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Abstract—This paper proposes a Control Lyapunov 
Function-based Quadratic Program (CLF-QP) approach for 
controlling a cable-driven parallel robot. We consider the 
cable-driven boat motion simulator to verify that the CLF-QP 
approach controls platform motions following the desired tra-
jectories and optimizes cable tensions in the desired boundaries. 
A simulation model with a moving platform and 8 cables was 
used for testing CLF-QP controller. 6 degrees of freedom (DOF) 
periodic and mathematical ship model motion were applied to 
the simulation. The results show that the normalized root mean 
square errors(NRMSE) of motion tracking were less than 7%, 
and cable tensions were bounded in the range set by a user 
without constraint violations in optimization processes.

Keywords-Cable-driven parallel robot, Control Lyapunov 
Function, Tension optimization, Quadratic program

I. INTRODUCTION

Cable-driven parallel robots (CDPRs) consist of a moving 
platform and multiple cables. Such systems can be classified 
as tensegrity structures that are lightweights, but robust to 
high payloads due to the use of cables reducing weight and 
inertia [1-3]. CDPRs maneuver a tensegrity structure from 
the initial equilibrium state to desired states satisfying the 
control input constraints such as cable tensions limits. Since 
cables only can pull a platform but cannot push it, cables 
must be in tension to apply forces on a platform. However, 
there are not many studies on dynamic controls with tension 
optimizations, while earlier works primarily focused on 
kinematics, accurate motion control, and applications of 
CDPRs [4-6]. The controllers of CDPRs have to deal with 
both controlling platform motions and maintaining cable 
tensions in the desired range. If cable tensions are too high, 
structures or cables can be damaged, and if tensions are 
too low, cables cannot put forces on a platform properly. 
CDPRs that have more cables than their DOF is defined as 
underdetermined CDPRs. As the underdetermined CDPRs 
hold many feasible tension solutions at each equilibrium

state [7], cable tensions can be optimized in the desired
boundaries.

For solving control problems of CDPRs, the Proportional
Integral Derivative (PID) and Linear Quadratic Regulator
(LQR) controllers for CDPRs were suggested, and research
showed the performances of these controllers [8-10]. How-
ever, these studies focused on motion controls, and cable
tension optimization needs to be considered in control pro-
cesses.

In our previous research about the control and tension
optimization of the cable-driven boat motion simulator, the
Linear Matrix Inequality (LMI) based controller was sug-
gested for controlling the cable-driven boat motion simulator
[11]. We developed a simulation model based upon the
tensegrity system’s kinematics and dynamics. The simula-
tion results demonstrated that the LMI controller controls
moving platform motions accurately, and cable tensions were
optimized in the desired boundaries by the standard devia-
tion method. However, the linearization process of tensegrity
system dynamics and cable tension optimization algorithms
were too complex. Thus, the computational efforts were too
heavy to control an experimental hardware model.

We propose a Control Lyapunov Function-based
Quadratic Program (CLF-QP) controller design method.
The CLF-based approach is the nonlinear controller design
method for the closed-loop feedback control system [12].
The CLF controller could be practically used for a wide
range of applications, including systems with fast sample
rates [13].

By choosing an appropriate CLF that satisfies certain
conditions, the optimal input that stabilizes a system can be
determined. The existence of a CLF indicates that a system
is stabilizable, and the QP method combined with the CLF
approach can conserve the performance characterized by a
CLF and respect constraints on the inputs assigned by users,
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such as tension boundaries [14]. The simulation model of the 
cable-driven boat motion simulator was used for analyzing 
the CLF-QP controller. The purpose of the simulator is 
to replicate 6-DOF boat motions for developing a drone 
landing control system. A flat-plate rectangular platform 
is connected to 8 cables and moves following the desired 
trajectories.

This paper mainly discusses the novel control method for 
cable-driven parallel robots that control moving platform 
motions while cable tensions are within the maximum 
and the minimum tension limits. The optimized system 
inputs were obtained by leveraging the CLF-QP controller 
design method. The simulation model test was performed 
and showed the motion control performances and tension 
optimization results.

The organization of this paper is as follows. Section 
II discusses cable-driven parallel robots’ kinematics and 
dynamics. Section III introduces the CLF-based controls 
and formulates QP to find t he o ptimized c ontrol inputs. 
Section IV demonstrates the simulation results of CLF-
QP applications to the cable-driven boat motion simulation 
model. Finally, we present the conclusion and the future 
works in Section V.

II. KINEMATICS AND DYNAMICS

The following introduces important properties of cable-
driven parallel robots regarding kinematics and dynamics.

A. Kinematics and Static Equilibrium

Fig. 1 is the configuration of the cable-driven boat motion
simulator. The global frame OG is located in the center of
the ground, and the body frame OB is in the middle of the
moving platform, where the platform’s center of gravity is
located. a⃗ denotes the pulley position vector, i = {1, · · · , n}
represents the i-th cable and n is the number of cables.
p⃗ = [x y z]T is the moving platform position vector in the
global frame OG, and b⃗ is the cable attachment point vector
in the body frame OB with R, the platform rotation matrix in
the global frame OG. The cable vector l⃗ can be determined
by inverse kinematics equations [15],

l⃗i = a⃗i −Rb⃗i − p⃗, (i = 1, . . . , n).

All forces by cable tensions must be equivalent to any exter-
nal forces and moments applied to the platform to achieve
equilibrium. The equilibrium condition of the platform can
be written as [16],

Jτ⃗ = f⃗ ,

where J is the structure matrix, τ⃗ = [τ1, · · · , τn]T is a
cable tension vector, and f⃗ is a vector that represents the
sum of all forces and moments on the platform. Let d⃗i be a

⃗

Fig. 1. The cable-driven boat motion simulator con-
figuration. A  fl at-plate re ctangular pl atform is  connected 
with 8 cables, and motors adjust cable lengths. Upper and 
lower cables are cross-connected to the platform for better 
rotational motions.

unit cable vector that is defined as d⃗ i = l i/||li||, then J  can 
be defined as,

J =

[
d⃗1 · · · d⃗n

Rb⃗1 × d⃗1 · · · Rb⃗n × d⃗n

]
.

B. Dynamics

Defining the platform state vector r⃗ = [x y z ϕ θ ψ]T and
gravitational acceleration vector as G = [0 0 g 0 0 0]T

with the platform mass m and the gravitational acceleration
g, the dynamic equation of moving a platform can be written
as [17],

Jτ⃗ =M ¨⃗r + C ˙⃗r +MG, (1)

where M , and C are the platform mass and Coriolis matrices
defined by,

M =

[
mI3×3 03×3

03×3 Ig3×3

]
, C =

[
03×3 03×3

03×3 Ig + ω × Ig

]
,

with the identity matrix I and the moment of inertia of a
platform Ig . ω = [ωx ωy ωz]

T denotes the platform angular
velocity vector. The term Jτ⃗ ∈ R6×1 in (1) represents force
and moment vector induced by cable tensions. (1) can be
rewritten in the matrix form about the platform state vector
r⃗, [

˙⃗r
¨⃗r

]
=

[
0 I
0 −M−1C

] [
r⃗
˙⃗r

]
+

[
0

M−1(Jτ⃗ −MG)

]
. (2)
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Fig. 2. The simulation model of the cable-driven boat 
motion simulator. The Green lines are the outer structure, 
the black lines are cables, the blue lines are the platform, 
and the red dot is the mass center of the platform.

Considering that cable tension τ⃗ as the input of the dynamic 
model and taking τ⃗ out of the matrix, then (2) becomes,[

˙⃗r
¨⃗r

]
=

[
0 I
0 −M−1C

] [
r⃗
˙⃗r

]
+

[
0

−G

]
+

[
0

M−1J

]
τ⃗ . (3)

III. CONTROLS

The controllers of CDPRs require to perform motion 
control and tension optimization. In this research, the CLF-
QP controller is suggested to achieve these goals, and 
the following describes applying the CLF-QP approach to 
CDPRs.

A. Control Lyapunov Function

Consider the following dynamic system,

ẋ = f(x) + g(x)u, (4)

where x is the state vector, f(x) and g(x) are continuous
functions of x. Let u be the feedback control input that
stabilizes the system. Assume that V (x) is a smooth, positive
definite function and define LfV (x), and LgV (x) as,

LfV (x) =
δV

δx
f(x), LgV (x) =

δV

δx
g(x). (5)

Then, V (x) that satisfies following inequality,

V̇ (x) = LfV (x) + LgV (x)u < 0, ∀x ̸= 0, (6)

is called a Control Lyapunov Function (CLF) [18], and it
gives a sufficient condition for the stabilizability of systems.

(a) t=0s (b) t=3s

(c) t=7s (d) t=11s

Fig. 3. The platform configurations over time (Periodic).

The existence of CLFs indicates that there exists feedback 
control u stabilizes the system [19] and the inequality (6) 
induces that the system is asymptotically stable. However, 
there is no information about the convergence rate to the 
equilibrium. To construct the upper bound of V (x) and 
impose a condition of the minimum rate of decrease in V (x),
(6) can be rewritten with an additional term λV (x) [20],

V̇ (x) = LfV (x) + LgV (x)u+ λV (x) < 0, ∀x ̸= 0,
(7)

where λ represents the decay rates of V (x).

B. Application of CLF to CDPR Dynamics

Let x be the state of a moving platform such that, x =
[r⃗ ˙⃗r], and a control input u = [τ⃗ ] as a cable tension vector.
By the dynamic equation (3) and (4), functions f(x) and
g(x) can be defined as,

f(x) =

[
0 I
0 −M−1C

] [
r⃗
⃗̇r

]
+

[
0

−G

]
,

g(x) =

[
0

M−1J

]
. (8)

The CLF was chosen as V (x) = ||x − xd||22, where xd =
[r⃗d ˙⃗rd] is the desired platform state. The gradient of V (x)
becomes as follows,

δV

δx
= 2(x− xd),
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and by (5), LfV (x), and LgV (x) can be written as,

LfV (x) = 2(x− xd)
T
([

0 I
0 −M−1C

] [
r⃗
⃗̇r

]
+

[
0

−G

])
,

LgV (x) = 2(x− xd)
T

[
0

M−1J

]
.

C. CLF-based Quadratic Program

As discussed above, CDPR controllers need to deal
with controlling platform positions and maintaining cable
tensions while a platform moves. The quadratic program
(QP) was implemented as the QP preserves performances
expected by CLF and respects the user-defined constraints
on the inputs [14] [21]. CLF-QP can be written as a convex
optimization problem, and the standard form of CLF-QP is
as follows [22],

argmin
u⃗

(u⃗− u⃗d)
T (u⃗− u⃗d)

subject to LfV (x) + LgV (x) + λV (x) ≤ 0, (9)

where u⃗d is the reference input. Define the tension margins
as the difference between the current tensions and the
maximum or minimum tension limits. Tensions need to be
optimized near the mean value of the maximum and the
minimum tension limits to maximize tension margins [11].
One can set reference input u⃗d as the mean value of tension
limits to maintain tensions close to u⃗d. Also, the optimal
cable tensions have to be within tension limits and satisfy
the dynamic equation. Since these are hard constraints, there
needs a relaxation to the bound on the CLF to avoid conflict
on constraints. By adding constraints and relaxation, (9)
becomes,

argmin
u⃗,δ

(u⃗− u⃗d)
T (u⃗− u⃗d) + pδ2

subject to LfV (x) + LgV (x) + λV (x) ≤ δ

u⃗min ≤ u⃗ ≤ u⃗max

Ju⃗ =M⃗̈rd + C⃗̇rd +MG, (10)

where δ is a positive constant that relaxes CLF constraints,
and p is the positive number that represents the penalty of δ.
umin and umax are the minimum and the maximum tension
limits set by a user. The optimal control input u = [τ⃗ ] can
be directly determined by solving (10). The platform states
by cable tensions are calculated from the dynamic equation
(1) using the Runge-Kutta method.

IV. RESULTS

In this section, simulation results are discussed to verify
the performance of the CLF-QP method. The 6-DOF boat
motion simulator model has a moving platform and 8 cables.
2 different desired motions were applied to the simulation:
Periodic and mathematical ship model motions.

(a) Periodic motion

(b) Ship model motion

Fig. 4. The desired motions of a platform. 

Table I. Desired motion of a platform: Periodic

Motion Range Period(seconds)
Surge -0.025 – 0.025 m 5
Sway -0.025 – 0.025 m 5
Heave -0.050 – 0.059 m 10
Roll -10°– 10° 5
Pitch -20°– 20° 10
Yaw -5°– 5° 10

A. Model and Simulation Description

The simulation model configuration is shown in Fig. 2,
and Fig. 3 is the configuration of the periodic motion simu-
lation test over time. The model’s size is equivalently set to
the hardware model currently being built in the Coordinated
Robotics Lab, University of California, San Diego. The edge
of the outer structure is 45cm, and the platform is a 10cm
flat rectangular plate. The height of the platform is 2.5cm,
and the mass is 0.213kg. The lower cables are connected to
the inward point on the top, while the upper cables are to
the bottom edges of the platform. Cables are cross-attached
to the platform for better rotational motions. Cable mass
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(a) Periodic motion

(b) Ship model motion

Fig. 5. Motion tracking errors. The black dashed vertical lines 
are the time t = 5 when a drone lands on a platform. 
Controller constants were set as p = 0.01, and λ = 1.

is assumed as negligible, and structures are not deformed 
by tensions. The cable material is Kevlar which has a high 
Young’s modulus (76×109N/m2). Thus, cables are assumed 
as non-stretchable. The maximum and the minimum tension 
limits are set as 2N and 30N, respectively. The platform 
moves in 6-DOF motions for 10 seconds (periodic) and 50 
seconds (ship model). After the motion, both cases have a 
1-second stationary state at the origin. In this simulation 
scenario, at the time t = 5s, a 1kg mass drone lands on 
a platform. Hence, the total mass of a platform increases 
after 5 seconds. The simulation time-step size is 0.1 seconds 
and for solving optimization uses CVX solver, a MATLAB 
package for specifying and solving optimization programs 
[23-24].

B. Simulation Results

1) Tracking errors: The desired platform motions are
shown in Fig. 4. First, the periodic motion was applied
to the simulation. The motion details are shown in Fig.

Table II. Motion tracking RMSE, NRMSE

Motion RMSE(NRMSE): Periodic RMSE(NRMSE): Ship model
Surge 0.0034m (6.73%) 0.0003m (2.22%)
Sway 0.0034m (6.73%) 0.0018m (1.97%)
Heave 0.0034m (3.39%) 0.0016m (2.07%)
Roll 1.3704◦ (6.85%) 1.3223◦ (2.47%)
Pitch 1.3650◦ (3.41%) 0.2289◦ (2.70%)
Yaw 0.3387◦ (3.39%) 0.1941◦ (4.84%)

(a) Periodic motion

(b) Ship model motion

Fig. 6. Cable tensions. The red lines are lower cables, and 
the blue lines are upper cables. Black dashed lines are the 
minimum and the maximum tension limits.

4a, and Table I. The translational and rotational motion 
tracking errors are as seen in Fig. 5a. The position error 
was −5.60 × 10−3 ∼ 5.60 × 10−3m and the rotation error 
was −2.29 ∼ 2.23◦.

Next, Fig. 4b shows the desired motion obtained by the 
mathematical ship motion model, the USS navy ship Oliver 
Hazard Perry Class Frigate at a sea state 6 with 60 degrees 
of wave direction [25]. Since the simulation model is smaller 
than the real ship, the system sizes and the amplitudes of 
motions have to be scaled down [26]. The position (surge, 
sway, and heave) amplitude was scaled down with 1/100 
ratio, while the same magnitude of rotation was used. Fig. 
5b shows the tracking error of the ship model simulation. 
The position error was −4.5 × 10−3 ∼ 5.9 × 10−3 m and
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(a) Periodic motion: V (x) is within the boundary 0 ∼ 0.0063, and
V̇ (x) is −0.1067 ∼ 0.

(b) Ship model motion: V (x) is within the boundary 0 ∼ 0.1295,
and V̇ (x) is −2.4343 ∼ 0.

Fig. 7. Control Lyapunov Function V (x), and V̇ (x)

the rotation error was −2.91 ∼ 3.14◦.
The root mean square errors (RMSE) and the percentage 

of normalized RMSE (NRMSE) for both motions are shown 
in Table II. The difference between the maximum and 
minimum values of the desired trajectory was used as a 
scaler to normalize RMSE. The result demonstrates the CLF-
QP tracks the desired motions less than 7% NRMSE, and 
the platform state was stable after the motion. At the time 
t = 5, a drone landed on a moving platform in the scenario, 
and 1kg additional mass was added to the platform mass. 
The RMSE of the tracking error without drone landing was 
equivalent to Table II, and the CLF-QP controller maintained 
its performance after a drone landing on the platform.

2) Cable tensions: Fig. 6 shows the cable tension changes 
while a moving platform is in motions. In both simulation

scenarios, cable tensions were optimized without optimiza-
tion violations.Tensions were within the boundary that was
set before running the simulation. In the periodic motion, the
lower cable tensions were maintained within 2 ∼ 22.978N ,
and the upper cable tensions were within 3.446 ∼ 27.129N .
At the time between 2 ∼ 4 seconds, two of the lower
cables reached the minimum tension limit. However, the
controller found tension solutions that did not exceed tension
limits and maintained tensions of all cables within the
desired tension boundaries. In the ship model motion, the
lower cable tensions changed within 4.96 ∼ 20.21, and the
upper cable tensions were within 14.48 ∼ 20.13N . In this
scenario, cable tensions did not reach tension limits and were
sustained within the desired tension boundaries.

3) CLF and stability: As described in §III, if a positive
function V (x) satisfies the inequality V̇ (x) < 0, a system
is stable at the equilibrium with the feedback control input.

As seen in Fig. 7, a CLF V (x) was positive while a
platform was in motion and eventually converged to zero
in both cases. V̇ (x), defined as (7), was negative for whole
process. This indicates that the system is stable with an
optimal input u = [τ⃗ ] that is calculated by (10).

V. CONCLUSION AND FUTURE WORKS

This study presents a CLF-based QP controller for the
cable-driven boat motion simulator. Controllers of cable-
driven parallel robots are required to control the motions
of the platform and perform cable tension optimization. A
simulation model was suggested to test the performance of
the controller. 6-DOF periodic motion and ship model mo-
tion were used as desired motions. The results illustrate that
the CLF-QP controller can be useful to control a platform
motion of CDPRs with tension limits set by users. The
CLF-QP controller controls a platform motion with small
errors and maintains cable tensions in the desired boundaries
without optimization violations. The future work focuses
on building a hardware model of the cable-driven boat
motion simulator with tension sensors to verify simulation
results. The size of the simulator will be equivalent to the
simulation model, and the larger scale (10x15x5m) simulator
is also considered to build in Aerodrome at the University
of California, San Diego. The larger scale simulator will be
used for developing the drone landing control system. The
study of drone landing control system includes the research
of the platform pose estimation, and the landing controller
drives the drone lands on a platform when the platform
rotation is within the drone’s capacity.
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