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ABSTRACT

In this project, we have designed a new type of flexible surface, which we call a tensegrity fabric, and simulated the interac-
tion of this flexible surface with a near-wall turbulent flow. The fabric is constructed by weaving together both members in
tension (tendons) and members in compression (bars) to form a plate-class tensegrity structure, then covering this discrete
flexible structure with a continuous flexible membrane. We have modeled the flow/structure interaction by coupling a spec-
tral Direct Numerical Simulation (DNS) code resolving the (continuous) turbulent flow system and an efficient structural
dynamics code which simulates directly the motion of the (discrete) extensive, small-scale, and interconnected tensegrity
structure. The structural dynamics code used was developed by Prof. Robert Skelton’s lab at UC San Diego. An immersed
boundary method is used to capture the effect of the moving boundary in the DNS, and a simple tessellation strategy is
used to lump the distributed fluid forces (skin friction and pressure) acting on the membrane onto the nearby nodes of the
tensegrity structure. Our ultimate goal is to use this new simulation tool to optimize the design of the tensegrity structure
(specifically, the orientation, stiffness, mass, and damping of each of the individual tendons and bars in the unit cell upon
which the tensegrity structure is based). Our objective in this optimization is to tune the compliance properties of the fabric
in such a way as to reduce the skin-friction drag induced at the flow/structure interface by weakening the vortices near the
wall in the overlying turbulent flow.
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1. INTRODUCTION
1.1. Compliant surfaces for turbulent drag reduction

In the region immediately adjacent to a wall, turbulent flows are dominated by small vortices, commonly referred to as
“coherent structures”, which have a characteristic and predictable scale and orientation. These vortices are responsible
for transporting a significant component of momentum towards the wall, thereby causing high drag and a loss of system
efficiency in a variety of practical applications of engineering interest. Numerous numerical experiments have shown that,
if the interaction of these near-wall coherent structures with the wall can somehow be mitigated, the drag of the turbulent
flow will be significantly reduced.

A variety of strategies have been investigated previously in order to manipulate the near-wall vortices and obtain drag
reduction. Strategies explored to date include both active control, such as blowing/suction at the wall and prescribed wall
motions, and passive control, such as polymer additives, riblets, and compliant coatings. Reviews of recent advances
in the active and passive control of wall-bounded turbulent flows are contained in Bewley, Moin, & Temam (2001) and
Gad-el-Hak (1996).

Inspired by the highly-efficient swimming capability of dolphins, it has been hypothesized that a well-designed compli-
ant surface might be able to reduce the intensity of near-wall turbulence and thereby reduce the skin friction of a turbulent
flow. However, except for Kramer’s first observations (1957, 1960) of skin friction reductions with compliant coatings
in his pioneering experiments, few laboratories had achieved measurable drag reductions with compliant coatings when
applied to fully turbulent flows. A notable exception is the recent compliant surface experiments of Choi ef al.(1997), in
which a 5% drag reduction in a fully turbulent flow is reported.

The current lack of convincing laboratory demonstrations of turbulent drag reduction due to surface compliance might
likely be because a surface with the correct compliance properties has simply not yet been tested. In the linear setting, the
response characteristics of a surface to an overlying flow is a function of the streamwise and spanwise wavelengths and the
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Figure 1. Stable tensegrity unit cells. (a) Three-bar cell, (b) four-bar cell, and (c) six-bar cell.

Figure 2. A tensegrity fabric with a membrane stretched over the top.

temporal frequency of the flow perturbations near the wall, and is a very high-dimensional optimization problem. Though
we know roughly that the desired surface should extract energy from the dominant flow perturbations which seed further
flow instabilities, or perhaps at least to scramble the phase of such perturbations, it is difficult, if not impossible, to extend
this rough notion into an appropriate material specification. In order to design an appropriate compliant surface to test, a
high-dimensional optimization problem must first be solved.

1.2. Tensegrity fabrics

The compliant surface model we are considering is based on a special structural paradigm known as fensegrity, which
is a stable pretensioned collection of structural members in tension (“tendons”) and members in compression (“bars”).
The structure is mass efficient because no structural member experiences a bending load. The same structural paradigm
appears to form the molecular foundation for spider fibers (Ingber 1997, 1998), which is nature’s strongest material per
unit mass (several times stronger per unit mass than steel). In close collaboration with Prof. Skelton’s group, we have been
able to parameterize completely several families of flexible stable tensegrity structures with broad or infinite extent in two
directions, which we refer to as plate-class structures. These structures are constructed by interconnection of stable unit
cells (see, e.g., Figure 1) in such a manner as to fill the plane, as depicted in Figure 2. By designing the fabric in such a
manner, failures of individual members do not compromise the integrity of the entire tensegrity fabric, but simply lead to a
modest deformation of the nearby cells, thus providing robustness in the overall system.

Several previous studies (see, e.g., Carpenter et al., 1985, 1990; Endo et al., 2002; Xu et al., 2003) have used spring-
supported viscoelastic-elastic plates/membrane to model a compliant wall (Figure 3). One of the reasons that we have
chosen the tensegrity paradigm in the present work is that it provides us with several additional degrees of freedom to
optimize in our design. A tensegrity fabric may be formed by interconnecting stable 3-bar, 4-bar, or 6-bar unit cells. The
geometry, the size of the unit cell, and the stiffness, mass, damping, and orientation of each of the members within the unit
cell may be tuned such that the overall fabric responds to the overlying flow in a desired fashion.
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Figure 3. Spring-supported compliant wall models. (a) Isotropic model, (b) anisotropic model. (Adapted from Carpenter et al., 1985,
1990).

Another motivation for using a tensegrity structure is that all bars in such a structure are inclined, so the entire structure
may respond to both normal and tangential loads. In the spring-supported viscoelastic-elastic plate/membrane model, the
wall responds to pressure fluctuations only (see Figure 3a). However, the capacity of the surface to respond to friction
(tangential) forces in addition to pressure (normal) forces (see Figure 3b) is particularly attractive, and might lead to new
opportunities to produce a drag-reducing compliant surface (Bewley & Protas, footprints). An anisotropic compliant wall
was first presented by Grosskreutz (1971) and later analyzed theoretically by Carpenter & Morris (1990), and has been
shown to provide particular advantages with regard to the stabilization of transitional flows. The present work explores a
generalization of this strategy and its application in the turbulent regime.

The theoretical anisotropic wall model illustrated in figure 3(b) is constructed with a thin plate supported by inclined
lever arms and springs. Under small-amplitude pressure fluctuations, the horizontal and vertical displacements of the ends
of the lever arms may be related in such a way that a negative Reynolds shear stress is generated and thereby the production
of turbulence near the wall is reduced (Carpenter et al., 1990). In the present work, we hope to orient the structural members
in the tensegrity fabric in such a way that the flow/structure interaction will produce a similar stabilizing effect.

1.3. Representation of the flow-structure interface

Two techniques have been identified to form the flow-structure interface between the (continuous) flow above and the
(discrete but small scale) structure below. The first, as depicted in Figure 2, is to simply stretch a flexible membrane over
the top of the tensegrity structure, transmitting the force generated by the flow to the top nodes of the structure. Another
option includes the attachment of small mechanical “scale” to each surface node of the tensegrity structure, mimicking the
scales on a shark’s skin. In our simulation model, we assume that the force from the flow is transmitted to the top nodes
of the structure in a simple fashion approximating the latter technique. The surface is tessellated into small “patches”
surrounding each node. The friction and pressure forces induced by the flow are then integrated over each patch and
lumped to the associated node of the tensegrity structure.

2. NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW WITH A MOVING
BOUNDARY

2.1. Immersed boundary method

We use a Direct Numerical Simulation (DNS) code to model the incompressible flow in a channel. To accommodate the
time-varying boundary, an immersed boundary method is used to avoid an expensive boundary-conforming grid recon-
struction at each time step. Peskin (1977) first developed the immersed boundary method and applied it to biological
systems such as the flow of blood in a heart. Several variations of this method have since been developed and applied to
a variety of complex problems with time-varying geometries. The method is sometimes used in situations where there is
a real “immersed” interface between two different fluids. For example, Pozrikidis (1995) implemented a method with a
pointwise body force distribution over the interface for solving the problem of the deformation of liquid drops in a shear
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Figure 4. Diagram of the computational domain

flow. The method is also commonly used in situations in which there is no actual fluid on the other side of the boundary,
but (for computational reasons) an artificial flow domain is defined so that the time-varying physical boundary of the fluid
system essentially becomes “immersed”. For example, Goldstein (1993) presented a feedback scheme for the body force,
and simulated the turbulent flow through a ribbed channel. Fadlun (2000) applied a direct forcing scheme proposed by
Mohd-Yusof (1997) to solve the flow problem inside an IC piston/cylinder assembly at high Reynolds number.

The basic idea of the immersed boundary method is that a time-invariant regular grid is used despite the boundary’s
complexity. Flow fields on both sides of the “immersed” boundary are solved, even if one of these fields should be
considered as artificial. Body forces are added within this artificial region to enforce the desired boundary conditions and
dynamic motions of at the immersed interface.

In the present system, the flow is confined by the deformed and time-varying walls in a channel. We thus augment the
physical flow domain, assuming there exists an artificial flow outside the channel walls with the same physical properties
(mass, density) as the actual flow between the channel walls. Thus, the physical walls of the channel become “immersed”.
In this project, we consider small amplitude wall deformations only, N < 5, where 1 denotes the wall displacement and
+ denotes distance in viscous units. To accommodate the small boundary variations, we adopt the direct forcing scheme
mentioned above so that evaluation of the body force can be avoided when solving the Navier-Stokes equation. However,
we still need to calculate the divergence of the body force when solving the Poisson equation for the pressure field.

2.2. DNS flow model

The augmented flow domain is illustrated in the figure 4. Two extra slabs are added at the top and the bottom. We allow
only the bottom interface to deform so we may use the upper interface as a reference. The lower wall deforms in such a
manner that the total volume of the physical domain does not change. The physical domain is denoted as €2, the augmented
domain as Q. I't, I'~ stand for the upper and lower immersed boundaries, respectively, and I**, I~ stand for the upper and
lower external boundaries, respectively. The channel size is (0,L,) X (—h— 8,h+ 8) x (0,L;); without loss of generality,
we assume & = 1. The mean flow is aligned in the x; direction.

The flow, for the physical domain and the artificial domain alike, is governed by the incompressible Navier-Stokes

equation

MLy Vp =vAu—iP, +f

5 (uu) +Vp = vAu—iP + 0

V.u=0,

where p is the pressure divided by the density p and v is the kinetic viscosity. The variables x; are normalized by the
half-width of the channel %, u is normalized by the mean friction velocity u; = (T,,/p)'/2, and ¢ is normalized by h/u:.
The Reynolds number based on the mean friction velocity and the half channel width is defined by Re; = uth/v. iP; is
the time-varying but spatially-uniform pressure gradient in the x; direction, which is adjusted in such a way as to maintain
constant mass flux in the physical domain at every time step.
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Figure 5. Diagram of the deformed wall and the staggered grid

Direct forcing f is applied in the virtual interface region such that the no-slip and no-penetration boundary conditions

u=", 2

is satisfied at each time step, where 1 is the vertical motion of the wall. The horizontal motions are ignored since the wall
deformation is very small.

Periodic boundary conditions are assumed in the streamwise (x|) and spanwise (x3) directions. The external boundaries
are modeled with
aul
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The “slip” condition is used to simplify the dynamics of the flow in the artificial region outside the immersed channel walls.

These choices provide an approximately linear mean profile across the immersed interface, which improves accuracy in
the numerical implementation.

0, on fi;

u =0, |p+ = constant =T, |r=. 3)

2.3. Numerical scheme

The computational scheme is based on the numerical method adopted for the turbulent flow prediction in Bewley, Moin, &
Temam (2001). Details about the temporal discretization can be found in Akselvoll & Moin (1995). The scheme may be
summarized as follows:

(1) A pseudospectral method is used for terms containing x; and x3 derivatives, and a finite difference method is used
for terms containing x, derivatives. A uniform, collocated grid is used in the x| and x3 directions, and a stretched, staggered
grid is used in the x; direction.

(2) A low-storage 3rd order Runge-Kutta scheme is used for the temporal evolution. The derivatives with respect to the
homogeneous directions (x| and x3) are treated explicitly in time, and the derivatives with respect to the inhomogeneous
direction (x) are computed with the implicit Crank-Nicolson method in time.

Using to our “direct forcing” scheme, we do not calculate the external force f when solving the NS equation. Instead,
we solve the equation with the no-slip/no-penetration constraint g(u) = 0. In the discrete implementation, the positions of
the interface are generally not coincident with the grid points (see, e.g., Figure 5), so the constraint g(u) = 0 represents a
numerical interpolation procedure to approximate the velocities at the immersed interface.

In the present work, we use an interpolation procedure based on Taylor series expansions. We use linear interpolation
for the streamwise and spanwise velocity components and quadratic interpolation for the wall-normal velocity component.



12 -1 08 06 04 02 o s ] 05 o 05 1 15 - - 08 06 04 02 0 02 04 06 08 1

(b) ©

Figure 6. Comparison of selected time-averaged statistics from simulations of the immersed boundary method and the regular domain.

(a) Profiles of RMS velocity fluctuations; (b) mean velocity profiles; (c) profiles of Reynolds stress and total stress. Solid ——, sim-
ulation from the immersed boundary method; dashed (- — — —) in (a) and plus sign (+) in (b) and (c), simulation from the regular
domain.

The velocities on the grid points that are close to the interface are constrained to satisfy the formulae
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where A; and A, are illustrated in Figure 5.
The external force f is directly evaluated by the NS equation.
Jdu .
f=—+V(uu)+ Vp—vAu+iP. 5)

ot

Since the external force f is not divergence free, the term V -f is included when solving Poisson equation for the
pressure.

2.4. Code validation

We first test our DNS code with the immersed boundary method on the canonical channel flow problem in which both
immersed walls are stationary and not deformed. The Reynolds number is Re; = 100 and 42 x 64 x 42 Fourier modes
are used (i.e., 64 x 64 x 64 dealiased collocation grid points). We compared the statistics with a simulation that does not
have an immersed boundary and has been extensively validated by Bewley, Moin, & Temam (2001). Selected statistics
are shown in Figure 6. The correspondence of two simulations in the physical domain region is fairly good. In Figure
6(b), we can see that the mean velocity profile is extended linearly into the two artificial regions, so the linear interpolation
approximation for #; and u3 at the interface regions is justified. The profile of the pressure fluctuations (not shown here)
in the immersed boundary simulation shows there is a jump across the immersed interface, which implies that the interface
provides something of a “barrier” between the real flow and the artificial flows.

The second test is the active wall motion control. The control scheme is that, based on measurements of the vertical
velocity somewhere close to the wall, same amount of opposite control velocity as the measurements is applied at the wall.
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Figure 7. Statistics for deforming wall opposition control using the immersed boundary method. (a) History of drag; (b) profiles of RMS
velocity fluctuations; (c) zoom-in view of the lower wall region in (b).

Choi et al.(1994) first investigated the scheme and obtained more than 20% drag reduction. The control actuation they used
was unsteady blowing/suction. Inspired by this research, Endo ez al.(2000) employed vertical wall motion actuation based
on the same kind of measurements. The simulations they did with Re; = 150 and 1}, & 1 showed that drag was reduced
about 10%. Then Kang and Choi (2000) did the similar work with Re; = 140 and 1}, < 5, and the drag was reduced up
to 13% ~ 17%.

In our test, we prescribe the wall motion as follows

an max{”2|x§r:15}

— =—0 - o= ——— 6

a[ l/l2|x;':15 an Vmax ) ( )
where V,,4x is a pre-defined constant. The formula means that the velocity of the wall is opposite to the vertical velocity
component (#2) 15 viscous unit away from the wall with the amount scaled by a factor o to reduce the control intensity.
The second term is a damping term used by Endo et al.(2000). The purpose is to slow down wall movement and reduce
the deformation magnitude when the displacement is large.

Figure 7 shows some statistics from the simulation for Re; = 100 and 1}, = 0.03. Time-averaged drag on the two
immersed walls shows that drag on the lower wall is about 4.5% less than that on the upper wall, which is quite slight
compared to what Endo and Kang have obtained. Note that the control we applied is very weak. Currently we are still
tuning the code to accommodate stronger control actuation.

From the profile of the RMS of velocity fluctuations (Figure 7(b)), we can see clearly that the streamwise velocity
fluctuation intensity is lower at the bottom wall side compared the upper wall side. If we zoom in the region close to the
lower wall (Figure 7(c)), we see that the minima of vertical velocity fluctuation is shifted away a little away from the wall.
This is a typical feature of the opposition control which represents a virtual barrier above the wall preventing the high
momentum flow from being transported to the wall, and thereby drag reduction is obtained.

3. DYNAMICS OF THE TENSEGRITY FABRIC
3.1. Periodic configuration

To maintain consistency with the channel flow model, which is assumed to be periodic in x and z, the tensegrity fabric needs
to be configured with periodic boundary conditions. The fabric we have chosen for the compliant wall model has periodic
patterns which, in the undeformed structure, repeat themselves cell by cell in the two horizontal directions. The 4-bar-unit
plate-class tensegrity structure is particularly convenient for this study since its two periodic directions are orthogonal; this
structure has been selected for our initial calculations. We may choose the period length of the pattern according to the flow
channel size and define appropriate number of the unit cells in one period. Figure 8 illustrates how the periodic connection
of the fabric is configured in one direction; extension to the other direction is trivial. In the figure, the “ghost cells” in the
right-most column are defined to emulate the motion of the cells in the left-most column.



Figure 9. Dynamics of the 7’th bar

3.2. Dynamics

In the tensegrity structure, all bars are subject to nodal forces only, which include tendon forces and external forces excited
by the overlying turbulent flow. Prof. Skelton’s group has conducted an extensive study of a convenient mathematical
representation of such a structure, characterizing its topology, statics and dynamics (Skelton, et al., 2001). Their work is
extended here in a straightforward manner to the tensegrity fabric, which is spatially periodic in the x and z directions. In
this work, we only briefly summarized the mathematical model. The generalized coordinate is used for the bar system. For
Pe;

the i’th bar, if not constrained, its coordinate vector is X; = [
l

] , where p,; is the 3d coordinate of the center of mass

and q; =[0; ¢;]” consists of the two Euler angles (Figure 9).

The dynamics of the unconstrained bar system, which is basically a collection of each bar’s dynamics, can be written
as

M(q)%+C(q,q)q =1=H" (9, (7

together with the periodic condition
X, = GX, ®)
where M is the inertia matrix, C is the Coriolis and centripetal matrix , T is the generalized force vector which equals to the
nodal force vector f multiplied by a transformation matrix H', X, is the generalized coordinate for the ghost bars, and G is

a projection matrix which does nothing but copy dynamics of the appropriate bars selected from the whole system to the
ghost bars.

In a tensegrity structure, all bars are interconnected by tendons. In the dynamics equation, the interconnection appears
in two places. First, the nodal force vector f is calculated from

f=St+f, &)



where S is the connectivity matrix, t is the tendon force vector and f, is the external force vector (generated by the flow in
our case). Consisting only of 1’s, —1’s, and 0’s, the connectivity matrix S defines to which nodes each tendon is connected.

Second, the tendon force t is based on Hookes law, but for tension only. So it depends on the coordinate of the bar
system. Damping force is incorporated into tendon force and it is modeled as linear damping which is proportional to the
tendons’ relative velocities. Therefore the tendon force vector t is a function of bar system coordinate x, velocity X, and
the coordinate of ghost bars X, since we have tendons connecting ghost bars and real bars.

In the first phase of this project, we consider a fabric with a single layer (multiple layers setting may be employed in
future). Therefore, all the bars in the single stage are grounded, so only two Euler angles are used for the coordinate of
each bar and those redundant tendons connecting between the grounded nodes are removed for simplicity.

3.3. Normalization

The normalization procedure may be done by considering the linear acceleration equation of a bar subject to pressure
disturbance from the flow. For dimensional analysis, we don’t need to consider the skin friction which has the same
dimension of normalized pressure multiplied by the flow density. The linear acceleration equation for the i’th bar can be

written as i , .
Poiloibe; = Y kj(1j —lo;) = &;lj12; + ppwAo, (10)
J

where p,,, is mass per unit length of the bar, /;, is the length of the bar, k; is the stiffness of the j’th tendon that is connected
the bar, [}, I ; are the length and rest length of the tendon, respectively, & j is the normalized tendon vector, p,, is the
hydrodynamic pressure (divided by the flow density p) acted on the surface by the overlying flow, and Ay is area of the
membrane patch on which the external pressure is lumped.

If we use L for the length scale, T for the time scale, it can be easily seen the following dimension similarities are valid

Py, L

Puk Pk
T',‘

ki~

Po; NppTza é’;jN

Since in the flow model, L is normalized by the half channel width A4, pp is normalized by pu%, T is normalized by
h/uz, then the final normalization is

2
\%
Po; ~ ph2, §j~ phvRez, kj~ Re%pT' (1D

4. SIMULATING THE DYNAMICS OF THE FLOW-STRUCTURE INTERFACE

The current flow/structure simulation involves combining the DNS channel flow code (in Fortran90) with the immersed
boundary method and the tensegrity code based on the work of Prof. Skelton’s group (written in C/C++ and combined with
Matlab C/C++ Math Library). The two codes are coordinated by Message Passing Interface (MPI) and run in parallel. A
visualization tool using OpenGL (a common graphics library) has been written to visualize the flow/structure interaction
process (as illustrated in Figure 10).

As mentioned previously, in our simulation model, we assume that the force from the flow is transmitted to the top nodes
of the structure in a simple fashion. The top surface of the tensegrity fabric is tessellated into small “patches” associated
with each node whose position does not coincide with the Cartesian grid point in the flow model, During each computation
time step, the pressure and/or skin-friction fluctuations integrated over each patch are lumped onto the top nodes of the
tensegrity fabric. The displacements and velocities of the top nodes, which are somewhat scattered, are interpolated onto
the uniform grid so they could be fed back to the flow system as the compliant boundary condition.

The average spanwise spacing the near-wall vortices (coherent structures) is about 50 in viscous length. To mitigate
the detrimental effect of the vortices with favorable flow-structure interaction, the tensegrity cells are made smaller than
that average spacing. For example, in our flow-structure simulation with Re; = 100, the width of each tensegrity cell is
approximately 14 viscous units, and thus there are a few cells beneath each near-wall coherent structure.



Figure 10. A simulation of the mutual interaction of a turbulent flow and a compliant tensegrity fabric separated by a flexible membrane
attached to the top nodes of the tensegrity fabric. The viewpoint is from upstream and slightly above the wall; the flow direction is into
the page. See http://turbulence.ucsd.edu/gallery/tensegrity.html for an animation of this result.

S. CONCLUSIONS

The present work has built a discrete and periodic compliant wall model based on a new design for a tensegrity fabric.
The dynamics of this fabric is modeled with a large ODE system based on previous work in Skelton’s lab. To account for
the compliance of the wall, an immersed boundary method is used to simulate a moving boundary without requiring grid
reconstruction at each time step. So far, this method can capture the effect of small wall motion fairly well. Two large
codes have been coupled together and some flow-structure simulations with relatively low Reynolds number have been
performed. The flow/structure interaction process may be visualized using a graphical visualization tool written in house.

The statistics of the flow/structure interaction will be collected and analyzed to better understand the relevant physical
mechanisms. Parameters that we may adjust in this “passively-controlled” system include the stiffness, mass, damping, and
orientation (within certain now well-defined constraints) of each of the members in the unit cell upon which the tensegrity
structure is based. In the final phase of this work, we will explore the utility of adjoint-based techniques to optimize these
several structural parameters of the tensegrity fabric in an attempt to achieve a reduction of turbulent skin friction.
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