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Application of data assimilation methods to a
dynamo model with turbulent magnetic helicity

By I. N. Kitiashvili, A. G. Kosovichev{, T. Bewley}, J. Cessnaf
AND C. Colburni

1. Motivation and objectives

A thoughtful investigation of a natural phenomenon consists of three basic parts: obser-
vation, construction of a model and prediction. Predictions based on a model determine
correctness of our understanding of the physical processes. Taking into account that ob-
servation data contain errors, and a model constructed on their basis is characterized
by some approximations, a prediction of the next set of observations will deviate from
the real data. Nevertheless, an estimate of uncertainties in the model and the observa-
tions allows us to correct the model solution according to the information obtained from
new measurements. Thus, updated observation data and a consistent correction of the
model solution allow us to improve the simulation results to more accurately describe the
system’s behavior and forecast its future state. This procedure also provides additional
information for processes that are difficult to observe directly.

In this paper, we discuss initial results of applying the Ensemble Kalman Filter method
(EnKF) to a simple non-linear dynamo model for analysis of the solar activity (Kitiashvili
& Kosovichev 2008, 2009). One of the manifestations of solar magnetic activity is the
11-year sunspot cycle (Fig. 1a), which is characterized by fast growth and slow decay
of the sunspot number parameter (Fig. 1b). For modeling the solar cycle we use a non-
linear MHD dynamo model by Kleeorin & Ruzmaikin (1982), which takes into account
the dynamics of the turbulent magnetic helicity.

Many different data assimilation methods exist. Recently, hybrid methods based on a
combination of other, simpler methods have emerged. For example, Ensemble Variational
Estimation (EnVE) is a hybrid method of Ensemble Kalman Filter and 4D Variational
(4DVar) methods. This method builds a better estimate state of the system, initial con-
ditions and has a justifiable computational cost (Cessna et al. 2008; Bewley et al. 2008).
Possibilities of the EnVE method application to dynamo models also will be discussed.

2. Formulation of the dynamo models
2.1. Parker’s migratory dynamo

In a kinematic approximation, the dynamo problem can be described by the induction
equation (Parker 1955)

%—]j’ =V x (vxB)=1,V?B, (2.1)

where B is the magnetic field strength, v is the fluid velocity, 7, is the molecular mag-
netic diffusivity. Magnetic field, B, and the fluid velocity, v, can be separated into two
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FIGURE 1. Observed monthly sunspot number series a) for 1755 — 2007 years from NGDC, and
b) for three solar cycles 14 (gray curve), 19 (black curve) and 23 (dotted curve), which are
aligned according to their maxima (¢ = 0).

components representing mean and fluctuating (turbulent) parts, or B = (B) + b and
v = (v) + u. Here, (B) represents the longitudinally averaged magnetic field, b is the
fluctuating part of B, (v) represents mean global-scale motions in the Sun (such as the
differential rotation), and u is the velocity of turbulent convective motions. Taking into
account that the average of fluctuations is zero, (b) = 0 and (u) = 0, for the case of
isotropic turbulence, we obtain the following mean-field induction equation (e.g., Moffatt
1978)

9(B)

ot

where 7 describes the total magnetic diffusion, which is the sum of the turbulent and
molecular magnetic diffusivity, n = n¢ + 9, (usually 1, < ;). Parameter « is turbulent
fluid helicity. The first term of the equation describes transport of magnetic field lines
with fluid, the second term describes the a-effect, and the last term determines diffusion
and dissipation of the field.

For describing the average magnetic field, following Parker (1955), we choose a local
coordinate system, xyz, where z represents the radial coordinate, axis y is the azimuthal
coordinate and axis = coincides with co-latitude. Effects of sphericity are not included in
this model. Hence, the vector of the mean field, (B), can be represented as

(B) = B(z,y)ey + V x [A(z,y)e,], (2.3)

=V x ({(v) x (B)+a(B)—nV x (B)), (2.2)

where B(z,y) is the toroidal component of magnetic field, A(z,y) is the vector-potential
of the poloidal field. Assuming that (v) = v,(x)e, (rotational component), we can write
the dynamical system describing Parker’s model of the a-dynamo (Parker 1955) in the
standard form:

% =aB +nV?4, %—Jf = G% +nV?B, (2.4)
where G = 0 (vy) /0% is the rotational shear.

Assuming that the coefficients are constants and seeking a solution of the model in
the form (A, By) ~ (Ao, Bo) expli(kxr — wt)], we find the well-known result that a pure
periodic solution exists if D = aG/(n*k3) = 2, where D is the so-called six “dynamo
number.” The solutions grow in time for D > 2, and decay for D < 2.

For periodic solutions toroidal and poloidal field components vary in time in a sinu-
soidal fashion, which is clearly different from the observed, asymmetric profile of the
solar cycle (Fig. 1b). As shown by Kitiashvili & Kosovichev (2009), in the one-mode
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approximation the classical Parker’s dynamo model gives only periodic oscillatory so-
lutions, and therefore cannot explain the observed variations of the sunspot number in
the solar cycles. For creating chaotic variations of the magnetic field in the low-mode
approximation it is necessary to add to the Parker’s model a third equation describing
variations of the magnetic helicity and its interaction with the large-scale magnetic field
(Kleeorin & Ruzmaikin 1982; Kleeorin et al. 1995).

2.2. The Kleeorin-Ruzmaikin model

For modeling the solar cycle we choose the formulation of Kleeorin & Ruzmaikin (1982),
which is based on the idea of magnetic helicity conservation, and has reasonable agree-
ment with the observational data of solar magnetic fields (Kleeorin et al. 2003; Sokoloff
2007). Due to the fact that the kinetic helicity makes the magnetic field small-scaled,
the back influence on the turbulent fluid motions can restrict the unlimited growth of
the magnetic field. In the mean-field approach the magnetic helicity is separated into
large- and small-scale components. Because of the conservation of the total helicity, a
growth of the large-scale magnetic helicity due to the dynamo action is compensated by
the growth of the small-scale helicity of opposite sign (Sokoloff 2007). Thus, small- and
large-scale magnetic fields grow together and are mirror-asymmetrical. This means that
the condition of magnetic helicity conservation is, perhaps, more severe for restricting
the dynamo action than the condition of the energy conservation.

The turbulent helicity can be divided into two parts: hydrodynamic and magnetic:
a = ap + ap. The kinetic helicity, ay, describes helical turbulent fluid motions; the
magnetic helicity, «,,, determines the order of twisted magnetic field lines:

ap=—-1(u-(Vxu)/3,  an=r1(b-(Vxb))/(1271p), (2.5)

where 7 is the lifetime of turbulent eddies, p is density.
It is convenient to define the influence of the magnetic helicity on magnetic field using
spectral density x (Kleeorin & Ruzmaikin 1982)

X={(a-b), (2.6)

where a is the fluctuating part of the magnetic field vector-potential, A.

To derive an equation for the averaged helicity density we multiply the basic induction
equation (2.1) written without the differential rotation term by the fluctuating part of
the vector potential, a; and also multiply the equation for the vector-potential

%—?ZVXB—anxVxA, (2.7)

by the fluctuating part of magnetic field b. Using the averaging of the sum of Eqs. (2.1)
and (2.7), and taking into account that b = V x a, after some transformations we obtain
the following expression for the helicity density (Kleeorin & Ruzmaikin 1982; Kitiashvili
& Kosovichev 2009)

%_<a-%—?+b~%>——2<[V><b]'<B>>—277m<b'V><b>- (2.8)

Two terms, (Ala x [v x (B)]]) and (A]a x [v x b]]), disappear as a result of volume
averaging. Using the mean-field electrodynamics approximation and retaining only the
first two terms for the mean electric field (Moffatt 1978)

e=(vxb)=Za(B)—n(Vx(B)), (2.9)
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we obtain

oy

6—)::2(77<B>~(V><<B>)—a<B>2—77m<b-V><b>). (2.10)
Then, the expression for variations of the magnetic helicity, a,,, in terms of the mean

magnetic field is the following (Kleeorin & Ruzmaikin 1982):

aO‘m Q o 2

b = 5L ) (7 (B) - 2 (5| 2.11)
where coefficient ) ~ 0.1, T is the characteristic time for magnetic diffusion. Equation
(2.11) is written for the case of uniform turbulent diffusion, and when the magnetic
Reynolds number is large, n ~ n;.

For further analysis of the Kleeorin-Ruzmaikin model we transform Egs. (2.4) and
(2.11) in a non-linear dynamical system in non-dimensional variables. Following the ap-
proach of Weiss et al. (1984) we average the system of Eqgs. (2.4) and (2.11) in a vertical
layer to eliminate z-dependence of A and B and consider a single Fourier mode propa-
gating in the z-direction assuming A = A(t)e!**, B = B(t)e!**; then we get the following
system of equations

dA ) dB . )
E =aB — ’I]k A, E =ikGA ’I]k B,
day, — ap Q 9 O, o 9 19
TR ABE? + p (B® —k*A%)| . (2.12)

This transformation allows us to investigate more easily various non-linear regimes,
from periodic to chaotic, and obtain relationships of the basic properties, such as the
cycle growth and decay times, duration and amplitude. Note that the formulation and
the interpretation of solutions of the simplified system are not straightforward because it
does not adequately describes non-linear coupling of the spatial harmonics. For simplicity
we retain only the second harmonic (k = 2), which has the largest growth rate among
the antisymmetric solutions.

To relate the dynamo model solutions to the observations we used Bracewell’s defini-
tion (1953, 1988) of the sunspot number in the form W ~ B(t)*>/?, where B(t) is the
toroidal magnetic field component. We note that the solutions of the dynamical sys-
tem are qualitatively similar for the different harmonics. Nevertheless, we choose the
parameters, which correspond to the solar situation.

Making the following substitutions: A = AoA, B = BoB, t =Tyt k = /%/7" (r is a layer
radius), Tp = 1/(k?n) and ., = @@, and taking into account that Ay = Bonk/G, we
obtain:

dA . dB

1 _pp-4  YB_ii_p
flt dt
dgt:n = v+ [AB D (B - 24%)] (2.13)

where D = Dyé and & = ap, + &y, are the non-dimensional dynamo number and total
helicity, Do = aoGr?/n?, ap = 2Qkv% /G, va is the Alfvén speed, v is the ratio of the
characteristic times of turbulent and magnetic diffusion (Kleeorin & Ruzmaikin 1982)
and A = (k*1/G)? = Rm ™2, and Rm is the magnetic Reynolds number.
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FIGURE 2. Variations of the magnetic field for the middle convective zone ap Do = —2: v = 1.28,
ap = 2.439, Dy = —0.82 for different initial conditions: By = 4i, Ag = —0.01i (dotted curve),
By = 4i, Ag = —i (dashed curve) and By = 1+4i, Ag = —1i (solid curve): a) toroidal component,
B; b) vector-potential, A, of the poloidal magnetic field; ¢) magnetic helicity variations, am; d)
evolution of the model sunspot number, W.

2.3. Periodic and chaotic solutions

In order to estimate the range of parameters of the Kleeorin-Ruzmaikin model Eq. (2.12)
and for modeling the solar cycle, we use the standard model of the interior structure
rotation of the Sun for the top, bottom and middle areas of the convective zone (Schou
et al. 1998). The key parameter of the model is the dynamo number D = Dyay,, because
its magnitude determines behavior of the magnetic field, which depends on the rotational
velocity and magnetic field strength. According to Kitiashvili & Kosovichev (2009) for
the Kleeorin-Ruzmaikin model, given by Eqgs (2.12), the linear instability condition is
also |D| = |apDy| > 2. However, in this case the profile of the periodic solutions is not
sinusoidal, and depends on the initial conditions, Ay and By. For higher initial values
the amplitude of the non-linear oscillations in the stationary state is higher. However,
the shapes of the oscillation profiles are similar.

Figure 2 illustrates solutions for the model of Kleeorin-Ruzmaikin, and the correspond-
ing variations of the sunspot number for different initial conditions. As mentioned, differ-
ent initial values for magnetic field components Ay and By lead to very similar profiles.
In high amplitude cases, dual peaks may appear in the variations of the vector potential,
A, of the poloidal field. The evolution of the magnetic helicity shows a relatively slow
growth followed by a sharp decay (Kitiashvili & Kosovichev 2009). The helicity has max-
ima when the toroidal field is zero. In these calculations the value of parameter v, which
describes damping rate of magnetic helicity and depends on the turbulence spectrum and
the dissipation though helicity fluxes, is of the order of unity. Finally, the variations of
the sunspot number, W, with the amplitude increase are characterized by higher peaks
and shorter rising times (see Fig. 2d). Note that in the sunspot number profile we can
recognize the well-known general properties of the sunspot number profile with a rapid
growth at the beginning of the cycle and a slow decrease after the maximum.

With the increasing of |apDo| (JapDo| > 2) the profile of magnetic field variations
continue to deform and can become unstable with very steep variations of the magnetic
field. The solution can be stable again if we enhance the back reaction by increasing
the quenching parameter. We use the following quenching formula for the kinetic part of
helicity, ay,, Kleeorin et al. (1995) o = ay, /(1 4+ £€B?) + ay,. Thus we can always obtain
periodic solutions for sufficiently strong &.

The transition from periodic to chaotic solutions occurs when the dynamo number,
|ap Do, increases above a certain value. In the transition regime the cycle amplitude
becomes modulated: it slowly increases with time, and then suddenly and very sharply
declines, and then starts growing again (Kitiashvili & Kosovichev 2009).

In the case of significant deviations from the condition of linear stability, the solutions
become chaotic for all variables of the dynamical system. Figure 3 shows an example of
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FIGURE 3. Example of the chaotic solution for the middle convective zone parameters: a) toroidal
component of magnetic field B, b) vector-potential, A, c) magnetic helicity variations a,, and
d) model sunspot number W.
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FIGURE 4. Relationships between the amplitude of the model sunspot number and the growth
time for a) periodic solutions: the circles show a sequence for a fixed value of the kinetic helicity,
ap = 2.44, and the dynamo number varying from -7 to -0.82; the crosses show the case of fixed
Do = —0.82 and ay, varying from 2.44 to 3 (the size of crosses and circles is proportional to the
corresponding values of |Dg| and ay,); b) chaotic solutions for Dy = —0.82 and «ay, = 2.8 (black
circles), an = 3 (empty circles) and ap, = 3.2 (stars); and c) for the real solar cycles.

chaotic variations for the middle convective zone parameters: v = 1.28, A = 1.23 x 1076,
Dy = —0.82, ap, = 3.2, £ = 3.9 x 1073 for the magnetic field components, the magnetic
helicity and the sunspot number parameter. In the chaotic solutions, the peaks of the
toroidal magnetic field, B (Fig. 3a) strongly correlate with the peaks of the vector-
potential, A, and the magnetic helicity, a,,, (Fig. 3b, ¢). The growth of the toroidal field
also leads to strengthening of the poloidal field and strong fluctuations of the magnetic
helicity.

Now we can see from Figs. 2d and 3d that the profiles of the model sunspot number
variations qualitatively describe the mean profile of the solar cycles. The next important
characteristic of the solar cycles is the relationship between the amplitude and the growth
time. Figure 4 shows this relationship for some periodical solutions (panel a), four chaotic
solutions (panel b) and properties for the real 23 solar cycles (panel c¢). The time scales
are non-dimensional. Figure 4c shows the observed amplitude-growth time properties of
the solar cycles of 1755 — 2007. Thus, all three panels demonstrate that the growth time
is shorter for stronger cycles.

3. Data assimilation methods

In the previous section we obtained a solution for the dynamical system in one-mode
approximation, which qualitatively reproduces the basic properties of the solar cycle. In
this section we try to adapt the periodic model solution and sunspots number series using
data assimilation methods.
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FIGURE 5. Scheme of the data assimilation procedure. Dashed curves show exact solutions of
a model, thin solid curves describe the first correction of a model according to observations,
thick curves are the best estimate of an observable system state. Gray and black colors indi-
cate estimations for past and forecast states. Black and empty circles mean real and simulated
observations, respectively.

3.1. Basic formulation

The main goal of any model is an accurate description of properties of a system in the
past and present times, and the prediction of its future behavior. However, a model is
usually constructed with some approximations and assumptions, and contains uncertain-
ties. Therefore, it cannot describe the true condition of a system. On the other hand,
observational data, d, also include errors, €, which are often difficult to estimate. Data
assimilation methods such as the Kalman Filter (Kalman 1960) allow us, with the help
of an already constructed model and observational data, to determine the initial state
of the model that is in agreement with a set of observations, and obtain a forecast of
future observations and an error estimate (Evensen 2007; Kitiashvili 2008). For instance,
in our case we know from observations the sunspot number (with some errors) and want
to estimate the state of the solar magnetic fields, described by a dynamo model.

In generally, if the state, 1, of a system can be described by a dynamical model
dy/dt = g(1,t) + ¢, with initial conditions ¥y = ¥y + p, where g(¢,t) is a non-linear
vector-function, ¢ and p are the errors of the model and in the initial conditions. Then,
the system forecast is ¢/ = 1t + ¢, where 9 is the true system state, and ¢ is the forecast
error. The relationship between the true state and the observational data is given by a
relation d = M|[y] + €, where d is a vector of measurements, M[i)] is a measurement
functional.

For a realization of the data assimilation procedure in the case of non-linear dynamics,
it is convenient to use the Ensemble Kalman Filter (EnKF) method (Evensen 1994, 2007).
The main difference of the EnKF from the standard Kalman Filter is in using an ensemble
of possible states of a system, which can be generated by Monte Carlo simulations. If we
have an ensemble of measurements d; = d + ¢; with errors €; (where j = 1,..., N), then
we can define the covariance matrix of the measurement errors C¢ = eeT, where the
overbar means the ensemble averaged value, and superscript T" indicates transposition.
Using a model we always can describe future states of a system, /. However, errors
in the model, initial conditions and measurements do not allow the model result be
consistent with observations. To take into account this deviation, we consider a covariance
matrix of the first-guess estimates (our forecast related only to model calculations):

(CG,) =@ — ) (f — )T, Note that the covariance error matrix is calculated for
every ensemble element. Then, the estimate of the system state is given by:

V=) + K (d— MyT), (3.1)
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FIGURE 6. Results of assimilation of the annual sunspot number data (circles) into the dynamo
model. The gray curve shows the reference solution (without assimilation analysis), and the
black curve shows the best EnKF estimate of the sunspot number variations, obtained from the
data and the dynamo model.

where K = ( ;w)fMT (M(C;w)fMT + Cfe) 1, is the so-called Kalman gain (Kalman
1960; Evensen 2007). The covariance error matrix of the best estimate is calculated as
(Cyp)t = (o — Pa)(he — )T = (I — K M) (Cinb)f' We can use the last best estimate
obtained with the available observational data as the initial conditions and make the
next forecast step. At the forecast step, we calculate a reference solution of the model,
according to the new initial conditions, then simulate measurements by adding errors to
the model and to the initial conditions. Finally we obtain a new best estimate of the
system state, which is our forecast. A new set of observations allows us to redefine the
previous model state and make a correction for the predicted state.

3.2. Implementation of the data assimilation method

For the assimilation of the sunspot data into the dynamo model, we select a class of peri-
odic solutions which correspond to parameters of the middle convective zone and describe
the typical behavior of the sunspot number variations (Fig. 2d). The implementation of
the EnKF method consists of three steps (Kitiashvili & Kosovichev 2008): preparation
of the observational data for analysis, correction of the model solution according to ob-
servations, and prediction.

Step 1: Preparation of the observational data. Following Bracewell (1953, 1988), we
transform the annually averaged sunspot number for the period of 1856 — 2007 into the
toroidal field values using the relationship B ~ W?2/3 while alternating the sign of B. We
also select the initial conditions of the model such that the reference solution coincides
with the beginning of the first cycle in our series, cycle 10, which started in 1856. We do
not consider the previous solar cycles because of the uncertainties in the early sunspot
number measurements. Then we normalize the toroidal field in the model in such a way
that the model amplitude of B is equal to the mean toroidal field calculated from the
sunspot number. In addition, we normalize the model time scale assuming that the period
of the model corresponds to the typical solar cycle duration of 11 years.

Step 2: Assimilation for the past system state. Unfortunately we do not have observa-
tions of the magnetic helicity, and the toroidal and poloidal components of the magnetic
field. Therefore, in the first approximation, we generate observational data as random
values around the reference solution with a standard deviation of ~ 12%, which was
chosen to roughly reproduce the observed variations of the sunspot number. Then, we
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calculate the covariance error matrixes of the observations, C¢., and the forecast, (C’i ).
After combining the observation and model error covariances in the Kalman gain, K, we
obtain the best estimate for the evolution of the system, ¥* from Eq. (3.1) (Fig. 5, first
half). Figure 6 shows the result of assimilation of the sunspot data into the dynamo
model: the best EnKF estimate (black curve), the initial model (gray curve) and the
actual sunspot data (circles).

Step 3: Prediction. Obtain a prediction of the next solar cycle, we determine the ini-
tial conditions from the best estimated solution for the previous cycle in terms of the
amplitude and phase to continue the model calculations. Then after receiving the refer-
ence solution with the new initial conditions, we simulate future observational data by
adding random noise and repeat the analysis (Fig. 5, right). This provides the best EnKF
estimate of the future state of the system (forecast).

3.3. Reproducing and predicting observational data by the Ensemble Kalman Filter

The described analysis has been tested by calculating predictions of previous cycles.
Figure 7 (a-h) shows examples of the EnKF method implementation for forecasting the
sunspot number of cycles 16-23. For these forecasts, we first obtain the best estimated
solutions using the observational data prior to these cycles. We then compute the model
solution (black dashed curves) according to the initial conditions of the time of the last
measurement and simulate a new set observation by adding random noise. Then, we ob-
tain the EnKF estimates using the simulated observations, which give us the prediction
(Fig. 7, black curves). These experiments show that this approach can provide reasonable
forecast of the strength of the next solar cycles. However, there are significant discrep-
ancies. For instance, the strength of cycle 16 is over-estimated, and the strength of cycle
19 is under-estimated. The main uncertainties are caused by inaccuracies in determining
the time of the end of the previous cycle from the sunspot number data, and by the
incompleteness of the model and insufficiency of the sunspot number data. In particular,
we found the forecast is inaccurate when the sunspot number change significantly from
the value of the previous cycle (Kitiashvili & Kosovichev 2008). Also, our forecast ex-
periments show a strong dependence on the phase relation between the reference model
solution and the observations. The phase difference appears due to the constant period
of the model solution. Curiously, when the model phase is ahead of the solar cycle phase,
adding a data point at the start of the cycle substantially improves the forecast. However,
when the model phase lags, this does not happen. This effect is taken into account by
correcting the phase of a reference solution that it is slightly ahead of the solar cycle
phase.

The same analysis scheme is applied for predicting of the next solar cycle 24. According
to this result, solar cycle 24 will be weaker than the previous cycle by approximately 30%.
To test the stability of this prediction we used two other sets of initial conditions in 2008
and obtained close results (Fig. 7i).

4. Results and discussion

We have presented a numerical analysis of simple dynamical models describing the
non-linear behavior of two dynamo models, the classical Parker’s dynamo model with the
standard a-quenching and the model of Kleeorin & Ruzmaikin (1982), which describes
the evolution of the magnetic helicity based on the balance between the large-scale and
turbulent magnetic helicities, shows the existence of non-linear periodic and chaotic so-
lutions. Using a low-order dynamical system approach we examine the influence of the
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FIGURE 7. Predictions for solar cycles 16-24. Black dashed curves show the model reference
solution. Gray curves show the best estimate of the sunspot number using the observational
data (empty circles) and the model, for the previous cycles. Black curves show the prediction
results. In panel i) the model solution is shown for three different estimates of the sunspot
number for 2008: 3 (gray dashed curve), 5 (black dashed curve) and 10 (dots).

kinetic and magnetic helicities on the non-linear fluctuations of the dynamo-generated
magnetic field in the conditions of the solar plasma, and compare these with the sunspot
number variations observed during the solar 11-year cycles.

The analysis of the Kleeorin-Ruzmaikin model showed the existence of non-linear pe-
riodic and chaotic solutions for conditions of the solar convective zone. For this model
we obtained profiles of the sunspot number variations, which qualitatively reproduce the
typical profile of the solar cycles.

The results of assimilation of the annual sunspot number data into the solar dynamo
model and the prediction of the previous solar cycles (Fig. 7) demonstrate a new method
of forecasting the solar activity cycles. Using the EnKF method and a simple dynamo
model, we obtained reasonable predictions usually for the first half of sunspot cycles with
an error of ~ 8-12%, and in some cases also for the declining phase of the cycles. This
method predicts a weak solar cycle 24 with a maximum of the smoothed annual sunspot
number of approximately 80. It is interesting to note that the simulations show that
the previous cycle does not finish in 2007 as was expected, but still continues into 2008.
According to the prediction, the maximum of the next cycle will be reached approximately
in 2013.
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FiGURE 8. Example of implementation of the EnVE algorithm to the Lorenz system for all
three states with true model solution. Black curve shows exact solution of the model, gray line
represents model forecast and dots is measurements. a) Initially, the estimate is fairly poor, as
seen by the quickly diverging forecast; b) as the estimate is improved, the variational window
(shadow area) width expands, helping to further reduce the error in the forecast; and c¢) the
estimate converges accurately to the global minimum (Bewley et al. 2008).

The application of the data assimilation method, EnKF, for modeling and predicting
solar cycles shows the power of this approach and encourages further development. It
also reveals significant uncertainties in the model and the data. Among these are the
uncertainties in the determination of the start of a solar cycle from the sunspot number
series (in particular, when the cycles overlap), leading to the uncertainty in the phase
relation between the model solution and the data. Also, there are significant uncertainties
in the relationship between the sunspot number data and the physical properties of the
solar magnetic field, in the absence of magnetic field and helicity data, and, of course, in
the dynamo model. Our conclusion is that for more robust and accurate predictions of
solar cycles, the information contained in the sunspot number data is insufficient.

5. Future work

For further development we plan to apply the data assimilation methods to more
complete 2-D dynamo models, which describe the latitudinal distribution of the solar
magnetic field, and use the magnetograph data available for the past three cycles.

In addition, we would like to use alternative, more advanced methods. Therefore we
plan to apply the hybrid Ensemble Variational Estimation (EnVE) method (Cessna et al.
2008; Bewley et al. 2008). This method is a combination of the EnKF and 4DVar methods.
The EnVE algorithm is initialized by using the traditional EnKF scheme up to the time
of the most current measurement. This provides the current, best ensemble estimate
together with the corresponding implicit statistics. The mean estimate is found by taking
the average of all the ensemble members. In addition, a variational iteration similar to
4DVar is set up to allow for a multiscale optimization. For forecasting applications, the
most important estimate is the one at the most recent measurement time, because it is
used as an initial condition for the forecasting calculations. It is especially important for
correct predictions of solar cycles to correctly determine the time of the solar minima,
particulary for early cycles when observations were irregular and less accurate. This
problem can be partially solved by using the EnVE method, because the method redefines
previous states of a system by back integration in time. Previously this method was
tested by Bewley et al. (2008) for a Lorenz model (Fig. 8). The results have shown a
good prediction for the chaotic system. Thus, we hope for success in the implementation
of the EnVE method for solar dynamo models.
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