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Abstract—This paper considers the 3D rotation estimation
of a moving platform from 2D images captured by a camera.
Assume that a circular pattern marker is on the flight deck of
a ship and quadrotor hovers on the center of a platform. The
quadrotor has a camera that captures 2D images of markers and
measures the distance between markers. The circular pattern of
markers changes to an ellipse as the platform rotates. The ellipse
equation can be derived from marker positions on an ellipse, and
a platform’s rotation sequence can be determined by leveraging
geometry and trigonometric functions. As the platform’s rotation
can be estimated, the quadrotor is able to decide the timing that
platform rotation is within the quadrotor’s capacity to land safely.
A simulation and a hardware test were performed to verify the
estimation method, and the estimation error was discussed.

Index Terms—Rotation estimation; Quadrotor landing; El-
lipse; Trigonometric function

I. INTRODUCTION

The 3D rotation estimation of a moving platform based on
a 2D camera image is a valuable method for safely recovering
aerial vehicles to the platform. Quadrotors and other Verti-
cal Take Off and Landing Unmanned Aerial Vehicles(VTOL
UAVs) have limited operation time because of their battery
capacity. Thus, these assets are required to land on moving
platforms after missions. There is a study about extending
a quadrotor’s operation time by a tethering power cable[1].
However, quadrotors must return to the base platform for
maintenance or to prepare further operations. Platforms on
the sea, such as navy ships, move in 6-DOF motion during
operations because of winds and waves. Motivated by the navy
helo landing on the navy ship flight deck[2], we suggest the
rotation estimation in the quadrotor landing process. In the
video, a navy helo pilot tries to land on a navy ship in a
rough sea. A pilot waits for the platform motion to be stable
enough and safely lands on the flight deck.

Researches about vision-guided autonomous UAV landing
and Autonomous Landing of an Aerial Vehicle on Ground
Vehicles consider precise landing on a target[3][4]. However,
in these studies, the target marker is stationary or moves

Fig. 1: Conceptual image of a quadrotor landing on the navy
ship after its mission. The circular pattern markers on the flight
deck appear as an ellipse as the ship rotates.

translationally but did not consider platform rotations. Al-
though the landing problem on a ship was discussed in another
research, this study focused on the estimation algorithm of the
ship’s position. Still, it did not consider the ship’s rotational
motion[5]. Since the ship’s roll is approximately maximum
±30→ at sea state 6, it could be severe to damage UAVs[6].
Hence, a UAV needs to stand by until the rotational motion is
within its capacity for a safe landing.

ArUco markers were broadly used for estimating platform
pose and aiding the autonomous landing of UAVs[7][8][9].
Although these markers help estimate rotations, setting up
ArUco markers on the navy ship flight deck is problematic.
ArUco markers are conspicuous so that enemy reconnaissance
aircraft can easily spot the navy ship. Also, the algorithm
that distinguishes the ArUco markers could be ineffective if
markers are damaged in combat situations. Hence, we decided
to study using simple circle markers in a circular pattern on
the flight deck for estimating rotations.

We assume a quadrotor has a camera that can obtain 2D
images and recognize markers on the flight deck, as seen in
Figure 1. The camera can acknowledge circle images and



(a) Zero rotation (b) 20→ Roll

Fig. 2: The conic section camera images as an object rotate.
OO is the circular shape object center, ω is regarded as the
camera image sensor, M is the center of the image on ω, and
OP is the projection center.

measure the pixel position of the circles[10]. Initially, the
centers of the camera image sensor and the circular pattern are
aligned on the circular corn’s revolution axis[11]. As the object
is rotated, the contour of the image becomes an ellipse, and the
eccentricity is larger. The ellipse equation can be determined
by marker positions, and by analyzing the geometry of the
ellipse, the rotation estimation can be achieved[12].

The simulation model platform replicating ship motion
and circular pattern markers were developed to imitate conic
section camera images. As the platform rotated, circular pat-
tern markers formed an ellipse, and the rotation estimation
algorithm evaluated the rotation angles of the deck. The
hardware test was also conducted to verify the performance
of the method.

Overall, this paper mainly discusses the followings: First,
the characteristics of camera images and ellipse properties.
Second, the rotation estimation process by utilizing the geom-
etry of the ellipse. Lastly, analyzing simulation and hardware
test results.

The organization of this paper is as follows. Section II is
preliminary that describes the camera image conic section and
ellipse equation. The rotation sequence chosen for rotation
estimation is also discussed. Section III provides details of
the rotation estimation process. By using marker positions, the
ellipse equation is determined, and the rotation sequence can
be calculated by the ellipse geometry. Section IV presents the
simulation and hardware test for validating the performance of
the rotation estimation method. Lastly, the limitation of this
study and future works are described in Section V.

II. PRELIMINARY
A. Camera Image

Camera images are reflections of three-dimensional(3D)
objects on a two-dimensional(2D) plane. In 2D camera images,
the object gets smaller as it goes far from the camera, and if the
object is continuous, it finally converges at a single point[13].
Thus, camera images are distorted by this effect, also known
as the foreshortening effect. Figure 2 shows camera images on

Fig. 3: Ellipse with the center (m,n), semi-major axis p, and
semi-minor axis q. ε, and ϑ are the tilt angles of an ellipse.

the image plane ω depending on the rotation of the object plane
OO. The camera image is the conic section of corn formed
by the revolution axis, a straight line connecting OP and OO.
The shape of the projected images on ω, blue, and red dashed
lines in Figure 2 change from a circle to an ellipse. Also, since
the corn’s axis tilts, the circle’s center M shifts to the circle
of the ellipse M

↑[14][15]. Based on these properties, a camera
model was built and used to simulate the 2D camera image
from 3D points. The camera model and conic section can be
defined by camera characteristics, such as pixel resolution,
focal angle, and focal length[16].

B. Ellipse Equation
Section II-A describes shape changes on the camera image

plane as a circular object rotates. Since the camera image
appears in an ellipse depending on the object rotation, rotation
estimation can be achieved by analyzing the ellipse. One can
write the ellipse equation that defines Figure 3,

(x→m)2

p2
+

(y → n)2

q2
= 1, (1)

where (m,n) is the center of the ellipse position in the body
frame. (p, q) are the length of the semi-major and semi-minor
axis, relatively. The ellipse equation can be rewritten in the
polynomial form[17],

ax
2 + bxy + cy

2 + dx+ ey + f = 0. (2)

As (2) has 6 unknown constants (a, b, c, d, e, f ), minimum
of 6 positions (x, y) are required to determine the ellipse.
Rearranging (2) by moving the term ax

2 to the right-hand
side of the equation, the matrix form of the ellipse equation
becomes,
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where a = 1, and (xi, yi) is the position of i-th point on
the ellipse. Since a is defined, minimum of 5 points are



(a) Zero rotation (b) Roll (c) Pitch

Fig. 4: Top view figures of markers on a platform. Small
circles are markers, and the black circle is the bow marker.
Markers form a circle with zero rotation but an ellipse when
the platform rotates. In the cases of only roll or pitch, the
direction of rotation is ambiguous.

required to define the ellipse equation. 5 unknown constants
can be determined by solving (3), and the ellipse parameters
(m,n, p, q) in (1) can be written as[18][19],

m =
cd→ bf

b2 → ac
, n =

ae→ bd

b2 → ac
,

p =

√
2(ae2 + cd2 + fb2 → 2bde→ acf)

(b2 → ac)(
√
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,
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√
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.

The tilt angle of an ellipse represents the angle between the
minor axis and the horizontal axis of the image plane can be
formulated as follows[12][20],
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and the range is (→ω/2 ↑ ε ↑ ω/2). Also, the angle between
the major axis and horizontal axis of the image(ϑ) can be
written in terms of ε,

ϑ = sign(ε)(
ω

2
→ ε)

C. Rotation Sequence

The 3D rotation of the solid body can be described by a set
of three rotation angles (ϖ,ϱ, ς). Tait-Bryan and Euler rotation
sequences are commonly used to explain the rotation of an
object.

1) Sign Ambiguity: The rotation estimation from a 2D
image can cause the rotation sign ambiguity problem. If
the distance between the object and the camera is far or
the rotation is very small, the camera image distortion is
trivial. Thus, when a platform rotates only roll or pitch, the
direction of rotation cannot be determined since the images
are equivalent, as seen in Figure 4.

(a) Zero Rotation (b) First rotation(Yaw)

(c) Second Rotation(Roll) (d) Third rotation(Yaw)

Fig. 5: 3-1-3 Euler rotation sequence

Fig. 6: Simulated distorted camera image determined by 20◦
roll platform rotation. Red circles are circular pattern markers.
The black star is the ellipse’s center that is shifted by rotation.

2) 3-1-3 Euler Rotation Sequence: The 3-2-1 Tait-Bryan
rotation sequence comprises yaw, pitch, and roll pitch angles.
Potentially, there are two sign ambiguities, which are roll
and pitch. However, the 3-1-3 Euler rotation sequence has
yaw, roll, and another yaw angle. Thus, utilizing the 3-1-
3 Euler angle rotation sequence is beneficial to reduce the
possibility of sign ambiguity. As seen in Figure 5, the 3D
rotation of an object can be described with 3-1-3 Euler rotation
sequence[21]: Rotate the object by an angle ϖ about z-axis of
the body frame, then ϱ about x-axis, finally ς about z-axis.

III. ROTATION ESTIMATION

A. Determine Camera Image Conic Section

Assume that there are 9 markers on a ship flight deck. 8
markers are positioned in a circular pattern, and 1 marker
is in the circle’s center. Figure 2 illustrates conic sections
shown on the camera image plane as a ship rotates. As
explained in Section II-A, a rotated circle image appears as
an ellipse, and the ellipse’s center is shifted. Each marker’s
pixel coordinates position (Xc, Yc, Zc), representing position



relative to the camera coordinate with the origin at the center,
can be computed from the pinhole camera model equation[16],




Xc

Yc
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

 = K ↓ T ↓


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Py

Pz + h



 , (5)

where (Px, Py, Pz) is 3D marker position in platform coor-
dinate and h is the altitude of quadrotor. Matrices K, T are
defined as,
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1 0 0
0 0 →1



 ,

where fx and fy are focal lengths, cx and cy indicate
the camera center coordinate. The camera characteristics de-
termine K, and T represents the transformation from the
object coordinate to the camera image coordinate. The image
coordinate system’s origin is located at the top left corner so
that 2D pixel marker positions (Xp, Yp) can be written as,

Xp =
Xc

Zc

→ cx, Yp = cy → Yc

Zc

. (6)

Finally, by (3), the polynomial form ellipse equation can be
determined since 2D pixel marker positions are given by (6).

B. Obtain Corrected Image

As described in II-A, camera images are distorted because
of the foreshortening effect, and this effect can solve the
sign ambiguity problem cause the ellipse center is shifted.
However, distorted camera images must be corrected since
the rotation sequence illustrated in Figure 5 is based on
geometrically undistorted images. The 2D marker position
vectors φli = (Xpi , Ypi) can be defined as,

φli = diφci

where φci is the unit marker position vector, di is the distance
between the center marker and the i-th marker. In the distorted
image shown in Figure 6, φl1 and φl2 are marker position vectors
in the opposite direction. Assuming that a quadrotor has an
altimeter and maintains hovering at the center of the platform,
the distorted camera image can be converted to the undistorted
marker positions in the platform coordinate utilizing (5), (6).
By plugging φli into the pinhole camera model equation and
rearranging equations, then the formulations are derived as
below[12],

Pxi =
→d1φcx0 → d2φcy0 → 2d1d2 cos(!)

fy(d1 → d2)
h

Pyi =
d1φcx0 + d2φcy0 + 2d1d2 sin(!)

fx(d1 → d2)
h (7)

Pzi =
→d1 → d2

d1 → d2
h,

where (φcx0 ,φcy0) represents the unit center marker position
vector, and ! is the angle of the marker position with respect
to the center marker.

(a) Ellipse after rotation (b) First rotation(Yaw)

(c) Second Rotation(Roll) (d) Third rotation(Yaw)

Fig. 7: 3-1-3 Euler rotation sequence angles from undistorted
camera images for 20→ roll, 10→ pitch, and 5→ yaw in the
platform frame. The red line is the major axis, and the blue
line is the minor axis.

Fig. 8: The side section view of the right triangle formed by
the second rotation. b is the semi-minor axis length and r is
the marker circle radius.

C. Rotation Estimation

Figure 7 shows the simulated undistorted images illustrated
in III-B and the process of determining the 3-1-3 Euler
rotation sequence from the images. The detailed process is
as follows[12].

1) The first rotation(Yaw): The first rotation angle is the
semi-major axis tilt angle for the horizontal axis. Figure 7b
is graphically describing that ϖ is the tilt angle of the ellipse
and can be written as,

ϖ = ϑ = sign(ε)(
ω

2
→ |ε|).

2) The second rotation(Roll): As seen in Figure 7c and 8, ϱ
is the angle between the semi-minor axis and the radius vector
of the marker circle. The side section of the semi-minor axis,
and the radius vector is the right triangle with rotation angle
ϱ. Since markers form a circle before the second rotation, the
longer side of the triangle is circle radius r. The sign of ϱ is



Fig. 9: The angled side section view of the isosceles triangle
formed by the third rotation.

determined by the z component of the semi-minor axis OY
↑↑.

Finally, the equation of ϱ can be formulated as,

ϱ = sign(Y ↑↑
z
) cos↓1(

b

r
),

where b represents the semi-minor axis length.
3) The third rotation(Yaw): The third rotation can be es-

timated by calculating the rotation angle between major axes
OX

↑, and the bow marker vector OX
↑↑. In Figure 7d, the

length of the major axis is the same as circular pattern radius r,
equivalent to the length of OX

↑ and OX
↑↑. Figure 9 shows the

triangle formed by the third rotation angle. Since the section
is an isosceles triangle, ς can be calculated leveraging the
law of cosines, and the sign of the angle is determined by
the y component of the bow light vector OX

↑↑, which can be
determined by (7). Then, the formulation of ς becomes,

ς = sign(X ↑↑
y
)(cos↓1

(2r2 → |OX
↑ →OX

↑↑|2

2r2
)
.

4) Rotation conversion: Since the estimated rotation an-
gles are 3-1-3 Euler rotation sequences, rotations need to
be converted to determine roll, pitch, and yaw angles. First,
3-1-3 Euler rotation angles (ϖ,ϱ, ς) calculated by the es-
timation process can be converted to quaternion rotations
q = [q0, q1, q2, q3] by,





q0

q1

q2

q3



 =


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



with cϖ/2 = cos(ϖ/2), and sϖ/2 = sin(ϖ/2). Once the
quaternion rotation is obtained, the roll, pitch, and yaw angles
can be computed by the quaternion-Euler angle conversion
formulation as follows[22],

Roll = atan2
(
2(q0q1 + q2q3), 1→ 2(q21 + q

2
2)
)
,

Pitch = asin
(
2(q1q3 → q0q2)

)
,

Yaw = atan2
(
2(q0q3 + q2q1), 1→ 2(q22 + q

2
3)
)
.

IV. EXPERIMENTAL RESULTS
To verify the theory, the simulation model was devel-

oped and tested. Also, the scaled-down hardware experiment
was performed to test the performance of the rotation es-
timation, and the Open source Computer Vision(OpenCV)

(a) Actual and Estimated Rotation Angles

(b) Estimation Error

Fig. 10: Case 1. Angles change in one direction. Actual angles
are dashed lines, and estimated angles are solid lines.

(a) Actual and Estimated Rotation Angles

(b) Estimation Error

Fig. 11: Case 2. The ship motion model

algorithm[23] was used to recognize markers and measure the
marker positions.

A. Simulation Model Test

1) Platform Model: The simulation model platform is the
navy ship flight deck with 9 markers on it: 8 markers form a
circle, while 1 marker is located in the center of the platform.
We assumed the quadrotor hovers at 5 meters altitude, tracking
the platform center marker and maintaining positions while the
ship moves. In the simulation, the marker circle diameter is 1
meter, and the flight deck is 10x10 meters square. 2 cases of
motions were tested: Case 1. Rotation in one direction(Roll:
-20→ ↔ 20→, Pitch: -10→ ↔ 10→, Yaw: -5→ ↔ 5→), and Case 2.



Fig. 12: Hardware model image. The camera module, Rasp-
berry Pi, and a plate with circular pattern markers are con-
nected to a linear slide. The camera and the center mark are
aligned. The camera detects markers, and the marker positions
are obtained by the OpenCV algorithm.

Fig. 13: Detected circle image. m0 is the center marker, m1

is the bow marker position in the camera image coordinate.

Mathematical Ship Motion Model(USS Oliver Hazard Perry
class destroyer in Sea State 6)[24].

2) Quadrotor Camera Model: We assume the quadrotor has
“Raspberry Pi Camera Module V2-8,” which is equivalent to
the hardware model. The pixel resolution is 3280 x 2464, and
the focal angle is horizontal 45.4→ and vertical 31.1→.

TABLE I: Estimation RMSE (Degrees)

Motion RMSE: Case 1 RMSE: Case 2
Roll 0.2235→ 10↑12 0.3010→ 10↑12

Pitch 0.1814→ 10↑12 0.3126→ 10↑12

Yaw 0.0771→ 10↑12 0.6083→ 10↑12

3) Result: The rotation estimation of each case is shown
in Figures 10 and 11. Table I shows each case and rotation’s
Root Mean Square Errors(RMSEs). The RMSE of Case 1 was
from 0.0771 ↗ 10↓12→ ↔ 0.2235 ↗ 10↓12→ , and Case 2 was
0.3010↗10↓12→ ↔ 0.6083↗10↓12→ . The results indicate that
the estimation algorithm performs with minimal errors.

(a) Actual and Estimated Rotation Angles

(b) Estimation Error

Fig. 14: Hardware model experiment result

B. Hardware Model Test
Figure 12 shows the hardware model for testing the rotation

estimation algorithm. Hardware model size is determined by
scaling down the simulation model with a 1/10 ratio. Thus, the
distance between the camera center and the platform center is
50 centimeters, and the diameter of circular pattern markers is
10 centimeters. The platform mount is the fixed mount rolled
30 degrees. In Figure 13, i-th marker 2D position from the
center marker, pi = (Xpi , Ypi), can be calculated by,

pi = mi →m0.

The position of markers is measured 10 seconds with a
10Hz frequency. By utilizing marker positions pi, the ellipse
equation is determined by (3). Figure 14 shows the hardware
test result. The estimation errors tend to be consistent, and
RMSEs were roll 1.1577→, pitch 2.9360→, and yaw 1.6080→.

V. CONCLUSION AND FUTURE WORKS
This study presents the moving platform rotation estimation

for quadrotor landing. Assuming that the circular image with
9 markers is on the moving platform, and a quadrotor tracks
the platform center, a quadrotor camera obtains a circular
image on its image plane. Camera images are distorted because
of the foreshortening effect. Thus, if the platform is rotated,
circular marker images become ellipses on the image plane.
By analyzing the ellipse determined by marker positions, the
rotation estimation of a platform can be achieved. Simulation
and hardware models were tested, and the result showed that
the rotation estimation algorithm was performed with less
than 0.7 ↗ 10↓12→ RMSE. Future works focus on improving
the algorithm and hardware model. Since estimation errors
were consistent, a hardware model could be calibrated by
performing further tests to minimize errors. Also, a quadrotor
is assumed to be hovering on the platform center in this
study. In reality, there is a tracking error causing the quadrotor



is not aligned to the platform center. Thus, the estimation
algorithm needs to be enhanced to estimate 6-DOF platform
motions including surge, sway, and heave. For improving
the hardware model, a cable-driven motion simulator will be
developed in the Coordinated Robotics Lab at the University
of California, San Diego. This simulator moves in 6-DOF
motions replicating a boat motion. Circular pattern markers
will be set up on the simulator’s platform, and a camera will
be located on the simulator to perform the rotation estimation.
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