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Abstract— The present paper shows how vertical actuation
alone may be used to effectively control the spatial distribution
of mobile vehicles (“balloons” in air, or “drifters” in water)
in vertically-stratified background flows. Applying iterative,
adjoint-based, model predictive control (MPC) techniques cou-
pled with linear quadratic regular (LQR) feedback, agent
trajectories and feedback control strategies are determined to
ensure the desired terminal-time spacing of multiple agents.
Variations in both starting locations and disturbances are
considered to illustrate the significant control authority in
this agent separation problem in both laminar and turbulent
background flows, despite the fact that linear controllability is
lost in certain limiting cases. The paper thus demonstrates a
novel application of feedback control theory to an emerging
real-world application in multi-agent systems. The results lay
the groundwork for future applications in Lagrangian sampling
of underwater ecosystems as well as the efficient sampling of
hurricanes for the purpose of forecasting their development.

I. INTRODUCTION

Studies of both oceanic and atmospheric currents via

Lagrangian motions have been widely documented and used

for modeling and research [1] [2]. Historically, these methods

have relied on passive motion of buoyant vehicles, but more

recently drifters with controllable buoyancy have been used

to perform Lagrangian and mass-transport studies, such as

the international Argo Project [1] deployed to monitor ocean

currents on a global scale. Recent work by the atmospheric

research community has established the capability of actively

and efficiently altering the internal density of a balloon, thus

enabling buoyancy control in the atmosphere over extended

periods of time [2]. The ability to actively change buoyancy

(and, thus, vertical position) in such strongly stratified flow

systems opens the door to a host of interesting new low-

power topology control problems.

The key idea of the multi-agent coordinated control strat-

egy proposed in this work is to leverage the stratification of

the flow environment in order to establish and maintain a

degree of control over the topology of the swarm. Lever-

aging nonlinear model predictive control (MPC) and the

linear quadratic regulator (LQR), new methods for the active

control of the spatial distribution of several such buoyancy-

actuated agents have been developed.

This buoyancy-control-in-stratified-flow approach extends

naturally to underwater vehicles in coastal systems, as the

coastal ocean is also characterized by a flow field with

significant variability in both space and time.

II. BACKGROUND

To begin, the background stratified flow (Fig. 1) is taken

as a simple pressure-driven (Poiseuille) flow between two
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Fig. 1. Flow velocities of the basic flow considered in this paper, which
is pressure-driven in the x direction and shear driven in the z direction.

impermeable infinite plates with no-slip boundaries in the

streamwise direction x, shear-driven (Couette) flow in the

spanwise direction z, and no flow in the vertical direction y.

The channel half-width and maximum flow velocity in x and

z are rescaled to unity without loss of generality.

Starting from this physical description of the flow system

in Cartesian coordinates, the state of each agent is defined as

its position in 3-space relative to an arbitrarily-chosen origin

in the streamwise and spanwise directions, and the channel

centerline in the vertical direction. Mathematically, the agent

forcing terms (non-dimensional relative velocities) can then

be described as a functions of the vertical position, y, and

the vertical velocity, f; that is, for the i’th agent:

d

dt





xi

yi

zi



 =





−yi
2 + 1

fi

yi



 , (1)

where f is defined as the system input. It is assumed that

the vertical actuation of the agent occurs sufficiently quickly,

relative to the speed of the background flow, that the agent

can move vertically (within the vertical confines of the

channel) before moving significantly in the streamwise or

spanwise directions (stated another way, we assume that the

channel half-width is small with respect to the horizontal

distances of interest). This simplification of the background

flow retains the stratified nature of many natural flows, and

presents enough nonlinear characteristics in the model to

make the problem interesting, difficult, and relevant in the

consideration of harder problems in the environment.

In the interest of uniform sampling, we focus on the

relative separation of agents throughout the volume, rather

than the individual location of each agent in absolute coor-

dinates. We thus turn our attention to begin with the relative
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Fig. 2. Flow velocity profiles of an alternative flow configuration [cf. Fig. 1]
resulting in the same simplified nonlinear model [compare (4) to (7)].

separation of two such agents.

III. PROBLEM FORMULATION

As mentioned above, we now focus on two-agent systems,

i = [1,2], and the agent distribution is described in terms of

the relative horizontal separation of these two agents. We

thus introduce a change of variables (COV) which focuses

specifically on this separation. Starting from the initial state

variables introduced in (1), and introducing the specified

separation target distances Cx and Cz, two new COV states

x̂ and ŷ are defined such that:

x̂
∆
= x1 − x2 +Cx, (2a)

ẑ
∆
= z1 − z2 +Cz. (2b)

Note that x̂ = ẑ = 0 corresponds to the agents being at the

specified separation. Now define the intermediate control

variables u1 and u2 as linear combinations of the agents’

vertical positions,
[

u1

u2

]

∆
=

[

−y1 − y2

y1 − y2

]

, (3)

and take the time derivative of the COV states equation (2), a

simple nonlinear description of the agent-separation system

is found:

d

dt

[

x̂

ẑ

]

=
d

dt

[

x1 − x2

z1 − z2

]

=

[

−y2
1 + y2

2

y1 − y2

]

=

[

u1u2

u2

]

. (4)

Interestingly, the nonlinear model given in (4) may also

be derived for an alternative flow configuration with a half-

parabolic velocity profile in the streamwise direction and

a linear velocity profile in the spanwise direction (Fig. 2).

In this case, the state equation governing the movement of

agents in the system is given by [cf. (1)]:

d

dt





xi

yi

zi



 =





2yi − yi
2

fi

yi



 . (5)

Using the same COV for the separation of the agents as

proposed in (2), redefining the intermediate control variables

u1 and u2 such that [cf. (3)]
[

u1

u2

]

∆
=

[

2− y1 − y2

y1 − y2

]

, (6)

and following the same differentiation processes as used

before, it is again found [cf. (4)] that

d

dt

[

x̂

ẑ

]

=

[

2(y1 − y2)− y2
1 + y2

2

y1 − y2

]

=

[

u1u2

u2

]

. (7)

That is, the same nonlinear model is obtained, though

the intermediate control variables, u1 and u2, are defined

differently.

Curiously, linearization of (4) [equivalently, (7)], taking

u1 = ū1 + ū′1, u2 = ū2 + ū′2, etc., about the nominal solution

(with ū1 = ū2 = 0, assuming primed quantities are small)

results immediately in the observation that dx̂′/dt = 0; that

is, x̂ is linearly uncontrollable. Some finite oscillation of u2

is required in order to give control authority on x̂ via the

control variable u1. This is an immediate indication of the

delicateness of the present system. Despite the loss of linear

controllability in this limit, it is seen that there is in fact a lot

of control authority in this problem if finite vehicle motions

are allowed, as explored in the balance of this paper.

For simplicity, the remainder of this paper focuses on

the flow described in Figure 1 and modeled in the laminar

flow case by (1), with the relevant COV defined by (2) and

intermediate control variables defined by (3).

IV. MODEL PREDICTIVE CONTROL

The intermediate control variables u1 and u2 are related to

the time derivatives of the agent inputs f1 and f2; thus, u1

and u2 should be kept sufficiently smooth such that f1 and

f2 are sufficiently small. By introducing another change of

variables, vi = dui/dt, and penalizing an energy measure of

the vi in the control formulation, this is readily achieved:

d

dt

[

u1

u2

]

=

[

v1

v2

]

=

[

− f1 − f2

f1 − f2

]

. (8)

Finally, the state vector, q, and control vector, v, are defined

in order to facilitate the discussion of the relevant state-space

formulation of the present problem:

q
∆
=









x̂

ẑ

u1

u2









, v
∆
=

[

v1

v2

]

. (9)

The construction of the change of variables is closely tied

to the formulation of an associated cost function, which,

when minimized, drives the system to behave in a desired

fashion. Using a quadratic model that penalizes state and

input values, driving the cost toward 0 keeps physical inputs

small and drives agent separation to specified parameters (i.e.

x2 − x1 →Cx and z2 − z1 →Cz).

Thus, the cost function, J(q,t), is defined with a state

weighting matrix Qq, input weighting matrix Qv, and

terminal-time weighting matrix QT :

J =
1

2

Z T

0

(

qT Qqq+ vT Qvv
)

dt +
1

2
qT (T )QT q(T ) . (10)

An input sequence is determined using an adjoint-based

iterative optimization technique to minimize the cost function

with respect to the input [4] [5]. This iterative scheme creates

a model-based predictive controller (MPC), which is solved

by a time-based input sequence v(t) that reduces the cost

function over a time window (in this case driving the states

toward 0 and minimizing the associated input costs).
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Starting from the nonlinear state space equations presented

in 4, 8, and 9, the tangent linear equation of the system is

found by replacing the state with perturbed state variables

(such as x̂ → x̂+ x̂′) and solving for the perturbed variables:

d

dt









x̂′

ẑ′

u′1
u′2









=









u2u′1 + u1u′2
u′2
v′1
v′2









⇒
dq′

dt
= Aq′ + Bv′. (11)

Additionally, doing the same perturbation analysis to the

cost function, (10), a small change in the cost can be written

J′ =

Z T

0

(

qT Qqq′ + vT Qvv′
)

dt + qT (T )QT q′ (T ) . (12)

This perturbation of the cost function can be defined

in terms of a gradient with respect to the system input

using an adjoint based analysis. First defining the weighted

inner product, 〈〈a,b〉〉
∆
=

R T
0 aHbdt, and then using an adjoint

identity:

〈〈r,Lq′〉〉 = 〈〈L∗r,q′〉〉+ b, (13a)

which is equivalent to
Z T

0
rT Lq′dt =

Z T

0
(L∗r)T

q′dt + b, (13b)

for some, as yet, undefined operator, L , and adjoint variable,

r. Then choosing to relate the state with the input by

choosing

Lq′ = Bv′, (14)

the operator, L , is found by plugging into (11) and solving

to get:

L =
d

dt
−A. (15)

Returning this result to the adjoint identity (13b),
Z T

0
rT

(

dr

dt
−A

)

q′dt =

Z T

0
(L∗r)T

q′dt + b, (16)

which can then be integrated by parts

rT q′|T0 −
Z T

0

(

dr

dt
− rT A

)

q′dt =
Z T

0
(L∗r)T

q′dt + b (17)

which means

b = rT q′|T0 (18a)

L∗r = −

(

d

dt
+ AT

)

r. (18b)

Plugging Eqs. 14 and 18a into the adjoint identity, (16):
Z T

0
rT Bv′dt =

Z T

0
(L∗r)T

q′dt + rtq′|T0 . (19)

Now comparing (19) to the perturbed cost function, (12), and

then choosing to define:

L∗r = Qqq (20)

and

r = QT q (21)

the adjoint identity is again re-written:
R T

0 rT Bv′dt =
R T

0 (Qqq)T
q′dt +(QT q)T

q′

=
R T

0 qT Qqq′dtqT QT q′.
(22)

This means that the prerturbed cost function can then be

written in terms of the left-hand-side of (22), resulting

in a description of the cost function as an equation of a

perturbation of the system input, v′, and the adjoint variable,

r:

J′ =

Z T

0

[

BT r + Qvv
]

v′dt. (23)

Which leads to, via the definition of the inner product, a

gradent of the cost function with respect to the system in

put as a differential equation of the form:

J′ = 〈〈
DJ

Dv
,v′〉〉 where

DJ

Dv
= BT r + Qvv. (24)

Resolving the definition of the adjoint variable, r, (18) is

combined with the chosed values of Eqs. 18b and 21 such

that:
L∗r = Qvr ⇔− dr

dt
= AHr + Qvv

for 0 < t < T,
(25a)

which is subject to the ‘initial’ conditions:

r = QT q at t = T. (25b)

Starting from the terminal definition of the adjoint field,

r = QT q, the gradient is determined via a backwards march,

from t = T → 0, using an RK4 march.

Using a conjugate gradient descent method, in conjunction

with a Brent line search, a descent direction and a step size

are found. Moving the input ‘downhill’ creates a new input

sequence, which is then used to determine a new, lower

cost, trajectory path which can form the basis of the next

minimization iteration.

Upon satisfaction of a prescribed convergence criteria,

the resultant COV input sequence, v(t), satisfies a local

minimization of the cost function. Using this sequence and

the invertible relationship found in (8), the physical agent

input sequences, f1 (t) and f2 (t), are determined. Applying

this sequence to the actual 2-agent equations of motion

described by (1), the ideal physical trajectories of the agents

are found. This trajectory is defined as the discrete, time

dependent state {x̆k
i , y̆

k
i , z̆

k
i } on the discretized interval k =

[

1, T
h

)

for each time step, k, each agent, i, a terminal time,

T , and a step size, h.

Starting with both agents at the origin and initially speci-

fying Cx = 0, Cz = 1, Qq = 0, Qv = 0, and QT = 10I (where

I is an appropriately sized identity matrix), separation is

achieved in the spanwise direction using penalty terms that

only weight terminal position without regard toward the cost

of intermediate input values (Qv) or state positions (Qq).

Results of such idealized separation determined though MPC

analysis are shown in Fig. 3.

In additional to cross-flow separation, changing the Cx sep-

aration constant allows control trajectories to be developed

that separate agents in both the x and z directions (as shown
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Fig. 3. Unit separation in the spanwise, z, direction of a 2-agent system
subject to idealzed open channel flow. × indicates starting location and ©
indicates final position. Initial positions at the origin with Cx = 0, Cz = 1,
Qq = 0, Qv = 0, and QT = 10I
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Fig. 4. Separation constants of Cz = 1 and Cx = 5, direction anof a 2-agent
system subject to idealzed open channel flow. × indicates starting location
and © indicates final position. Initial positions at the origin with Cx = 0,
Cz = 1, Qq = 0, Qv = 0, and QT = 10I

in Fig. 4 which uses the same initial conditions as Fig. 3 but

with Cx = 5). It is worth noting that the ideal input values

do not dive the agents back to the centerline of the channel

in the shown control sequence; which was already noted to

be an unstable result. To correct for this problem, additional

gain can be added to the control sequence (via increasing the

Qv gain matrix) which would cause the control sequence to

approach as small a deivation from the centerline as possible

over the trajectory window.

V. TRAJECTORY TRACKING VIA LQR FEEDBACK

Under idealized circumstances, the MPC analysis of tra-

jectory generation provides enough information to reach

a local minimization of the cost function and track to a

reasonable solution to the separation problem. The result,

however, cannot account for variation in starting location or

intermittent perturbation of the state during the actual state

evolution.

The open loop controller is not enough to satisfy stability

under more realistic flow parameters. Introduction of a

closed-loop feedback stabilization method is necessary in

order to reject disturbances in background noise and correct

for variation in state position.

Using the solution to the linear-quadratic regulator (LQR)

problem, an optimal control feedback gain is found which

can be used to stabilize the system. In order to apply a linear

feedback, the system must be linearized about the preferred

state. In the 2-agent system, each agent is linearized about

the ideal trajectory developed within the MPC framework.

Defining the LQR-state, Gi, and input, Fi, as:

Gi
∆
=









































x̆1
i

y̆1
i

z̆1
i
...

x̆k
i

y̆k
i

z̆k
i
...

x̆n
i

y̆n
i

z̆n
i









































⇒ d
dt

Gi =











































−
(

y1
i

)2
+ 1

f 1
i

y̆1
i
...

−
(

y̆k
i

)2
+ 1

f k
i

y̆k
i
...

−(y̆n
i )

2 + 1

f n
i

y̆n
i











































, Fi
∆
=

















f 1
i
...

f k
i
...

f n
i

















, (26)

over the sequence of ideal trajectory locations, {x̆k
i , y̆

k
i , z̆

k
i },

and inputs, f k
i , for each agent derived by the MPC solution

over the time sequence t = [1,2, ...,k, ...n] for n = T
h

. The

trajectory-linearized system is then expressed in the form

dGi/dt = AiGi + BiFi, where Ai and Bi are the associated

Jacobian matrices for each agent, i:

Ai =











a1
i 0 ... 0

0 a2
i

...
. . .

0 an
i











, a
j
i =





0 −2y
j
i 0

0 0 0

0 1 0



 , (27)

and

Bi =











b1
i 0 ... 0

0 b2
i

...
. . .

0 bn
i











, b
j
i =





0

1

0



 . (28)

The feedback gain is solved via the time-dependent solu-

tion to the differential Riccati equation:

−dXi
dt

= AH
i Xi + XiAi −XiBiQ

−1

f̂
BH

i Xi + QX

where X (T ) = Qterm.
(29)

The solutions, X = X (t), are determined via a backwards-

in-time march using the RK4 scheme and the feedback-

augmented input, f̂i, is given by the feedback gain, Ki,

multiplied by the difference between the evolving actual state

position given in (1) and the a vector of MPC-derived ideal

state position:
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f̂i = Ki









x̆i

y̆i

z̆i



−





xi

yi

zi









where Ki = −Q−1

f̂
BH

i Xi.

(30)

Once again, the ‘strength’ of the feedback gain can be con-

trolled via the relative magnitudes of the diagonal weighting

matrices Q f̂ , a weight on the cost of the input, QX , a weight

on the intermediate perturbed state, and Qterm, a weight on

the terminal positional variation from ideal.

The structure of the Ai and Bi matrices [(27) and 28,

respectively] allow the Riccati equation to be solved as a

set of n = T
h

smaller differential equations by marching the

system

−dX k
i

dt
= X k

i ak
i +

(

ak
i

)T

X k
i −X k

i

(

bk
i

)T

Qk

f̂
bk

i X k
i + QX

k
i (31)

from t = T → k for an incremented time interval k =
[0,h,2h, ...,T −h,T ]. Then solving for the time-interval, k,

dependent feedback gain, Kk
i , and input, f̂ k

i :

f̂ k
i = Kk

i









x̆k
i

y̆k
i

z̆k
i



−





xk
i

yk
i

zk
i









where Kk
i = −Q−1

f̂
BH

i X k
i .

(32)

Using this trajectory-linearized feedback control, varia-

tions in initial conditions or background velocity flows can

be neutralized. This feedback effectively tracks each agent

back to its MPC ideal path but adds computational cost with

the one time marching of the set of systems to determine the

value of Kk
i for each time interval, k.

Starting with a perturbed initial state {x1 = 0,y1 = 0,z1 =
1} and {x2 = y2 = z2 = 0}, and seeking a unit separation

in the cross-stream, z, direction (Cx = 0 and Cz = 1), the

feedback gain successfully tracks astray agent 1 back to the

ideal trajectory as shown in Fig. 5.

The feedback gain also allows intermittent background

disturbance rejection. Starting with both agents at the origin

and seeking unit cross-stream separation (as in Fig. 3), the

agent’s feedback augmented input is able to correct for the

application of an additional shear term (dz̃/dt = dz/dt + 1)

at t = 100 and return to the ideal path as shown in Fig. 6.

More importantly, the solution to the LQR problem pro-

vides disturbance rejection for random noise that may occur

continually in the background flow and agent inputs. Model-

ing variation in the state velocities is achieved by augmenting

(1) with scaled zero mean white noise, wdx/dt , w f , and wdz/dt

at each discrete function call in the RK4 march. In this

illustrative example using LQR, the added noise need not

necessarily be Gaussian:

d

dt





xk
i

yk
i

zk
i



 =







−
(

yk
i

)2
+ 1 + X k

i wk
dx/dt

f k
i + Yiw f

yk
i + Zk

i wk
dz/dt






. (33)
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Fig. 5. Trajectory tracking for a perturbed initial state with ideal trajectories
seeking unit separation in the spanwise, z, direction of a 2-agent system
subject to idealized channel flow. × indicates starting location and ©
indicates final position. Initial position {x1 = 0,y1 = 0,z1 = 1} and {x2 =
0,y2 = 0,z2 = 0} with Cx = 0, Cz = 1, Qq = 0, Qv = 0, and QT = 10I
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Fig. 6. Trajectory tracking for an intermittently excited background flow
with ideal trajectories seeking unit separation in the spanwise, z, direction
of a 2-agent system subject to idealized channel flow. × indicates starting
location and © indicates final position. Initial positions at the origin with
Cx = 0, Cz = 1, Qq = 0, Qv = 0, and QT = 10I

The scaling factors, X k
i = −

(

yk
i

)2
+ 1 and Zk

i = yk
i , are

used to ensure that the maximum value of the noise term is

the same size as the ideal background flow at the particular

depth yk
i . Scaling in the vertical velocity, dy/dt, is done with

a constant such that Yi = maxFi for the input sequence, Fi,

determined via (26).

Applying such a scaled noise to background flow and

agent input, the feedback gain is sufficiently powerful to

continually adapt the input sequence of each agent so as

to draw it back to the ideal MPC trajectory as shown in Fig.

7.

VI. CONCLUSIONS

The use of buoyancy controlled agent motion, in con-

junction with a known stratified background flow environ-
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spanwise, z, direction of a 2-agent system subject to idealized open channel
flow. × indicates starting location and © indicates final position. Initial
positions at the origin with Cx = 0, Cz = 1, Qq = 0, Qv = 0, and QT = 10I

ment, provides enough control authority to create separation

between several agents in the same flow. Several types of

background flow can be similarly characterized, and cal-

culated solutions to the control problem uniquely mapped

back to form different physical solutions under the same

mathematical guise.

Limited to a defined time window, an iterative approach

is used to solve the general separation problem. Defining an

adjoint of the agent state as presented in (25a), a gradient

of the cost function with respect to the current input is

determined in (10). Using a descent method to determine

an appropriate step size, the cost function is minimized by

moving the input, v, by the resultant step size and direction.

The process is repeated as necessary to ensure convergence

of the function, J, to a local minimum.

The solution to the MPC problem (11) is a vector of

inputs to the COV system, v, which minimize the desired

cost function. This resultant COV input is then mapped back

to the desired background flow, via (8), and a sequence of

actual agent inputs is recovered. Under the ideal background

flow considered in the mathematical construction of the MPC

problem in (1), this input results in the desired spacing of

the agents in the streamwise and spanwise directions. This

solution works under an idealized background flow, is purely

open loop, and has no disturbance rejection capability.

By linearizing the state of each agent about its MPC-

derived ideal trajectory as done in (27) and (28), a feedback

gain is calculated by solving the differential Riccati equation

presented in (29) and (32). Augmenting the MPC-derived

input via this LQR gain, perturbed system states, variation

in starting locations, and intermittent noise in background

flows are corrected for within the original trajectory time-

frame (Figs. 5, 6, and 7 respectively).

VII. FUTURE WORK

The major cost of the presented MPC calculation is the

Runge-Kutta march of the state and adjoint over the time

window. Each iteration of the cost function optimization

involves both a full state and a full adjoint march over

the window in order to produce a gradient. Therefore, it is

important that the numerical processes associated with the

cost function minimization presented in Eqs. 10-25 limit,

as much as possible, the required number steps to reach a

minimum value.

While the conjugate gradient descent method in conjunc-

tion with a Brent line search method is adequate, it can

require a large number of function calls and be compu-

tationally expensive. There are several numerical methods

of interest, notably variations on reduced memory versions

of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) descent

method [7], which have been shown in preliminary results

require substantially fewer function evaluations under similar

minimization accuracy constraints.

The current formulation of the LQR feedback is based

on the assumption of perfect state knowledge. Relaxing this

assumption, a linear-quadratic Gaussian (LQG) controller

can be formulated by modeling using the Kalman estimate

in place of the state in the LQR problem formulation [6].

Using direct numerical simulation of incompressible

Navier-Stokes, simulations with equivalent flow structures

to the ideal case presented in (1) can be applied ranging

from laminar flow to fully turbulent mixing. Applying the

MPC/LQG framework to these more complicated flows will

give greater understanding of both the time window needed

for separation and the relative weightings of all the control

parameters. This, in turn, forms the basis for expanding the

flow field beyond the channel limitations, and applying the

method to full oceanic/atmospheric flow fields.
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