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ABSTRACT

This paper presents a new class of compliant surfaces, dubbed tensegrity fabricsfor the problem of reducing the drag
induced by near-wall turbulent flows. The substructure upon which this compliant surface is built is based on the “tenseg-
rity” structural paradigm, and is formed as a stable pretensioned network of compressive members (“bars’) interconnected
by tensile members (“tendons’). Compared with existing compliant surface studies, most of which are based on spring-
supported plates or membranes, tensegrity fabrics appear to be better configured to respond to the shear stress fluctuations
(in addition to the pressure fluctuations) generated by near-wall turbulence. As aresult, once the several parameters affect-
ing the compliance characteristics of the structure are tuned appropriately, the tensegrity fabric might exhibit an improved
capacity for dampening the fluctuations of near-wall turbulence, thereby reducing drag.

This paper improvesour previouswork (SPIE Paper 5049-57and uses a 3D time-dependent coordinate transformation
in the flow simulations to account for the motion of the channel walls, and the Cartesian components of the velocity are
used as the flow variables. For the spatial discretization, a dealiased pseudospectral scheme is used in the homogeneous
directions and a second-order finite difference scheme is used in the wall-normal direction. The codeisfirst validated with
several benchmark resultsthat are availablein the published literature for flows past both stationary and nonstationary walls.
Direct numerical simulations of turbulent flows at Re; = 150 over the compliant tensegrity fabric are then presented. It is
found that, when the stiffness, mass, damping, and orientation of the members of the the unit cell defining the tensegrity
fabric are selected appropriately, the near-wall statistics of the turbulence are altered significantly. The flow/structure
interface is found to form streamwise-travelling waves reminiscent of those found at air-water interfaces, but traveling
at a faster phase velocity. Under certain conditions, the coupled flow/structure system is found to resonate, exhibiting a
synchronized, almost sinusoidal interfacial motion with relatively long streamwise correlation.

1. INTRODUCTION

Dominated by so-called “coherent structures’ (that is, distinctive vortices with characteristic statistics that evolve in a
chagtic fashion), near-wall turbulenceis responsible for significant drag penalties in many flows of engineering relevance.
Many idess have been explored in various attempts to attenuate turbulence near walls to improve system efficiency. Among
them, the use of compliant surfaces is one of the most attractive, as this approach requires no control inputs and is quite
simple in concept: the structure is alowed to flex in response to the fluctuations of the near-wall turbulence, thereby
alowing the energy of the turbulent fluctuations to be transmitted into the structure, where it may be damped out. By
reducing the intensity of the fluctuations of near-wall turbulence in this manner (if this effect can be realized), presumably
turbulence-induced drag might also be reduced.

However, perhaps due largely to alack of theoretical insight into the choice of an appropriate compliant material, most
experimentsto date have failed to establish the hypothesisthat turbul ence-induced drag can in fact be reduced by compliant
surfaces. Comprehensive reviews and comments about the long history of related experiments may be found in Bushnell,
Hefner & Ash (1977), Carpenter & Garrad (1985) and Gad-el Hak (1986, 1987, 1996). Despite several unsuccessful
experimental trials, two recent exceptions in the literature are worth noting: Lee, Fisher & Schwarz (1993) observed a
significant reduction of turbulent intensity in their experiments of boundary layers over compliant surfaces, and Choi et al.
(1997) claimed up to 7% drag reduction and up to 5% reduction of turbulent intensity across almost the entire turbulent
boundary layer in their experiments, apparently due to the effect of a compliant surface.

Though results are mixed in the fully turbulent regime, compliant surfaces have a well-established capability to de-
lay laminar-to-turbulent transition. This has been studied analytically by many investigators using linear stability theory
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(Benjamin, 1960; Landahl, 1962; Carpenter & Garrad, 1985; Carpenter & Morris, 1990; Davies & Carpenter, 1997), and
has been confirmed in experiments (Daniel et al, 1987; Gaster, 1988). Some hypothesize that the efficient swimming
capability of the bottle-nosed dolphin might be due, at least in part, to the transition delay caused by its compliant skin
(see, eg., Carpenter, Davies & Lucey, 2000). Unfortunately, the linear stability theory that has shed so much light on the
compliant surface problem in the transitional regime fails to provide much useful guidance in the turbulent regime, where
we must instead resort to other tools, such as numerical simulation.

As computers continue to become more powerful and numerical simulation tools continue to become more efficient
and accurate, we can begin to address the compliant surface problem in the turbulent regime numerically. Prior work in
this area is mostly quite recent. Endo & Himeno (2002) performed a direct numerical simulation of turbulence over a
compliant surface and reported approximately 2 to 3% drag reduction. However, their result was soon challenged by Xu,
Rempfer & Lumley (2003) for the reason of insufficient averaging time. In the simulations of Xu et al,, no drag reduction
was found; in fact, wall compliance had no statistically significant effect on the turbulent boundary layer whatsoever. In
both papers, the rms displacement and velocity of the wall motion, ywrms and Viyrms, are quite small. In Endo & Himeno,
Yurms 1S @bout 0.008 and vy, s is about 0.025. In Xu et al, we estimate from their figures that y;, s is about 0.05 and
Viyrms IS @bout 0.01. It is, indeed, improbable that such small wall motions can have a significant influence on the statistics
of the turbulence, as the length scales of the energetic motions of the coherent structures are much larger. The models used
for the compliant surface in both of these papers are generalizations of the spring-supported thin plate model proposed by
Carpenter & Garrad (1985). Governed by a simple linear PDE, this type of model is convenient for theoretical analyses
in laminar flows. However, this surface model responds only to the normal load (that is, pressure fluctuations), not to the
tangential load (skin friction fluctuations). As skin-friction fluctuations are related to the first-order terms of the Taylor
series expansion of the velocity fluctuations near the wall, whereas pressure fluctuations are related to higher-order terms
(see, e.g., Bewley & Protas, 2004), one might hypothesize that the surface response to the skin friction fluctuations of the
flow should at least be comparable, in some averaged sense, to the surface response to the pressure fluctuations of the flow.
In other words, a compliant surface, such as the tensegrity fabric, that can respond to both kinds of loads might present
certain advantages. Motivated by this hypothesis, we have focused on tensegrity fabrics exclusively in this work.

As mentioned in the abstract, the truss paradigm known as tensegrityis a stable pretensioned collection of structural
members always either under tension (“tendons’) or compression (“bars’); no individual structural member ever expe-
riences bending moments. Such structures are often particularly mass efficient for bearing loads. The same structural
paradigm appears to form the molecular foundation for spider fibers (Ingber, 1997, 1998), which is nature’s strongest ma-
terial per unit mass (several times stronger per unit mass than steel). In contrast with the spring-supported plate model,
the tensegrity fabric is an inherently discrete structure with arelatively involved topology. However, the calculation of the
dynamics of the present tensegrity structureis straightforward when framed appropriately, as discussed in detail in Luo &
Bewley (2003) and Luo & Bewley (2005).

Note that, with this work, we are not proposing tensegrity as a new model for viscoelastic materials such as a rubber
coating. Instead, we are exploring the possible development of an altogether new class of compliant surfaces. If our
computations show that this type of compliant surface holds promise for exhibiting drag reducing capabilities, we will
then explore the manufacturability of appropriately tuned tensegrity fabrics via extensions of existing textile technologies,
incorporating compressive elements into the weave.

2. GOVERNING EQUATION
2.1. Coordinate transfor mation

To accommodate the interface motion of the flow, we previously investigated the potential use of the immersed boundary
method (Luo & Bewley, 2003). In the immersed boundary method, the flow domain is extended to immerse the irregular
interface, a Cartesian grid is used over this entire extended domain, and afictitiousforceis applied to the“flow” outside the
physical part of the flow domain in order to bring the flow to rest (actually, to bring the flow to a velocity that matches the
wall velocity) at thelocation of theirregular interface defining the actual flow boundary. In comparison with the coordinate
transformation method, the immersed boundary method is fairly smple, as the numerical grid remains fixed in physical
coordinates even as the walls flex. However, when applied in a pseudospectral flow simulation code, as used in the present
work, the immersed boundary method was found to represent accurately only the effects of very small wall deformations.
When larger deformations (greater than the wall-normal grid spacing at the wall) were present, the forcing applied by
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where x; denotes the Cartesian coordinates and &; denotes the curvilinear coordinates. This domain transformation is
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Figure 1. Domain transformation.
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Defining the nontrivial elements of the transformation as

Defining nu(x1,Xs,t) and n (x1,Xs,t) asthe upper and lower wall displacements in the wall-normal direction from the

respective nominal positions of the walls (x, = £1), and defining n1
The incompressible Navier-Stokes equation that governsthe flow systemis

in this paper we improve the accuracy of the simulations by adopting the coordinate transformation method where the
Proc. of SPIE Vol. 5757

time-dependent boundary-conforming grid allows better resolution in the near-wall region.

by the half-width of the channel h, velocities u; are normalized by the mean friction velocity u; of the corresponding
turbulent channel flow with solid walls, and timet is normalized by h/u+. (Note that, where explicitly specified, the scaling
is different for some of the code validation tests in 83.) The spatially-uniform pressure gradient in the x 1 diection, P, is
adjusted in time to maintain constant mass flux in the physical domain. The determinant of the Jacobian matrix of the

we may apply the chain rulesto substitute the derivativesin (2) and to expressthe equation in terms of the new coordinates.

the variables {x,y,z} and {x1,%2, X3} interchangably to denote the streamwise, wall-normal, and spanwise directions. The
where p isthe (constant) density, p is the hydrodynamic pressure, and v isthe kinetic viscosity. Distancesx; are normalized

is deformed in the main compliant surface simulations reported in 85, as illustrated in Figure 1. Note also that we use
nominal domainsizeis Ly x Ly x Lz, where Ly and L; areidentified in the sections to follow and Ly

the immersed boundary method at the gridpoints just outside the physical part of the domain typically triggered Gibbs
phenomenon, exciting small-scale fluctuations that grew and eventually destabilized the nonlinear simulation. Therefore,
illustrated in Figure 1. Note that the code developed in this work allows both walls to deform, though only the lower wall

time-dependent coordinate transformation may be used to map the irregular physical domain into a rectangular domain

transformationis given by J
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Figure 2. Cell transformation.

2.2. Choice of dependent variables

Velocity vectorsin a curvilinear coordinate system may be defined as Cartesian vectors, whose bases are associated with
the original (x) coordinates, or contravariant vectors, whose bases are associated with the deformed (&) coordinates. In
either case, multiplying the Navier-Stokes equation by the transformation Jacobian determinant J results in a governing
equation in a strong conservation form which isfavorable (for the purpose of momentum conservation) in numerical codes.

However, using the contravariant form generally involves several additional termsto achieve the correct expression of both

the temporal and spatial derivatives in a moving coordinate system; for further discussion of this approach, see Luo &

Bewley (2004). The contravariant formulation thus renders the governing equation more involved and expensive to solve
even in ardatively simple flow such as the present, in which the transformation only affects the wall-normal coordinate.
In thiswork, therefore, we choose to represent the vel ocity vectorsin Cartesian form, thereby simplifying the computation
significantly.

To understand our choice of primitive variables, consider the problem of mass conservation from finite volume point
of view. Figure 2 illustrates the transformation of a single computational cell. In the transformation used in this work, the
vertical grid lines are not deformed by the transformation. As a result, among 6 faces of the cell indicated, only top face
and bottom face have their surface normals inclined from the corresponding cartesian basis vectors. Horizontal flow (u 1
or ug, in the X1 or x3 direction) will cause fluid to pass through both of these faces. When considering the conservation
of mass in this cell, we may assume that all of its faces are stationary, as the effects of the cell’s motion are taken into
account in the geometrical conservation law (see Rosenfeld & Kwak, 1991), which is satisfied by the analytical coordinate
transformation (1). Thus, in the case of the top face (whose surface normal is n ), the volume flux out of the cell is

6x2

Uz T Uz Jo1

v =u- (Xdeax Zagy = (w )| 1 |desdirz (w1 |desde
623 aEl us _0x us J¢3

0&3
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where x denotes the cross product. Similarly, the volume flux through the positive x 1 and x3 faces are

1) 4 ox 0Xo
u-ng=u-(=—d —d€3) = ——u1d€>d&3 = Juy d&,d¢3,
1 (052 szais &3) a5, &odés 1 dEodEs
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To summarize, the volume flux through these three faces are Ju; in the &1 direction, uz + ¢1Jus + d3Jus in the &, direc-
tion, and Jus in the &3 direction; the volume flux through the opposite three faces are analogous. Note that these three
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components form avector which equalsto the contravariant velocity vector in the curvilinear coordinates multiplied by the
volume dilatation factor J. To avoid using such a contravariant vector for the reason of simplicity as described previously,
and additionally avoiding the repeated application of this volume dilitation factor in the numerical code, we define the
following Cartesian vector

Qu=Jdu;, 2=, O3=Jug ©)
and the modified pressure § = Jp/p as the primitive variables in our numerical code. As a conseguence, the q 1- and gs-

momentum equations are represented in strong conservation form due to their weighting by J. Requiring the net mass flux
into each cell be zero, we may write the continuity equation for this system as

v 001 0(P101+02+¢3gs)  0gs
D(QI) - aEl 052 + 053 - 07 (4)

where D(+) denotes the divergence operator.

The momentum equation in the new coordinates may now be written as

3

S+ Ti(@) + N () = —Gi(B) + VLi(a) ~ IR, ©

where Ti(q;) is the term associated with the motion of the coordinates, Nj(q;j) is the convection term, G;(f) is the pressure
term, and L; () is the viscous term.

To maintain a constant bulk velocity Upyk, the necessary spatially-uniform streamwise pressure gradient Py is computed
by integrating the u; momentum equation over the entire physical domain,

1 Lx plz p14nu
Upuik = / / / uy dxo dxs dx; = constant
o Jo

2Lyl —1+n,
1 ~ 00101 2001 003 1%t
= PZ*//{— +v +Vd5= +V dé,dEs.
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Periodic boundary conditions are assumed in the streamwise direction (& 1) and spanwise direction (&3) for the de-
pendent variables, {q1,d,0s, f}, and the wall deformation functions, {ny,ni}. No-slip and no-penetration boundary
conditions are assumed at the two walls.

(6)

The numerical algorithm used for solving the unsteady incompressible Navier-Stokes equation in this work is based
closely on that in Bewley, Moin & Temam (2001), in which the flow in a rectangular channel is controlled by unsteady
wall-normal blowing and suction. As in that work, a hybrid pseudospectral / finite-difference method is used for the
spatial discretization, and a mixed Crank-Nicolson/ 3rd-order Runge-Kuttamethod is used for the temporal discretization.
Severa additional considerations are necessary in present work, however, as the governing equation is considerably more
involved due to the coordinate transformation that accounts for the moving boundaries. In addition to the flow variables,
the geometry-related time-varying coefficients, ¢; and ¢, need to be spatially discretized. Further, not al termsinvolving
derivativesin thewall-normal (&) direction can be treated implicitly, aswas possiblein Bewley et al. (2001). For example,
the terms with cross derivatives in the wall-normal direction and in one of the homogeneous directions (€ 1 or &3) must
be treated explicitly. In addition, since the various Fourier modes can not be fully decoupled in the evaluation of the
Laplacian, the pressure equation needs to be solved iteratively, subject to a boundary condition that is derived by imposing
the incompressibility condition at the (possibly moving) walls. These issues are discussed in detail in Luo & Bewley
(2005).

3. CODE VALIDATION

In order to validate our numerical algorithm, we applied the code to reproduce severa existing results in the published
literature for both laminar and turbulent channels flows with both stationary and moving walls. The full tests may be
found in Luo & Bewley (2005). In summary, all the comparisons were done quantatitively and showed that our code is
sufficiently accurate for the present compliant surface simulation. Due to constraint of space, we present here only one test
and show the comparisons.
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Figure 3. Flow at Re= 200 passing over an oscillating Gaussian bump uniform in the spanwise direction with the oscillation frequency
w=0.5att=3.0h/Uc. Left: instantaneous streamlines y; right: pressure contours. Solid: present simulation; dashed: resultsfrom Luo
& Bewley (2004).
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Figure 4. Flow at Re= 200 passing over an oscillating Gaussian bump uniform in the spanwise direction with the oscillation frequency
w=4at=18h/Uc. Left: instantaneous streamlines ; right: pressure contours. Solid: present simulation; dashed: results from Luo
& Bewley (2004).

In this test, we consider a (2D) flow with a moving boundary. As the present code is written to accommodate wall
compliance, it is necessary to validate this code in test flows with moving boundaries. Unfortunately, there are very few
fundamental test flows of this sort available in the literature for comparison. In previouswork by our group, Luo & Bewley
(2004) performed simulations of a laminar flow through a two-dimensional channel with an oscillating Gaussian bump
using an (involved) contravariant formulation of the Navier-Stokes equation which is completely different from the present
code (which is formulated with Cartesian vectors). We will use this result to validate the present code in the moving-
boundary case.

Consider the laminar flow in a 2D channel with an oscillating Gaussian bump whose motion is prescribed by

(xl—%ﬁl

Ni(xg,t) = esin(wt) exp 52

where ¢ is the maximum amplitude of the bump, w is the oscillation frequency, and ¢ is a constant parameterizing the
length of the bump. The bump is uniform is the spanwise direction, so the laminar flow is two dimensional. In order to
maintain incompressible flow, the upper wall is assumed to be penetrable and the normal velocity of the flow at the upper
wall is taken to be identical to the vertical velocity of the lower wall. The simulation parameters are Re= UTCh = 200,
€ =0.1, o = 0.2, where U is the centerline velocity. The domain sizeis Ly = L, = 1tand the number of Fourier modesis
42 x 84 x 4inthe &1, &2, and &3 directions, respectively.

Two simulation results are presented, one with slow wall motion, w = 0.5, and the other with faster wall motion, w= 4.
In Figures 3 and 4, the instantaneous streamlines and pressure are compared with the results from Luo & Bewley (2004).
As seen in Figures 3 and 4, in both simulations, the agreement between the two codes is excellent. Several symmetries
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Figure5. Illlustration of the computational domain for aturbulent flow over a tensegrity-based compliant surface.

of the present (3D) code in the moving boundary case were also checked by aligning this (2D) flow and bump in various
directions. For further discussion of the physics of thisflow, see Luo & Bewley (2004).

4. SSMULATION OF A TURBULENT FLOW OVER TENSEGRITY FABRICS

The geometrical configuration of the flow/structure system is shown in the Figure 5. All of the barsin the tensegrity fabric
are assumed to be grounded. Discretized with the third-order Runge-Kutta scheme, the equation that governs dynamics
of the compliant surface is coupled with (5), which governs dynamics of the flow, and is marched in time to smulate
the interaction of the near-wall turbulence with the surface deformation. Two techniques have been identified to form
the flow/structure interface between the (continuous) flow above and the (discrete) structure below. Thefirst is to simply
stretch amassless, tensionless and non-penetrable membrane over the top of the tensegrity structure, transmitting the force
generated by the flow to the top nodes of the structure. Anocther option includes the attachment of small mechanical
"scale” to each surface node of the tensegrity structure, mimicking the scales on a shark’s skin. No-slip and no-penetration
boundary conditions are assumed for the interface in either case. In our simulation model, we assume that the force
from the flow is transmitted to the top nodes of the structure in a simple fashion approximating the latter technique. The
surface is tessellated into small patches surrounding each node. The friction and pressure forces induced by the flow are
then integrated over each patch and lumped to the associated node of the tensegrity structure. Since the bar nodes of the
tensegrity structure do not coincide with the grid pointsin the flow model, the vertical displacements and vel ocities of the
nodes are interpolated onto the uniform x1 — x3 grid so they can be fed back to the flow system as the boundary condition.

In the flow/structure simulations, al velocities are normalized by u; which is the viscous velocity from the correspond-
ing regular channel flow with the same bulk mass flux. The Reynolds number for the flow isRer = u:h/v = 150. (This cor-
responds to the Reynolds number based on the mean centerline vel ocity of the regular channel flow of Re=U ¢h/v = 2663,
and to the Reynolds number based on the bulk velocity of Rep = Upyikh/v = 2280.) The size of the computational domain
is5.6251x 2 x Tt That is, in wall units, the domain length and width are L ~ 2651 and L, ~ 471. The number of Fourier
modes used is 144 x 94 x 52inthe & 1, &2, and &3 directions respectively (i.e., 216 x 94 x 78 dealiased collocation points).
The tensegrity fabric used in the simulations consists of 45 unit cellsin length and 8 cellsin width, each of which has edge
length of 0.36h and height of 0.51h (the height is taken to be twice of the radius of the cells). Thefabricis pretensionedin
such a manner that the tendons are about 2 ~ 3 times longer than their rest length.

For preliminary studies, we assume that all structural members have uniform material properties, i.e., pp, = pPb, Ki =K
and G =¢
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Table 1. Flow statistics for different tensegrity parameters.

case| Pp K C Dw D+ Pwrms  Vwrms yv-;max y—vb,rms PwVw Dtorm TKE
I 0.08 010 0.05 | 100 0.9 15 0007 045 012 -0004 47x10% 351
I 0.08 010 0035|105 101 31 0036 130 078 -0.084 0.014 3.64
I {008 010 003 |117 103 50 0069 238 100 -0.267 0.045 3.95
IV | 008 006 005|101 102 1.6 0008 063 018 -0.005 6.0x10* 356
\ 0.08 003 005 |1.02 1.00 16 0008 114 032 -0005 96x10 4 355
VI | 004 010 0.05 |1.01 101 16 0009 047 012 -0007 7.8x10% 355
VIl | 008 004 0035|106 101 33 0034 266 093 -0.070 0.013 3.75
VIII | 0.08 004 003 |122 105 59 0078 534 194 -0327 0.065 4.33
regular channel 1 1 1.45 0 0 0 0 0 3.52

5. RESULTS

A fully-developed turbulent flow in a regular channel (with solid walls) is used as the initial condition for al of the
compliant channel flows studied. After making the walls compliant and allowing the transient in the flow to settle, flow
statistics are gathered over suffiently long time intervals to achieve statistical convergence. Table 1 shows selected flow
statistics for some various combinations of tensegrity parameters, along with the statistics of the flow in the regular channel
with the same bulk velocity. The statistics reported are the total drag D, on the compliant wall, the drag on the flat wall
D+, the root mean-square (rms) of the compliant wall pressure pwrms, the rms wall velocity vyyms, the maximum wall
deformation yy, max the rms of the wall deformation ;s the power done on the flow by wall pressure pyw, the form
drag on the compliant wall D torm, and the turbulent kinetic energy (TKE) in the channel.

When the structure is stiff with high damping (e.g., case |, where pp, = 0.08, kK = 0.10 and ¢ = 0.05), the compliant
surface barely changesthe flow statistics. In case I, the wall deformation and the wall velocity are both very small, and the
flow behaves asif the interface were a solid, flat wall. When the structural damping is reduced, asin case Il and |11 where
¢ = 0.035 and ¢ = 0.03, respectively, the interface starts to move more and the flow statistics are changed significantly.
The total drag on the interface is increased by 5% in case Il and 17% in case |11, and the TKE is increased by 3% and
12% respectively. In next section, we will show that these changes are caused by the resonant vibration of the compliant
structure.

In case IV and V, we keep the damping ¢ = 0.05, but reduce the tendon stiffness k to 0.06 and 0.03, respectively.
The flow statistics are slightly modified. The wall deformation grows as the the structure gets softer. However, the wall
does not move much faster than in case | due to high system damping. In case VI, we reduce the bar density p , to 0.04.
Not surprisingly, the potential influences of external disturbances and its own restoring forces on this lighter structure are
counteracted by the increased effect of internal damping, so the flow is again not affected much by the surface compliance.

Case VII and VIII have both the stiffness and damping lowered. In case VII, where Kk = 0.04 and ¢ = 0.035, the
instantaneous wall deformation reaches 5 viscous units, and in case VI, wherek = 0.04 and ¢ = 0.03, it reaches 9 viscous
units. The flow statistics are greatly affected by the surface compliance. Thetotal drag on theinterfaceisincreased by 6%
incase VIl and 22% in case V1II, and the TKE is increased by 7% and 23% respectively in the two cases. We distinguish
these two cases from case |1 and 111 because, although case VII and V11 have larger wall deformations, the motion of the
surfaceisless synchronized thanit isin cases |1 and I11. The present article thus focuses on cases |1 and 111; the other cases
are discussed in greater detail in Luo & Bewley (2005).

Interestingly, in al of the cases in the present work in which the flow statistics are significantly modified by the
wall compliance, the deformation of the wall is dominated by spanwise ridges that travel in the streamwise direction,
reminiscent of an air/water interface forced by the wind, as discussed in Fulgos et al. (2003). Note however that the
waves on the interface considered in Fulgosi et al. travel at a much slower phase speed than in the present work and have
no significant influence on the overlying air flow. This section investigates some addtional details of the flow/structure
interaction in cases Il and 111, in which the wall seems to resonate under the excitation of the overlying turbulent flow
fluctuations, which in term excites further fluctuationsin the turbulent flow.
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Figure6. Visualization of the flow/structure interface in case I11. Left: wall displacement from its nominal position xp = —1; right: wall
velocity.
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Figure 7. Spatia characteristics of the wall deformation vy, for case Il (dashed) and case Il (solid). Left: streamwise autocorrelation;
right: streamwise spectrain log-log scale.

Figure 6 depicts the shape and velocity of the interface at an instant moment for case I11. The wall deformation is
approximately sinusoidal in the streamwise direction, and the wall velocity has about 90° phase shift ahead of the wall,
indicating that the wave is traveling in the same direction as the flow. Case |l has the similar wall deformation with a
smaller interfacial wave amplitude.

The wavelength, A, of the interfacial motion may be seen from the statistics of the streamwise two-point correlation
function* of thewall displacement, R(yw, yw), as plotted in Figure 7(a). The minimum of thefirst valley may be interpreted
asthe half wavelength. For cases |1 and |11, wefind that A+ = 530. The correlation functions also indicate that the interface
in case |11 has amore regular sinusoidal shape, as its autocorrelation decays more slowly thanin case 1. In the streamwise
spectra of wall deformation (Figure 7(b)), the corresponding vibration mode for both cases, kx = 1.78, is much stronger
than the other modes. The “hump” in the region ky > 10 is related to the response of the wall to small-scale perturbations
in the flow. The “spikes” in this region coincide with the geometrical length scales of the tensegrity cells, and are thus
related to the discrete nature of the tensegrity structure.

Thetime correlation function of afixed point onthewall, Z(t), and the time spectra of wall oscillations of the two cases,
are shown in Figure 8. From them we may estimate the period, t , = 0.6, and frequency, ffreq = 1.6, of the resonance. The
phase speed of the travelling waveisthus c/u; = A/tp ~ 6.

Instantaneous pressure disturbances on the wavy interface are visualized in Figure 9(a). As opposed to turbulence
over a stationary wavy wall, where the pressure peaks on the upstream side of the wave and reaches to minimum near
the wave crests, the pressure in the present case, with a streamwise-travelling wave on the surface, has its minimum on
the downstream side of the wave crests, causing this portion of the wall to elevate, thereby sustaining the wave motion.

_< f(x)g(x+r) >

*Th alized spatial correlation function of tw tities, f and g, isdefined by R .
e normalized spatial correlation function of two quantities, f and g, is defined by Ryg(r) —ffocgo=
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Figure 8. Tempora characteristics of the wall deformation vy, for case |1 (dashed) and case I11 (solid). Left: time autocorrelation; right:
time spectrain log-log scale.

The resulting “adverse pressure gradient” slows down the flow and therefore reduces the shear stress on downstream side,
sometimes even causing flow separation (Figure 9(b)). The deformation of the compliant wall has a maximum wave slope
given by ywkx = 0.027. This slopeis comparable to deformation of the air-water interface reported in Fulgosi et al. (2003),
where it was found that, at a shear Reynolds number Re; = 171, the slow interface motion of an air/water interface has
only dight effects on the air flow near the interface. In contrast, in the present system, significant changes to the turbulent
flow statistics are excited by the resonant wall motion.

The near-wall quasi-streamwise vorticies have been strengthened due to the interfacial motion in the present simula-
tions. To visualize this, Figure 10 depicts isosurfaces of the discriminant field, a scalar quantity derived from the velocity
gradient tensor and providing a handy identification technique for identifying “vortex-type’” motions in a near-wall tur-
bulent flow. The deformation of the wall is indicated by the colors on the surface. It is seen that the vorticies are more
concentrated above the valleys.

The deformed tensegrity fabric in case I11 is visualized in detail in Figure 11, where it can be seen that the amplitude
of the flow/structure interface displacement is only about 3% of the fabric height in this case.

Profiles of the rms value of the velocity and pressure fluctuations, the Reynolds stresses, and the mean velocity in case
Il are given in Figure 12, together with the corresponding profiles in regular channel-flow turbulence at the same bulk
Reynolds number. Note that the lower wall is a moving deformed surface, and that statistics are gathered from surfaces
on which & is constant. When the wall deformation is small, these surfaces are approximately locally parallel to the
wall. Near the lower wall, the flow disturbances are increased significantly due to the wall compliance; u 2 rms and Uz ms
are more than 20% higher, and u1 ms is slightly higher, than in the regular turbulent channel flow. The Reynolds stress,
—(u1Up), isaso much larger in thisregion, indicating that TKE productionis significantly increased. Near the flat wall, the
flow disturbances are barely modified, indicating that compliance of the lower wall has little influence on the turbulence
statistics near the upper wall. However, the profile of the mean streamwise velocity, (uj), is distorted on both sides of
the channel, with reduced velocity near the lower wall and increased velocity near the upper wall. The mean velocity is
significantly impeded by the high drag on the compliant wall; note that the mean velocity must increase elsewhere in the
channel flow to compensate, as the overall pressure gradient must be increased in this case to insure that the constant mass
flux constraint on the flow is satisfied.

The two-point correlations of the velocity fluctuations Ry, u, (x1) and Ry, u, (X3) in the near-wall region (£ = 5.6) for
case Il areillustrated in Figure 13. Near the wall, the correlations of the velocity fluctuations are modified substantially
by thewall compliance: Ry, u, (x1) monotonically decreases with x; near thewall in the regular channel case, but fluctuates
above and below zero due to the sinusoidal wall deformation in case I11. The wavelength of this correlation is the the same
as the wavelength of the surface deformation. The spanwise correlations near the wall are “raised” due to the spanwised-
synchronized vertical motion of the boundary, which is nearly uniform in the x 3 direction. However, the characteristic
spanwise length scales (that is, the distance to the first minimum points) of the turbulent flow fluctuations near the wall
(that is, the coherent structures) seem to be relatively unaffected by the wall motion. Though not shown here, the wall
motion has relatively little influence on the velocity correlations near the channel center.
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Figure9. Instantaneous wall pressure (left) and streamwise shear stress (right) on the interfacein case I11.

Figure 10. Two different views of the discriminant of theflow in case 11 at theisosurface level 10~%. The colors on theinterfaceindicate
the amplitude of the interface deformation.

Figure 11. Close-up view of the streamwise-travelling wave induced on the tensegrity fabric by the overlying turbulent flow (going from
left to right). Red denotes elevation of the surface, and blue denotes depression of the surface.
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Figure 12. Profiles of the flow field for case I11. Dashed: statistics from the regular channel flow; solid: statistics from the compliant
channel.

6. CONCLUDING REMARKS

The ultimate goal of this research project is to study and optimize a new type of compliant material, dubbed a tensegrity
fabric, for the possible mitigation of the drag induced by near-wall turbulence. The present paper discussed the accu-

rate computational modeling of the delicate interaction of a turbulent flow (at relatively low Reynolds number) and the

tensegrity fabric and characterized the significant effects of this interaction on the statistics of the near-wall turbulence.

Unlike a spring/plate surface model of a compliant surface, to which aturbulent flow does not seem to be particularly
sensitive, the tensegrity-based compliant surface demonstrates a significant influence on the statistics of near-wall turbu-
lence. Thispaper performed apreliminary parametric study of threeimportant material parameters defining the compliance
properties of the fabric: specifically, the density, stiffness, and damping of the members of the tensegrity structure. Simu-
lationsillustrated that, when the structure’s stiffness and damping are low, the interface forms a streamwise traveling wave
resembling that at an air-water interface, but convecting with a much higher phase velocity. For some combinations of the
tensegrity parameters, the compliant wall demonstrated a resonant oscillation as a result of the excitation by the turbulent
flow. Thewavy motion of theinterfacein the simulations performed caused large increase®f the drag and turbulent kinetic
energy of the flow. Shear stress was found to account for the major portion of the overall drag. Appropriate grid refine-
ment and computational domain size checks were performed to insure that neither numerical resolution nor computational
domain size had a significant influence on the statistics reported.

This work is, as far as we know, the first computational study of the turbulent flow / compliant surface problem to
both resolve accurately the system under consideration and demonstrate a significant effect of a compliant surface on
the statistics of near-wall turbulence. Unfortunately, the parameter regime studied turned out to exhibit drag-increasing
properties. Besides the spanwise-synchronized travelling waves on the of the flow/structure interface, as reported in this
paper, we have also seen (e.g., in case V) that the interface may form small, approximately streamwise-synchronized
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Figure 13. Streamwise (upper row) and spanwise (lower row) two-point correlations of velocities at x; = 5.6 for case I11. Dashed:
statistics from the regular channel flow; solid: statistics from the compliant channel.

ridges. Tuning the parameters to further enhance such ridges might be a profitable approach to take, as it is known that
stationary streamwise “riblets’ of the appropriate size have a significant drag-reducing effect (Choi et al., 1993), and that
active spanwise oscillations of the wall can also reduce drag (Jung et al., 1992).

Thetensegrity fabric has extensive design flexibility that remains, asyet, largely unexplored, including the modification
of the tensegrity cell’s geometry in addition to the individual material properties of each structural elements within a cell.
Future optimization work within this large parameter space might thus possibly stumble upon a fabric with favorable (that
is, drag reducing) properties. Note that the software that simulates the dynamics of the flow/structure system couples an
involved Fortran90 code, which cal culates accurately and efficiently aturbulent flow with a flexible boundary using atime-
dependent coordinate transformation, with an involved C++ code, that calculates accurately and efficiently the dynamics
of alarge, interconnected array of structural elements. The flow simulations reported in this paper contained 7 x 10 ® grid
points, and the structural simulations performed contained 1440 bars and 3653 tendons. A typical simulation to calculate
the time-averaged turbulence statistics of a particular configuration of the tensegrity fabric takes about a day of dedicated
simulation time on an 8-CPU IBM P655 node. Thus, an efficient optimization strategy will be essential to the ultimate
success of this project and its scaling to higher Reynolds numbers.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding by the DARPA Synthetic Multifunctional Materials Program (Dr. Leo
Christodoulou) and the ONR Young Investigator Program (Dr. Ron Joslin), which made thiswork possible.

References
BENJAMIN, T. 1960 Effects of aflexible boundary on hydrodynamic stability. J. Fluid Mech.9, 513-532.

196 Proc. of SPIE Vol. 5757



BEWLEY, T. & PROTAS, B. 2004 Skin friction and pressure: the “footprints” of turbulence. Physica D196, 28-44.

BEWLEY, T. R., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback
algorithms. J. Fluid Mech.447, 179-225.

BUSHNELL, D., HEFNER, J. & AsH, R. 1977 Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids A20 (10),
S31-48.

CARPENTER, P., DAVIES, C. & LUCEY, A. 2000 Hydrodynamics and compliant walls: Does the dol phin have asecret? Current Science
79, 758-765.

CARPENTER, P. & GARRAD, A. 1985 The hydrodynamic stability of flow over Kramer-type compliant surfaces. |. Tollmien-Schlichting
instabilities. J. Fluid Mech.155, 465-510.

CARPENTER, P. & MORRIS, P. 1990 The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid
Mech.218, 171-223.

CHol, H., MOIN, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech.255, 503-539.

CHol, K.-S., X., Y., CLAYTON, B., GLOVER, E., ATLAR, M., SEMENOV, B. & KuLIK, V. 1997 Turbulent drag reduction using
compliant surfaces. Proc. Royal Soc. Lond. 453, 2229-2240.

DANIEL, A., GASTER, M. & WiLLIS, G. 1987 Boundary layer stability on compliant surfaces. Tech. RepFinal Report No. 35020.
British Maritime Technology Ltd., Teddington, Great Britain.

DAVIES, C. & CARPENTER, P. 1997 Numerical simulations of the evolution of Tollmien-Schlichting waves over finite compliant panels.
J. Fluid Mech.335, 361-392.

ENDO, T. & HIMENO, R. 2002 Direct numerical simulation of turbulent flow over a compliant surface. J. Turbulences (007), 1-10.

FuLGosl, M., LAKEHAL, D., BANERJEE, S. & ANGELIS, V. D. 2003 Direct numerical simulation of turbulencein asheared air-water
flow with a deformable interface. J. Fluid Mech.482, 319-345.

GASTER, M. 1988 Is the dolphin ared herring? In Turbulence management and relaminarisat{ed. H. Liepmann & R. Narasimha),
pp. 285-304. Berlin: Spinger.

GAD-EL HAK, M. 1986 The response of elastic and viscoelastic surfaces to aturbulent boundary layer. J. Appl. Mech53, 206-212.
GAD-EL HAK, M. 1987 Compliant coatings research: a guide to the experimentalist. J. Fluids Structl, 55-70.

GAD-EL HAK, M. 1996 Compliant coatings: a decade of progress. Appl. Mech. Rev. Part 29 (10), S1-11.

INGBER, D. E. 1997 Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiolody®, 575-599.
INGBER, D. E. 1998 Architecture of life. Scientific Americadanuary, 48-57.

JUNG, W. J., MANGIAVACCHI, N. & AKHAVAN, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise
oscillations. Phys. Fluids A4, 1605-1607.

LANDAHL, M. 1962 On the stahility of alaminar incompressible boundary layer over aflexible surface. J. Fluid Mech.13, 609-632.

LEE, T., FISHER, M. & ScHWARz, W. 1993 Investigation of the stable interaction of a passive compliant surface with a turbulent
boundary layer. J. Fluid Mech.257, 373-401.

Luo, H. & BEWLEY, T. 2003 Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin
friction. SPIE Paper (5049-57).

Luo, H. & BEWLEY, T. 2005 Modelling and simulation of turbulence over a tensegrity fabric type compliant surface. Submitted, J.
Fluid Mech.

Luo, H. & BEWLEY, T. R. 2004 On the contravariant form of the Navier-Stokes equation in time-dependent curvilinear coordinate
systems. J. Comput. Physl99 (1), 355-375.

ROSENFELD, M. & KwAK, D. 1991 Time-dependent solutions of viscous incompressible flows in moving co-ordinates. Int. J. Numer-
ical Methods in Fluidsl3, 1311-1328.

XU, S., REMPFER, D. & LUMLEY, J. 2003 Turbulence over a compliant surface: numerical smulation and analysis. J. Fluid Mech.
478, 11-34.

Proc. of SPIE Vol. 5757 197



