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The purpose of this abstract is to summarize the taxonomy of regularization
opportunities available in the adjoint analysis of multiscale fluid systems. Ad-
joint analysis has a broad range of important applications in fluid mechanics,
including;:

A) transonic airfoil shape optimization [1],

B) optimization of open-loop control distributions for transitional and turbulent
flow systems [2], [3], [4], [5], and

C) state reconstruction and parameter estimation in numerical weather predic-
tion (known operationally as “4D-VAR”) [6].

In order to apply adjoint analysis, a cost functional is first defined which rep-
resents mathematically the physical objective in performing the computational
optimization. In problem A, this objective is typically to maximize the lift/drag
ratio of the airfoil for a range of different cruise configurations while respecting
a variety of practical “feasibility” constraints related to the construction of the
airfoil. In problem B, the objective is typically to reduce drag or to reduce TKE
in order to inhibit transition to turbulence, though in combustion applications
the objective is typically the opposite—that is, to excite the flow with minimal
control input in order to enhance turbulent mixing. In problem C, the objec-
tive is typically to reconcile the numerical weather model with recent weather
measurements in order to obtain accurate weather forecasts. Once the control
objective is defined mathematically as a cost functional, adjoint analysis may be
used as a tool to determine an appropriately-defined gradient of the cost func-
tional with respect to the unknown parameters; the adjoint field calculation is
thus a central component of high-dimensional gradient-based control optimiza-
tion strategies. Refs. [5], [7] contain a brief review of our perspective on a few
of the relevant issues related to such problems.

Even though the mathematical framework for adjoint-based optimization is
fairly mature and has already been used successfully in a broad range of applica-
tions in fluid mechanics, many flow systems still present fundamental challenges
to this approach. These challenges are often related to the multiscale complex-
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ity of fluid systems. Turbulent flows are dominated by a nonlinear cascade of
energy over a broad range of length scales and times scales. Adjoint analyses
of such flows must be crafted with care in order to be well behaved over this
full range of scales. In numerical weather prediction, the problem of finding the
current state of the model based on past measurements is effectively ill-posed,
as it does not necessarily depend smoothly on the measurements taken. Even
in laminar flows, adjoint field calculations can be exponentially unstable in thin
shear layers unless the optimization problem is formulated properly.

The issues of “well-posedness” and “regularization” are not simply math-
ematical curiosities. Far from it, these issues are central to the efficient and
accurate solution of high-dimensional optimization problems. If a particular
optimization problem does not have a smooth dependence on the unknown vari-
ables (as is the case in ill-posed problems), gradient-based solution approaches
are essentially rendered useless. Without leveraging gradient information, adap-
tive strategies which attempt to solve a high-dimensional optimization problem
based on function evaluations alone typically require an excessive number of
function evaluations to converge, thereby making them impractical. Even in
problems which are mathematically well posed, numerical resolution of the ad-
joint field can be exceedingly difficult to obtain, or the extraction of the gradient
of the cost functional from the adjoint field exceedingly prone to amplification
of numerical error, unless the proper care is taken in the definition of the adjoint
field. There is quite a bit of flexibility in how an adjoint-based optimization
problem is defined, and the choices made in this definition have an enormous
impact on the rate of convergence of the resulting numerical algorithm.

The objective of the present research effort is to develop a uniform framework
for understanding these well-posedness and regularization issues. In the adjoint-
based optimization of PDE systems in general, there are three spatial domains of
interest: the domain on which cost functional is defined, which we denote €21, the
domain over which the state of the system modeled, which we denote {23, and the
domain on which the “control” is applied, which we denote 3. Typically, the
system model, and the cost functional which measures this model, are defined
over a time interval [0,T]. The “control” can also be defined over [0,T], as
in true control problems, or can be defined at a particular instant of time, as
done in the forecasting problem. In the process of adjoint-based optimization,
inner products are used (or implied, if not explicitly stated) on all three of these
space-time domains.

In the continuous setting, the form of each of these inner products may incor-
porate either derivatives or “anti-derivatives” in both space and time. Mathe-
matically, these inner products are related to the natural measures for functions
defined in the Sobolev space HP(0,T; HI(€;)), where ¢ is the differentiability
order in space, p is the differentiability order in time, and €; denotes the spatial
domain. Note that Sobolev spaces with negative differentiability indices can also
be considered in this framework by taking p and/or ¢ negative. Such inner prod-
ucts are natural alternatives to the Ly inner product when considering functions



Protas, B., Bewley, T. R. 3

state equation

Eq=N(q)+ S(q) + ()

cost functional gradient extraction

J =11, J'=(DJ/Dé,¢')w,

duality pairing
<T7 £QI>W2 = <‘C*T7 ql)‘l’z +b

Figure 1: The four essential components of the adjoint-based optimization pro-
cess. As outlined in the text, each component of this process is associated with
a distinct opportunity for regularization.

of different degrees of regularity in both space and time. How each of these
inner products is defined, in addition to any smoothing that might be applied to
the state equation itself, has important consequences on the smoothness of the
several variables in this problem, as summarized in Figure 1. As a shorthand,
we use ¥y, Uy, and ¥3 to identify the appropriate inner products on the three
space-time domains of interest in this problem.

The first regularization opportunity is given by adding an artificial (but well-
motivated) term to the discretized state equation itself. Two common examples
are dynamic subgrid-scale models (in turbulence research) and hyperviscosity (in
numerical weather prediction). Addition of such a term to the numerical model
is useful for tuning the behavior of the numerical model at the unresolvable
scales, and can be used to make a problem well-posed if it is not otherwise. In
addition to modifying the actual governing equation, we can also consider its
different derived forms (e.g., the vorticity form instead of the velocity-pressure
form of the Navier-Stokes equation). These different yet equivalent forms may
serve to focus on different aspects of the dynamics in numerical simulations and
adjoint analyses thereof.

The second regularization opportunity is given by the definition of the cost
functional. As mentioned previously, the cost functional in adjoint analysis of
fluid systems can take any of a wide variety of forms depending on the problem
under consideration. However, in most such formulations, the cost functional in-
volves the norm of a flow quantity taken over some subdomain of the space-time
domain under consideration, which we have denoted ¥;. In most optimization
studies performed in the existing literature, Ly norms are used in the definition
of the cost functional. However, selecting norms which incorporate either deriva-
tives or anti-derivatives effectively builds in a “filter” into the definition of the
cost functional, thereby allowing extra emphasis to be placed on certain scales
of interest in the multiscale problem.
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The third regularization opportunity is given by the form of the duality
pairing used to define the adjoint state and the adjoint operator; incorporating
derivatives or anti-derivatives into the definition of the duality pairing can help
to obtain better behaved, and therefore numerically tractable, adjoint operators.

Finally, the fourth regularization opportunity is the definition of the inner
product used to extract the cost functional gradient. Incorporating derivatives
into this inner product allows us to extract smoother gradients, thereby precon-
ditioning the optimization process.

In the present paper, we have presented a comprehensive framework for reg-
ularizing various aspects of the adjoint-based optimization process. Though
adjoint-based optimization has already seen a broad range of applications in
fluid mechanics, exploitation of these regularization opportunities appears to
be very important when applying such techniques to difficult problems of both
physical and engineering interest, such as high-Reynolds number turbulence.
Further discussion of the these issues, including analysis of the various types
of regularization in the context of the data assimilation problem applied to the
Kuramoto-Sivashinsky equation, will be discussed in a forthcoming paper [8].
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