),?* implements a Godunov-type finite volume method, a fully discrete,
flux-differencing technique that uses a Taylor series approximation of Equation (3). For clarity,
a two-dimensional example depicting how time derivatives are fully converted into spatial ones is
provided:
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where k represents the time step, Az and Ay are the grid widths in the x- and y-directions respec-
tively, g ).) is the probability at grid cell (,7) at t = k, and fluxes F' and G are defined at the
interfaces of the grid, thus the half-step indexing (Figure 4 displays an example two-dimensional
grid schematically). GBEES treats probability as a fluid, flowing the discretized PDF through phase
space subject to the dynamics of the system. Time-marching high-dimensional, discretized PDFs
is generally computationally infeasible, but GBEES exploits the fact that the PDF is near zero over
most of phase space, thoroughly decreasing the computation cost of the algorithm. Through the
inclusion of higher-order corrections and flux limiters, the filter is 2"%-order accurate and total vari-
ation diminishing. The filter avoids degeneracy by matching the uncertainty growth with the grid
growth, thus maintaining resolution through measurement updates.

ITI. BAYESIAN FRAMEWORK FOR FILTER EVALUATION

Having extensively covered the landscape of RBFs, we now list those compared in this analysis,
as well as the rational for their inclusion. Lagrangian methods converge to the optimal solution as
the number of particles approach infinity. Propagating a nearly-optimal number of particles may
be infeasible (as well as ambiguous) for S/C estimation. Therefore, a large smooth bootstrap is
used as a used a benchmark for both accuracy and efficiency (exact implementation of this model
is discussed later in this section). The UKF is compared as a Gaussian control, as its nonlinear
prediction step makes it more accurate than other linear, Gaussian filters. The non-Gaussian RBFs
compared are the BPF, the EnGMF, and GBEES. The BPF is the conventional approach to particle
filtering, while the other two methods are more state-of-the-art. Recent efforts have focused on
reducing the computational cost of determining the optimal bandwidth parameter for the EnGMF
samples.”>?% Similarly, GBEES has been significantly computationally optimized such that it may
be feasibly applied to astrodynamic uncertainty propagation.?’ In spite of these improvements, none
of these non-Gaussian filters have been used operationally as the primary method for S/C navigation.
To achieve their practical application, non-Gaussian RBFs must be accurate enough to outperform
their Gaussian counterparts in fast-changing nonlinear systems, robust enough to handle diverse
measurement cadences while avoiding degeneracy, and efficient enough for real-time operation.
In this investigation, the performances of the selected RBFs are evaluated based on these criteria.
Specifically, accuracy is assessed on probability distribution similarity, degeneracy is assessed on
uncertainty resolution maintenance, and efficiency is assessed on computation time.
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Figure 5. Measurement update in truth model vs. UKF, BPF, EnGMF, and GBEES.
Equal information is provided to the BPF, EnGMF, and GBEES (i.e., Mparticles =
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Measurement update

The assimilation of a nonlinear measurement with a Gaussian a priori distribution may not result
in a Gaussian a posteriori. A critical drawback of Gaussian RBFs is their limited ability to represent
nonlinear measurement functions, especially when the resulting distribution deviates significantly
from Gaussianity. In Figure 5, a nonlinear measurement update comparison is performed on a two-
dimensional test problem. A highly-refined discretized implementation of Equation (2), used as a
truth model, is compared with the results of the selected RBFs (UKF, BPF, EnGMF, and GBEES).
The a priori distribution p(x, t(O*)) is a Gaussian with statistics
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and the nonlinear measurement function is
y = h(z,v) = |z| +v, where v~ N(z'|0;R),

and | - | represents the /2-norm. In general, R is the measurement noise covariance matrix (in this
case it is scalar), i.e., v is uncorrelated, zero-mean Gaussian noise. The measurement statistics are

y(()) =1 and RO =0.05.

The update step is performed for each model to obtain the a posteriori p(x, t(0+)). To ensure
equivalent information is provided to the two non-Gaussian RBFs, we set the size of the ensemble
for the BPF and EnGMF equal to the number of grid cells for GBEES. Qualitatively, it is obvious
that the non-Gaussian filters return more accurate a posteriori than the UKF compared with the
truth model. In fact, the truth model update step is identical to that of GBEES, just at a lower
level of refinement, further emphasizing the fundamental nature of GBEES. Exact quantification of
distribution similarity is now covered.

Distribution similarity metric

The frequentist approach often pursued in these types of analyses assumes that many Monte Carlo
runs of the filter may be performed to calculate an average accuracy and consistency. Practically,



Algorithm 1 Calculate Bhattacharyya Coefficient of (P, Q)
Inputs: P,Q : R? — [0,1], n > 1

bounds < [00 - 14x1, —00 - 14x1]
grid < Ogxn, > finding bounding region
fori=1toddo
bounds|i, 1] «— min {b[¢, 1], min{x[i] € support(P U Q)}}
bounds|i, 2] + max {b[¢, 2], max{x[i] € support(P U Q)}}
grid[i] < {linear set from bounds][s, 1] to bounds|, 2] of size n}
end for

X < 0payg

P* Q% < 0,4,

count < 1 > discretizing P, () over
for xr1 = 1ton do

for z; = 1tondo
X[count] < {grid[1, z1],..., grid[d, z4]}
P*[count] < P(x|count])
Q*[count] +— Q(x[count])
count <— count + 1
end for

end'for
P* < P*/sum(P*)
Q"+ Q" /sum(Q")

BC «+ 0 > calculating BC'(P*, Q™)
for i = 1to n? do

BC + BC + /P*[i]Q*[i]

end for

this may not be feasible due to time constraints. Instead, we perform a deterministic, Bayesian com-
parison of the filter-estimated distributions with the representative truth model. The Bhattacharyya
coefficient (BC'),?® a metric of similarity of two probability distributions P and @, is defined as

C(P,Q) = Z VP(@)Q(x) where Y CRY |y|<oo, and 0<BC<1; (5

rEX

BC(P, Q) = 0represents no overlap in P and ) while BC (P, Q) = 1 represents perfect overlap in
P and Q. This metric is applicable to the comparison of any discrete distributions, either Gaussian
or non-Gaussian, making it well-suited for this application. The process of calculating BC for two
probability distributions is summarized in Algorithm 1.

Algorithm 1 ensures that the BC'(P, Q) may be calculated in the cases where P and () are either
both continuous, both discrete, or one of each. A critical step is the creation of P* and Q*, as
it ensures that the distributions are both unitary over x. Utilizing this framework, a quantitative
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Figure 6. Algorithm 1 applied to a two-dimensional test problem (n = 10 and BC(P, Q) = 0.1595).

measure is calculated for the two-dimensional test problem shown in Figure 6. P is taken to be
a discrete point mass distribution, while () is continuous Gaussian distribution. As P is discrete,
nearest interpolation is utilized for calculating P(x) when @ ¢ support(P). As () is continuous,
a finite bounding region may be constrained to consider the 3o-ellipse defined by the mean and
covariance. A Cartesian grid x is formed over the bounding region, and BC (P, Q) is calculated.

This procedure is used to calculate a quantitative metric for the test problem from Figure 5. Figure
7 gives the BC for the UKF, BPF, EnGMF, and GBEES compared with truth distribution, both pre-
and post-measurement update. As expected, the non-Gaussian filters outperform the UKF, and the
EnGMF and GBEES outperform the BPF. This metric is used as a measure of accuracy for the
remainder of the paper.

Uncertainty resolution metric

Particle degeneracy is a key drawback to Lagrangian methods, and a metric for measuring degen-
eracy is uncertainty resolution. For this investigation, uncertainty resolution is defined as

Number of particles/grid cells

Uncertainty resolution =

Volume of uncertainty ©
high uncertainty resolution represents a non-degenerate ensemble, while low uncertainty resolution
represents a near-degenerate ensemble. Standard Lagrangian methods are generally either (a) de-
generate over long propagation windows or (b) inefficient. In case (a), too few ensemble members
are initialized at the start of the propagation period, and as uncertainty grows, resolution shrinks. At
measurement update epochs, probability is concentrated to a few particles, and without substantial
process noise, the repetition of this process results in degeneracy. In case (b), degeneracy is planned
for by initializing too many ensemble members, with the expectation that the resolution will shrink
to an acceptable level at the measurement update. This results in inefficiencies at the initial stages
of the propagation period. This metric is used as a measure of degeneracy for the the non-Gaussian
RBFs analyzed.

Truth implementation

Filters are often qualitatively compared to large MC simulations meant to represent point-mass
approximations of the truth distribution. There are a couple problems with this. First, the standard
MC implementation does not allow for measurement updates, and resampling directly from the
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Figure 7. BC for the a priori and a posteriori distributions of the UKF, BPF, EnGMF,
and GBEES compared with the truth model from Figure 5.

measurement likelihood results in loss of the a priori. Second, equally-weighted MC ensembles
provide less information for comparison than weighted ensembles based on likelihood. To address
both issues, we represent the truth distribution as a large smooth bootstrap.””3° The steps for
implementing the truth model are now explained in detail.

(k=1)

To begin, ensemble members x; are sampled from the initial Gaussian a priori uncertainty
N (| p=1; =1 and probability Pi(k_l) is calculated:

2ED ~ N(z | p*=D 2k and pl=1) _ /\/(a:gk_l) | k=D, k=1

i A -

where Zf\il Pi(k_l) = 1. By attributing probability to the initial ensemble members, more accurate
comparisons between filter-estimated and truth distributions may be made. Once initialized, the
ensemble members are then propagated via the system dynamics up to a measurement update epoch
() At this point, the members are resampled from the estimated a posteriori p(x, t<k+)). Each a
posteriori datum is treated as a Gaussian kernel with covariance 2@ determined by Silverman’s

rule of thumb,?!

B0 (gt z

where Mik) is the number of datum in p(a, t**)) and »(*) is the covariance of p(z, t*1)). New
members are sampled from p(zx, t(*)) and zero-mean Gaussian noise N (x |0; 25}“)) is superim-

(k)

posed. From here, the new samples ;" are propagated until the next measurement update epoch.

Resampling from the estimated a posteriori ensures that information from the a priori is com-
bined with the information from the measurement, while also reintroducing random Gaussian noise
into the simulation. As GBEES implements Equation (2) most fundamentally, its estimated a pos-
teriori is used as the model for resampling from at each measurement step. We highlight that, while
sampling from the estimated distribution may introduce some bias towards GBEES, the measure-
ments in this investigation have small uncertainties relative to the a priori, making the GBEES a
posteriori distributions nearly identical to the likelihood distributions.

11
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Figure 8. The discretized zero-velocity curves in the three-body problem.

IV. SYSTEM MODELS
Dynamics model

The state and orbital dynamics of a S/C in the PCR3BP in the synodic, non-dimensional frame
are

. i
e= Y] and @=f(2)=|,. (1—u)(Z+u) pla=1+p) | 5 (M
z 2+ — - - P
y —2 4y — Uil

1 T2

where 1 = po/(p1 + p2) is the mass ratio, u; represents the gravitational parameter of body m;;,
and 7; is the distance to body m;.

Jacobi bounding. One integral of motion exists for the PCR3BP, the Jacobi constant, and is
defined as

2(1 — 2 . .
) 2y - i ®)
1 r2

C =2+ y2 +
because GBEES is a 2"d-order accurate numerical scheme, Equation (8) is not necessarily con-
served. To compensate for this, the requirement can be hardcoded into the grid generation. The
initial discretized PDF has a minimum and maximum C'. As the grid grows in phase space, forbid-
den cells are those that fall outside of this bound and are not created. Admissible cells fall within
the initial Jacobi bounds and are inserted into the grid as needed. Figure 8 presents an example of
this cell differentiation for the zero-velocity curves, i.e. where £ = ¢y = 0. Using Jacobi bounding,
the conservation of C' is artificially ensured in GBEES.

Measurement model

The measurement model is

o V(e =14 p)? +y?
y=|0| =h(z)= tan™"! (x—zl,,—i-u)
P (z—1+p)a+yy
P

12
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Figure 9. A Saturn-Enceladus DPO in the synodic frame; (leff) position and (right) velocity.

where p is the range, 6 is the azimuth angle, and p is the range-rate, all relative to msy. Measurements
are taken to be the true state at epoch, transformed by h with zero-mean Gaussian noise.

V. NUMERICAL RESULTS
Trajectory properties

The selected RBFs are evaluated on a Saturn-Enceladus DPO with initial state

1.001471 (LU) 238879.876159  (km)
20 _ —1.751810e-5  (LU) B —4.178575 (km) |

7.198783e-5 (LU/TU) 9.079038e-4  (km/s) |’

1.363392e-2  (LU/TU) 1.719497e-2  (km/s)

propagating with the dynamics from Equation (7) results in the synodic frame and Saturn-barycentric
inertial frame trajectories in Figure 9; JPL’s Mission analysis, Operations, and Navigation Toolkit
Environment (MONTE)*? is used to convert between the two frames. Other properties of the trajec-
tory are provided in Table 1.

Table 1. Saturn-Enceladus DPO properties

o LU (km) TU (s) C SI T (hr)
1.901110e-7 238529 18913 3.0 4 7.809821e-5 3.018700e+2 19.58109

Filter parameters

The filter parameters are provided in Table 2. For all filters, process noise is negligible, i.e.,
@ = 0. The range, azimuth, and range-rate uncertainty magnitudes are consistent with those derived
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from optical limb measurements beyond the asteroid belt.>> Note that the initial size M ©) of the
BPF, EnGMF, GBEES are equal, while the size of the truth ensemble is an order of magnitude
larger. The measurement cadence At,, evenly splits the propagation period into 4 segments, ending
the simulation at the initial condition. As a rule of thumb, pgyesh is set such that > 75% of the initial
grid cells exceed presh, and the grid width vector A is set to half of the initial Cartesian standard
deviation in all directions, or 10 km in position and 1e-3 km/s in velocity. The truth, UKF, BPF, and
EnGMF are numerically integrated with Runge-Kutta 8(7).3*

Table 2. Saturn-Enceladus DPO filter parameters

Model Measurement Uncertainty and Cadence M (© Misc.
Truth op = 20 km* Se+5 Propagation scheme: RK8(7)
UKF op = 1.74533e-2 rad* N/A Propagation scheme: RK8(7), « = 1e-3, 3 =2,k =0
BPF 0, = 2.0e-3 km/s* 28561 Propagation scheme: RK8(7)
EnGMF Aty =T/4 = 4.895 hrs* 28561 Propagation scheme: RK8(7)
GBEES *parameter applies to all models 28561  Diresh = le-7, A = [10 km, 10 km, le-3 km/s, 1e-3 km/s]
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Figure 10. Saturn-Enceladus DPO true synodic state uncertainty.

Uncertainty propagation

With the framework set, the state uncertainty of the Saturn-Enceladus DPO is propagated using
the selected RBFs with conditions and properties from Tables 1 and 2. Figure 10 displays the true
uncertainty distribution propagated by the large, smooth bootstrap. While the MC members are
4D, the states are separated and plotted by position and velocity. Both position and velocity curves
become highly non-Gaussian at the particular measurement cadence, as expected.
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The color changes throughout indicate when a measurement update has occurred, where the a pos-
teriori p(x, t*1)) is the resultant assimilation of the a priori p(z,t*~)) and the likelihood distri-
bution p(y(k) |z). The distributions shown are not separated by equal time intervals; instead, they
are spaced to optimize visualization.

For brevity, the results of the selected RBFs are presented in Figure 11. Qualitatively, these
results may be compared with the truth model in Figure 10. The UKF implementation diverges in
the prediction step after the first nonlinear measurement update, thus the absent PDFs beyond this
epoch. The BPF implementation becomes highly degenerate after the three measurement updates,
resulting in only 6 unique particles by the end of the propagation period. The EnGMF ensemble
means, covariances, and weights are utilized to create isocontours by sampling points across the
domain space and superimposing the probability from each member. The isocontour levels are set
to [0.68,0.95,0.997], a la the empirical rule. Although sparse, these contours at first glance align
more consistently with the truth distributions.

The GBEES-propagated distribution is a discretized, 4D PDF, but integrating over the velocity-
and position-spaces returns the 2D position and velocity PDFs, respectively. This is done via a
numerical implementation of the following formulae:

p(z,y) = /Q

The isocontours for GBEES are also set to the empirical rule values. The GBEES contours are
generally more complete than the EnGMEF, and align more closely with the true ensembles around
epoch t = ¢(3). We now aim to quantitatively compare these results using the defined metrics.

p(x)didy and p(:z':,y):/ p(x)dzdy.

(@,9) Q(a,y)

Figure 12 displays the time history of the quantitative metrics of comparison for the UKF, BPF,
EnGMF, and GBEES. The position/velocity error is take to be the /2-norm of the difference between
the weighed position/velocity mean of the truth distribution and the filter distribution. Table 3 lists
the final position error, velocity error, and BC for each filter.

Table 3. Final position error, velocity error, and BC for selected RBFs

Model Position Error (km) Velocity Error (km/s) BC

UKF 1.835640e+6 1.141540e+2 0.000
BPF 1.056313e+2 3.016343e-2 0.708
EnGMF 1.801216e+1 3.789827e-3 0.845
GBEES 1.414935e+1 3.960708e-3 0.937

The uncertainty resolution time histories of the non-Gaussian RBFs are compared in Figure 13.
The volume of uncertainty from Equation 6 is calculated using a d-dimensional implementation
of the convex hull*® applied to the 4D truth ensembles from Figure 10. The volumes are then
normalized by the initial volume at ¢(°), thus the initial uncertainty resolutions for each of the non-
Gaussian RBFs at ¢(9) is equal to M(9). Due to the lack of process noise, for the BPF M (k1) <
M*) meaning each measurement update pushes the BPF towards degeneracy. Because the EnGMF
resamples at each measurement epoch using the Gaussian sum filter update step, M ++1) = A7),
GBEES adaptively grows the discretized grid with the uncertainty, thus it maintains uncertainty
resolution better throughout the propagation period.

Finally, the computational efficiency metric is normalized computation time, provided in Figure
14. All models are run in C or C++ on a single core of a 3.49 GHz Apple M2 Max chip. The
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Figure 13. Uncertainty resolution of the BPF, EnGMF, and GBEES implementations.
Measurement update epochs are marked by vertical dotted lines.

filter computation times are normalized by the truth model computation time. For reference, the
truth model takes ~4.00 hours to perform the ~19.58-hour propagation. As expected, the UKF
implementation is the fastest. The BPF is about 5 x faster than GBEES, and the EnGMF is slightly
slower than the BPF due to the intricate update step, but is much more accurate with the same size
of ensemble. To match the accuracy of GBEES using Lagrangian methods would require more
members, though the exact number of members necessary is ambiguous. This highlights an issue
with the Lagrangian approach; achieving specific accuracy thresholds requires an inefficient trial-
and-error process. Although GBEES is the slowest among the filters analyzed, it is still nearly
4x faster than the truth model, achieving a BC' = 0.937 by the end of the propagation period.
Depending on whether accuracy or efficiency is prioritized, either the EnGMF or GBEES may be
utilized to effectively propagate non-Gaussian uncertainty.
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VI. CONCLUSION

State-of-the-art S/C navigation algorithms approximate uncertainty as Gaussian. This approxi-
mation has sufficed for all missions hitherto due to frequent measurement correction via telecommu-
nication. However, future missions plan to operate outer planetary orbilanders in unstable regimes
where the state-of-the-art may be insufficient due to fast-changing state uncertainty and round-trip
light-time delays; in these cases, S/C navigation may be enabled through the use of non-Gaussian
filters. The contemporary non-Gaussian recursive Bayesian filters, while more accurate than their
Gaussian counterparts, can be inefficient when applied to high-dimensional systems, require am-
biguous resampling/splitting procedures to avoid degeneracies, or both. For practical onboard ap-
plication, more robust solutions are required.

In this investigation, the capabilities of a fundamentally different non-Gaussian filter, Grid-based
Bayesian Estimation Exploiting Sparsity, are compared to the contemporary landscape via a Bayesian
inference framework. First, the measurement update step is demonstrated on a nonlinear measure-
ment function for the UKF, BPF, EnGMF, and GBEES implementations. In the 2D test example,
the UKF suffers from an inability to represent non-Gaussian uncertainty and the BPF faces major
particle degeneracy, while the EnGMF and GBEES return accurate approximations of the truth a
posteriori, with the results of GBEES being slightly more accurate when provided the same amount
of information. The measurement update step is crucial to the success of the non-Gaussian filter,
and this test example highlights the stengths and weaknesses of the selected filters.

In addition to showcasing the capabilities of GBEES, this paper presents an alternative method
to quantifying the accuracy of filter-estimated distributions. Historically, a frequentist approach has
been taken to determining accuracy, where filters are run numerous time and success is deemed
a measure of the average position error. In these studies, a lack of emphasis is placed on match-
ing full probability distributions, opting for first and second moment accuracy instead. For highly
non-Gaussian distributions, these low-order moments do not convey complete information. The
Bayesian approach followed here evaluates accuracy on full probability distribution similarity quan-
tified by the Bhattacharyya coefficient. A smooth bootstrap represents the truth distribution, with
resampling from estimated a posteriori performed after measurement updates for the purpose of
incorporating prior knowledge. This model also serves as the baseline for efficiency, a key consid-
eration when evaluating operational practicality.
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Finally, the Bayesian framework is applied to the state uncertainty propagation of an unstable
Saturn-Enceladus Distant Prograde Orbit. The selected recursive Bayesian filters propagate the
initially Gaussian uncertainty for a full period, or about 19.58 hours, receiving nonlinear measure-
ment updates every fourth of the period, or about 4.895 hours. The measurement function includes
range, azimuth, and range-rate, and the magnitude of the measurement uncertainties reflect those ex-
pected from optical navigation measurements, as round-trip light-time delays from the Deep Space
Network may render measurement corrections through this channel unreliable. The UKF imple-
mentation diverges shortly after performing the first measurement update. The BPF implementation
estimates the uncertainty more accurately for longer than the UKF, but slowly succumbs to particle
degeneracy with each measurement correction. The EnGMF utilizes a Gaussian sum update step
with kernel density estimation to resample the mixture model from members of higher likelihood.
This procedure disperses the probability more evenly across the distribution, making it an effective
technique when process noise is low. Lastly, GBEES performs most consistently, returning a BC'
value near 1 for the entirety of the propagation, finishing the propagation period with position and
velocity error nearly within 1o of the measurement uncertainty. GBEES also demonstrates the ca-
pability of more aptly maintaining uncertainty resolution throughout the prediction step, while most
Lagrangian methods tend towards particle degeneracy. While GBEES is more computationally in-
tensive than the other filters compared in this paper, it is much more efficient than the large truth
model used for comparison.

Future work will focus on enhancing the efficiency of GBEES, making it computationally com-
petitive with other non-Gaussian filters when applied to six-dimensional systems. This may be
achieved through parallelization, as many subprocesses within GBEES are embarrassingly paral-
lelizable. To extend beyond low-fidelity models, effort is also being focused on embedding JPL’s
MONTE within the algorithm, such that acceleration may be sourced from ephemeris-quality mod-
els. These two advancements may enable onboard autonomous estimation and navigation for outer
planetary orbilanders. GBEES may also serve as an accurate truth model for assessing when Gaus-
sian filters are likely to diverge.

APPENDIX

GBEES is open-source and can be accessed at https://github.com/bhanson10/GBEES. The Saturn-
Enceladus DPO example from this investigation is provided in the repository.
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