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Feedback Algorithms for Turbulence Control|Some Recent DevelopmentsPetros Koumoutsakos, Thomas R. Bewley, Edward P. Hammond, and Parviz MoinCenter for Turbulence Research, NASA Ames/Stanford University, Stanford, California 94305AbstractSome recent developments on the feedback control of tur-bulent 
ows are presented. Physical mechanisms associ-ated with opposition control algorithms are investigated.A new control method based on the sensing and manipu-lation of vorticity creation at the wall is presented. Theresults indicate that signi�cant drag reduction can beachieved using wall information only. The potential foroptimization of feedback control algorithms, using neu-rocomputing methodologies is outlined.1 IntroductionThe active feedback control of turbulence in engineer-ing 
ows is gaining recognition as a possible means forgreatly improved performance of aerospace and marinevehicles. While passive devices have been used e�ectivelyin the past, active control strategies have the potentialof allowing a signi�cant improvement in the performanceof future con�gurations.Along with small and robust sensors and actuators,simple yet e�ective control algorithms, which are basedon measurable 
ow quantities, are needed to make ac-tive feedback control of turbulence a reality. In this pa-per we discuss two feedback algorithms for turbulencecontrol: the opposition control scheme, introduced byChoi, Moin, & Kim (1994), and a novel feedback algo-rithm based on the manipulation of the wall vorticity
ux, proposed by Koumoutsakos (1997).In the opposition control approach, the vertical mo-tion of the turbulent 
ow near the wall is countered byan opposing blowing/suction distribution of velocity onthe wall. The e�ectiveness of the opposition control algo-rithm depends strongly on the location of sensing: a 25%drag reduction is observed when the wall normal veloc-ity �eld is sensed at y+ � 15 in a low Reynolds numberturbulent channel 
ow, whereas a large increase in dragis observed when the sensing location is at y+ � 25.One of the purposes of this paper is to investigate themechanisms of this fundamentally di�erent behavior.Though the opposition control algorithm is simpleand e�ective for viscous drag reduction, it has the sub-stantial drawback that it requires measurements insidethe 
ow domain. In order to alleviate this di�culty,Lee, et al. (1997) employed a neural network to con-struct a simple feedback control algorithm using infor-

mation only at the wall. Their methodology was shownto reduce skin friction by about 20%. We outline herean alternative novel feedback control algorithm basedon information that can be obtained at the wall. Thisframework is based on the identi�cation of the near-wall structures via their induced wall vorticity 
ux. Thepresent control scheme is based on the manipulation ofthe spanwise and streamwise vorticity 
ux components,which can be obtained as a function of time by mea-suring the instantaneous pressure at the wall and calcu-lating its gradient. An algorithm is presented which al-lows for the explicit calculations of the necessary controlstrengths. Application of the present control scheme tolow Reynolds number turbulent channel 
ow produceddrag reduction of up to 40% using wall information only.The opposition and vorticity 
ux feedback controlalgorithms are based on physical mechanisms of vortex-wall interactions. Although they have been proven tobe e�ective in reducing the skin friction drag in turbu-lent 
ow simulations, an optimization procedure is neces-sary to increase their e�ectiveness and their applicabilityto practical con�gurations. We outline the potential ofneurocomputing methodologies (such as neural networksand evolutionary strategies) to achieve this optimization.In x2 of this paper we analyze the opposition controlalgorithm. The framework of vorticity 
ux is outlined inx3 and the application of the method to two and three di-mensional 
ows is reported in x4. An outline and somepreliminary investigations of neurocomputing ideas forthe optimization of feedback control algorithms is pre-sented in x5. Recommendations for future work and con-clusions are presented in x6.2 Opposition controlTurbulent channel 
ows are dominated in the regionwithin 50 viscous units from the walls by vortices whichtend to be aligned nearly in the streamwise direction andslightly inclined to the wall. As they evolve, these vor-tices \pump" high momentum 
uid from the core regionof the channel towards the walls (\sweep events"), andlow momentum 
uid from the near-wall region towardsthe center of the channel (\ejection events"), creating lo-cal regions of high and low shear at the walls (\streaks").The resultant mixing of the high- and low-momentum
uid in the channel results in a fuller mean velocity pro-�le and much higher viscous drag than that of a laminar
ow at the same bulk velocity.Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.1American Institute of Aeronautics and Astronautics
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y+=15Figure 1: Opposition control.
As �rst investi-gated by Choi, Moin,& Kim (1994) andshown in �gure 1,the idea of opposi-tion control is simplyto counter the verticalvelocity near the wallwith an opposing con-trol velocity at the wallin order to reduce thismixing. When oppos-ing the vertical motionat y+ � 15, the con-trol is found to do much more than simply inhibit theformation of the streaks|it actually mitigates the pro-cess of the turbulence production itself. This results inmuch lower turbulence levels and approximately 25%drag reduction (�gure 2). When the control is set moreambitiously to counter motions farther from the wall, aty+ � 25, the drag soon climbs to very high levels. Notethat present results indicate detection at y+ = 15, acase not tested by Choi, Moin, & Kim (1994), is slightlymore e�ective than detection at y+ = 10.
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t+Figure 2: Evolution of drag at Re� = 180. Solid, de-tection at y+ = 15; dot-dashed, no control; dashed, de-tection at y+ = 25. Drag is normalized by its averageuncontrolled value.Three high-resolution computations were per-formed, as described in �gure 2, at Re� = 180. (Re� isthe Reynolds number based on the shear velocity of theuncontrolled 
ow and the channel half-width; the corre-sponding Reynolds number based on centerline velocityis Rec = 3300.) These computations used a hybrid code(Bewley 1997) that is spectral in the streamwise direc-tion x and spanwise direction z and second order �nitedi�erence in the wall-normal direction y. (Note: u, v,and w correspond to the velocities in the x, y, and z di-rections respectively.) A staggered grid of 256�128�256mesh points was used. A third-order Runge-Kutta algo-rithm was used for time advancement.
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y+Figure 3: Time averaged v2 across the channel half width:solid, no control; dashed, detection at y+ = 15. Note theformation of a plane of zero vertical velocity.As shown in �gure 3, the control scheme withdetection at y+ = 15 creates a \virtual wall" in the
uid halfway between the physical wall and the detec-tion plane. The reduced mixing of the core 
uid withthe near-wall 
uid due to this virtual wall signi�cantlyreduces the overall turbulent energy, as shown by com-parison of �gures 5a and 6a. Convective transport of mo-mentum no longer occurs across the plane of the virtualwall. The only mechanism for transport of momentumin the wall-normal direction in this case, then, is di�u-sion by viscosity, which is relatively less e�ective thanconvective transport.
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Figure 4: Skewed path bywhich sweep event is attractedtowards wall for detection aty+ � 25.

The controllerwith detection aty+ = 25 resulted inthe channel eventu-ally �lling with tur-bulent 
uctuations, asshown in the obliqueview of �gure 6b. Asthe control was turnedon, certain 
ow con-ditions would consis-tently act to destabi-lize the 
ow. This re-sult is well explainedby analysis of the 
owsituation shown in thecross-
ow plane of �g-ure 5b and schemat-ically in �gure 4. Itwas observed that thecontrolled system developed skewed paths by which highspeed 
uid from nearby sweep events could be drawn to-wards the wall below an ejection event, as shown in�gure 4. The detection plane is too far from the wallto accurately re
ect the in
uence of the 
ow structuresnearest to the wall. In this case, the \virtual wall" isnot established, resulting in increased turbulent activityand mixing in the near-wall region.2American Institute of Aeronautics and Astronautics



(a) Opposition control with detection at y+ = 15 (drag-reducing case). Small control velocities at wall (heavy horizontal line) create a plane midwaybetween wall and detection plane (thin horizontal line) with almost zero vertical velocity, e�ectively insulating the wall from high-drag sweep events.

(b) Opposition control with detection at y+ = 25 (drag-increasing case). Larger control velocities, responding to 
ow 
uctuations farther from wall,sometimes create a skewed path by which high speed 
uid from a nearby sweep event may be drawn towards the wall below an ejection event.Figure 5: Drag-reducing/increasing control cases at t+ = 9, a short time after control is applied. Note that free stream 
ow structures are almostidentical, yet the control response in (b) is much stronger. Oblique view: isosurfaces of discriminant of velocity gradient tensor; one quarter of lowerhalf of computational domain shown. Cross-
ow plane: cross-
ow velocity vectors and streamwise velocity contours.
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(a) Opposition control with detection at y+ = 15 (drag-reducing case). Turbulent kinetic energy and total drag have decreased substantially.

(b) Opposition control with detection at y+ = 25 (drag-increasing case). Mechanism described in �gure 5b persists and proves to be unstable, resultingin highly enhanced levels of turbulence and increased drag.Figure 6: Drag-reducing/increasing control cases at t+ = 279, a long time after control is applied.Discriminant isosurface value, cross-
ow velocity vector scale, and streamwise velocity contour values identical to those in �gure 5.
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3 Vorticity 
ux control{OutlineAlthough the velocity opposition control scheme was suc-cessful in reducing the skin friction drag, it is not read-ily suitable for practical implementation as it relies ono�-wall information. Choi, Moin, & Kim (1994) exam-ined the relationship between variables available at thewall (such as pressure, shear stresses, etc) and the 
owabove the wall. An opposition control scheme using aquantity derived from the Taylor series expansion of thenormal velocity component about the wall, resulted ina 6% drag reduction. Recently, Lee, et al. (1997) imple-mented a neural network to approximate the correlationbetween the wall shear stresses and the wall actuations.A simple control network employing this technique re-duced the skin friction drag in a turbulent channel 
owby 20%, using wall information only.We outline in this section the development of a novelfeedback control algorithm (Koumoutsakos, 1997) basedon the manipulation of the vorticity creation at a wall,using wall information only. The pressure �eld is sensedat the wall and its gradient (the wall vorticity 
ux) iscalculated. Blowing/suction at the wall is the actuatingmechanism and its strength is calculated explicitly byformulating the mechanism of vorticity generation at ano-slip wall. 3.1 FormulationIn wall bounded 
ows, the tangential motion of 
uid ele-ments relative to the wall establishes velocity gradients.With the de�nition of vorticity (!) as the curl of veloc-ity (! = r� u), this may be equivalently described interms of the vorticity that is acquired by the 
uid ele-ments near the wall. Lighthill (1963) envisioned the wallas a system of sources and sinks of vorticity.A measure of the vorticity that enters the 
ow isgiven by the wall normal vorticity 
ux. The equationfor the evolution of the vorticity �eld at the wall degen-erates into a di�usion type equation :@!@t jw = �r � (��r!)jw (1)where � is the kinematic viscosity of the 
uid and thesubscript w denotes quantities measured at the wall. The
uid elements adjacent to the wall acquire vorticity ac-cording to the source term de�ned by the wall vorticity
ux tensor (Hornung 1990) Jw = ��r!. We are inter-ested in the vorticity acquired by the 
uid elements nearthe wall, and hence the wall normal component of thissource tensor, de�ned as the wall vorticity 
ux vector� = n � Jw.For simplicity, in the rest of this paper we considera cartesian coordinate system and 
ow over a 
at wallidenti�ed with the xz plane, normal to the y-axis. The

vorticity 
ux is then expressed as :� = � �� @!@y�wFor an incompressible viscous 
ow over a stationary wall,the vorticity 
ux is directly proportional to the pressuregradients, as the momentum equations reduce at the wallto (Panton 1984):� �@!x@y �w = 1��@P@z �w; �� �@!z@y �w = 1��@P@x�wwhere P is the pressure and !x and !z are the stream-wise and spanwise vorticity components. Note that the
ux of the wall normal vorticity, !y, may be determinedfrom the kinematic condition (r � ! = 0).3.2 Measurements of the wall vorticity 
uxExperimental measurements of the wall vorticity
ux in a turbulent 
ow have been reported byAndreopoulos & Agui (1996). They used high frequencyresponse transducers to measure 
uctuating wall pres-sure gradients and then compute the vorticity 
ux in atwo-dimensional turbulent boundary layer. Their mea-surements demonstrated the signi�cance of vorticity 
uxin describing near wall processes. They made an attemptto correlate vorticity 
ux signals with physical phenom-ena such as bursting-sweep processes in the boundarylayer. They observed that 
uid acquires or loses vortic-ity at the wall during rather violent events followed byperiods of small 
uctuations. Their experiments demon-strated that the major contributions to the vorticity 
uxcome from the uncorrelated part of the pressure sig-nals, at two adjacent locations, which contain a widerange of vortical scales. As the degree of correlation issmaller between the small scales their contribution tothe vorticity 
ux is more pronounced. This imposesa severe requirement on the spatial resolution of thepressure gradients/vorticity 
ux measurements. Prac-tical applications (Moin & Bewley 1995) would requireactuators and sensors with sizes in the order of 50�mand actuator frequencies of 1MHz. Recent advances inmicro pressure sensor fabrication technology (Ho & Tai1996) give us an opportunity to overcome these di�-culties. L�ofdahl, K�alvesten, & Stemme 1996 presentedmeasurements in a two-dimensional 
at plate boundarylayer with a resolution of eddies with wave numbers lessthan ten viscous units using microscopic silicon pressuretransducers. It appears that using this new technologyone may be able to describe in detail physical processesin terms of the wall vorticity and the wall vorticity 
ux.3.3 Vorticity 
ux induced by blowing and suction atthe wall.The role of the vorticity 
ux from oscillating walls as amechanism for the control of unsteady separated 
ows5American Institute of Aeronautics and Astronautics



was discussed by Wu, Wu, & Wu (1993). They con-cluded that wall oscillations can produce a mean vor-ticity 
ux that is partially responsible for phenomena ofvortex 
ow control by waves. Gad-El-Hak (1990) hasshown that the vorticity 
ux can be a�ected by walltranspiration as well as by wall-normal variation of thekinematic viscosity (�) as a result of surface heating,�lm boiling, cavitation, sublimation, chemical reaction,wall injection of higher/lower viscosity 
uid, or in thepresence of shear thinning/thickening additive.However these works do not provide us with an ex-plicit formulation for the actuator strength necessary toinduce a desired vorticity 
ux at the wall. This may beachieved by considering the generation of vorticity at thewall as a fractional step algorithm (Lighthill 1963). Ateach time step (�t) the no-slip boundary condition canbe rendered equivalent to a vorticity 
ux boundary con-dition (Koumoutsakos, Leonard, & Pepin 1994) whichis materialized in successive substeps. During the �rstsubstep we consider the inviscid evolution of the vorticity�eld in the presence of solid boundaries. The no-through
ow boundary condition is enforced, via the introductionof a vortex sheet 
(s) along the surface (s) of the body.The vortex sheet is equivalent to a spurious slip velocityon the boundary that needs to be eliminated in order toenforce the no-slip boundary condition. This is achievedat the next substep of the algorithm, as the vortex sheetenters di�usively into the 
ow �eld. When 
 is elim-inated from the body surface in the interval [t; t + �t]the circulation (�) of the 
ow �eld would be modi�edaccording to: I 
(s) ds = Z t+�tt d�dt0 dt0 (2)On the other hand Kelvin's theorem states that the rateof change of circulation induced to the 
uid elements dueto the presence of the body is :d�dt = � I @!@n (s) ds (3)If we consider this vorticity 
ux to be constant over thesmall interval of time (�t), we will have :� @!@n (s) = �
(s)=�t (4)This constitutes then a Neumann type vorticity bound-ary condition for the vorticity �eld equivalent to theno-slip boundary condition (Koumoutsakos, Leonard, &Pepin 1994).This formulation helps us determine the vorticity 
uxinduced by a set of actuators, such as ideal sources/sinkslocated at the wall. Without loss of generality we con-sider a two-dimensional 
ow over a 
at wall, and a sys-tem of sources/sinks of strength qj that are distributed

uniformly over a panel of size dj , centered at locationsx0j ; j = 1; 2; 3; :::N . When the sources/sinks are switchedon the induced tangential velocity at point xi on the walland the corresponding vorticity 
ux can be determinedas : � �t @!@y (xi) = NXj=1 qj2� Z dj=2�dj=2 dsx� s (5)where x = xi � x0j . The methodology outlined hereinmay be formulated for a variety of actuators, such aswall acceleration, deformation, etc.3.4 An active control strategy.For the purposes of our control scheme we consider aseries of vorticity 
ux (or equivalently pressure gradi-ent) sensors on the wall at locations xi; i = 1; 2; 3; :::M .Using the formulas described above we can explicitly de-termine the actuator strengths necessary to achieve a de-sired vorticity 
ux pro�le at the wall at a time instant,k, by solving the linear set of equations :B uk + Xk�1 = Dk (6)whereDk = (@!k@y (x1); @!k@y (x2); :::; @!k@y (xM )) is anM�1vector of the desired vorticity 
ux at the sensor loca-tions, Xk�1 = (@!k�1@y (x1); @!k�1@y (x2); :::; @!k�1@y (xM )) isan M � 1 vector of the measured vorticity 
ux at thesensor locations and uk = (qk1 (x01); qk2 (x02); :::; qkN (x0N ))is an N � 1 vector of source strengths at the actuatorlocations, B is an M �N matrix whose elements Bij aredetermined by evaluating the integrals in Eq.5. The un-known source/sink strengths are determined by solvingthe system in Eq.6. If the relative locations of the sen-sors and actuators remain constant, matrix B need beinverted only once thus minimizing the computationalcost of the method. For very large numbers of sensorsand actuators, iterative methods along with multipoleexpansions may be implemented in order to further re-duce the computational cost.The present technique gives us the 
exibility to adaptthe actuator strengths to speci�c constraints. Practicalconsiderations may constrain the control to jet-like ac-tuators, qj � 0; j = 1; :::; N or to a blowing and suctioncon�guration with a net zero mass 
ux;NXj=1 qj = 0 (7)Such constraints may be easily incorporated in the abovescheme by appropriately adjusting matrix B. A square,invertible matrix is always possible by accordingly mod-ifying the number of sensors and actuators.6American Institute of Aeronautics and Astronautics



Figure 7: Vorticity contours of vortex dipole-wall interactions. Control canceling the wall vorticity 
ux.
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Figure 8: Vorticity contours of vortex dipole-wall interactions. Control enhancing the wall vorticity 
ux.
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The simplicity of the present scheme allows for anumber of di�erent placements of sensors and actuators.Moreover, it allows for the active selection of the opti-mal locations (eg. for drag reduction) by suitable op-timization algorithms. Here we chose the locations ofsensors and actuators to be collocated. Physically thismay be understood as an advantageous situation as thesensors are able to detect the vorticity �eld induced bythe actuators which allows the control scheme to suitablycompensate for it.4 Vorticity 
ux control{ResultsWe present here preliminary results of the application ofthe proposed control scheme for two and three dimen-sional 
ows. In two dimensions we consider the modelproblem of a vortex dipole impinging on a wall, while inthree dimensions low Reynolds number turbulent chan-nel 
ow is considered. In both cases zero net mass tran-spiration is utilized to manipulate the vorticity 
ux in-duced by the 
ow at the wall.4.1 Vortex dipole - Wall interactionA Lamb's vortex dipole is considered impinging at thewall. The details of the initial vorticity con�gurationalong with the employed high resolution viscous vortexmethod and simulations of the uncontrolled 
ow are de-tailed in Koumoutsakos (1997).4.1.1 Canceling the wall vorticity 
uxIn this type of control we attempt to eliminate the vor-ticity 
ux at the sensor locations (i.e. set Dk = 0 in 6).The vorticity 
ux is measured at each instant and at thefollowing time step we appropriately adjust the strengthof the actuators by solvingB uk = �Xk�1 (8)for uk. This scheme may be viewed as an out-of-phasecontrol of the vorticity 
ux.In �gure 7 we present contour plots of the vorticity�eld of the controlled interaction of a vortex dipole witha wall. As the vortex descends towards the wall, thecontrol scheme acts to eliminate the secondary vorticitygenerated at the wall. In turn, the primary vortex dipole`sees' a permeable wall. At time T = 1.0 the primaryvortex dipole has been drawn into the wall.A closer inspection of the vorticity �eld near the wallshows that the system of sensors and actuators reacts tothe vorticity �eld generated by itself. An oscillatory setof small dipolar vortical structures is established nearthe wall and is sustained by the control algorithm.

4.1.2 Enhancing the wall vorticity 
ux.In this case we attempt to enhance the generation ofsecondary vorticity at the wall. To achieve this, werequire that the actuator strengths are adjusted so asto maintain the sensed vorticity 
ux (or equivalentlyDk = 2Xk�1 in 6) via the solution of the system :B ~uk = ~Xk�1 (9)This scheme may be viewed as an in-phase control of thevorticity 
ux.In �gure 8 we present contour plots of the vorticity�eld. A system of sensors and actuators is distributedover a portion of the wall. As the vortex dipole ap-proaches the wall it interacts with secondary vorticity.The control scheme acts to enhance the secondary vortic-ity, thus preventing the lift-o� observed in uncontrolledvortex-wall interactions (Orlandi, 1990). The primaryvortex components roll on the sheet of secondary vortic-ity that the actuators try to maintain. Lift o� is pre-vented on the controlled portion of the wall, as the pri-mary vortex components `surf' the controlled portion ofthe wall. The vortical structures eventually lift-o� out-side the controlled region, as the primary vortices havenot lost enough of their strength via di�usion.4.2 Vorticity 
ux and opposition controlWe remark here the relationship of the present activecontrol strategy and the opposition control, discussedby Choi, Moin, & Kim (1994). In their simulations ofcontrol of a vortex dipole impinging at a wall the 
owvelocity normal to the wall is sensed at a distance o�the wall. Blowing/suction is adjusted so as to opposethis velocity. As the primary vortex descends towardsthe wall, the blowing/suction counteracts this motion,enhancing the generation of secondary vorticity. Thissecondary vorticity in turn pairs-o� with the primaryvortex resulting in a vortex dipole propagating parallelto the wall. Clearly then one may observe that the op-position control scheme would produce di�erent resultsdepending on the location of sensing the wall normal ve-locity. Opposing the small wall normal velocity near thedipole center would prevent lifto�. On the other hand,opposing for example the velocity �eld farther away fromthe wall could result in destruction of the newly formedvortex dipoles.The behavior of the vortex-wall interactionsis strikingly similar to the vorticity �eld pre-sented herein (compare �gure 8 with �gure 22b ofChoi, Moin, & Kim (1994)) over the controlled part ofthe wall. This strongly suggests that the oppositioncontrol strategy and the vorticity 
ux control, are anal-ogous. The two schemes di�er in the way in which theysense the vorticity �eld that is near the wall and adjustthe necessary blowing/suction at the wall. As shown in�gure 9, counteracting the velocity �eld of the primary9American Institute of Aeronautics and Astronautics



vortex is equivalent to enhancing the generation ofsecondary vorticity, via the vorticity �eld generated bythe set of sources and sinks. Although the two controlschemes presented in this paper rely on two di�erentdescriptions of the vortex/wall interactions, they inducethe same behavior to the vortical structures. As thevorticity 
ux control strategy relies on the sensing ofthe wall pressure and the calculation of its gradients,it appears as a promising method for practical appli-cations. The analogy of the two schemes suggests thatthe successful results that have been obtained using theopposition control scheme could be obtained as well bythe present strategy, using wall information only.
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Figure 9: Vorticity 
ux generated by the opposition con-trol algorithm.4.3 Turbulent Channel FlowWe consider the application of the vorticity-
ux controlscheme on a low Reynolds number turbulent channel 
ow

(Re� = 200). The numerical method (Le, Moin and Kim1997) is a fractional step algorithm in primitive variables(u � P ), using central �nite di�erences for spatial dis-cretization and a third order Runge-Kutta time advance-ment scheme. Simulations were carried out with a gridresolution of Nx �Nz �Ny = 128� 64� 128. A cosinespacing was employed for the grid points in the wall-normal direction. The non-dimensional discretizationis:�x+ � 12; �z+ � 8; �y+ � 0:1 � 7. A collocatedarrangement of sensors and actuators was considered. Inthis arrangement the rows of sensors and actuators arelocated at alternating streamwise grid locations on thebottom wall. Their strength is determined using a tech-nique similar to the two-dimensional techniques alreadydescribed.In the present scheme for three dimensional 
ows the`desired' and the measured vorticity 
ux may be relatedby the following form : � @!x@y� @!z@y !control = �a bc d� � @!x@y� @!z@y !measured (10)The coe�cients a; b; c; d may be chosen a-priori and theymay be constant or spatially varying. The parameterspace can be optimized for drag reduction/increase.We have conducted several sets of simulations, vary-ing locally and globally the coe�cients a; b; c; d. Most ofour simulations have been conducted with the set of pa-rameters a = b = c = 0 and d = �1, which is equivalentto considering In/Out of phase control of the spanwisevorticity 
ux.In �gure 10 we present the drag coe�cient for theuncontrolled and the controlled turbulent channel 
ow.These results indicate a drag decrease of up to 40% usingout-of-phase control of the spanwise vorticity 
ux, usingwall information only.
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5 Neurocomputing ideas for theoptimization of feedback con-trol algorithmsThe feedback control algorithms, of opposition and vor-ticity 
ux control, are based on physical arguments. Al-though the results demonstrate the potential of theseapproaches, there is a clear need for further optimiza-tion. We are investigating the applicability of neuro-computing methodologies (e.g. evolution strategies, ge-netic algorithms, neural networks) for the optimizationof di�erent aspects of the feedback control algorithms.The feedback control algorithms involve a largeparameter space (actuator/sensor locations, strengths,time delay, phasing, etc.) that prevents the use ofan exhaustive search for optimal con�gurations. More-over, the possibility of applying these feedback controlmethodologies to realistic sensor/actuator con�gurationspresents the challenge of a-priori unknown functional re-lationships between 
ow quantities (e.g. pressure, shearstresses) and actuator parameters. This eliminates theuse of traditional optimization techniques and pointsin the direction of experimental optimization (Schwefel1977). A systematic approach to experimental optimiza-tion problems, mimicking biological processes, has led tothe development of evolution strategies (ES) and geneticalgorithms (GA).We are currently investigating evolution strategies tofurther optimize the wall vorticity 
ux feedback controlalgorithm. In particular, we examine the set, x, of in-
uence coe�cients (x = [a; b; c; d]) employed in Eq.10,whose relationship with the skin friction drag is not ex-plicitly available. We conduct simulations of a turbu-lent channel 
ow, using a simple two member evolutionstrategy (Rechenberg 1973), to identify the coe�cientsin Eq.10 that led to drag minimization. A set of param-eters is randomly initialized and is varied at certain timeintervals according to :xn+1 = xn + N(0; �) (11)where N(0; �) is a vector of independent random Gaus-sian numbers with zero mean and standard deviation �.At the end of each interval the running average dragcoe�cient is examined and a new set of parameters isselected according to 11 when no drag decrease is ob-served.In our preliminary investigations we considered vari-ation of one or two member sets (for example x =[0; 0; 0; d] or x = [0; b; c; 0]). Our simple evolution strate-gies were not always able to converge to a set of param-eters that leads to drag minimization. Nevertheless, theES converged to the set [0; 0; 0;�1] that as was discussedin Section 4.3 results in drag minimization. Moreover theES revealed a set of parameters that lead to drag min-imization involving cross-coupling of the measured and

controlled streamwise and spanwise vorticity 
ux. (i.e.[a; b; c; d] = [0;�1; 0; 0]).A related issue is the optimal placement of sensorsand actuators. In the present simulations, the sensorsand actuators coincide with the grid points on the wall.Hence, the non-dimensional streamwise spacing betweenthe rows of sensor and actuators is �x+ � 12, whereas,the spanwise spacing is �z+ � 8. A parametric inves-tigation is under way to determine the minimum spac-ing requirements for the sensor and actuator con�gura-tions. Although the number of possible con�gurationscan be reduced using physical arguments, optimizationtechniques such as ES or GA's appear as suitable candi-dates.Another issue is the time delay between the sen-sor and actuator signals in the vorticity 
ux controlalgorithm. The proposed methodology relies on mea-surements of the wall vorticity 
ux at one time stepand the immediate adjustment of the actuator strengthsat the following time step to achieve a desired vortic-ity 
ux. This can lead to systems that are not possi-ble to realize experimentally. This process may be im-proved by identifying and appropriately manipulating,the time correlation of the vorticity 
ux signals at thesensor locations: Xk+1 = F (Xk; k) where F (�) is a non-linear map The problem is then reduced to the iden-ti�cation of F (�), between the time instances t = k�tand t = (k + 1)�t. System identi�cation techniques, in-volving another component of neurocomputing (neuralnetworks) are presently under investigation. This pro-cedure would be valuable also for practical applications,as it could provide the generally unknown correlationsof realistic sensor/actuator parameters with quantitiessuch as the wall vorticity 
ux. On a related front, asit was mentioned above, Lee, et al. (1997) have imple-mented neural networks, to eliminate the need of theopposition control algorithm for o�-wall information. Aneural net algorithm has been successfully employed, re-sulting in a 20% drag reduction for turbulent channel
ow using wall information only.In summary, neurocomputing algorithms (such asevolution strategies and neural networks), provide avaluable optimization tool, well suited to problems en-countered by feedback control algorithms. Moreover,these methodologies have the potential to facilitate theimplementation of active feedback control strategies torealistic con�gurations.6 ConclusionsIn this paper we discussed some recent research e�ortsto elucidate the physical mechanisms associated with theopposition control algorithm and to devise a new feed-back control algorithm using wall information only. Theoptimization of feedback control algorithms using neu-rocomputing methodologies is outlined.11American Institute of Aeronautics and Astronautics



An extensive set of visualizations of direct numeri-cal simulations of the opposition control, introduced byChoi, Moin, & Kim (1994), helped us elucidate its driv-ing physical mechanisms.A new feedback control algorithm (Koumoutsakos,1997) based on the manipulation of vorticity creationat the wall was outlined. In this scheme the vorticity
ux is sensed at the wall, via the measurement of wallpressure. A simple control strategy allows calculation ofthe strength of wall transpiration to achieve a desiredwall vorticity 
ux. Using information available at thewall, the present control scheme is able to reproduce phe-nomena that were previously obtained computationallyusing o�-wall information. Implementation of the vor-ticity 
ux feedback control algorithm in the simulationof a low Reynolds number turbulent channel 
ow, indi-cate unprecedented skin friction drag reduction (� 40%)

using wall information only. Work is underway to imple-ment the proposed strategy in the control of unsteadyseparated blu� body 
ows.Neurocomputing methodologies, such as neural net-works and evolution strategies, were investigated for theoptimization of the feedback control algorithms. The re-sults of Lee, et al. (1997) in the implementation of neuralnetworks for the opposition control algorithm, and ourpreliminary investigations in the use of evolution strate-gies for the control of vorticity 
ux, suggest that suchmethodologies can be viable alternatives.AcknowledgmentsThe authors gratefully acknowledge the funding pro-vided by the AFOSR and the computer time provided byNASA-Ames Research Center in support of this project.REFERENCESAndreopoulos, J. & Agui, J.H. 1996 Wall-vorticity 
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