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Abstract

The paper considers the rigging of low-altitude balloon/payload systems with multiple taut ground tethers,
analyzed as tensegrity systems. The statics and dynamics of tensegrity systems with fixed nodes, applied external
loads, and embedded solid bodies is first reviewed. We identify and consider a handful of wobbly rigging designs,
W1-W3, each with infinitesimal mechanisms associated with zero deformation energy of the structure (a.k.a. soft
modes), as well as a number of stable rigging designs, S1-S6, each with no such infinitesimal mechanisms. Design
S1 is statically determinant, with the applied loads uniquely determining the tensions in the tethers. Designs S2-
S6 are not pretensionable, but are still tensionable under load : after the nominal balloon lift and payload weight
are applied, there are a few (n) remaining degrees of freedom. Once the static tension in n control tethers is set,
the resulting tension in the remaining tethers, due to the (known) nominal loads plus the (unknown) disturbance
loads, is uniquely determined. A strategy for tuning the static tension in the n control tethers is proposed which,
in a sense, maximizes the range of unsteady disturbance loads that the tensegrity system can endure before one of
the tethers in the system goes slack. A block-and-tackle (pulley) mechanism with fractional mechanical advantage
(MA1.5) is introduced to equalize the tension in three adjacent tethers in Design S6. To facilitate the close and
sustained inspection of interesting features on cliffs, stable rigging designs C1-C3 are also proposed, each of which
is designed to straddle a cliff, with some ground attachment points at the foot of the cliff and some at the top.

1 Introduction

As summarized in the abstract, this paper considers the practical problem of designing a rigging (that is, a 3D network
of tensile members, a.k.a. strings or tethers1, including a number of tethers anchored to three or more attachment
points on the ground) to stabilize a low-altitude balloon/payload system. The ground attachment points may be
fixed in position, or mounted atop sufficiently heavy rovers which may be moved as needed. As compared with the
use of a single ground tether, which is considered in a companion paper [1], the appropriate use of multiple tethers
to secure a (buoyant) balloon and its (heavy) payload to fixed or mobile ground attachment points can diminish
significantly the deflections in both position and orientation of both the balloon and the payload hanging below it
in the presence of variable winds.

If the multiple ground tethers are attached to a single common point at or below the base of the balloon, while
the center of pressure modeling the net effect of the wind forces acting on the balloon is close to the balloon center,
the balloon will tend to translate and pitch significantly in response to unsteady winds and/or vortex shedding past
the balloon—at times, even making certain downwind tethers go slack, thereby putting highly undesirable time-
varying loads (i.e., “jerks”) on the balloon and payload every time a slack tether again becomes taut. The ground
tethers in such problems are thus generally tied off at 3 or 4 (or more) attachment points on the sides of the balloon
(at its equator, or slightly below). As we will show, simple intuition often fails dramatically when attempting to
interconnect these attachment points on the balloon to those on the ground and the payload in order to stabilize the
entire system in the presence of variable winds; proper analysis is thus essential.

The present paper takes a distinctly utilitarian perspective on the practical problem of stabilizing balloon/payload
systems with multiple taut ground tethers, while at the same time leveraging the powerful and streamlined analysis
framework of tensegrity systems laid out in the seminal work of [16]. Towards this end, we will focus almost exclusively
(with the exception of an initial illustratory 2D implementation of Design W1) on the 3D case, and focus on rigging
designs with 3 to 8 ground attachment points, and 3 to 4 attachment points on both the balloon and the payload.

1We will call the tensile members “strings” in §3, as is standard in the literature on tensegrity systems, and we will call them “tethers”
elsewhere, as is standard in the literature on ballooning.

1



Figure 1: Commercially available aerostats from (left) SkyDoc and (right) Lindstrand. The SkyDoc balloon shown
here happens to be rigged as in Figure 3a; much better rigging designs are proposed in §4.2.1-4.2.3.

Balloons that are designed specifically to be operated in a tethered configuration, via various different types of
aerodynamic streamlining, are often referred to as aerostats. Commercially available aerostats come in many different
sizes and shapes (some of which are patent encumbered), all of which are designed to minimize (but unfortunately do
not eliminate) perturbations under variable winds. The present study is focused around simple spherical or ellipsoidal
balloons (like the SkyDoc Model 18 shown in Figure 1), but could be extended to many different aerostats. The
SkyDoc Model 18 is an ellipsoidal balloon with a small fabric drogue chute of sorts slung on its underside along its
downwind perimeter, implemented to provide a constant drag on the balloon in the presence of a prevailing wind
in an attempt to “anchor” its position in space with the force of the wind itself. The SkyDoc Model 18 is 4.33m
in diameter by 2.80m in height, with 3.5mil plastic walls, and requires 27.22m3 of Helium to fill, giving it a net lift
of 17.17 kg at sea level. The similarly-sized Raven Aerostar TIF-1600 is blimp shaped, 9.6m in length and 3.3m in
diameter with a net lift of 16 kg at sea level.

Typical payloads for current airborne platforms suspended from tethered balloons include narrow field-of-view
cameras and radio antennas. Such instruments need to be pointed accurately (+/- a few degrees in pitch, roll,
and yaw) in order to perform their assigned functions correctly. While commercial-off-the-shelf (COTS) motorized
gimbal stabilizers can further augment the stability of such cameras and antennas somewhat, they often come with a
substantial weight penalty. A relatively stable balloon-suspended platform for mounting such payloads thus provides
the essential starting point. This paper focuses on how to configure the rigging of such a system in order to best
achieve this stability. The structure of the paper is as follows:
§1.1-§1.2 introduce potential applications of tethered balloons for cliff exploration and solar energy collection;
§1.3-§1.4 review the available tether and hull material, and relevant lift gas performance on Earth, Mars, and Titan2;
§2 performs a simple analysis to estimate the minimum balloon size required to stabilize a balloon/payload system
in the presence of a prevailing wind of a given maximum speed;
§3.1 reviews the conditions of static equilibrium of general tensegrity structures, including how to identify infinitesimal
modes, and how to tune the tensions in the strings when the conditions of static equilibirum are underdetermined
via solution of an LP;
§3.2 reviews the equations governing the dynamics of class 1 tensegrity structures with embedded solid bodies;
§4 proposes and characterizes numerous rigging designs for balloon/payload systems, the tensions of which may be
optimized with the techniques of §3.1, and the dynamics of which may be modelled using the techniques of §3.2;
§4.5 then outlines some forthcoming next steps.

1.1 Cliff exploration using tethered balloon observation platforms

Much of the rich geological history on Earth and other planetary bodies is best revealed in the highly stratified
sedimentary rocks exposed in steep cliffs, such as the remarkable Valles Marineris region of Mars. In addition, certain
unique biological specimens on Earth, and noteworthy transient environmental features on Mars, also occur only

2In contrast with (untethered) high altitude balloons [20, 5, 17, 13, 8], opportunities for tethered balloon operation near the surface of
planetary bodies in our solar system other than Earth, Mars, and Titan (a moon of Saturn) are essentially zero. The surface temperature of
Venus is far too high (at 467◦C, it is hot enough to melt lead). The pressure at the “surface” (to the extent that one can be distinguished)
of the gas giants (Jupiter, Saturn, Uranus, & Neptune) is far too high. The atmospheric pressure at the surface of Neptune’s moon Triton
is currently estimated as only 1/20,000 of an Earth atmosphere, and the other planets, dwarf planets, and moons in the solar system
either have an atmosphere far thinner than Triton, or have no atmosphere at all.
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within cliffs and steep tallus slopes. Particular objects of interest include various nesting areas and rare vegetation
on Earth (e.g., the ancient dioecious herb Borderea chouardii in the Spanish Pyrenees [7]), and the occasional bright
gully deposits in the western region of Hale Crater [9]; studies of such phenomena are instrumental in the search for
liquid water on or near the surface of Mars.

Substantial ongoing research is thus devoted to the autonomous exploration of steep cliffs, primarily using vehicles
that either free climb from below using advanced rock grippers (e.g., JPL’s Limbed Excursion Mechanical Utility
Robot [2]), or descend from above via controlled rappel (e.g., Caltech’s tethered two-wheeled Axel rover [14]).
Unfortunately, both free climbing (up from below) and rappelling (down from above) are highly delicate maneuvers,
with potentially dire consequences (both to the robot, and to the delicate biological objects or environmental features
under consideration) for any misstep. The JPL Mars 2020 mission thus introduced the remote operation of an
unmanned helicopter (a.k.a. drone) on Mars, albeit with a 3 minute maximum mission duration. Such drones might
also be considered for further exploration of interesting areas unreachable by conventional rovers; however, with their
extremely limited payload capacity and mission duration, the extent of the remote exploration that drones can be
expected to perform on Mars is anticipated to be quite limited.

Remarkably, many otherwise difficult-to-reach areas (cliffs, tallus slopes, crater walls, sinkholes, etc) on Earth,
Mars, and Titan are readily made safely accessible for sustained close inspection (imaging, sampling, drilling, etc)
by stabilized measurement platforms suspended from stably tethered balloons.

The problem of remotely deploying such a multiply-tethered balloon system is an interesting (and, it appears,
solvable) challenge. The main rover, responsible for initially filling and deploying the balloon and its payload (and,
safely lowering and/or stowing them again when storms threaten), can be positioned at either the top or bottom of
the cliff, whichever is easier. The auxiliary rovers, responsible for anchoring the other ground tethers when the system
is deployed, might ultimately have to travel significant distances from the main rover in order to reach their desired
anchor points. Once all rovers are in position (and, when the wind is low), a dextrous drone can be used to connect
the tethers between the (partially-deployed) balloon/payload system and the auxiliary rovers; the numerous details
of such a deployment strategy, which would in part leverage advanced semi-slack tether management techniques such
as those discussed in [18], is deferred to future work. Note finally that rovers need not be used at every anchor point.
In certain instances, tubular Nylon webbing or cord (made, e.g., from Perlon™, a brand of abraison-resistant Nylon
fiber by I.G. Farben), slung around an existing rock feature and appropriately secured (as done frequently by rock
climbers) would be sufficient. Developing an autonomous drone that is precise and dextrous enough to secure such
a sling around a rock, to provide a tether anchor point within a talus slope littered with rocks of various sizes, is a
robotics/drone coordination challenge that appears to be within reach.

1.2 Concentrated photovoltaic (CPV) collection of solar energy with balloons

In the early 2000s, Cool Earth Solar pioneered the development of tethered balloons designed to act as low-cost
concentrated photovoltaic (CPV) solar collectors on Earth. These balloons were characterized by a transparent
upper surface, a reflective lower surface, and a small, high-efficiency solar panel at the focal point (on the inside of
the upper surface of the balloon), with the power collected by this solar panel transmitted down one of the tethers,
which were also used to aim the (air-filled) balloons appropriately, tracking the sun. This investigation leveraged
$21M in angel investments and venture funding, and led to a follow-on 5-year cooperative research and development
agreement (CRADA) in 2013 with Sandia National Labs to develop related low-cost solar technologies.

The active development of low-cost air-filled solar balloons for use on Earth, as originally envisioned by Cool Earth
Solar, has since wound down. However, this essential idea, duly made more robust for reliable remote operation, may
(speculatively) be considered for possible use in the buoyant setting described in §1.1, thereby achieving dual use of
the large balloon that would be needed (that is, the balloon used could both hoist the payload in a stable fashion,
and collect solar energy3). In such a dual-use setting, the multiple-tether rigging system would be used both to track
the sun, by aiming the CPV balloon system appropriately, as well as to reject perturbations to the orientation of the
payload, due both to wind disturbances as well as to the continuous reaiming of the CPV balloon.

Alternatively, the lower surface of the tethered balloon, which can be made nearly parabolic in shape, might
instead be used, in a similar fashion, as an antenna to transmit signals to orbit, or all the way back to Earth.

1.3 Tether and hull material

Remarkably strong and lightweight COTS fibers are available today for use in multi-tethered balloon operations,
notably including Spectra™ and Dyneema™ (two brands of Ultra-High Molecular Weight Polyethylene, by Honeywell

3This idea is natural on Earth and Mars; as the solar flux at the surface of Mars is about 43% that on Earth. This idea is quite
dubious on Titan, however, where the solar flux at the surface is only about 0.1% that on Earth.
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H2 He Atmosphere on Earth Atmosphere on Mars Atmosphere on Titan

2.016 4.003 28.96 43.34 28.5

Table 1: Molecular mass Mgas of five relevant gases, in units of [g/mol] (divide by 1000 for [kg/mol]).

kinematic densities [kg/m3]
pressure temperature gravity viscocity atmosphere H2 balloon He balloon

Patm [Pa] T [◦ K] g [m/s2] νatm [m2/s] ρatm ρH2 lift ρHe lift

Earth 101300 288 9.80 1.48e-5 1.225 0.087 1.138 0.173 1.052

Mars 600 210 3.71 0.0011 0.0149 0.00071 0.0142 0.00140 0.0135

Titan 146700 95 1.35 1e-6 5.293 0.382 4.911 0.758 4.535

Table 2: Typical atmospheric characteristics, and H2 and He balloon lift capacity, on the surface of Earth, Mars,
and Titan [SI units]. The atmospheric density is computed via ρatm = PatmMgas/(Ru T ), noting Table 1, where
Ru = 8.31446 [J/(mol K)] is the universal gas constant. The H2 and He balloon densities are computed similarly,
assuming 2% overpressure in the balloon; i.e., the gas pressure in the balloon is taken as (1.02Patm). Neglecting
the weight Whull of the material forming the surface of the balloon, the relative contribution of which diminishes as
the balloon is made larger (see §2), the lift capacity of each balloon is simply the atmospheric density minus the
corresponding gas density in that balloon; the corresponding lift force is the lift capacity times the volume of the
balloon and the local value of g.

and DSM respectively) and Kevlar™ (a brand of synthetic aromatic polyamide by DuPont). All three fibers are
available as braided lines in a wide variety of diameters; at 0.7 mm diameter, they are all generally around 0.25 lbs
per 1000 ft [0.37 kg per 1000 m] with 100-150 lbs [50-70 N] breaking strength and about 2% stretch at breaking. Braids
made with such fibers vary in their abrasion, moisture, and chemical resistance, as well as their low-temperature
embrittlement; these properties would ultimately govern which particular fiber type is best suited for use as tethers
in any given application. More speculatively, the future development (specifically, for “space elevators”) of carbon
nanotubes as an even stronger/lighter replacement for such braided polymer fibers is also being explored. Lightweight
coaxial tethers can also be implemented to carry both power and signal in addition to bearing load, as discussed
further in [18].

Numerous COTS inflatable textile and polymeric materials are available today for forming the hull, or surface, of
the aerostat. These composite materials are generally formed as several layers bonded together. An essential inner
layer provides a barrier with very low permeability to the lift gas; other layers provide strength, tear resistance, and
environmental protection (against ultraviolet light, ozone, humidity, etc). These several functional layers are joined
with adhesive layers that bond extremely well with adjacent layers to form a multi-layer flexible laminate that is
resistant to fatigue from flexing during both normal operation as well as the inflation/deflation process. For a recent
review of such materials, see [4]. Typical polymeric hull material is about 4 mil [0.1 mm] thick and about 0.1 kg/m2.

1.4 Lift gas: helium versus hydrogen in deployments on Earth, Mars, or Titan

The balloon itself can be filled with either helium or hydrogen; as seen in Tables 1 and 2, the lift capacity of either
is within 8% of the other. Note further that, as compared to a deployment on Earth with a payload of a given mass,
a much larger (78× the volume, or 4.3× the diameter) balloon is required to lift this payload on the surface of Mars
(due primrily to its thinner atmosphere), whereas a smaller (0.23× the volume, or 0.61× the diameter) balloon is
sufficient to lift this payload on Titan (due primarily to its colder temperature).

Note that, in a collaborative effort between several NASA centers, a large effort is currently underway to synthesize
hydrogen (stored as methane) and oxygen from the atmosphere and regolith on Mars, in an activity dubbed “dust to
thrust” [19]. If such a system is one day successfully developed and delivered to Mars, hydrogen for filling such balloons
might one day be produced directly on the surface of Mars itself, thereby facilitating large-scale deployments4.

4Of course, if both filling the balloon with hydrogen and using the balloon to collect solar energy, one needs to be exceptionally careful
with both the heat and the electricity generated, lest the balloon become a Martian (or, Titanian) Hindenburg.
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2 Preliminary balloon sizing

In §4, we propose a variety of rigging designs for stabilizing a balloon/payload system at a target payload height H. To
set up fair quantitative comparisons of these designs in a planned follow-up paper, using both the analysis techniques
for the statics and dynamics of tensegrity systems laid out in §3 as well as corresponding balloon experiments, all
designs considered will restrict the locations of the fixed nodes on the ground to lie within a circle of some radius R;
a few different values of R/H will be considered. We also denote by r the radius of the balloon (assumed initially to
be nearly spherical), and by h the vertical distance between the center of the balloon and the center of the payload.
We perform some preliminary computations here to estimate the required balloon size.

As discussed in §1.4, the balloon lift is L = (ρatm − ρ lift gas) g 4πr3/3 ∝ r3. Consider the presence of a horizontal
wind of maximum speed w, and identify the balloon Reynolds number Re = 2rw/νatm, where νatm is given in Table
2. The drag of the balloon in the presence of this wind is D = Cd ρatm πr

2 w2/2 ∝ r2w2, where Cd ≈ 0.2 for Re & 106

(that is, in the post-critical separated flow regime with a turbulent boundary layer over a smooth balloon surface).
Define also the excess lift, E = L −Whull −Wtethers −Wpayload, as the lift L of the balloon minus the weight of
the fabric forming the balloon surface, Whull = ρ hull 4πr2, the weight of the rigging, Wtethers = p ρtethers

√
R2 +H2

(where p is the number of ground tethers used), and the (given) weight of the payload, Wpayload.
To simplify the analysis, consider first a 2D setting in which r and h are small compared to R and H. In this

case, the two outer tethers between the balloon and the ground form an isosceles triangle, with the angle γ at its
top vertex satisfying γ/2 = atan(R/H). Analyzing the force vector at this vertex, it is plainly evident that both
tethers in this setting will stay in tension, with the upwind tether carrying progressively higher tension compared to
the downwind tether as the wind speed w is increased, until the ratio D/E of the horizontal to (total) vertical forces
at this vertex reach the proportion R/H; that is, until

R

H
=
D

E
=

Cd ρatm πr
2 w2/2

(ρatm − ρ lift gas) g 4πr3/3− ρ hull 4πr2 − p ρtethers
√
R2 +H2 −Wpayload

, (1)

at which point the downwind tether goes slack. Note that, for a given maximum wind speed w, the drag-to-lift ratio
D/L ∝ 1/r is reduced as r is increased. For r that is too small, the balloon lift is barely sufficient to hoist the
payload, and the denominator on the RHS of (1) is small; increasing r, the lift term in the denominator on the RHS
grows faster than both the numerator and the other terms in the denominator, and a balance in (1) is eventually
reached. For a given target H, an intermediate R/H is generally necessary, as larger R/H require longer tethers,
which risk sagging and fouling, and smaller R/H require a larger balloon radius r, by (1). Once the geometric factor
R/H is chosen for a given payload weight Wpayload, a given payload height H, and a specified maximum horizontal
wind speed w, an appropriate minimum balloon radius r may be selected simply by solving (1). For example, taking
R/H = 1 (i.e., taking γ/2 = 45◦), ρatm = 1.225 kg/m3 and ρatm−ρHe = 1.052 kg/m3 (see Table 2), ρ hull ≈ 0.1 kg/m2

and ρtethers = 0.37 · 10−3 kg/m (see §1.3), p = 2 ground tethers, Wpayload = 98 N, H = 30 m, and a max wind speed
of w = 13 m/s (25 knots), we arrive at r = 2.1 m (similar in size to the SkyDoc Model 18) and Re = 3.6e6. The
starting point in developing a balloon/payload system that is stable in the presence of winds is thus:

(a) designing the lightest possible payload (i.e., minimizing Wpayload), while
(b) selecting a streamlined balloon shape (e.g., ellipsoid or blimp shaped, both of which are better than spherical)

to minimize the drag D in the presence of wind. A blimp shape is appropriate if the prevailing wind direction is
nearly constant and known in advance, so the balloon can be aimed into the wind by the tethers, whereas an ellipsoid
is more versatile in the presence of winds that are anticipated to be variable in direction.

Once the payload weight Wpayload, balloon shape and corresponding drag formula, and tether geometric factor R/H
are selected, an appropriate balloon size r may then be selected as in (1), as shown in the example above.

Note that, for ρ lift gas � ρatm and sufficiently large r (so that E ≈ L),

D

E
≈ 3Cd

8

w2

g r
∝ w2

g r
= Fr2,

where we identify Fr = w/
√
g r as the Froude number of the balloon; to leading order, the balloon radius r should

be sized such that Fr . O(1) for the balloon system to be stabilizable with ground tethers for a given wind speed w.
For 3D implementations, the p points on the ground form a regular polygon of circumradius R. For p = 3, these

points form an equilateral triangle with inradius Rin = R/2, whereas for p = 4 they form a square with inradius
Rin = R/

√
2. In the 3D case, the minimum balloon size r may be selected via (1) as discussed previously in the

2D case if the prevailing wind direction is known (so that a tether may be oriented in the upwind direction); if the
prevailing wind direction is unknown, however, the worst case may be considered by taking the upwind direction as
halfway between the tether directions, and the formula given in (1) should thus replace R with Rin; it is seen in this
setting that fourfold symmetry pays a significantly lower penalty than threefold symmetry (1/

√
2 rather than 1/2).
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3 Analysis of tensegrity systems

3.1 Static equilibirum of tensegrity structures with fixed nodes and external forces

Following the analysis of the static equilibrium of tensegrity structures in chapter 2 of [16], augmenting its notation
slightly as necessary, consider a 2D or 3D structure with:
• q free nodes {~q1, . . . , ~qq} and p fixed nodes {~p1, . . . , ~pp}, collectively called the n = q + p nodes {~n1, . . . , ~nn}, and

• b bars {~b1, . . . ,~bb} and s strings {~s1, . . . , ~ss}, collectively called the m = b+ s members {~m1, . . . , ~mm}.
For the purpose of analyzing static equilibria in §3.1, solid bodies with n attachment points will be modelled simply
as clusters of n(n− 1)/2 interconnected bars (i.e., with one bar between each two points on the body); this model is
refined in order to account properly for solid-body dynamics in §3.2. The nodal locations ~ni are each vectors from
the origin in Rd, where d = 2 or 3 is the dimension of the problem considered, and are denoted as follows5:

Q =
[
~q1 · · · ~qq

]
, q = vec(Q) =

~q1...
~qq

 , P =
[
~p1 · · · ~pp

]
, p = vec(P ) =

~p1...
~pn


⇒

[
Q P

]
= N =

[
~n1 · · · ~nn

]
, n =

[
q
p

]
= vec(

[
Q P

]
);

(2a)

q and Q, which define the locations of the free nodes, are sometimes called the configuration vector and configuration
matrix, respectively, of the tensegrity structure. Each member ~mk = ~nk,1 − ~nk,2 connects two nodes, ~nk,1 and ~nk,2,

at least one of which is free (e.g., in Figure 2, ~m1 = ~b1 = ~n2 − ~n1 = ~q2 − ~q1), and are denoted as follows:

B =
[
~b1 · · · ~bb

]
, b = vec(B) =


~b1
...
~bb

 , S =
[
~s1 · · · ~ss

]
, s = vec(S) =

~s1...
~ss


⇒

[
B S

]
= M =

[
~m1 · · · ~mm

]
, m =

[
b
s

]
= vec(

[
B S

]
).

(2b)

It is also useful to define a vector of member lengths `, including a vector of bar lengths ` b and a vector of string
lengths ` s, as well as a vector of normalized member directions d, including a vector of normalized bar directions db

and a vector of normalized string directions ds, such that

`k = ‖~mk‖, `bi = ‖~bi‖, ` sj = ‖~sj‖, ` =

[
` b

` s

]
,

~dk = ~mk/`k, ~d b
i = ~bi/`

b
i ,

~d s
j = ~sj/`

s
j , d =

[
db

ds

]
= vec(D),

D =
[
~d1 · · · ~dm

]
=
[
Db D s

]
, Db =

[
~d b
1 · · · ~d b

b

]
, D s =

[
~d s
1 · · · ~d s

s

]
;

(2c)

note that ‖~dk(t)‖ = 1 for all t. Following [16], the connectivity of a structure, relating the n nodes N in (2a) to the
m members M in (2b), is described easily via its connectivity matrix C, defined and partitioned such that

M = N CT , C =
[
CQ CP

]
=

[
CB
CS

]
⇒

[
B S

]
=
[
Q P

] [CTQ
CTP

]
=
[
Q P

] [
CTB CTS

]
, (2d)

where, denoting ej as the vector in the j’th column of the identity matrix, each column of CT is given by (ek,1−ek,2),
indicating the two nodes ~nk,1 and ~nk,2 that member ~mk connects, with one entry equal to 1, one entry equal to −1,
and all other entries equal to zero; for the example structure illustrated in Figure 2, the first column of CT is(
−1 1 0 . . . 0

)T
. Consider also external forces {~u1, . . . , ~uq}, including the effects of the weight or buoyancy of

the bars themselves, applied to each of the q free nodes, and reaction forces {~v1, . . . , ~vp} at each of the p fixed nodes,
and similarly denote

U =
[
~u1 · · · ~uq

]
, u = vec(U), V =

[
~v1 · · · ~vp

]
, v = vec(V ), W =

[
U V

]
.

5All vectors in Rd are denoted with an arrow (e.g., ~qi). All other vectors, and quaternions, are denoted in bold (e.g., q).

6



~q3 ~q4

~q1 ~q2

~q5

~p3 ~p1 ~p2 ~p4

~b2

~b1

~s3 ~s4

~s1 ~s2

~s7 ~s8

~s5 ~s6

Design W1

Figure 2: Initial (wobbly) 2D balloon rigging, Design W1, indicating the notation used in the analysis. The (heavy)

payload is represented as bar ~b1, with (effectively, massless) strings (a.k.a. tethers) ~s1 and ~s2, attached at free nodes
~q1 and ~q2 (at the ends of this bar) connecting to ground points ~p1 and ~p2. The (buoyant) balloon is represented as

bar ~b2, with strings ~s3 and ~s4 attached at the free nodes ~q3 and ~q4 and connecting to ground points ~p3 and ~p4. The
convergence point ~q5, another free node, is attached to the nodal points on the payload, ~q1 and ~q2, via tethers ~s5
and ~s6. The convergence point ~q5 is also attached to the nodal points on the balloon, ~q3 and ~q4, via a single tether,
~s7-~s8, routed through a pulley at ~q5, thereby equalizing the tension on these two strings and effectively isolating the
pitching of the balloon ~b2 from the orientation of the payload ~b1.

Internally, denote6 by (~dkxk) and −(~dkxk) the forces that member ~mk applies at nodes ~nk,2 and ~nk,1, respectively,
where xk denotes the tension force (if positive) or compression force (if negative) in member ~mk. Thus, the internal
member forces may be written

DX =
[
Db Ds

] [Xb 0
0 Xs

]
=
[
DbXb DsXs

]
,

where X = diag(x), x =

[
xb

xs

]
, Xb = diag(xb), Xs = diag(xs).

(3a)

6Note that [16] defines and solves for the force density σk = xk/`k in each member, rather than solving for the forces xk themselves
(where, again positive σk denotes tension and negative σk denotes compression). They further denote the force density in string ~sj by

γj (with, again, γj > 0 denoting tension), and the force density in bar ~bi by λi (with, in contrast, λi > 0 denoting compression). Using
that (slightly more complicated) notation, the present derivation is expressed by applying the relations

DX = M Σ =
[
B S

] [−Λ 0
0 Γ

]
=
[
−B Λ S Γ

]
where Σ = diag(σ1, . . . , σm), Λ = diag(λ1, . . . , λb), Γ = diag(γ1, . . . , γs).
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It is assumed that bars can carry compressive or tensile forces, but strings can only carry tensile forces, and thus
xsj ≥ 0 for j = 1, . . . , s. Following [16], the cumulative force ~fk at each node ~nk, due to the sum of all of the internal
forces applied by each connected member ~mj (that is, due to the compression and tension forces of all the bars and
strings), is then given simply by applying the connectivity matrix C to the above expression such that[

~f1 · · · ~fn

]
= F = −DXC, (3b)

with the minus sign because positive xk denotes tension forces in the member direction ~dk. Static equilibrium is
reached when sum of the internal forces at each node, F , is in balance with (that is, equal and opposite to) the
external forces W at each node such that

F = −DXC = −W ⇒ DXC =
[
U V

]
.

For any tensegrity structure with b bars B and s strings S connecting q free nodes Q and p fixed nodes P via the
connectivity matrix C, as related in (2d), with external forces U applied at each free node, static equilibrium thus
gives a linear system of equations in the m unknown forces {x1, . . . , xm} and the p unknown reaction forces V . As
discussed further in §3.1.2, this linear system of equations may have 0, 1, or ∞ solutions, depending on the setup
of the problem. The problem of determining the static equilibrium may be simplified by leveraging the partitioning
C =

[
CQ CP

]
, and first solving for the forces at static equilibrium via

DXCQ = U. (4a)

These conditions of static equilibrium, which are linear in the unknown member forces xk, may easily be rewritten7

in terms of the vector x in the standard matrix/vector form

Asex = u (4b)

and solved, after which the reaction forces v = vec(V ) may be computed directly via V = DXCP .

3.1.1 Brief review of the Singular Value Decomposition (SVD)

Consider for a moment an arbitrary m̂ × n̂ matrix Â. It will be useful in the three subsections that follow to refer
to the components of the block decomposition of the SVD, which may be defined as follows:

Âm̂×n̂ = Um̂×m̂ Σm̂×n̂ V
H
n̂×n̂ =

[
U m̂×r U m̂×(m̂−r)

] [Σ r×r 0
0 0

] [
V n̂×r V n̂×(n̂−r)

]H
,

where Σ is diagonal with real, non-negative elements σi on the main diagonal, arranged in descending order, U and
V are unitary, and r is the rank of the matrix A. Note that Â = UΣV . Much can be said about the matrix Â based
on this decomposition. For the present purposes, recall simply that, for any m̂× n̂ matrix Â,

(i) r is both the number of independent rows of Â and the number of independent columns of Â,
(ii) the columns of Â are spanned by the r orthogonal columns of U ,
(iii) the rows of Â are spanned by the r orthogonal rows of V H ,
(iv) the nullspace of Â (the space of all x such that Âx = 0) is spanned by the n̂− r orthogonal columns of V ,
(v) the left nullspace of Â (the space of all y such that Âx 6= y for any x) is spanned by the m̂ − r orthogonal

columns of U , and
(vi) using the Moore-Penrose pseudoinverse Â+ = V Σ−1UH , the least-squares solution to Âx = b+ε, minimizing

the norm of both ε and x, is x = Â+b.

3.1.2 SVD analysis of the conditions of static equilibrium

The linear system of equations (4b) governing the member forces x at static equilibrium of a proposed tensegrity
structure may have 0, 1, or an infinite number of solutions. Stated differently, performing an SVD of the m̂ × n̂
matrix Ase, with m̂ = dq and n̂ = b+ s (where d is the dimension of the problem considered, q is the number of free
nodes, b is the number of bars, and s is the number of strings), the problem in (4b) is said to be:

(a) potentially inconsistent if r < m̂, and thus Ase has some rows which are linearly dependent on the other rows
[in this case, (4b) will either have 0 solutions or at least one solution, depending upon whether or not the external
force vector u is spanned by the columns of U ], and/or

7This task is conveniently handled symbolically in software, e.g. using equationsToMatrix in Matlab or sympy.expand in Python.
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(b) underdetermined if r < n̂, and thus there are fewer independent equations than there are unknowns [in this
case, if (4b) has one solution x, then x plus any linear combination of the n = n̂− r columns of V is also a solution].

The equations of static equilibrium (4b) may thus be:

• potentially inconsistent only (m̂ > r = n̂), with 0 or 1 solution depending on u,
• underdetermined only (n̂ > r = m̂), with ∞ solutions,
• both potentially inconsistent and underdetermined (n̂ > r, m̂ > r), with 0 or ∞ solutions depending on u, or
• neither potentially inconsistent nor underdetermined (n̂ = m̂ = r), with exactly 1 solution (this condition is

called static determinance).

A tensegrity structure together with a nominal loading profile u0 will be called realizable if at least one solution to
(4b) exists with all strings in tension for this nominal loading profile; note in particular that, even if (4b) is statically
determinant, the corresponding tensegrity structure may not be realizable for this nominal loading profile if the
corresponding force distribution x does not have all strings in tension.

3.1.3 Elimination of infinitesimal modes from a (potentially inconsistent) tensegrity structure

If Ase is potentially inconsistent, with r < dq, then a corresponding tensegrity configuration with a realizable equi-
librium for the nominal loading u0 has infinitesimal mechanisms associated with zero deformation energy. Such a
configuration can be either unstable or soft. The first case (instability) is, clearly, catastrophic, with small distur-
bances acting on the structure leading rapidly to failure—visualize two opposing bars, under compression, meeting
at a node (i.e., a ball joint) where external disturbance forces may be applied, with no strings attached to stabilize.

The second case (soft or “wobbly” modes), though not catastrophic, is also a highly undesirable feature for a
tensegrity structure—visualize two opposing strings, under tension, meeting at a node where external forces may be
applied. In this case, assuming all bars are rigid and strings non-stretchable, there are no finite force densities in
the members that can sustain a range of disturbances on the nodes (specifically, any disturbances u generated with
components in the directions of the columns of U) for this free node configuration q. However, assuming (much more
realistically) that the strings are somewhat elastic (and, again, that the system is realizable for the nominal loading),
a significant deformation of the free node configuration vector q (computed using the techniques of §3.2) may well
lead to a deformed configuration that can sustain the problematic disturbance profile. Unfortunately, a different
disturbance profile will generally lead to a different deformation of the structure, so this approach generally leads to
a rather “wobbly” structure in the presence of unsteady external loads. Soft modes are thus also generally undesirable
in a tensegrity structure, as they easily lead to relatively large deflections in response to small disturbances.

Fortunately, as discussed further in [11], the condition of potential inconsistency in (4b), with r < dq (and, the
corresponding presence of unstable or soft modes), can often be removed entirely from a tensegrity structure with
a given configuration of bars simply by judiciously adding more strings, thereby increasing r if the new strings are
well positioned, as seen in the examples provided in §4.

3.1.4 Static tensioning of an (underdetermined) pretensionable tensegrity structure

If Ase is underdetermined, with r < b+ s, then there are fewer independent equations than unknowns in (4b). This
situation generally admits a certain control authority over the force distribution in the members, which can be useful
if leveraged correctly. It is noted that most structures considered in the framework of tensegrity systems are, in
fact, underdetermined. Further, most underdetermined tensegrity structures, with the notable exception of those
proposed in this paper, are pretensionable, with a range of realizable force density distributions in the members (that
is, with all strings in tension) possible even for zero nominal loading, u0 = 0. [The special case of underdetermined
tensegrity structures that are not pretensionable, but still tensionable under load (meaning that there is a range of
realizable force density distributions in the members, with all strings in tension, for some nonzero nominal external
load, u0 6= 0), is discussed further in §3.1.5.]

In the pretensionable setting, the question remains of how to adjust the remaining degrees of freedom in the
structure such that all strings remain taut as time-varying nominal loads plus disturbances, u(t), are applied to
the system, with the tensions greater than or equal to some minimum level τmin > 0 in all strings to assure that
none go slack, while the tensions in all strings in the structure also do not get too large, thereby risking failure.
One convenient approach to address this problem is by framing it as a simple Linear Program (LP), as discussed
below. [This approach is modified slightly in §3.1.5 for the case of underdetermined tensegrity structures that are
not pretensionable, but are still tensionable under load.]
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We start by assuming (that is, idealizing) that the strings are nonstretchable, and rewrite the equations of static
equilibrium of a pretensionable tensegrity structure, Asex = u, as

Ase(x + δ) = u.

If Ase is underdetermined and the strings are idealized as nonstretchable, the distribution of (compression and tension)
forces in the members, x, may be replaced by (x + δ) at any instant, where δ = V c is any linear combination of
the columns of V (the vectors in the nullspace of Ase), without affecting the static equilibrium itself. Assume we are
starting from some static equilibrium condition Asex = u for some (unknown) external loading u(t), and denote x̃ as
the subset of the tensions in the m̃ measurable strings (i.e., those for which we can actually measure their tension8),

δ̃ as the corresponding elements of δ, and Ṽ as the corresponding rows of V . To assure, with some margin for error,
that none of these m̃ strings go slack while not disrupting the static equilibrium achieved by the structure, we seek
at any given timestep to update x with δ while respecting the m̃ conditions (written here in vector form) that

x̃ + δ̃ ≥ τmin1 where δ̃ = Ṽ c ⇒ −Ṽ c ≤ x̃− τmin1 (5a)

for some (pre-selected) positive minimum tension τmin, where 1 is a vector with each element unity, and a vector
inequality a ≤ b denotes element-wise inequality, ai ≤ bi for all i. We generally want to select the coefficient vector
c to achieve (5a) without letting any of the m̃ measurable tensions get too large. One convenient way of achieving

this is to minimize a weighted one-norm of the value of x̃ after it is incremented by δ̃; i.e., assuming x is realizable
(with no slack strings, so that x̃m > 0 for all of the m̃ measurable strings, and thus C0 = wT x̃ > 0), to solve

argmin
c

wT (x̃ + Ṽ c) = C0 − argmax
c

w̃T c where w̃ = −(Ṽ )Tw (5b)

subject to (5a) [thus assuring that all components of x̃ + δ̃ are positive], where w > 0. We can nominally take the
weighting vector w = 1; it may be useful9, however, to increase the weights somewhat on those measurable strings
that, before the update (that is, as indicated in x̃), are closest to breaking.

The problem formulated in (5a)-(5b) is easily rewritten and solved10 as a standard linear program (LP),

c = argmax
c

wT c subject to A c ≤ b and c ≥ 0, (6a)

simply by decomposing c = c+ − c− where c+ ≥ 0 and c− ≥ 0, and defining w, c, A, and b as follows:

w =

[
w̃
−w̃

]
, c =

[
c+

c−

]
, A =

[
−Ṽ Ṽ

]
, b = x̃− τmin1. (6b)

At any timestep in the application of this approach, once the LP in (6) is solved11 for c, the tensions in the tensionable
strings (a subset of the measurable strings with winches at one end) are reset to their corresponding updated values,
as evident in the corresponding element of x + δ = x + V c, and (assuming nonstretchable strings) the rest of the
tensions in the structure will, essentially immediately (as all bars have some inertia), respond accordingly to maintain
the structure at static equilibrium, while including the specified components c of the nullspace vectors (the columns
of V ) into the new force distribution xnew = x + V c such that the minimum tensions in the measurable strings is
τmin, while simultaneously minimizing a weighted one-norm of the measurable string tensions, as specified in (5b).

Relaxing the idealization of nonstretchable strings, but adding the assumption that the external forcing u(t)
varies only slowly in time as compared with the time constants of the modes of vibration of the resulting pretensioned
structure, the updates to the tensions in the strings computed via this approach at each timestep may simply be
passed through a suitable low-pass filter, in order to minimize the excitation of any structural vibration modes
following this tensioning approach. If the external forcing u(t) varies too quickly for such an approach to be effective,
a control approach based on a full analysis of the dynamics of the tensegrity structure (see §3.2) must be used instead,
which involves significantly more finesse in the formulation and solution of the control problem at hand.

8Ideally, this includes all of the strings, or at least all of the strings which we are concerned about either going slack or breaking, upon
analysis of the structure under the anticipated loading conditions; see §4.2.2-4.2.3 for examples. The number of strings m̃ in x̃ should be
at least as large as the number of columns of V for the method described to be solvable.

9Other ways of posing the problem of not allowing any of the (measurable) string tensions in x̃ to get too large are possible. For
example, if a single string material and diameter (and, thus, strength) is used everywhere, it might be preferred to minimize the infinity
norm of x̃. Formally, it is sometimes said that, in low dimensions, all norms are “equivalent”, meaning in this case that the one norm
bounds the infinity norm from both below and above, and vice-versa, i.e., ‖x̃‖1/m̃ ≤ ‖x̃‖∞ ≤ ‖x̃‖1 ≤ m̃ ‖x̃‖∞; note, however, that
these bounds become increasingly loose as the dimension m̃ of the vector x̃ is increased. Adjusting the weights in the weighted one-norm
used here shifts the emphasis in the minimization problem (5b) to those directions that matter most, thus providing a solution using the
one-norm that is in a sense closer to that provided using the infinity norm, while retaining the convenient structure of an LP.

10There are dozens of algorithms and efficient software libraries available to solve LPs, including linprog in Matlab and PuLP in Python.
11Note that this can be done remarkably quickly, even for relatively large m̃ and even on a quite modest single-board computer.
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3.1.5 Static tensioning of an (underdetermined) tensegrity structure that is tensionable under load

The tensegrity structures considered in this paper are not pretensionable; however, once the nominal load (that is,
the buoyancy of the balloon and the weight of the payload) is applied, if r < b+ s, there will be one or more degrees
of freedom in the set of realizable solutions (with all strings in tension). These extra degrees of freedom may be set
following the simple LP-based approach described in §3.1.4. However, it may well be useful to modify this approach
slightly for this special case of tensegrity structures that are only tensionable under load. In such systems, only so
much tension may be applied in any given string before one of the other stings goes slack (note that this is not the
case in pretensionable structures); the primary concern in such systems is thus not really breaking a string, but in
fact simply keeping all of the strings under tension as disturbances are applied.

It is thus desireable in this setting to change the objective in the LP discussed in §3.1.4 to the maximization
of τmin itself, thereby in some respects maximizing the “margin” of additional disturbances that the structure can
endure before one of the strings goes slack. Noting that the LP discussed previously is linear in τmin, this can be
accomplished in the setting of (6a) simply by redefining w, c, A, and b as follows:

w =

0
0
1

 , c =

 c+

c−

τmin

 , A =
[
−Ṽ Ṽ 1

]
, b = x̃. (6c)

3.1.6 Open and closed kinematic chains

The analysis of the static equilibrium of a tensegrity structure lumps all forces (including those from the weight
or buoyancy of the bars) at the nodes, and effectively treats the bars and strings in the same manner, the only
significant difference being that strings are not allowed to provide compressive force. Indeed, which members of a
tensegrity structure are bars, and which are stings, does not actually need to be decided upon until after the initial
static equilibrium analysis is complete. In many tensionable tensegrity systems, in fact, all bars can be replaced by
strings, and strings by bars, and a different tensioning solution again results in a realizable tensegrity structure.

In particular, the analysis of the static equilibrium of tensegrity structures is not complicated by cases in which
bars directly attach to other bars, and/or to fixed points. This is in contrast with the analysis of the dynamics of
tensegrity structures, in which Newton’s laws for the time evolution of the position and orientation of the bars are
solved, with the strings that interconnect the bars simply providing forces at the nodal points on the bars to which
these strings attach, in the directions of the strings themselves and with magnitude proportional to the amount that
these strings are stretched from their rest length. In such a setting, constraints on the time evolution of the position
and orientation of the bars need to be applied if bars are initially attached to fixed nodes, in order to keep them so
attached, and/or if bars are initially connected to other bars (a structure called a kinematic chain), in order to keep
them so connected; such constraints on a time evolution can substantially complicate a numerical simulation code.

In the case of open kinematic chains (like robot manipulator arms), there are no closed loops; that is, at least
one end of any chain of connected bars in the structure terminates with a free node. In this situation, a simple
change of variables suffices to recast the constrained evolution of the position and orientation of the bars into an
unconstrained time evolution in the modified variables. For example, imagine a kinematic chain that begins at a
fixed node and ends at a free node. The bar that is connected to the fixed node is described by its (fixed) length
together with a direction vector from the fixed node, the second bar in the chain is described by its length together
with a direction vector from the end of the first bar, etc.; once Newton’s laws for the time evolution of such a system
are recast into these modified configuration variables, the (otherwise, difficult) constraints reflecting the connectivity
of the kinematic chain(s) are then simply implicit to the configuration representation itself.

In the case of closed kinematic chains (like 4-bar linkages), however, the constraints inherent to the connections
in the chain can not be eliminated with a simple change of variables; this case is generally much more difficult to
simulate accurately. One approach to such a problem is to put a stretchable “fictitious string” of zero nominal length
from the last node of the chain back to the fixed node (or, back to one of the previous free nodes in the chain) to
which it connects. The stiffer this (critically damped) fictitious string is made, the more accurately the kinematic
chain will be closed. Treating (via iteration at each timestep) the effect of the force caused by this fictitious string in
the expression of Newton’s equations for the time evolution of this system (in this constrained setting, a descriptor
system) with the L-stable implicit part of an implicit/explicit (IMEX) time marching strategy for stiff systems [3]
then allows the stiffness of the (critically damped) fictitious string to be taken as large (essentially infinite) without
substantially limiting the timestep required for numerical stability of the simulation.

To simplify the discussion of tensegrity dynamics in §3.2, we will restrict our attention to the unconstrained
setting in which no bars are attached to other bars, or to fixed points, as this simplified setting (once extended to
account for embedded solid bodies) is entirely sufficient for the dynamic simulation of the structures proposed in §4.
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3.2 Dynamics of unconstrained class 1 tensegrity systems with embedded solid bodies

Leveraging the precise notation defined in §3.1, and noting in particular the discussion of open and closed kinematic
chains in §3.1.6, we now succinctly review the dynamics of 3D (i.e., d = 3) tensegrity systems with embedded solid
bodies, generalizing the analysis presented in chapter 5 of [16], assuming that:

(a) each string is massless, exhibiting linear elastic behaviour when in tension and zero force when slack, such that
each element of the vector xs of tension forces in the strings is now given by

xsj = max{0, κj(‖~sj‖ − ` s,0j )/` s,0j )}, (7)

where ` s,0j denotes the rest length of string ~sj [for the tether material mentioned in §1.3, κ ≈ 60/0.02 = 3000],
(b) each bar is rigid and slender, so that the degree of freedom (DOF) corresponding to rotation of each bar about
its long axis may be neglected, with strings attached to the free nodes at each end,
(c) each solid body has three nonzero principal moments of inertia J1 ≥ J2 ≥ J3 > 0, so all three rotational DOF
may be significant, with one or more free nodes affixed to the body at which strings may be attached,
(d) the tensegrity system is, in the language of [16], unconstrained class 1, meaning that each bar (and, each embedded
solid body) is only attached to strings (that is, not to other bars, nor to other solid bodies) and that the nodal points
on each bar and on each solid body are free (not fixed), and
(e) the connectivity of the members (strings, bars, and solid bodies) between the nodes (free and fixed) in the structure
is prescribed by the connectivity matrix C, as denoted and defined in (2), with the columns of CT corresponding to
each solid body containing entries equal to 1 for each node (i.e., at each string attachment point) on the solid body.

Given these assumptions, the dynamics of the entire tensegrity structure is then described simply by writing Newton’s
laws for the time evolution of the linear and angular momentum of the bars and solid bodies, with the strings applying
forces to the free nodes (at the ends of the bars, and at the attachment points on the solid bodies) at any instant
as specified by (7). Rather than applying the conditions of static equilibrium, as done in §3.1 [see (4)], the (not
necessarily balanced) forces at the nodes due to the tension and compression of the members, together with the
external forces u (including both disturbance forces as well as the weight or buoyancy of the bars and solid bodies)
and reaction forces v, apply net forces and torques which affect this time evolution, generally resulting, due to the
elasticity of the strings, in both net deflections and possibly significant vibrations of the structure under time-varying
loads. [Note that many tensegrity structures are only lightly damped before feedback control is applied.]

To proceed, define the bar location ~r bk as the vector in R3 from the origin to the center of mass of bar bk, the

two ends nodes on which are denoted ~n bk,1 and ~n bk,2 (i.e., ~bk = ~n bk,1 − ~n bk,2). Recall the definition of the bar length

` bk = ‖~bk‖ and the (normalized) bar direction ~d bk = ~bk/`
b
k which, noting assumption (b) above, uniquely defines the

orientation of the bar. To simplify the discussion that follows, we also assume that the mass distribution of each bar
is uniform, so that ~r bk = (~n bk,1 + ~n bk,2)/2, and

~n bk,1 = ~r bk + (` bk/2) ~d bk , ~n bk,2 = ~r bk − (` bk/2) ~d bk . (8a)

[Note that this simplification is easily relaxed.] With these assumptions, the moment of inertia J bk of a (slender,

uniform) bar ~bk with mass mk, when rotated about its own center of mass and about an axis perpendicular to the

bar direction vector ~d bk , is J bk = mk`
2
k/12. The ODEs governing the 5 DOF dynamics of a bar (that is, the time

evolution of {~r bk , ~d bk } subject to ‖~d bk ‖ = 1) is laid out in §3.2.1.
Define also the solid body location ~r σk as the vector in R3 from the origin to the center of mass of solid body σk with

principal moments J σk,1 ≥ J σk,2 ≥ J σk,3 > 0, the ak attachment nodes on which are defined in the (unrotated) principal

coordinates of the body as ~nσ,Bk,1 , . . . , ~n
σ,B
k,ak

, and are denoted in global coordinates as ~nσk,1, . . . , ~n
σ
k,ak

. The configuration
of the solid body in the global frame is defined as a rotation and translation from a nominal configuration in the
body frame B, in which the center of mass of the body is at the origin and the principal axes of the body are aligned
with the {x, y, z} axes, via a corresponding (4-component) unit quaternion dσk (reviewed in §3.2.2) such that

~nσk,i = ~r σk + dσk ~n
σ,B
k,i

(
dσk
)∗

for i = 1, . . . , ak. (8b)

The ODEs governing the 6 DOF dynamics of a solid body (that is, the time evolution of {~r σk ,dσk} subject to ‖dσk‖ = 1)
is laid out in §3.2.2.

The dynamics of an entire unconstrained class 1 tensegrity system with embedded solid bodies is then given
simply by interconneting its b bars (see §3.2.1), σ solid bodies (see §3.2.2), and p fixed nodes with s elastic strings,
the tension of which is governed by (7), as summarized in §3.2.3.
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3.2.1 5 DOF dynamics of a single bar

For notational convenience in this subsection only, which focuses exclusively on bar bk, we drop the k subscript and b
superscript on all variables. Given this, the linear momentum of the bar is simply (m~̇r ), and its angular momentum
~h may be written as the product of the moment of inertia of the bar about its center, J , and the cross product of

the normalized bar direction vector ~d with its time derivative ~̇d, noting that ‖~d(t)‖ = 1 for all t:

~h = J ~d× ~̇d = J D̃ ~̇d where D̃ =

 0 −d3 d2
d3 0 −d1
−d2 d1 0

 . (9)

We are now in a position to write Newton’s laws for the time evolution of the linear and angular momentum of
the bar. The linear acceleration of the bar is, of course, governed simply by

m~̈r = ~f1 + ~f2 + ~u (10)

where ~f1 is the sum of all string forces at one end of the bar, ~f2 is the sum of all string forces at the other end of the
bar, and ~u includes all additional forces on the bar. Similarly, differentiating (9) and noting that ~a× ~a = 0 for any
vector ~a, the angular acceleration of the bar is governed by

d~h/dt = ~̇h = J ~d× ~̈d = J D̃ ~̈d = ~τ = ~d× ~φ = D̃ ~φ where ~φ = η1 ~f1 + η2 ~f2 + η3 ~u, (11)

where ~φ (the generalized force driving the evolution equation for ~d ) is such that ~τ = ~d× ~φ, and thus ~φ arises due to

the forces applied at its ends, ~f1 and ~f2, acting via moment arms of η1 = `/2 and η2 = −`/2 respectively, as well as
the sum of all additional forces acting on the bar, ~u, acting via some cumulative third moment arm η3, the modeling
of which is problem specific (often, η3 = 0). We now apply the constraint that ‖~d ‖ = 1, and thus, via differentiation,

‖~d ‖2 = ~d T ~d = 1 ⇒ ~d T ~̇d = 0 ⇒ ~d T ~̈d + ‖ ~̇d ‖2 = 0. (12)

Note that D̃ is singular (in particular, D̃ ~d = 0), and thus (11) alone is insufficient to define the evolution of ~d. Thus,

writing J D̃ ~̈d = ~τ from (11) and ~d T ~̈d + ‖ ~̇d ‖2 = 0 from (12) as a system of simultaneous equations gives

A1
~̈d =

[
~τ/J

−‖ ~̇d ‖2

]
where A1 =

[
D̃
~d T

]
. (13)

This system of simultaneous equations may be simplified (again, following [16]) by first noting that

AT1 A1 =
[
D̃T ~d

] [ D̃
~d T

]
=

 0 d3 −d2 d1
−d3 0 d1 d2
d2 −d1 0 d3




0 −d3 d2
d3 0 −d1
−d2 d1 0
d1 d2 d3

 =

‖~d ‖2 0 0

0 ‖~d ‖2 0

0 0 ‖~d ‖2

 = ‖~d ‖2I

⇒ D̃T D̃ + ~d ~d T = ‖~d ‖2I. (14a)

The columns of A1 are seen to be orthogonal, each with norm ‖~d ‖2. The matrix

A+
1 = AT1 /‖~d ‖2 =

[
D̃T ~d

]
/‖~d ‖2 (14b)

is thus the (unique) left inverse of the 4× 3 matrix A1, and the unique solution of (13), noting (14), is

~̈d = A+
1

[
~τ/J

−‖ ~̇d ‖2

]
=
[
D̃T ~d

] [ ~τ/J

−‖ ~̇d ‖2

]
/‖~d ‖2 = D̃T D̃ ~φ/(J ‖~d ‖2)− ~d ‖ ~̇d ‖2/‖~d ‖2

⇒ ~̈d =
{
I − ~d ~d T /‖~d ‖2

} (
η1 ~f1 + η2 ~f2 + η3 ~u

)
/J −

(
‖ ~̇d ‖/‖~d ‖

)2~d . (15)

As an (equivalent) alternative to the second-order ODE in (15), one can instead march a pair of first-order ODEs

when simulating the time evolution of the bar direction ~d by writing D̃ ~̇d = ~h/J from (9) and ~d T ~̇d = 0 from (12) as
a system of simultaneous equations, leveraging (14b) as before, and noting (11), thus giving

A1
~̇d =

[
~h/J

0

]
⇒ ~̇d =

[
D̃T ~d

] [~h/J
0

]
/‖~d ‖2 ⇒ ~̇d = D̃T ~h/(J‖~d ‖2), ~̇h = D̃

(
η1 ~f1 + η2 ~f2 + η3 ~u

)
. (16)
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Equations (10) and (15) [alternatively, the pair of first-order forms in (16)] thus give the ODEs governing the

time evolution of the 5 DOF defining the configuration of the bar in 3D, as defined by {~r, ~d } and influenced by

{~f1, ~f2, ~u}, which includes the forces due to the tensions of the strings attached to its two ends, ~f1 and ~f2, as well
as ~u, which includes all additional forces on the bar (due to external disturbances and the weight or buoyancy of

the bar itself). Note that this system evolves on the manifold ‖~d ‖ = 1, which is enforced in (15) by incorporating

~d T ~̈d + ‖ ~̇d ‖2 = 0 from (12), and is enforced in (16) by incorporating ~d T ~̇d = 0 from (12). Time marching errors can

lead to ‖~d ‖ drifting away from unity during the numerical simulation of either form; occasionally renormalizing ~d
during such a simulation can easily correct for such errors. For further discussion and comparison of the numerical
stability of these forms, see [10].

3.2.2 6 DOF dynamics of a single solid body

For notational convenience in this subsection only, which focuses exclusively on solid body σk, we drop the k subscript
and σ superscript on all variables. As before, the linear acceleration of the solid body is governed simply by

m~̈r =

a∑
i=1

~fi + ~u (17)

where ~fi is the force is due to all of the strings connected at each of the a attachment points on the solid body, and
~u includes all additional forces on the solid body.

We now review the framework for the rotational dynamics of solid bodies leveraging quaternions12. The unit
quaternion d = d0 + d1i + d2j + d3k is taken to represent the rotation of any vector ~pB in the Body frame (e.g., to
any specific point ~pB on the solid body) to the corresponding vector ~p in the global frame, giving13

~p = d ~pBd∗ =

(d20 + d21 − d22 − d23) 2(d1d2 − d0d3). 2(d1d3 + d0d2)
2(d1d2 + d0d3) (d20 − d21 + d22 − d23) 2(d2d3 − d0d1)
2(d1d3 − d0d2) 2(d2 ∗ d3 + d0 ∗ d1). (d20 − d21 − d22 + d23)

 ~pB , (19)

where d∗ = d0 − d1i − d2j − d3k denotes the conjugate of unit quaternion d, with ‖d‖2 = d∗d = dd∗ =
d20 + d21 + d22 + d23 = 1. Leveraging the constraint ‖d‖2 = 1, it may be shown that

ḋ = ~ω d/2 = d ~ωB/2 (20)

where ~ωB is the instantaneous rate of rotation of the body in the body frame, and ~ω is the corresponding representa-
tion of this instantanous rate of rotation in the global frame. It may also be shown that, in the body frame (rotating
with the solid body, with inertial matrix J), Euler’s equations of motion are

J ~̇ωB + ~ωB × (J~ωB) = ~τ B , (21a)

where ~τ B is the total torque applied to the body about each of its (body-fixed) coordinate axes; if these coordinate
axes are aligned with the principal coordinate directions of the body, Euler’s equations (21a) conveniently reduce to

J1 ω̇
B
1 + (J3 − J2)ωB2 ω

B
3 = τB1 , J2 ω̇

B
2 + (J1 − J3)ωB3 ω

B
1 = τB2 , J3 ω̇

B
3 + (J2 − J1)ωB1 ω

B
2 = τB3 . (21b)

12Based on Hamilton’s 1843 construction

i2 = j2 = k2 = i j k = −1 ⇒ i j = −j i = k, j k = −k j = i, k i = −i k = j, (18a)

the Hamilton product of two quaternions p = p0 +p1i+p2j+p3k = p0 +~p and q = q0 +q1i+q2j+q3k = q0 +~q, where ~p = p1i+p2j+p3k
and ~q = q1i + q2j + q3k, treats i, j, and k like noncommutative algebraic variables; applying (18a), this results in

r = pq = r0 + r1i + r2j + r3k = (p0 + ~p)(q0 + ~q) = (p0q0 − ~p · ~q) + (p0~q + q0~p+ ~p× ~q) (18b)

⇒


r0
r1
r2
r3

 =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3

 =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0



p0
p1
p2
p3

 , (18c)

where ~p · ~q and ~p× ~q denote 3D dot and cross products. Equations like (19) treat vectors in R3 like quaternions with zero real part.
13Writing d = e~uφ = e(u1i+u2j+u3k)φ = cosφ + (u1i + u2j + u3k) sinφ for ‖~u‖ = 1, (19) gives a clockwise rotation of ~pB about the

unit vector ~u by an angle θ = 2φ.
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The torque ~τ B , in turn, is related to the forces ~fi due to all of the strings connected at each of the i = 1, . . . , a
attachment points, as well as the additional forces on the solid body ~u, as follows

~τ B =

a∑
i=1

~nBi × ~f Bi + ~ηB × ~uB where ~f Bi = d∗ ~fid, ~uB = d∗~ud (22a)

where, as mentioned previously, the a attachment nodes on the body are defined in the principal coordinates of the
body as ~nB1 , . . . , ~n

B
a , and the modeling of moment arm ~ηB is problem specific (often, ~ηB = 0). Taking the time

derivative of ḋ = d ~ωB/2 from (20) and substituting (21a) and ~ωB = 2 d∗ḋ results in a nonlinear second-order
equation for the time evolution of the unit quaternion d:

d̈ =
{
ḋ ~ωB + d ~̇ωB

}
/2 = {ḋ ~ωB + dJ−1[~τ B − ~ωB × (J ~ωB)]}/2

⇒ d̈ = ḋ d∗ ḋ + d J−1[~τ B − 4 d∗ḋ× (J d∗ḋ)]/2. (22b)

Note also the constraint that ‖d ‖ = 1, and thus, via differentiation,

‖d ‖2 = d∗d = 1 ⇒ d∗ḋ + ḋ∗d = 2[d∗ḋ]0 = 0 ⇒ d∗d̈ + d̈∗d + 2ḋ∗ḋ = 0 → [d∗d̈]0 = −ḋ∗ḋ, (23)

where [p]0 denotes the real part of p. Note that (22b) is consistent with this constraint, which is used implicitly in
the writing of (20) upon which it is derived. This may be seen by defining p = d∗ḋ (note that, by (23), [p]0 = 0,
and thus p may, by footnote 12, be denoted by its vector part ~p) and premultiplying (22b) by d∗, leading to

d∗d̈ = p p + ‖d‖2 J−1[~τ B − 4 ~p× (J ~p)]/2;

by (18b), the first term on the RHS is the real part of d∗d̈, and the second term is the vector part of d∗d̈. Note in
particular that this formula gives [d∗d̈]0 = p p = −p∗p = −ḋ∗d d∗ḋ = −ḋ∗ḋ, as required by (23).

As an (equivalent) alternative to the second-order ODE in (22a)-(22b), one can instead march a pair of first-
order ODEs when simulating the time evolution of the solid body orientation d via ḋ = d ~ωB/2 from (20), which is
inherently consistent with [d∗ḋ]0 = 0 from (23), in parallel with (21a) [or (21b), as appropriate].

Noting (22a), equations (17) and (22b) [alternatively, the pair of first-order forms (20) and (21a) or (21b)] thus
give the ODEs governing the time evolution of the 6 DOF defining the configuration of the solid body in 3D, as defined
by {~r,d} and influenced by {~f1, . . . , ~fa, ~u}, which includes the forces due to the tensions of the strings attached to

each of its a attachments points, ~f1 to ~fa, as well as ~u, which includes all additional forces on the solid body (due
to external disturbances and the weight or buoyancy of the solid body itself). Note that this system evolves on the
manifold ‖d ‖ = 1. Again, time marching errors can lead to ‖d ‖ drifting away from unity during the numerical
simulation of either form; occasionally renormalizing d during such a simulation can correct for such errors. For
further discussion, see [12, 15].

3.2.3 Dynamics of an entire tensegrity structure

The complete set of equations governing the dynamics [that is, the time evolution of the configuration vector q(t)]
of an entire elastic class 1 tensegrity system, with bars and solid bodies interconnected by elastic strings, in response
to (nominal plus disturbance) time-varying loads u(t), may now be pieced together. This set of equations is given

by the dynamic equations for the time evolution of the position and direction {~r bk , ~d bk} of each individual bar bk, as
given in (10) and (16) [using the pair of first-order forms for the bar direction]:

~̈r bk = (~f bk,1 + ~f bk,2 + ~u bk)/m b
k , (24a)

~̇d bk = −~d bk × ~h bk/(J bk ‖~d bk ‖2), ~̇h bk = ~d bk ×
(
η bk,1

~f bk,1 + η bk,2
~f bk,2 + η bk,3 ~u

b
k

)
, (24b)

and time evolution of the position and orientation {~r σk ,dσ
k } of each individual solid body σk, as given in (17) and

(20)-(21b)-(22a) [using the pair of first-order forms, in principal coordinates, for the solid body orientation]:

~̈r σk =
( a∑
i=1

~f σk,i + ~uσk

)
/mσ

k , (24c)

ḋσ
k = dσ

k ~ω
σ,B
k /2, ~̇ω σ,Bk =

 [τ σ,Bk,1 − (J σk,3 − J σk,2)ω σ,Bk,2 ω σ,Bk,3 ]/J σk,1

[τ σ,Bk,2 − (J σk,1 − J σk,3)ω σ,Bk,3 ω σ,Bk,1 ]/J σk,2

[τ σ,Bk,3 − (J σk,2 − J σk,1)ω σ,Bk,1 ω σ,Bk,2 ]/J σk,3

 , (24d)

where ~τ σ,Bk =

a∑
i=1

~nσ,Bk,i ×
[
(~dσ
k )∗ ~f σk,id

σ
k

]
+ ~η σ,Bk ×

[
(dσ
k )∗~uσk dσ

k

]
. (24e)
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The dynamics of the bars are influenced by the forces ~f bk,1 and ~f bk,2 due to the tensions of the strings attached to the

end nodes on each bar, ~n bk,1 and ~n bk,2, and ~u bk , which includes all additional forces on each bar, and the dynamics of

the solid bodies are influenced by the forces ~f σk,1 to ~f σk,ak due to the tensions of the strings attached to each of the
ak attachment nodes on each solid body, ~nσk,1 to ~nσk,ak , and ~uσk , which includes all additional forces on each solid

body. To determine the forces from the strings, the locations of the end nodes on each bar, ~n bk,1 and ~n bk,2, are first

related to the bar positions and directions, {~r bk , ~d bk}, as in (8a), and the locations of the attachment nodes on the
solid bodies, ~nσk,1 to ~nσk,ak , are related to the solid body positions and orientations, {~r σk ,dσ

k }, as in (8b). Defining

q =
(
~n b1,1 ~n b1,2 . . . ~n bb,1 ~n bb,2 ~nσ1,1 · · · ~nσ1,a1 . . . ~nσσ,1 · · · ~nσσ,aσ

)
,

q̂ =
(
~r b1

~d b1 . . . ~r bb
~d bb ~r σ1 dσ

1 . . . ~r σσ dσ
σ

)
,

and noting the two matrix forms for quaternion multiplication in (18c), the linear relations in (8a)-(8b) may easily
be written in matrix form q = Ξ q̂, where Ξ = Ξ3(2b+aa+a2+...+aσ)×d(6b+7σ) is block diagonal. Finally, the forces due
to the tensions in the strings can easily be determined from the locations of the free and fixed nodes, q and p, via
the elasticity (stretch-to-tension) relationship (7), leveraging the connectivity relationship S =

[
Q P

]
CTS defining

the string vectors ~sj , the (normalized) direction of each of these strings, ~d sj = ~sj/`
s
j , and the degree to which the

length of each of these strings, ` sj = ‖~sj‖, is stretched beyond its rest length ` s,0j .

Again, time marching errors can lead to ‖~d bk ‖ and ‖dσ
k ‖ drifting away from unity during numerical simulations

of these equations; occasionally renormalizing ~d bk and dσ
k during such simulations can easily correct for such errors.

Note also that the vector of (nominal plus disturbance) forces u acting on the system in this dynamic formulation
is, perhaps most naturally, modelled for each bar and solid body, not for each node [cf. the definition of u in §3.1].

4 Designs for balloon/payload riggings with multiple tethers

We now propose a variety of rigging designs for tethered balloon/payload systems. As is customary in this application
area, all strings will now be referred to as tethers. Also note that none of the designs proposed below are pretensionable
(see §3.1.4), but most, with the notable exception of Design S1 in §4.2.1, are tensionable under load (see §3.1.5).

The main goal of the rigging design and tensioning system is to keep all tethers taut even as environmental
disturbances act on the system, for three important reasons. First, a tensegrity structure with some tethers slack
(thus, effectively absent as far as the forces within the structure are concerned) often exhibits additional soft modes,
thus causing new infinitesimal mechanisms for substantial deflections of the structure in response to small disturbances
in certain directions. Second, slack tethers are hazardous, as they can easily snag on various features on the payload
or the ground. Finally, when slack tethers eventually become taut again, they often apply a sudden (possibly,
damaging) “jerk” to the payload.

4.1 Initial 2D and 3D rigging designs

Before embarking, in §4.1.2, on a discussion/analysis of the initial 2D rigging concept proposed in Figure 2, we first
note that it is straightforward to extend such 2D designs to 3D, using either threefold or fourfold symmetry, as
illustrated in Figure 3 and discussed further in §4.1.1.

4.1.1 Threefold or fourfold symmetry of 3D balloon riggings

As noted above, it is straightforward to extend 2D rigging designs to 3D using either threefold symmetry, with
3 attachments nodes on both the balloon and payload, or fourfold symmetry, with 4 attachments modess on the
balloon and payload. Further, note that some rigging designs we will consider, like those in Figures 2 and 3, isolate a
superstructure (i.e., the balloon together with all tethers attached directly to it) from a substructure (i.e., the payload
together with all tethers attached directly to it) via a convergence point (e.g., free node q5 in Figure 2). In the 3D
versions of such designs, it is entirely possible to use threefold symmetry for the superstructure while using fourfold
symmetry for the substructure, if the balloon used naturally has three attachment nodes but the payload used
naturally has four attachment nodes, or vice versa. Note that, for rigging designs incorporating such a convergence
point, we will also denote the balloon together with all tethers connecting it to the convergence point as the upper
pyramid, and the payload together with all tethers connecting it to the convergence point as the lower pyramid.
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Design W1
(threefold
symmetry)

Design W1
(fourfold
symmetry)

Figure 3: Two straightforward (albeit, still wobbly) extensions to 3D of the preliminary Design W1 of Figure 2 with
(a) threefold symmetry, and (b) fourfold symmetry.

For simplicity, we will focus the bulk of the presentation below on 3D rigging configurations with threefold
symmetry, noting that cases with fourfold symmetry represent straightforward extensions. Which symmetry is best
to use in application is likely problem specific. Threefold symmetry uses fewer tethers, so it is less complicated and
lighter. However, for a given payload height H and radius R of the ground attachment nodes, a square footprint on
the ground subtends a substantially larger solid angle that an equilateral triangle footprint on the ground of the same
radius. As discussed in the last paragraph of §2, the total load on the system (including disturbances) must generally
remain within the solid angle formed by extending the lines formed by the ground tethers up above the balloon, in
order to assure tensioning solutions exist that keep all ground tethers taut; designs with fourfold symmetry might
therefore be more robust (and, thus, preferred) to those with threefold symmetry in applications for which the wind
direction is variable.

4.1.2 Two useful features and one unfortunate liability of the initial 2D and 3D designs

The 2D and 3D versions of Design W1, as proposed in Figures 2 and 3, incorporate at least two distinctly useful
features, both of which are incorporated into designs discussed later in §4, as well as one highly unfortunate liability
(specifically, the presence of soft modes), which is eliminated in the major designs proposed in the subsections to
follow. We now summarize both of these features, as well as this significant liability, in turn.

Feature 1: The use of a rigging design with a convergence point, with one or more pulleys incorporated, can
effectively decouple the pitch (and, in 3D, the roll) of the balloon from the attitude of payload.

The use of a convergence point with a pulley system incorporated to isolate the attitude of the superstructure from
that of the substructure is illustrated clearly/simply in 2D in Figure 2, and extends naturally to 3D (as depicted
in Figure 3 and discussed in detail in §4.2.5). Given that, in reality, both the balloon and the tethers will all be
somewhat elastic, and that, in most practical implementations, the balloon may be expected to undergo substantial
environmental disturbances due to the wind, it might ultimately prove impossible to keep the balloon from deflecting
somewhat in pitch, roll, and horizontal position, regardless of the rigging used (even when soft modes are eliminated,
and feedback control is applied). The idea of using a convergence point to isolate these substantial balloon deflections
from the attitude of the payload is thus, potentially, quite beneficial.

17



Design W1a

wind

Design W1b

wind

Figure 4: Substantial deflections of a balloon rigged with multiple ground tethers in the presence of wind, in the
2D setting of Figure 2, which is characterized by soft modes (see Liability in §4.1.2). (a) Design W1a, with tethers
below payload angled to the ground, and (b) Design W1b, with tethers between the payload and ground taken as
parallel. Unperturbed configuration is dashed, perturbed configuration (with wind from left) is solid. The pulley
at the convergence point in both designs equalizes the tension of the left and right tethers in the upper pyramid,
thereby isolating the pitching of the balloon from the attitude of the payload (see Feature 1 of §4.1.2). The 4-bar
linkage between the payload and the ground in Design W1b forms a parallelogram which keeps the payload parallel
to the ground, even as the convergence point shifts in horizontal position (see Feature 2 of §4.1.2).

Feature 2: The use of parallel tethers between the payload and the ground can assure geometrically (see, e.g., Figure
4) that, even if the convergence point (and, therefore, the payload) shifts a substantial amount horizontally (due to
the various deflections of the balloon, which arise as a result of the wind disturbances acting upon the balloon), the
pitch and roll of the payload will remain relatively undisturbed.

For the strategy described in Feature 2 to be effective, the following two conditions must be met:

(i) the tethers between the payload and the ground must remain taut, and be of essentially equal length, and
(ii) in the 3D case, the payload must not be substantially disturbed in yaw.

Applying the conditions of static equilibrium in (4b) of §3.1 to the 2D and 3D structures proposed in Figures 2, 3a,
and 3b, it is found that all three of these structures are underdetermined. Though not pretensionable, all three of
them turn out to be tensionable under load; that is, under nominal loading (applying the buoyancy of the balloon
and the weight of the payload only), the tensions in the 2, 3, or 4 outer ground tethers can be adjusted (increased or
decreased) with respect to the tensions in the 2, 3, or 4 inner ground tethers, thus providing one degree of freedom
that may be leveraged to attempt to assure that condition (i) is satisfied. Note that, in order to maintain the
(parallel) inner tethers at nearly equal length, any tether tensioners (i.e., winches used to adjust the tensions in the
system) to be implemented should be applied to the outer tethers.

Unfortunately, the conditions of static equilibrium in (4b) are also potentially inconsistent, revealing the following:

Liability: The 2D and 3D structures proposed in Figures 2 and 3 contain soft modes involving deflections of the
attitude and horizontal position of the balloon in response to disturbances. Additionally, the 3D structures proposed
in Figure 3 contain soft modes involving deflections in the yaw of the payload.

Such soft modes imply that these structures will suffer substantial deflections in response to small disturbances in
certain directions. This liability removes these three wobbly structures from further serious consideration. Better
rigging designs that eliminate such soft modes are available, as proposed next.
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Design S1
Design S2

Design S3
Design S4

Design S5 Design S6

Figure 5: The six stable 3D rigging designs considered in §4 using 3-fold symmetry (designs with 4-fold symmetry
are similar); none have soft modes. For clarity, the balloon is depicted as a triangle of bars in these sketches.
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4.2 Stable 3D rigging designs for practical use

Note, as mentioned previously, that we will focus the presentation below on 3D rigging configurations with threefold
symmetry, noting that cases with fourfold symmetry represent straightforward variations (and which, indeed, are in
some cases preferred).

4.2.1 Design S1: eliminating soft modes

Design S1 in Figure 5, with six ground tethers and only three (fixed) ground nodes, has no soft modes. By using
six ground tethers rather than three (i.e., by using two ground tethers from each balloon attachment node rather
than one, with these two tethers forming as wide a footprint on the ground as possible without crossing the other
tethers, thus meeting at just three ground nodes), Design S1 can withstand small disturbances on all nodes from all
directions without deflection, assuming non-stretchable tethers. This design is statically determinant, i.e.:

• the six DOF of the balloon are held in place by the six tethers from the balloon to the ground, and
• the six DOF of the payload are held in place by the six tethers from the payload to the balloon.

Design S1 has no additional degrees of freedom; in static equilibrium, the tensions in the tethers are determined
entirely by the (nominal and disturbance) loads. Though simplifying the analysis and implementation, this feature
also eliminates the flexibility that one achieves with an underdetermined (tensionable) static equilibrium. This
tradeoff is analyzed further in §4.5.

Note that the tethers between the (idealized) bars representing the balloon and the payload form a triangular
antiprism (a.k.a. an octahedron14). With a triangle on every face, such an polyhedron is easily recognized as a strong
structural element, especially if the member lengths are such that this polyhedron is nearly regular.

To summarize, Design S1 in Figure 5, with six ground tethers to just three fixed nodes on the ground, is the
simplest practical starting point for rigging a balloon/payload system with no soft modes. A straightforward variant
of Design S1 attaches the payload to the ground (again, with six tethers) instead of attaching the balloon to the
ground; a possible rationale for such a variant is discussed in the second paragraph of §4.2.2.

4.2.2 Designs S2, S3, S4: adding tethers for additional flexibility in tensioning

Starting from the (statically-determinant) Design S1, we now pursue the idea of adding additional tethers, thus
giving additional flexibility in the tensioning of the structure once the nominal loads are applied. If we consider
using three ground nodes and three tethers per ground node, there are two natural options. The first option (Design
S2 in Figure 5) is simply to add three ground tethers to Design S1, one from each payload attachment node to the
nearest ground node. The second option (Design S3 in Figure 5), is essentially the inverse: to use two ground tethers
from each attachment node on the payload, and one ground tether from each attachment node on the balloon. Both
designs have n = 3 extra degrees of freedom in their static equilibrium (i.e., the corresponding V in §3.1.4 has three
columns); thus, once loaded, substantial flexibility in the tension distribution is possible with these designs, and
three independent tether tensioners may be implemented while not disrupting the static equilibrium.

Since the balloon (with its large exposed surface area) undergoes the largest disturbances from the wind and is
likely somewhat soft, and the priority is to stabilize the payload, Design S3, with the six DOF of the payload directly
stabilized by six ground tethers, is anticipated to be somewhat better than Design S2 in practice. Note that the
wider the radius of the payload (a triangle in these designs), the greater the available moment arm for generating
correction torques by the tethers, and the better the stability in attitude of the payload.

Taking the idea of additional tethers one step further, Design S4 in Figure 5 uses two ground tethers per balloon
attachment point, and two ground tethers per payload attachment point, thereby introducing n = 6 extra degrees of
freedom in the static equilibrium. Forming as wide a footprint on the ground as possible in this configuration without
crossing tethers leads, as shown, to six ground nodes rather than three, which presents somewhat of a complication
in the implementation. This design also, however, substantially increases the solid angle subtended by the ground
tethers from the balloon/payload system (see the last paragraphs of §2 and §4.1.1), thereby potentially increasing
the robustness of this design as compared with Designs S2 and S3.

4.2.3 Design S5: reintroducing parallel ground tethers from the payload

Design S5 in Figure 5 modifies Design S2 by making the three ground tethers from the payload parallel, thereby
reintroducing Feature 2 of §4.1.2, geometrically assuring stiffness of the payload to pitch, roll, and vertical translations.

14In the case of fourfold symmetry, the tethers between the (idealized) bars representing the balloon and the payload form a square
antiprism.
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This design has n = 3 extra degrees of freedom (again, best adjusted on the outer ground tethers, in order to keep
the inner ground tethers of essentially equal length). This design also has six ground nodes, though the three inner
ground nodes would likely all be attached to a single structure, or vehicle, of the same radius as the payload.

4.2.4 Design S6: reintroducing the convergence point using a 3D pulley system

Design S6 in Figure 5 reintroduces the use of a convergence point to isolate the possible pitching and rolling of the
balloon (which is expected to undergo significant deflections, due to its large exposed surface area and its compliance,
as well as the elasticity of real tethers, even in rigging designs with no soft modes) from the attitude of the payload.
As in Design W1, to facilitate this isolation, a pulley system should be incorporated into the three tethers connecting
the balloon to the convergence point (i.e., in the upper pyramid), thereby equalizing their tensions. The interesting
problem of how best to configure these pulleys in this case is discussed in detail in §4.2.5 below.

Note that, with this pulley system installed, there is one remaining tension DOF in Design S6, implying that
one tether tensioner can be used. Note also that, with the payload rotated by 60◦ as compared with Designs S2-S5,
Design S6 again uses only 3 ground attachment nodes.

4.2.5 The upper pyramid

In the case of fourfold symmetry of the superstructure (e.g., in Design W3 of Figure 3), the problem of equalizing
the tension of the four tethers of the upper pyramid is trivial: at the convergence point, simply implement a single
(lightwieght) piece of hardware, easily fabricated within a small piece of aluminum square tube (see Figure 6e), with:

• one small pulley (a.k.a. U-groove bearing) in the x-z plane, to equalize the tensions of the left/right tethers of the
upper pyramid),
• one small pulley in the y-z plane, mounted immediately above the other pulley, to equalize the tensions of the
front/back tethers of the upper pyramid, and
• a suitable set of tie-down points immediately below the pulleys to attach the (3 or 4) tethers supporting the payload
in the lower pyramid.

However, in the case of threefold symmetry of the superstructure (e.g., in Design W2 of Figure 3, and Design S6
of Figure 5), the problem of equalizing the tension of the three tethers in the upper pyramid is substantially more
delicate. In this case, if arranged symmetrically (generally the goal, for both balancing the forces applied to the
balloon, and for simplicity of construction), the three tethers extending down from the balloon to the convergence
point in fact form a regular triangular pyramid. Such a pyramid has a base (actually, a top) which may be visualized
as an equilateral triangle, and the three tethers leading down from the balloon form the remaining edges of three
congruent isosceles triangles as lateral faces. Denote the height of this pyramid as h, the radius (around the vertical
axis) of the 3 attachment points of the tethers to the balloon as r, the convergence point as B, and the tensions in
the three tethers as τ1, τ2, and τ3. It follows from simple geometry (see Figure 6a) that:

(a) the three edges of the base (modelled as bars) each have length a = r
√

3,
(b) the three tethers (strings) are each of length b =

√
h2 + r2,

(c) the angle at B between the vertical axis and any of the tethers is α = tan−1[r/h],
(d) the angle at B between the vertical axis and the plane containing any 2 of the tethers is β = tan−1[r/(2h)],
(e) the angle at B between any 2 of the tethers is γ = 2 sin−1[a/(2b)], and
(f) the total lift force provided to the load is L = (τ1 + τ2 + τ3) cosα.

We now describe three small pieces of hardware (again, all easily fabricated using small pulleys and small pieces
of aluminum plate), to be implemented at positions T1, T2, and B (see Figure 6), to approximately equalize the
tensions in the three tethers coming down from the balloon. We start by equalizing τ1 and τ3 via a simple pulley
at T1; it is said that such a configuration is MA1 (Mechanical Advantage 1), so that the tensions τ1 and τ3 in the
tethers on either side of T1 equalize. We then aspire to somehow attach tether 2 to both B (that is, the convergence
point), which supports the load, and T1, which connects to tethers 1 and 3, in such a manner that τ2 ≈ τ1 = τ3, and
thus the upper pyramid remains nearly regular.

If h� r, we can follow the simplest (MA1) approach again, just routing tether 2 through a simple pulley at B and
tying it off at T1 (see Figure 6b). In this MA1 configuration between τ2 and T1, if h� r and thus γ ≈ 120◦, we obtain
τ2 ≈ τ1 = τ3. Unfortunately, taking h/r → 0 also makes α→ 90◦ and thus, by point (f) above for fixed L, τi →∞;
this is thus, clearly, not a viable approach. For larger h in this MA1 configuration, τ2/τ1 increases (approaching
τ2/τ1 ≈ 2 for h� r), and thus the forces in the upper pyramid are out of balance until a new equilibrium is reached,
with angles at the convergence point that are significantly different from those of the (desired) regular triangular
pyramid, as summarized above.
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Figure 6: Geometry and representative hardware (B, T1, T2) of the pulley system near the convergence point of the
upper pyramid of Designs C and D in Figure 5, designed to isolate the pitching/rolling of the balloon from that of
the payload while equalizing the tensions {τ1, τ2, τ3}, in the case of threefold symmetry: (a) notation used, (b) MA1
between τ2 and T1 (suitable for h � R), (c) MA2 between τ2 and T1 (suitable for h � R), (d) MA1.5 between
T2 and T1 (best suited for h/r ≈ 0.845). Also shown, in (e), is the single piece of hardware sufficient to stabilize
left/right tensions and fore/aft tensions in the (simpler) case of fourfold symmetry.

If h � r, on the other hand, we can instead route tether 2 through a pulley at B and a second pulley at T1,
and then tie this tether off at back at B (see Figure 6c). In this MA2 configuration between τ2 and T1, if h � r,
we again obtain τ2 ≈ τ1 = τ3. Unfortunately, taking h/r → ∞ diminishes the lateral stability of the convergence
point (and, thus, the payload) in the presence of horizontal disturbances acting on the payload. For smaller h in
this MA2 configuration, τ2/τ1 decreases (approaching τ2/τ1 ≈ 1/2 for h � r), and thus, again, the forces in the
upper pyramid are out of balance until a new equilibrium is reached with angles at the convergence point that are
significantly different from those of a regular triangular pyramid.

A single block-and-tackle arrangement, like the proposed connections between the top block T1 and the bottom
block B as discussed above, can only achieve an integer MA. We saw that an MA1 arrangement was suitable for
h � r, and that an MA2 arrangement was suitable for h � r. For intermediate values of h/r, both arrangements
lead to forces that are significantly out of balance at the convergence point until a new equilibrium is reached, with
angles that are significantly different from those of the desired regular triangular pyramid centered below the balloon.

What we seek is a mechanical advantage between the tension τ2 and the force on the hardware at point T1 in the
direction of B that is somewhere between MA1 and MA2. To achieve this, consider inserting a second top block, T2,
somewhere along tether 2 between point B and the balloon, as shown in Figure 6d. By implementing an MA3 pulley
configuration from T1 to B, and an MA2 pulley configuration from B to T2, a total mechanical advantage of 3/2=1.5
is achieved15. If γ = 2 cos−1(3/4) ≈ 82.82◦ and thus a/b = 2 sin(γ/2) ≈ 1.323 and h/r =

√
3/(a/b)2 − 1 ≈ 0.845,

15Implementing different integer coprime mechanical advantages, MAm and MAn, in the two attached block and tackle systems (from
T1 to B, and from B to T2, in Figure 6d), by incorporating more pulleys, leads directly to the possibility of achieving different fractional
mechanical advantages, MA(m/n), though doing such appears to be unnecessary in the present application. The use of (usually) equal-
diameter pulleys in a block and tackle arrangement to achieve integer MA is well known, as is the use of different-diameter pulleys in a
wheel and axle arrangement to achieve non-integer MA; documented discussion of both dates back at least to Hero of Alexandria in the
first century AD. As far as we can tell, however, Figure 6d and its generalization discussed here apparently documents the first use of
two interconnected block and tackle systems to achieve fractional MA (between T1 and T2) using equal-diameter pulleys.
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Design W2 Design W3

Figure 7: Two rigging designs that are not recommended: (left) combining the ideas of using a convergence point
and using parallel tethers from the payload to the ground, and (right) giving up completely on stabilizing the balloon
position/orientation. Both designs have soft modes.

which is reasonable16, this MA1.5 configuration obtains the desired balance, with τ1 = τ2 = τ3 ≈ 0.516L.
To summarize, for the threefold case, we recommend an MA1.5 pulley configuration, as shown in Figure 6d and

introduced above, together with an aspect ratio for the (regular triangular) upper pyramid of about h/r ≈ 0.845.

4.2.6 The lower pyramid

If one can guarantee that all of the tethers between the payload and the ground will always stay taut in Designs W1,
W2, W3, or S6, the idea of using pulleys to equalize the tension in the tethers in the upper pyramid, as discussed
in §4.2.5, might also be considered for the lower pyramid. However, in operation, we can usually not make such an
absolute guarantee, as large wind gusts might occasionally, unfortunately, make one or more of these ground tethers
go slack. If/when this happens, even for a short period of time, the orientation of the payload will go unstable if
pulleys are incorporated in the lower payload, and the subsequent sudden jerk of the payload after it falls over to
one side might likely cause significant damage.

Thus, it is not recommended to use a pulley system in the lower pyramid; instead, the convergence point should
just be connected directly to the (2, 3, or 4) corners of the payload with individual tethers. An equilateral triangle
(in 2D), equilateral triangular pyramid (a.k.a. a regular tetrahedron), or equilateral square pyramid would be typical
reasonable choices.

4.3 Other wobbly rigging designs (not recommended)

Many other “wobbly” rigging designs, with infinitesimal modes leading to substantial structural deflections in re-
sponse to small wind disturbances, are possible; for completeness, two additional wobbly designs are discussed briefly
here. Our general advice is to avoid all such soft designs in favor of stable rigging configurations, like Designs S1-S6
in Figure 5, and variants of these designs with fourfold symmetry.

4.3.1 Design W2: implementing a convergence point and parallel tethers from payload to ground

Design W2 in Figure 7 combines the ideas of using a convergence point, as in Design S6, and using parallel tethers
from the payload to the ground, as in Design S5. Unfortunately, such a design is soft to disturbance forces in yaw
applied to the payload itself (though the rigging of the balloon itself is not soft). To counter this fact, one might
propose adding a reaction-wheel stabilization system (the design and implementation of which is well understood, and
need not be expensive or complicated) in order to recover payload stability in yaw. Such reaction wheel stabilization

16That is, this is reasonable in terms of both the magnitude of τ (cf. the MA1, h� R case) and the lateral stability of the convergence
point in the presence of disturbances on the payload (cf. the MA2, h� R case).
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systems provide reaction torque, on demand, to the body to which they are mounted simply by using motor(s) to
apply torque to wheel(s) with significant rotational inertia.

Unfortunately, to realize the required rotational inertia, reaction wheels generally have a significant amount of
dead weight associated with them; this added weight on a payload reduces the excess lift E that is critical to the
stability of the balloon/payload system in light of external wind forces, as described in §2. In contrast, tensioners on
the ground tethers in Designs S1-S6 can be placed on the ground, and thus static tensioning and/or active control
using such tensioners doesn’t impact the excess lift calculation at all. Even tensioners on the tethers between the
payload and the balloon in these designs are, likely, better overall than implementing reaction wheel systems, as they
do not have the dead weight associated with reaction wheels.

4.3.2 Design W3: abandoning balloon stabilization altogether

Another alternative strategy, illustrated by Design W3 in Figure 7, gives up on stabilizing the position and orientation
of the balloon altogether, instead focusing solely on stabilizing the payload, while allowing the balloon to move to
and fro as it may (through a convergence point isolating the balloon orientation from the payload orientation, as
discussed previously). This approach is perhaps reasonable if the disturbances from the wind are relatively steady.
One of the chief concerns in the present effort, however, is the possibility of sympathetic forcing of the balloon via
alternate vortex shedding due to the wind past the balloon [1], possibly leading to very large oscillations of the
balloon position even in relatively light winds (for an example of this phenomenon, see [22]). For this reason, we are
not optimistic about this design approach. If it is attempted, subduing these oscillations by periodically varying the
effective length of the (inverted) pendulum leading up to the balloon, via synchronized adjustment of the lengths of
all three tethers in the upper pyramid using the strategy proposed in [1], might well be beneficial.

4.4 Modified designs for cliff exploration

Figure 8 indicates three representative riggings (Designs C1, C2, and C3) for cliff exploration, as proposed in §1.1.
All three are natural generalizations of Design S2 introduced in §4; a host of related variants are also possible. All
three variants shown include:

• two tethers to the balloon from each of three or four fixed or mobile ground points above and below the cliff,
thereby securing all six DOF of the balloon with no soft modes,
• a (triangular or square) right antiprism suspending the payload from the balloon, together with
• one extra tether to the closest corner of the payload from each of the ground points below the cliff.

Note that tethers to the payload from the ground points above the cliff are omitted in these designs, to avoid such
tethers from getting snagged on ground features. Note also that the use of more than three ground points in such
applications is potentially beneficial, as it increases the area over which the balloon and payload can stably explore
before having to move the ground points.

4.5 Future work

A Github repository with a new Matlab codebase fully implementing the dynamic equations of §3.1 and 3.2, allowing
(apparently, for the first time) the general embedding of solid bodies with specified mass distributions and specified
nodal attachment points into class 1 tensegrity systems, is available at:

https://github.com/tbewley/TenSim

Included in this repository are all of the new balloon + payload rigging designs proposed in the present paper as
examples, where both the balloon and the payload are modelled as solid bodies. For space considerations, numerical
simulations of the dynamics these new balloon + payload rigging designs, as well as various other related systems that
embed solid bodies into tensegrity structures, leveraging this new formulation and codebase, will be characterized
extensively in a follow-up paper, comparing numerical simulations with corresponding experimental results.
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Design C1

Design C2

Design C3

Figure 8: Three potential deployment scenarios for a remote observation platform suspended over a cliff from a balloon
tethered to fixed or mobile ground attachment points. Topographic model of the western region of Hale Crater from
the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter, available at [21].
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with Adrian Stoica, S. Ryan Alimo, Chrishma Derewa, Hunter Hall, Mike Lally, Christine Yuan, Luan Nguyen, and
Kyle Weng on the balloon-based science experiment illustrated in Figure 1a.
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