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ABSTRACT

Efficient feedback control laws based on op-
timal control theory for wall-bounded turbulent
flows are discussed. The technique described is
unique from the standpoint that it is mathemat-
ically based solely on the control objective, the
equations governing the fluid flow, and instanta-
neous observations of the flow, without the ad
hoc procedures normally used to accomplish flow
control.

Two formulations are discussed in detail: the
regulation of drag and the terminal control of tur-
bulent kinetic energy. Both schemes have been
implemented computationally in their optimal
form and are quite efficient for their designed pur-
pose, though the algorithm itself is computation-
ally intensive. Drag reduction of over 50% has
been obtained using small amounts of wall tran-
spiration in a low Reynolds number flow, which
is over twice what could be obtained via ad hoc
control rules in the same flow. Methods to re-
duce these optimal calculations to practical, yet
still optimally based, control rules are discussed.

INTRODUCTION

Our burgeoning understanding of turbulence
has, to date, only been used in ad hoc manners in
attempts to control this widespread phenomenon.
Efforts to inhibit or enhance observed turbulence
phenomena have been limited to large-scale de-
vices and shape modifications. Though the math-
ematical framework for the control of systems gov-
erned by partial differential equations has been
established for some time (Lions 1968), attention
has focused on applying this theory to turbulence
only recently (Abergel and Temam 1990).

The motivation for the formulation and com-
puter simulation of optimal control problems in
turbulence is clear—the solutions to such prob-
lems will give us new insight into the turbulence
phenomena responsible for flow characteristics im-
portant in engineering designs, such as drag and
heat transfer, and how these phenomena are most
effectively altered with small control forces. Such
simulations can only be performed on large super-
computers with complete knowledge of the flow,
which will put real-time solution of optimal con-
trol problems out of reach of laboratory experi-
ments for a long time to come. In light of this,
various methods are currently under investigation
to assimilate the data gathered by optimal control
calculations to reduce them to practical feedback
control rules which can be used in laboratory and,
eventually, viable commercial implementations.

Reviews of recent progress in the broad field of
turbulence control include: Blackwelder (1989),
Bushnell and McGinley (1989), Gad-el-Hak (1989,
1994), Fiedler and Fernholz (1990), and Moin and
Bewley (1994)—for comprehensive reviews of this
subject from a variety of viewpoints, the reader is
referred to these references. This article will in-
stead focus on the work of the authors in the ap-
plication of optimal control theory to the Navier-
Stokes equations in order to cast practical turbu-
lence control problems in a rigorous setting, and
will survey other approaches in this field only to
the extent necessary to put the current work in
context.

Active control schemes refer to methods which
add energy to a flow, such as unsteady wall tran-
spiration or the prescribed motion of an actua-
tor. These are in contrast to passive techniques,



which modify a flow without unsteady external
input. Passive techniques include the placement
of longitudinal grooves (riblets) on a surface to
reduce the drag caused by turbulence (Bechert
and Bartenwerfer 1989, Walsh 1990, Choi et al.
1993) and the use of compliant walls which de-
form in response to the overlying flow to stabilize
a laminar boundary layer (Riley et al. 1988).

The external energy added in an active control
scheme may be determined in advance (in which
case the control scheme is termed open-loop or
feedforward) or coordinated with real-time mea-
surements of the flow itself (termed closed-loop or
feedback control). The periodic forcing of a round
jet (Lee and Reynolds 1985) to produce bifurca-
tion (splitting into two jets) or blooming (expan-
sion to a wide spray of vortex rings) and the hy-
drodynamic Lorenz forcing of an electrolytic fluid
(Nosenchuck and Brown 1993) to restructure flow
perturbations in the near wall region are exam-
ples of effective open-loop control configurations
in turbulent flows. However, in cases in which the
control must interact with a specific set of turbu-
lent fluctuations already present in the flow, such
as the coherent structures, the random aspect of
these structures reduces the effectiveness of an
open-loop configuration. In these cases, we seek
a “feedback control rule” to relate measurements
of the state of the turbulence in the flow to the
resulting distribution in space and time of the
control energy. The determination of the most
suitable mathematical relation between what is
sensed and what control is applied will be dis-
cussed 1n this paper.

Large-scale flow management schemes, which
sense the gross flow features and then alter fixed
or slowly-varying set points of the flow (e.g., the
air-fuel ratio in a combustor) in order to opti-
mize some combination of parameters, are well
developed. One such example is combustion op-
timization (Padmanabhan et al. 1993), where the
parameters for various open-loop actuators (e.g.
speakers and vortex generating jets) are slowly al-
tered using a robust optimization algorithm to si-
multaneously minimize rms pressure fluctuations
and maximize volumetric heat release. It is the
subject of the present work to attack a technolog-
ically more challenging problem: small scale ma-
nipulation of turbulent fluctuations themselves.

THE TARGET—TURBULENT STRUCTURES

Coherent motions in turbulent flows (Cantwell
1981, Robinson 1991) provide physical targets for
active turbulence control schemes. Through feed-
back, control effort may be coordinated to ma-
nipulate these structures. As the energy of these
large-scale structures generally feed the smaller
scales of the turbulence spectrum, this can have a

profound overall effect on the turbulence. Herein
lies the physical challenge of feedback turbulence
control: in the midst of the vast range of spatial
and temporal fluctuations of turbulence, 1dentify
those unstable coherent structures responsible for
the regeneration of the turbulence and the most
efficient distribution of control energy to achieve
a desired effect.

As a specific example, figure 1 illustrates that
high skin friction regions on the wall are often as-
sociated with the downward moving side of strong
streamwise vortices near the wall. Presumably,
by reducing the number or intensity of these near-
wall streamwise vortices, one could reduce their
tendency to produce such high drag “streaks”,
and the overall drag might be reduced.
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Figure 1: TIME SEQUENCE OF NEAR WALL
STRUCTURES (top view). Contour lines indi-
cate skin-friction on the wall. Gray and black re-
gions indicate isosurfaces of negative and positive
streamwise vorticity above the wall. Flow is from

left to right. From Kravchenko et al. (1993).

In situations in which the dominant physics
is well understood, such as that shown in figure
1, judgment can guide an engineer to design ef-
fective control schemes. An active cancellation
scheme motivated by this understanding was used
by Choi et al. (1994) to reduce the drag in a
fully-developed turbulent flow. By opposing the
near-wall motions of the fluid, which often are
caused by these near-wall vortices, with an op-
posing wall control as shown in figure 2, the high



shear region was lifted away from the wall. A di-
rect numerical simulation of this scheme applied
to turbulent channel flow demonstrated a max-
imum of about 20 percent drag reduction when
the control was chosen to oppose the vertical mo-
tion at yt = 10. Using a Taylor series extrap-
olation of the velocity gradients at the wall and
the equation of continuity to reduce this scheme
to a feedback rule relating control velocity to skin
friction measurements at the wall alone led only
to 6 percent drag reduction. The desire for better
performance motivated us to explore more rigor-
ous ways to determine effective feedback control
rules.
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Figure 2: ACTIVE CANCELLATION SCHEME
applied to turbulent flow, from Choi et al. (1994).

OPTIMAL CONTROL SCHEMES

Application of optimal control theory directly
to the equations of motion governing the flow, the
Navier-Stokes equations, provides a systematic,
though (sometimes) very computationally inten-
sive, method for deriving the most efficient distri-
bution of control effort to achieve a desired effect
over a finite time interval. In general, as the time
interval under consideration 7" is made larger, the
control problem becomes more realistic (and the
resulting control becomes more effective), but the
optimization problem becomes harder to solve.

The seminal idea of the optimal control method
is the iterative minimization of a cost functional
which represents the physical problem of interest
over a finite time interval, which 1s taken here
without loss of generality to be ¢ € [0,7]. Min-
imization of this functional is achieved by com-
puting the gradient of the cost functional in the
space of the control through an adjoint formu-
lation, then updating the control with a gradi-
ent algorithm. For an unsteady problem such as
turbulence, the cost functional may either be a
time-averaged quantity, in which case the control
is said to “regulate” this quantity, or an evalua-
tion of the state at the end of the time interval,
which is referred to as a “terminal” controller.
An unsteady control is to be found on ¢ € (0,7
which minimizes the given cost functional.

We shall now consider two examples from Bew-
ley (1996) to illustrate how to apply this method.
The first example is the regulation of drag, which

is one of the prime motivations for looking at the
optimal control method in the first place. The
second example is the terminal control of tur-
bulent kinetic energy (TKE), which is done in
an attempt to relaminarize low Reynolds number
turbulent flows. Note that in the former case a
time-averaged flow quantity is important, but in
the latter case only the TKE at the end of each
optimization interval is important, and thus the
latter scheme attempts to relaminarize the flow in
stages, allowing high TKE early in each interval
without penalty. Studies at low Reynolds number
for moderate values of T indicate that the latter
approach can actually be more effective at reduc-
ing the drag after several optimization intervals,
as will be shown.
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Figure 3: FLOW CONFIGURATION. Blowing
and suction is applied through closely spaced holes
drilled in the walls to control the flow.

The flow problem we will consider in these ex-
amplesis turbulent channel flow with no-slip walls
and wall-normal control velocities ®. Though
this is an idealized geometry, it will give insight
into the turbulent behavior which can later be
exploited in more practical configurations. This
problem is governed by the unsteady, incompress-
ible Navier-Stokes equation and the continuity
equation inside the domain €2 and normal veloc-
ity boundary conditions on the walls w (periodic
conditions are implied on the remainder of the
boundary of the domain T'). This may be written
functionally as

N(U) =0, (la)
with boundary conditions
u; = ®ny on walls (1b)
and prescribed initial conditions
u; = u;(0) at ¢t = 0. (1e)

In the following discussion, 2 is the streamwise
direction, x5 is the wall-normal direction, z3 is



the spanwise direction, the w;’s are the corre-
sponding velocities, p is the pressure, p is the den-
sity, Re is the Reynolds number, é is the channel
half-width, and n is a wall-normal unit vector di-
rected into the channel, as illustrated in Figure
3. For simplicity, all differential equations will be
written in operator form in this discussion—these
operators are written out fully in the Appendix.

In this problem, we will be interested in the
perturbation U to the flow U resulting from small
perturbations ® to the control ®. The equation
governing this perturbation field may be found by
taking the Fréchet differential of the state equa-
tion (1) with respect to the control @ (for pre-
cise definition of this differential, see Appendix),
which may be written

AU =0, (2a)

with boundary conditions

i = dn; on walls (2b)
and initial conditions
u =0 at ¢t =0. (2¢)

Drag reduction example

As described above, the first step in solving an
optimal control problem is to represent the con-
trol problem of interest as a cost functional, 7, to
be minimized. In the present problem, control is
to be applied to minimize the drag averaged over
a section of wall with area A and over the time
period [0, 77 using the least amount of control ef-
fort possible. A relevant cost functional for the
present problem is thus

1 T /e 9 Ouy

The first term in the integral is a measure of the
magnitude of the control. The second term is a
measure of exactly that quantity we would like
to regulate—in this case, the drag. These quan-
tities are integrated over the wall section under
consideration, of area A, and over the time pe-
riod under consideration, of duration 7'. Finally,
they are weighted together with a factor ¢, which
represents the price of the control. This quantity
is small if the control is “cheap” (which reduces
the significance of the first term), and large if ap-
plying control is “expensive”.

As suggested by Abergel and Temam (1990), a
procedure may now be developed to efficiently de-
termine the sensitivity of the cost functional 7, to
small modifications of the control ®. To do this,
we consider the differential to the cost functional
Ja, and then re-express this differential as a func-
tion of the solution to an adjoint problem. The
adjoint problem has complexity similar to that of
the Navier-Stokes problem (1) governing the state
U itself—once it is solved, the gradient direction

2Ja(®)/ 2P may be easily determined, and thus
the control may be updated on (0,77 in the direc-
tion that most effectively reduces the cost func-
tional. The flow resulting from this modified con-
trol is then recomputed, and the iteration process
is repeated until convergence. At this point, the
flow is advanced over the entire interval, or a sub-
set thereof, and the iteration process begins anew.

The differential change in the cost Jg resulting
from a differential change of the control ® is given

by
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where u; is the first component of the differen-
tial state described by (2). Adjoint calculus is
used simply to re-express the last term on the
right hand side as a linear function of ®. Once
this i1s accomplished, @ is factored out of the in-
tegrand and, as the equation holds for arbitrary
®, an expression for the gradient 27,(®)/Z® is
extracted.
Consider an adjoint state defined by

AU =0, (3a)

with boundary conditions

U; = 6y on walls (3b)
and initial conditions
;=0 at t =1, (3¢)

where the adjoint operator A* is defined by the
identity

<AU, U >=<U, AU > +b (4)

as discussed in the Appendix. Equation (4) may
be simplified using (1), (2), and (3). The resulting

expression reduces to

T . T
// p%dtdS:—// pddids.
w <0 an w J0

The differential of the cost functional J, may be
rewritten using this expression, which results in

T 1 97.®) A\
/w/o (W—£®+p)¢dtd5‘_0.

As & is arbitrary, this implies that

DTa(P)
g
Thus, the sensitivity of the cost functional Jy
to small changes in the control & may be deter-
mined using the solution to the adjoint problem
(3). A control strategy using a simple gradient
algorithm may now be proposed such that

@jd(q)k—l)
T3

=P p.
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where £ indicates the iteration step for the time
interval ¢ € (0,77] and « is a parameter of descent
which governs how large an update is made at
each iteration, which may be adjusted at each
iteration step to be that value which minimizes
Ja. This algorithm updates ® at each iteration
in the direction of maximum decrease of J;. As
k — oo, the algorithm should converge to some
local minimum of [J; over the control space ®.
Note that convergence to a global minimum will
not in general be attained by such a scheme, and
that, as time proceeds, J3 will not necessarily
decrease.

Note also that the “initial” conditions in (3)
are defined at ¢ = T. The adjoint field must
be marched backward in time over the interval
due to the sign of the time derivative in the ad-
joint operator (see Appendix), this is the natu-
ral direction for this time march. However, as
A* = A*(U), such a scheme requires storage of
the flow field U on ¢ € [0, T], which itself must be
computed with a forward march. These storage
issues are a numerical complication, but are not
insurmountable.

Relaminarization example

As in the last example, we first represent the
control problem of interest as a cost functional,
J, to be minimized. In the present problem,
control is to be applied to reduce the terminal
value of turbulent kinetic energy integrated over
the volume of the channel using the least amount
of control effort possible. A relevant cost func-
tional for the present problem is thus

rrm( &2 dt dS
Gt =i [ [

+ — pu dV,
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where u} indicates the ﬂuctuating velocity compo-
nent. As in the previous example, the first term
is a measure of the magnitude of the control, and
the second term is a measure of exactly that quan-
tity we would like to regulate—in this case, the
terminal value of the turbulent kinetic energy.
The procedure to determine the gradient of the
cost functional Jrx5 in the space of the control
® is very similar to that in the previous example.
The differential change in the cost Jrxr Iresulting
from a differential change of the control ® is given

by
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where u; is the fluctuating velocity component of
the differential state described by (2). As in the
previous example, we turn to an adjoint formula-
tion to re-express this last term.

Consider an adjoint state defined by

AU =0, (5a)
with boundary conditions
u; =0 on walls (5b)
and initial conditions

;= T, i at t =T, (5¢)
where the adjoint operator A* is defined by the
identity (4). Equation (4) may be simplified using
(1), (2), and (5). The resulting expression reduces

. 1 T
twl| o dv = = 5 dt dS.
ol v =g [ [ 7

The differential of the cost functional jTKE may
be rewritten using this expression, which results

[ (-

Again, as @ is arbitrary, this implies that

QJTKE‘((P)
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Thus, the sensitivity of the cost functional Jr x5
to small changes in the control ® may be deter-
mined using the solution to the adjoint problem
(5). An iterative control strategy may now be
proposed as in the previous example to complete
the control formulation.

£<I>+15)<i>dtd5:0.
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Results

The control formulations derived above were
tested in direct numerical simulations of fully de-
veloped turbulent channel flow at Reynolds num-
ber based on shear velocity of Re, = 100. Fourier
transforms are used to compute spatial deriva-
tives in the homogeneous directions, and a con-
servative second order finite difference scheme is
used to compute spatial derivatives in the wall-
normal direction. The computational grid is stag-
gered in the wall-normal direction to prevent de-
coupling of the even and odd modes of the pres-
sure. The flow is advanced in time using an ex-
plicit third-order Runge-Kutta method for terms
involving #; and z3 derivatives and an implicit
Crank-Nicholson method for x5 derivative terms—
this temporal discretization is used to mitigate
the time step restriction at the wall when con-
trol is applied. The number of grid points used is
32x65x 32, and the size of the computational box
is 4w x2x 47w /3, where u, = 1 for the uncontrolled
case.



The adjoint solver is coded with a method anal-
ogous to that of the flow solver. The flow field is
stored every 5 time steps on the forward sweep,
with linear interpolation of these stored fields used
on the backward sweep to determine A*. In the
optimal calculations presented here, we chose ¢ =
0 (control power is taken to be “cheap”), and a
simple gradient algorithm was used for the con-
trol update, with « computed at each iteration
by line minimization.
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Figure 4: VARIATION OF ADJOINT QUAN-
TITES AWAY FROM WALL FOR J; FORMU-
LATION AT TF = 120. , spatially-averaged
value of u; for laminar flow; ---- | spatially-

averaged value of @; for turbulent flow; a | % (rms);
o . U(rms); m, Gz(rms). Rms quantities are nor-
malized by their peak values.

As illustrated in figure 4, an estimate of the re-
gion of maximum variation of the adjoint field
for the J45 formulation is y+ ~ \/T_+ Values
of Tt which allow the adjoint field to develop
into the region of interest near the coherent struc-
tures should be sought as a minimum optimiza-
tion interval—given the region of interest from
Choi et al. (1994) of y™ = 10, values of TT a 100
are appropriate. For values of T which are sig-
nificantly smaller, fluctuations of the adjoint field
are restricted to very near the wall, and thus flow
field variations near y* = 10 are not effectively
taken into account by the adjoint field. The cal-
culations presented below take Tt = 120.

Figures ba and bb show that the drag and TKE
reductions achieved by both optimal formulations
presented above far exceed those of the ad hoc
scheme illustrated in figure 2. As one would ex-
pect, the formulation for J; initially reduces the
drag most effectively. Also, the formulation for

Jrxw reduces the TKE (in stages) effectively. Note

that the J; x5 formulation eventually reduces the
TKE by an order of magnitude. The reduced
Reynolds stresses near the wall in this case even-
tually result in over 50% drag reduction, which
exceeds the drag reduction of the scheme designed
to regulate drag directly. (As the time period T

/
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is increased, it i1s believed that the disparity be-
tween these results would be reduced.)

drag

time

Figure 5a: DRAG HISTORY. —-— | no control
(upper curve is turbulent, lower curve is laminar);
-——- ., ad hoc scheme with ® = —v(y* = 10);
—-—, J4 formulation; , Jrxs formulation.
Optimal formulations computed with 7+ = 120
and ¢ = 0. Drag is normalized by mean drag in
uncontrolled case, time is in units of é/u, (un-
controlled), velocities are normalized by u; (un-
controlled).
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Figure 5b: TKE HISTORY. See figure Ha for ex-
planation of plot symbols.
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Figure 5c: CONTROL POWER HISTORY. See
figure ba for explanation of plot symbols. Time
averaged values are (0.0080 for the ad hoc scheme,
0.0048 for the J; formulation, and 0.0042 for the
Jrwr formulation.



Figure 5c shows that these drag and TKE re-
ductions were performed using less control power
than the ad hoc scheme, even with the price of
the control ¢ set to zero in these computations.
Increasing £ resulted in smaller control levels and
less effective control.

IMPLEMENTATION ISSUES

In order to be sufficiently robust, most practi-
cal feedback control sensors are flush mounted on
the wall. At a wall, we may measure both skin
friction (in the streamwise and spanwise direc-
tions) and wall pressure. As shown earlier in this
paper, skin friction shows a fairly good correla-
tion with near-wall coherent structures in uncon-
trolled flow; Choi et al. (1994) have observed that
wall pressure fluctuations do not provide as good
a correlation with such structures. With this lim-
itation on flow measurement location alone, opti-
mal control in a laboratory setting is out of reach.
For this reason, three methods to reduce the op-
timal problem to a simple input/output relation
between wall-mounted sensors and actuators are
currently under investigation.

The first method is the approximate analytic
solution of an approximation to the control prob-
lem. A practical feedback control rule is deter-
mined by a three step process: a) suboptimal ap-
proximation (i.e. small 7'), b) approximation of
the near wall velocity field by an extrapolation of
sensor measurements, and ¢) approximate solu-
tion of the resulting problem by neglecting high
order products in the computation of the adjoint
field. This type of rule has been successfully de-
rived and tested and shown to give approximately
15% drag reduction in low Reynolds number tur-
bulent channel flow (Hill 1993).

The second method is adaptive modeling of
the optimal control algorithm based on sensor
measurements alone. Neural networks have been
shown to be effective modeling tools for flow con-
trol problems, though the training for such net-
works can sometimes be inefficient and slow (Good-
man and Kim 1995).

The third method is to determine the coeffi-
cients in a pre-determined feedback control rule
by an optimal parameter estimation technique.
This method has the attractive features that it
both lacks the several approximations required
by method 1 to determine the control rule, while
still determining the control rule directly, with-
out stochastic modeling as required by method 2.
This approach is still being formulated (Bewley
1996).

Robust actuators of the scale required for flow
control create an even trickier design problem, as
the actuator must interact with the flow itself,
both forcefully and rapidly. The most notable

advance in the past few years in the area of im-
plementing turbulence control ideas has been the
emergence of Micro Electro Mechanical Systems
(MEMS) technology, which employs the meth-
ods developed for the fabrication of silicon chips
to construct very small mechanical devices (Wise
1991). Miniaturization of this scale for both sen-
sors and actuators 1s necessary for feedback con-
trol of turbulence due to the very small scales of
the coherent structures in high Reynolds numbers
flows of engineering interest (Tai 1995).

A modular configuration which is currently un-
der investigation (Goodman et al. 1995) is to tile a
portion of a wall with integrated sensor-actuator-
controller units fabricated in silicon which can
be mass-produced using MEMS technology. Esti-
mates on the requirements for control units under
flight conditions have been computed by Wilkin-
son (1990) and Gad-el-Hak (1994). At the typical
aircraft cruise conditions quoted by Gad-el-Hak
(voo = 300m/s, u; = 10m/s, v = 3-1075 m?/s),
the wall unit scale is v/u; = 3 pm and the non-
dimensional time unit is v/u? = 0.3 psec. The
average spanwise spacing of the streaky struc-
tures is about 100 wall units; a few sensors and ac-
tuators must span this gap in order to effectively
counter the turbulent motion, implying actuators
and sensors with widths on the order of 50 pm.
The passage of coherent structures at these flight
conditions (estimated by the time it takes a co-
herent structure to convect at (0.8u,, a distance
of 400 wall units) would be approximately once
every b pusec. Power requirements have been con-
sidered by Muntz et al. (1993). These guidelines
give very rough estimates on the spatial density
of sensors and actuators and the response time
required in their implementation—production of
control units on this scale with today’s technology
would be difficult.
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Figure 6. TWO TYPES OF FLOW INSTABIL-
ITY.

Linear stability theory (Drazin and Reid 1981)
can be quite useful when considering flow con-
trol problems. In some flow configurations, as
shown in figure 6, all growing disturbances con-
vect downstream from their source, in which case



the flow is said to be convectively unstable. This
is in contrast to the case in which some of the
growing disturbances can travel back upstream
and continually disrupt the flow even after the ini-
tial disturbance 1s neutralized, which is referred
to as absolute instability (Huerre and Monkewitz
1985). In configurations which are convectively
unstable, active control schemes applied near the
point where perturbations originate can be espe-
clally effective. For example, the effects of a con-
trol scheme can be quite dramatic when applied
near the transition point of a boundary layer flow,
the separation point on an airfoil, or the nozzle of
a jet, where flow instabilities magnify quickly. It
is on such critical flow regimes that our attention
should focus as we attempt to implement feed-
back flow control in the years to come.
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APPENDIX

The fields referred to in this work are the flow field U, the differential field U, and the adjoint field ﬁ,
each of which 1s broken into three velocity components and a pressure component

U= <Ui($1,l‘2,l‘3,t)> = (ulz-(x],m,xg,t)> = (ﬂj(xl,m,xg,t)) .
p(x1, 22, 23,t) )’ p(x1, 20, 23,1) )’ p(x1, 29, 23,1)
The Navier-Stokes operator is given by
%—I—u-%fu@—l— 18_1) —61 .
ot ! Oz; 396? p Ox; e
Juj
Ox;
Consider the Fréchet differential (Vainberg, 1964) of the flow U and the cost J:

N(U) =

| U®+ed)—U@®@) 1 / T gu(®) .
U:—A 2 - =7 o ddtdS
. J(®+ed) - J(®) 1 T927(9) .
J= g i c _A_//D go L5

where @ is an arbitrary control update direction, which will remain undetermined and will later be

1solated and removed from the equation for the differential of the cost functional. The Fréchet differential

of the (non-linear) Navier-Stokes operator is given by

ot +uj57b‘j+ uja_a:j v du’ + p Ou;
1 f)?lj

P 8$]'

AU =

which is linear in the differential field U, but is a function of the solution U of the Navier-Stokes problem,
so that A = A(U). Define an inner product over the domain in space-time under consideration such that

T
<U,l7>:// U-Udtdv,
2 Jo
and consider the defining identity
<AU,U>=<U, AU > +b. (6)

Integration by parts may be used to move all differential operations from U on the left hand side of the
equation to U on the right hand side, resulting in an expression for the adjoint operator

diis oa; O\ O%a;  10p
o (8@ +8x¢>7yﬁx]2- p Ox;
_1oy ’

P 3’1‘]

AU =

where A* = A*(U), and an expression for b, which contains all the boundary terms:
ou; . Ouy 1/.. s
- i i —vlz— = — = j — Uj dtdS
// n; (u u]u =+ u; u]> V<3xju u a@)—l—p(pw u]p)>
Q t=T Q

Simplification of the identity (6) by interior equations, boundary conditions, and initial conditions on U,
U, and U can provide an expression which recasts J from a (difficult to determme) function of U to a
more manageable function of the solution to an adjoint problem for U.
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