
  

 

Abstract—This paper presents a new quasi-static gait called 
end-over-end motion for a 3-legged robot, named the Walk-&-
Roller (W&R). In this motion, walking is achieved through 
rotation of the main body of the robot in three gait phases. The 
rotational motion is performed by holding the robot on two of 
the legs and swinging the third over the body into a new 
forward position. The trajectory planning to achieve this gait is 
determined in such a way that the static tipover stability is 
guaranteed and no singularities are reached. Computer 
simulation and experiments have been executed to demonstrate 
the validity of this proposed gait method. 

I. INTRODUCTION 
HENthe terrain is uneven or obstacles exist along the 
path, legged locomotion has clear advantages over 

rolling and track locomotion through its discontinuous 
contact with the ground as well as environmental 
adaptability. These advantages include improved mobility, 
traversing of large obstacles, energy efficiency, and stability 
enhancement [1],[2],[3]. 
Extensive research into the area of multi-legged robots has 
been done over the last few decades with the most common 
vehicles being bipeds, quadrupeds, hexapods [4],[5]. Among 
these, three limb robots have been investigated in various 
aspects of the design space and gaits for walking tasks. 
Lyons and Pamnany in [6] developed a novel triped, called a 
rotopod. Through the use of a rotating arm, the robot is able 
to store up energy just like a flywheel. When one of the 
actuated legs is shortened, the opposite two legs lift off of 
the ground and the rotating arm causes the body to pivot 
around the shortened leg. 
At the Florida Institute of Technology, work has been done 
to analyze a theoretical three-legged walking vehicle [7].  
From a tripod stance, the robot swings one of its legs in 
between the other two. This swinging motion forces the 
robot to pivot over the two supporting legs and land on the 
swinging leg. Since the robot is constrained to moving along 
a triangular grid, straight-line motion can be achieved by 
repeating a three-step pattern. 
Similar to the work done at the Florida Institute of 
Technology, researchers at Virginia Tech have developed a 
three-legged walking machine that uses the displacement of 
its center of mass to move efficiently [2].  After stabilizing 
itself in a tripod stance, the “STriDER” shifts its center of 
mass in the direction it intends to move.  This causes the 
vehicle to become unstable and fall forward allowing the 
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trailing leg to swing under the two supporting legs to catch 
the body as it comes down.  The repetition of this gait 
permits locomotion in a series of directions. 
Another tripod-walking robot again uses a shifting of the 
center of mass to allow for motion, but in a much different 
way [1]. The vehicle has a balancing mass above the legs 
that rotates into a position over the supporting legs while the 
final leg moves into a new position. The balancing mass 
allows the vehicle to manipulate the position of its center of 
mass independent of the leg motion, which allows for lower 
degrees of freedom required for the legs. 
The generation of a gait can be subdivided into two main 
categories, static and dynamic gaits. For rapid locomotion, 
the dynamic gait must be applied to compensate for inertial 
forces caused by quick movement. On the other hand, a 
static gait, which is considered in this paper, should be used 
when the movements are slow and more importance is 
placed on stability of the center of mass (COM) within the 
supporting polygon [8]. 
The W&R, built in the Coordinated Robotics Lab at UCSD, is 
a 3-legged robot which is mechanically similar to the LIBRA 
developed at MIT [9]. Unlike the LIBRA, the joint motors of 
the W&R have been placed in the main body to make it 
possible for future developments in the 3D case. Due to this 
distinction, the legs are significantly lighter and improve the 
versatility of the W&R to many different types of locomotion 
as well as obstacle avoidance [10]. This paper presents a new 
quasi-static gait called end-over-end motion for the W&R. 
Firstly, the W&R and characterization of the new gait are 
described. Then, velocity kinematics for the purposes of 
modeling is derived. Next, the time-trajectories are planned 
for the gaits and the control procedure is explained. 

II. THE WALK & ROLLER 
The W&R robot consists of a central triangular body frame 
called the hub, which is attached to the three legs as depicted 
in Fig. 1(a). Each leg is made up of two links and two 
actuated revolute joints. The robot thus has a total of 9 
degrees of freedom. The Walk-&-Roller was designed to be 
symmetric in order to remove any directional bias. The final 
vehicle will be composed of two identical halves capable of 
acting in unison or independently (see Fig. 1(b)). This allows 
for the robot to follow both a straight and curved pathway as 
well as maneuver over obstacles. 
This platform provides agility for a robot capable of rolling 
like a wheel with a varying radius, shuffling, climbing 
through vertical ducts and creeping at a very compact height. 
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Figure 3: Phase (II) of the gait 

 

Figure 4: Phase (III) of the gait 

V. VELOCITY KINEMATICS 
For planning the gait and computing control velocity inputs, 
the relationship between task space and joint space must be 
determined. The joint variables are taken from the rotation 
of the six leg segments. The task space for phases (I) 
through (III) is represented by the set of Cartesian variables 
defined by the position of the center of mass of the hub, the 
orientation of the hub, and also the position vector of the tip 
of the swinging leg for phase (I) and (III) and the joint 
angles of the swinging leg for phase (II). 

4.1. Absolute Angles 
Considering  and  to be the absolute angles of the i-th 
leg and  to be the absolute rotation of the hub, the goal is to 
map the output velocity vector to the absolute angles of the 
legs. To this end, the swinging leg is always assumed to be 
the 3rd leg, and the left and right supporting legs are 
considered to be the 1st and 2nd respectively. The linear 
velocity vector of point H  can be obtained in two 
different forms, depending on which leg is traversed, 
namely, 

 (1) 
in which i=1,2 and , , and  are linear velocity vectors 
of the points Ai, Bi and Ci, respectively. The matrix E is 
defined as 

 (2) 
Equation (1) can now be written in vector form as 

 (3) 

with  being the vector of absolute joint rates of 

the i-th leg and  is a 2×1 zero matrix. 
For phases (I) and (III), the velocity of point can be 
obtained using the velocity of point , which is derived in 
two different ways, namely, 

 (4) 

Equation (4) can now be rewritten in vector form as 

 (5) 

4.2. Relative Angles 
Considering that  and  are the relative angles of i-th leg 
depicted in Fig. 1(c) , the relationship between the rates of 
the absolute and relative angles can be represented as 

    i=1,2,3 (6) 

in which  is the vector of relative actuated joint 

rates and the matrix F is defined as 
(7)

By substituting , constructed from Eq. (6), into Eq. 

(3) and performing some manipulation, the following is 
derived: 

 (8) 

Also for phases (I) and (III), the subsequent relation can be 
obtained through the substitution of  from Eq. (6) into 
Eq. (5) 

(9) 

VI. TRAJECTORY PLANNING 
In this section, the trajectory planning is performed for all 
phases of the gait using point to point motion. The 
polynomial functions in terms of time are used to define 
trajectories for the hub position/orientation and joint angles 
and tip of the swinging leg. The third-order (cubic) 
polynomials are the lowest order polynomials for which it is 
possible to specify both position and speed. Due to obstacle 
avoidance and joint limitation, redundancy in the polynomial 
to design the desired trajectory is needed. 

 (10) 
It is necessary to determine the coefficients corresponding to 
each cubic polynomial. By considering (10), taking its first 
derivative with respect to time at both the start and the end, 
and also taking an additional position equation at the desired 

 into consideration, five equations can be derived. Since 
the position and its speed are known at the beginning and the 
end and the redundant position is determined based on the 
constraint, the system of five equations and five unknowns, 
( ), can be solved, 

 (11) 
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in which  and  are the initial and final time of i-th phase 
of the gait and . The coefficients can be 
determined by considering the following conditions 

 (12) 
where , and are the desired initial, final and 
intermediate value of each control variable in the i-th phase. 
Here, it is considered in our test that the environment is free 
of obstacles and the surface is flat. Therefore, the desired 
horizontal and vertical center of mass positions of the hub 

 at the beginning and end of each phase of the gait 
can be written as: 
 

(13) 

 and  are the increments of  in phases I 
and II respectively due to the tipover stability improvement 
and translational motion. Also,  is the increment of 

 in phase I and helps in the translational motion to 
improve tipover stability.  is the increment of  
in phase II to make the main translation possible. Due to the 
lack of obstacles and flat surface,  in all phases. 
The desired horizontal and vertical tip positions of the 
swinging leg  at the beginning and end of phases 
(I) and (III) are represented by: 

(14) 

At the end of phase I,  is theoretically considered 
a bit larger than  in order to decrease friction force on 
the tip of the prospective swinging leg although  is equal 
to  in the test. If the origin of the world coordinate is 
placed on the ground, . The desired initial and final 
values for the joint angles of the swinging leg in phase II are 
given as 

(15) 

and  are chosen so that the final location of the tip 
of the swinging leg is slightly above the ground. 

VII. TIPOVER STABILITY MEASURE 
In the first phase of the gait, improving tipover stability by 
hub translation and rotation is necessary to prevent the 
subsequent phase from reaching instability. Hence, the 
desired position/orientation of the center of mass of the hub 
as well as the tip of the prospective swinging leg must be 
appropriately determined in such a way that stability 
improves and none of the legs are forced to overextend or 
driven theoretically underground. To this end, the middle 
and right legs are considered to be the support legs, and the 
left one is designated as the swinging leg when the robot is 
traveling towards the right hand side, and vice versa when 
the robot motion is toward the left. 

In our work, the force-angle tipover stability measure is 
utilized in a manner similar to that proposed in [11],[12]. 

 
Figure 5: Stability definition diagram 

Let li represent the instantaneous location of the i-th, 
i={1,2}, ground contact point from the center of mass of the 
entire system and fg the gravitational force vector of the 
entire system (fig. 5). The stability angles can be computed 
for each tipover axis as the angle between the gravitational 
force vector fg and the position vector li 

 (16) 
with    

 with  (17) 

And . The overall planar W&R stability angle is 
defined as the minimum of the two stability angles: 

 (18) 
Tipover instability can occur when . Measurements of 
the leg contact forces or joint torques are not required, since 
kinematics-based stability analysis is being implemented. 
Keeping this in mind, the planning attempts to preserve a 
relatively large value for . 

VIII. W&R CONTROL 
The W&R can be controlled through inverse velocity 
kinematics, which requires closed-loop control of all the 
actuators simultaneously using 

 (19) 

in which 

 (20) 

and  is a 6×6 diagonal gain matrix. The actuated joint 
variables, obtained by Eqs (8) and (9), are considered as the 
desired trajectories for the real world implementation. The 
physical joints then track these positions through the use of 
close-loop control. 
The control of the motors is performed through an Arduino 
prototyping board and a set of Sabertooth 2×5 dual motor 
drivers. Feedback from the actual rotation is taken from the 
potentiometers attached to the joints. Due to the 
computational power of the control algorithm, the algorithm 
is performed on an external laptop in MATLAB and then 
commands are transmitted to the Arduino via a tether.   

Phase (II) 
Phase (III) 

Phase (I) 

Phase (I) 

Phase (II) 

Phase (III) 
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Figure 8: Snapshot 

X. CONCLUSION 
A new quasi-static gait called end-over-end motion for the 

W&R was presented in this paper. The walking was achieved 
in this motion through rotation of the main body of the robot 
and swinging a leg over the body when the other two legs 
hold the robot. A few assumptions were made to simplify the 
system to a serial-parallel manipulator. The performed 
simulation and experiments demonstrated the validity of this 
proposed gait method despite backlash in the joints. 
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