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ABSTRACT OF THE DISSERTATION

Techniques for the optimization and control of large-scale systems

with application to jet noise
by

Laura Isabel Cervifio
Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)
University of California, San Diego, 2005

Professor Thomas R. Bewley, Chair

The present work focuses on the analysis and optimization of jet noise and some
of the related challenges that high-dimensional approximations of infinite-dimensional,
chaotic, multiscale systems present to the gradient-based optimization framework.

We first present the optimization of flow/acoustic interactions in jets. This optimiza-
tion is based on a gradient obtained from an adjoint field. The ability to modify favorably
the high-frequency acoustic field via low-frequency modulation of the hydrodynamic field
near the jet exit is confirmed with this method. Due to the complexity of the system under
consideration, some simplifications have been applied in the derivation of equations gov-
erning the adjoint field. In order to evaluate the correctness of the adjoint code and the
adequacy of these simplifications, complex-step derivative (CSD) method has been used
to calculate the gradient directly from the flow solver. Until now, the CSD method has
been applied only to physical space simulation codes. In the present work, a non-trivial
extension of this technique to pseudospectral codes has been developed, as many of the
numerical codes used for turbulent flows problems leverage pseudospectral techniques to
calculate spatial derivatives in one or more directions.

Once the gradient information obtained with the adjoint field has been so validated,
optimizations may be performed. Note that the control schedule that we have designed
for the jet system is periodic in time, due both to the quasi-periodic nature of the jet sys-

tem and reasons of practical implementation. We have encountered certain fundamental

Xi
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challenges related to the fact that, when applied to time evolving systems, the adjoint
field grows exponentially backward in time, resulting in a gradient dominated by effects
in a narrow time window no matter what time horizon is used for the optimization. In
such a situation, one can not leverage the ergodicity of the controlled chaotic system (by
integrating over a sufficiently long time horizon) in order to achieve a general applica-
bility of the control design. New methods to treat such control problems directly in the
time-periodic framework have been proposed and are currently under investigation. A
difficult step in such time-periodic control optimizations is the development of efficient

techniques to obtain the time-periodic orbits of a chaotic system, as will be presented.

Xii
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Chapter 1

Introduction

The noise radiated from the exhaust flow of jet engines is

e a well-known public nuisance both near airports and inside the cabin of modern

commercial jet aircraft,

e a leading cause of structural damage to the tail surfaces of high-performance mili-

tary aircraft,
e a persistent safety hazard for military personnel working on the flight line, and

e asignificant financial concern for airlines and airplane/engine manufacturers due to

strict governmental regulations on jet noise, both in the US and Europe.

Passive control techniques have already been applied to great extent to both subsonic and
supersonic aircraft by decreasing the speed of the jet core, changing the shape of the jet,
and adjusting the convective Mach number in the shear layer(s) of the jet. This can be
accomplished by using a large diameter jet exit, a corrugated or non-axisymmetric nozzle,
tabs near the nozzle lip that protrude into the jet, and adding an appropriate coflow. Such
techniques have already been explored, perhaps to nearly the maximum extent possible,
to achieve large reductions in jet noise. However, the projected growth in air traffic and
increased sensitivity to noise near airports in the years to come will demand even quieter
aircraft, keeping the problem of the mitigation of jet noise an important focus of research

for the foreseeable future.
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Active control techniques have the potential to reduce jet noise well below the levels
already attained by passive strategies. Although active control strategies have not yet
been implemented for the jet noise problem in commercial engines, actuators for active jet
control (using high pressure air ducted from the compressor) have already been developed
and tested on full size jet engines for other problems, such as jet mixing enhancement.
The size of the actuators used in such tests is still much larger than ultimately desired
in practical applications. However it is expected that the size of such actuators may be
decreased significantly in the future, as control strategies are made more efficient. In
order to coordinate an array of actuators to achieve the desired effect (that is, to reduce
the noise in a specified direction from the jet), improved optimization strategies that are
suitable for very large-scale chaotic systems must be developed.

Note that, at appreciable Reynolds numbers, the jet system under consideration is,
for all practical purposes, both uncontrollable and unstabilizable. That is, using actuation
only at the jet exit (as motivated by practical implementation issues), there is not suffi-
cient control authority to stabilize the system with feedback control and thereby eliminate
the transition to turbulence further downstream. This is typical in many flow systems
(bluff body wakes, plane shear layers, etc.) dominated by a strong convective compo-
nent, where the actuation is significantly far upstream of the flow instability leading to
transition to turbulence. Effectively, such systems have a significant time lag between the
application of a control input and the effect of this control on the regions of instability in
the flow system. This being said, actuation near the jet nozzle, where the shear layers are
thin, is capable of altering the nonlinear dynamics of the breakdown of the jet in a very
significant fashion. The goal of this research is thus to determine efficient nonlinear op-
timization techniques (as opposed to feedback control techniques) to adjust the unsteady
hydrodynamic field of a jet via an appropriate schedule of open-loop control forcing near
the nozzle in order to modify the resulting acoustic field in an appropriate fashion. That
is, we seek to develop a gradient-based strategy to tune a predetermined, time-periodic

forcing schedule in order to tailor the statistics of the jet in a favorable manner.
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Note also that simple “anti-noise” strategies that produce directly an acoustic field
that is 180 degrees out of phase with the broad-band acoustic field of the jet are impractical
in the present problem, primarily because such strategies require both far-field sensors
and, for maximum effectiveness, actuators that are close to the region of the jet that the
noise is created. Thus, “anti-noise” strategies are not the focus of the present research.

In a delicate large-scale system such as a turbulent jet, new optimization techniques
must be developed that are both accurate and computationally tractable. In expensive
high-dimensional optimization problems such as this, gradient-based strategies are nu-
merically much more efficient than function-based (that is, derivative-free) approaches.
In a dynamic system such as the present, it is commonly known that the required gradient
may be determined via the calculation of an appropriately-defined adjoint field. However,
high-dimensional (accurate) approximations of infinite-dimensional, chaotic, multiscale
systems present a number of significant challenges to the gradient-based optimization
framework. A major goal of the present research is to identify and address these chal-
lenges.

As laid out in greater detail below, this thesis first focuses on presenting the funda-
mental optimization problem of interest, that is, the optimization of flow/acoustic interac-
tions in jets. As mentioned above, this optimization is based on a gradient obtained from
an adjoint field. Due to the complexity of the system under consideration, some simpli-
fications have been applied in the derivation of equations governing the adjoint field. In
order to evaluate the correctness of the adjoint code and the adequacy of these simpli-
fications, an expensive yet highly accurate method, the complex-step derivative (CSD)
method, has also been used to calculate the gradient directly from the flow solver, for
the purpose of comparison with the gradient obtained from the adjoint field. Until now,
the CSD method has been applied only to physical space (e.g., finite difference or finite
element) simulation codes. In the present work, a non-trivial extension of this technique
to pseudospectral codes has been developed. This new technique is of broad applicability,
as many of the numerical codes used for turbulent flow systems and weather forecast-

ing problems leverage pseudospectral techniques to calculate spatial derivatives in one or
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more directions.

Once the gradient information obtained with the adjoint field has been so validated,
optimizations may be performed. Note finally that the control schedule that we have
designed for the jet system is periodic in time, due both to the quasi-periodic nature
of the jet system and reasons of practical implementation. We have encountered certain
fundamental challenges related to the fact that, when applied to time evolving systems, the
adjoint field grows exponentially backwards in time, resulting in a gradient dominated by
effects in a narrow time window no matter what time horizon is used for the optimization.
In such a situation, one can not leverage the ergodicity of the controlled chaotic system (by
integrating over a sufficiently long time horizon) in order to achieve a general applicability
of the control design to other realizations of the flow from different initial conditions.
Thus, new methods to treat such control problems directly in the time-periodic framework
have been proposed and are currently under investigation. A difficult yet important step
in such time-periodic control optimizations is the development of efficient techniques to
obtain the time-periodic orbits of a chaotic system, as laid out in the final chapter of this

thesis.

Chapter 2 - Adjoint analysis and optimization of flow acoustic interactions in a 2D jet

The first chapter of the thesis presents the problem of jet noise reduction. The acous-
tic field radiated by the jet is computed accurately via Direct Numerical Simulation. The
relevant adjoint field equations are derived, implemented numerically, and validated with
the Complex-Step Derivative method (described further in chapter 3). Results for a 2D jet
are illustrated, providing a foundation for 3D optimizations in the future. A detailed study
of the information that can be gained from the adjoint analysis of the jet system is first
performed. It is observed that low-frequency modulation of the hydrodynamic field near
the jet exit can have a very significant effect on the high-frequency acoustic radiation to
the far field (as mentioned previously, an “anti-noise” approach, in which the control forc-
ing is at the the same frequency as the far field noise of concern in the cost function, is not

the aim of the present research). Finally, an optimization is performed of low-frequency
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forcing of the flow field near the jet exit in the 2D setting, using a gradient-based strategy

leveraging iterative state and adjoint calculations.

Chapter 3 - Extension of the complex-step derivative technique to

pseudospectral algorithms

When computing a directional derivative leveraging an existing (perhaps, extremely
complicated) nonlinear simulation code using a simple Finite Difference (FD) strategy,
it is critical to use a perturbation amplitude that will provide an accurate result. Unfor-
tunately, such an appropriate perturbation amplitude is often quite difficult to determine.
An alternative method to compute the directional derivative leveraging an existing nonlin-
ear simulation code that circumvents this problem is called the Complex-Step Derivative
(CSD) method. The CSD method makes use of complex variables and determines an
accurate gradient for a very wide range of (sufficiently small) perturbation amplitudes.
The CSD method has been implemented for checking the accuracy of the gradient of the
acoustic energy of the jet with respect to the control parameters in Chapter 2. In Chapter
3, we extend the CSD method to pseudospectral simulation codes (which already incorpo-
rate complex arithmetic). This is a necessary development to extend this powerful method
to compute directional derivatives in many turbulent simulation codes, such as those used

for the present 3D turbulent jet as well as for many weather forecasting applications.

Chapter 4 - Identification of time-periodic orbits in chaotic systems

Many turbulent flow systems are dominated by large-scale coherent structures with
quasi-periodic behavior, as is the case for the jet system under consideration here. In
such systems, optimizations of time-periodic forcing schedules that are performed over
finite time horizons might not necessarily generalize well to different realizations of the
turbulent flow (e.g., from different initial conditions). A new strategy to favorably recon-
figure (but not stabilize) an entire chaotic attractor, via optimization of the time-periodic
orbits embedded within such an attractor, is under development by our group. An es-

sential component of this control strategy is the development of efficient algorithms to
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extract the first several periodic orbits of the chaotic system. In this chapter, methods to
obtain such periodic orbits (up to a period 7,,,,) are developed and evaluated for a model

low-dimensional chaotic system.

Future work

An efficient, parallelized optimization code has been developed that is equipped to
perform noise optimizations in a 3D round turbulent jet. In this thesis, this code has been
effectively validated in the 2D setting. In future work, an adjoint analysis similar to that
performed in Chapter 2 (on the 2D problem) will be performed on the full 3D problem
in order to study the possibility of reducing the noise in the physical system of interest.
Ultimately, once thoroughly validated on a variety of smaller problems, this code will
be leveraged to perform numerically-expensive iterative state/adjoint optimizations of the

full 3D system.
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Chapter 2

Adjoint analysis and optimization of

flow acoustic interactions in a 2D jet

2.1 Introduction

Jet exhaust is one of the dominant noise sources in modern turbofan engines, having
significant engineering consequences, such as quality of life near airports (which has
become an important environmental issue), financial incentives for airlines (regulations in
US and Europe), safety concerns for carrier operations, and metal fatigue in tail surfaces
of high-performance aircraft.

In order to reduce this noise radiated by turbulent jets, passive control strategies
have already been pursued extensively, with great effect. Modern aircraft are about 20dB
quieter than those of 50 years ago. Much of this reduction can be attributed to the increase
of the bypass of turbofans in order to lower the nozzle exit velocity U (sound power
level P is proportional to U8). Tabs (protrusions into the flow) and chevrons (serration
of the nozzle lip) disrupt the uniformity of vortex shedding by producing streamwise
vortices (chevrons more gently than tabs), in order to mix the core flow with the fan flow,
and the fan flow with the ambient flow, therefore reducing the noise (see Saiyed et al.
(2000), where a 2.7dB reduction is achieved by using chevrons in both the core and the

fan nozzles). These methods normally achieve noise reduction at the expense of cruise
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thrust losses, being necessary to perform a trade-off between these two effects.

In supersonic jets, noise reduction has been achieved by modifying the shape of the
nozzle (for example, making it non-axisymmetric). These modifications aim reduction
of the convective Mach number, yielding a reduction in noise, and have been applied to
both the supersonic regime (see, e.g., Papamoschou (1997)), and, more recently, subsonic
turbofans (Papamoschou (2003)).

As an alternative to passive control, active control of jet noise appears to hold the
potential for a significant additional impact on demand (near takeoff and landing) without
disturbing the engine performance at cruise conditions, and forms the focus of the present
work. To the best of our knowledge, no active control strategy has yet succeeded for the
purpose of jet noise reduction due mainly to the complex nature of the physics involved
and the high dimensional aspect of the control forcing schedule to be optimized, although
effective, unsteady, individually-controllable actuators at the exit of the nozzle have al-
ready been developed and tested (at full scale) for the problem of jet mixing enhancement.

In order to obtain an optimal control schedule, we use adjoint-based nonlinear-system
optimization, a popular technique in the flow control community. The adjoint system,
when defined and calculated appropriately, gives very accurate gradient information with
which controls may be tuned even in high dimensional systems with high dimensional
controls. The performance of a control distribution optimized via this method cannot be
guaranteed to be globally optimal, but it often far exceeds that possible with other control
design techniques. Adjoint-based gradient optimization has proven to be effective in the
analysis, control, optimization and forecasting of incompressible turbulence (see, e.g.,
Bewley et al. (2001)). Recently, there has been an increased interest in extending this
approach to compressible flows (see, for example Wei & Freund (2002), where a 6.3dB
reduction of noise in a 2D shear layer is obtained). The ultimate goal of the present project
is to achieve 3D jet noise reduction via active control, obtaining an optimal azimuthal and
temporal distribution of the actuator forcing with the adjoint-based method.

The high dimensionality of the jet when discretized makes the optimization proce-

dure very expensive. Nonetheless, important information regarding control opportunities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be gained from an adjoint analysis, and evaluation of whether the type of control
which we intend to apply is appropriate for the problem is possible. The adjoint field re-
veals the sensitivity of the cost function to modification of the control actuation (further-
more, if an eigenvalue/eigenvector analysis were performed, it might be used to charac-
terize the stabilizability of the system, as discussed in detail in Lauga & Bewley (2003)).
Adjoint analysis thus provides quantification of the stabilizability and the suitability of
proposed actuator configurations in a large system such as the turbulent jet, difficult to
obtain by other methods.

In the first sections of the present chapter an adjoint analysis of the sensitivity of the
far-field acoustic field to changes in the control is performed. It will be seen that it is
possible to modify the hydrodynamic field at a low frequency and alter in that way the
high-frequency far-field acoustics. This conclusion yields to the implementation of an
optimization algorithm, considering periodic in time actuation (with low frequency). The

performance of this actuation is also discussed.

2.2 Perturbation and Adjoint analyses

As summarized in Fig. 2.1 (left), perturbation analyses, which simulate directly the
effect on the flow of a perturbation to the control distribution, characterize
control—effect relationships (i.e., if I change the control here, how and where will that
effect the flow?). A representative perturbation analysis of the present system is shown
in the top row of Fig. 2.2. This analysis was obtained by the Complex Step Derivative
method, which has been broadly used in the optimization literature (see, e.g., Lyness &
Moler (1967), Martins et al. (2001), Cervifio & Bewley (2003) ). Perturbation analyses
characterize the propagation of disturbances in the system as it evolves forward in time.
In order to perform an extensive investigation of the effect of different control possibili-
ties, the perturbation field must be computed once for each control variable (whether it is
a possible location of the actuators or a parameter), not giving at once a global view of

the sensitivity of the cost function to changes in the control distribution.
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In an adjoint analysis, an field system is defined and marched backward in time in
order to identify the gradient of the cost function of interest to additional control forcing
in the system. As depicted in Fig. 2.1 (right), such analyses characterize effect—control
relationships (i.e., if I want to achieve a desired effect here, how and where should I apply
control to the flow?). A representative adjoint analysis of the present system is depicted
in the bottom row of Fig. 2.2. Once the cost function is defined, one adjoint simulation
gives at once information about the sensitivity of this cost function to control actuation
everywhere in the flow domain. Thus, for the purpose of control optimization, adjoint
analyses provide much more valuable information than perturbation analyses, especially

when working with high dimensional controllers.

e Effect

Effect 2

Effect 3

Effect 1

Control C

— Control B -
Perturbation analysis Adjoint analysis

Figure 2.1: Perturbation analyses (left) characterize control — effect relationships. On
the other hand, adjoint analyses (right) characterize effect — control relation-

ships.

It is important to note that adjoint analyses do not identify the “origin” or “source” of
the radiated sound in a system such as a turbulent jet. Rather, they identify how and where
additional forcing may be applied to the existing system to modify in a desired manner
the radiating noise already present. This point is readily evident by considering a simpler
model system (without the jet present), as depicted in Fig. 2.3, which shows the acoustic
field from a monopole, and the corresponding adjoint representing the sensitivity of the

noise measured in the marked rectangular interrogation area with respect to control actu-
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Figure 2.2: Perturbation analysis (top, representation of perturbation pressure) character-
izes the effect on the entire flow resulting from a small change to a particular
control quantity, taken here to be a sinusoidally-varying mass source at point
Xc. Adjoint analysis (bottom, representation of adjoint density) characterizes
the effect on a particular flow quantity, taken here to be high frequency noise
at point x,, due to small changes in the control applied anywhere in the flow.
Vorticity contours are superimposed to the colored perturbation and adjoint

fields.

ation at every point in space. The adjoint field is driven by the sound waves in the box and
propagates away from it, illustrating possible locations for antinoise sources where addi-
tional forcing could be applied to achieve the desired effect (namely, to reduce the sound
pressure level within the box). Even though the governing system represented here is a
linear, constant-coefficient PDE and the cost function is quadratic in the state variables,
the adjoint field identifies a range of effective “antinoise” forcing locations, and does not
accurately identify the isolated sound source. Thus, identification of sound sources is not
to be expected from adjoint analyses when applied to more complex systems, such as the

unsteady jet considered in the present work.
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Figure 2.3: Adjoint analysis (right) of sound waves (left) produced by a monopole sound

source at the point marked by the X, in a stationary fluid. The adjoint field is

forced by the acoustic energy measured in the rectangular area.

Note that, in the remainder of the present analysis, the cost functions considered are
essentially pointwise measurements of the sound field, and the adjoint field computations

are therefore referred to as adjoint Green’s functions.

2.3 Description of the system and simulation technique

The system under consideration is a Mach 0.5, 2D jet at a Reynolds number Rep =
p;jD;U;/p; = 5000 (where the subscript j refers to the jet, U indicates velocity, D di-
ameter, p density, and g viscosity). The jet is sinusoidally excited near the jet exit at a
Strouhal number S; = foD;/U; = 0.4 (fo is the frequency of excitation). The jet is not
heated, being its temperature the same as the ambient temperature ... Refraction effects
are expected to be significantly weaker in a cold jet than in a hot jet, as, in the former,
the speed of sound is identical in the ambient fluid and the jet core. In fact, in sharp con-
trast with the perturbation and adjoint analyses of the mean of a heated jet, as considered
by Tam & Auriault (1998), the corresponding analyses of the refraction due to the mean
of the cold jet flow studied here exhibit very little refraction. Nevertheless, as shown in

this paper, the acoustic scattering due to the unsteady vortex roll-up in the present flow
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is quite pronounced even in this cold jet system, illustrating significant opportunities to
control the hydrodynamic field (at low frequencies) in order to modify the high-frequency
radiated noise.

This system is governed by the full nonlinear compressible Navier-Stokes equation

dp
rLy.
a:* m
om mQ@m 1 m 1 psg 1 m
| v = vp v (w— -V | B )v. = [ =
D=5 5 TP R (” p) Re [u(#+3> p] 5
op pm m Y p
Pav. P y-1)p(v =) - V. (pvZ ) -@
8t+ p+(Y )p( p) RePr # p
2.1)
where
P p
q=|pu|=|m (2.2)
p p

is referred to as the state field. The operator A/(q) represents the Navier-Stokes equation
for an ideal gas with constant specific heats ¢, and c,, and constant Prandtl number Pr
(appropriate expressions based on Sutherland’s law have been given to the viscosities p
and pp). @ is the irreversible viscous dissipation, and g is the control, here introduced as
a right-hand-side forcing term in the governing equation.

It is known that the physics of a two-dimensional strong jet, such as the one under
study, are different from a three-dimensional jet, as shown in Stanley & Sarkar (1997).
In the two-dimensional strong jet there is a breakdown of the vortex street due to the
interaction between vortices, product of the two-dimensionality of the flow, which does
not occur in three-dimensional jet (neither in the two-dimensional weak jet, where the
effects of vortex interactions are small compared with the strong convection downstream).
This breakdown of vortices can be seen in Fig. 2.4. However, the results obtained in this
paper concerning controllability of noise due to interaction between the hydrodynamic
field and the acoustic field are expected to extend to three dimensions.

Even though there has been an extensive research on acoustics, there is still much

work to be done in the field. In the last years, the most important advancements are
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Figure 2.4: Visualization of the vortex breakdown in the two-dimensional strong jet.

related to the achievement of good numerical methods that allow us to simulate and obtain
accurate far-field noise (DNS simulations are performed, for example, in Colonius et al.
(1997), Mitchell et al. (1999), Suzuki & Lele (1999), Whitmire & Sarkar (2000), and
Freund (2001)). The numerical method used in the present work for the direct numerical
simulation of the flow follows closely that in Freund ez al. (1997). The spatial derivatives
are computed via sixth-order compact Padé approximations (which benefit from spectral-
like resolution, as shown in Lele (1992)), while the integration in time is performed with
a fourth-order Runge-Kutta scheme. A fourth-order compact numerical filter is utilized

every few time-steps to damp any high wave-number oscillations.
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2.3.1 Boundary conditions

The present simulations do not resolve any solid boundaries. Instead, artificial
“buffer zones” have been placed around the domain of physical interest, coupled with
characteristic based boundary conditions (in order to minimize reflections, as in Thomp-
son (1987), Thompson (1990), once we obtain the characteristic equations of the system,
the incoming waves are set to 0) on the computational boundaries. This type of ad hoc
but effective numerical boundary conditions simulates the effect of quiescent far-field
boundary conditions on the physical system, and has now become standard for this type
of problem. It is further discussed in Colonius et al. (1993) and Freund (1997). With the
non-reflecting boundary conditions, the viscous terms are considered as a regular forcing
in the right hand side of the equation.

As mentioned buffer zones have been added around the physical domain, in order to
drive the flow toward far-field conditions, or in order to impose the inflow profile (note
that in the 2D case, entrainment has to be considered at the boundaries). In these regions,

an extra forcing term is introduced on the right-hand side of the equations:

N(q) = _G(q - qtarget) .

In order to obtain the inflow profile, the same kind of forcing is applied to drive the

conditions to the desired values. The target axial velocity is a typical hyperbolic tangent

1
Vaarger = Uj3 (1 — tanh {12.5 <% _ r—f)D ,

where r is the vertical direction.

profile:

One of the questions that arise when simulating the adjoint field is which boundary
conditions are appropriate. For the flow field, the physical domain is unbounded, and the
boundary conditions are only an artificial tool to simulate the unbounded domain. The
information goes out the domain, and no information comes in. The adjoint field can
be understood and treated in the same manner: an infinite physical domain, and non-
reflective boundary conditions to simulate the far-field conditions, with a buffer zone to

diminish the perturbations. If we take the adjoint of this right-hand-side term, we obtain,
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in the right hand side of the adjoint field:
N/(q)*q* - —O'q* ’
Note also that the adjoint of a buffer zone as the one given by Eq. (2.3.1) is a buffer zone

as the one in Eq. (2.3.1).

2.4 Derivation of the adjoint system

As previously explained, the adjoint field will be used in order to obtain the sensi-
tivity of the far-field noise to changes in the control actuation. In the development of the
adjoint solver, certain additional approximations have been made, namely that the viscos-
ity p and the bulk viscosity of the flow pp are constant, and that the irreversible viscous
dissipation in the energy equation is 0. These convenient simplifications are thought to
be acceptable in the approximate adjoint analysis, as spatial and temporal variations of
viscosity in the system and the irreversible viscous dissipation in the heat equation both
effect the dynamics of the system only at the small length scales, and are thus thought
to be relatively unimportant in terms of the mechanics of sound generation. Subject to
these additional assumptions, and following the established procedure for performing an
adjoint analysis (see, e.g., appendix B of Bewley ez al. (2001) for the case of an unsteady
compressible Euler system), we may take the Fréchet derivative of the governing equation

(described in full in Cervifio et al. (2002)) to obtain a linearized equation of the form

N'(Q)q =g, (23)
where ¢’ = (p',m’, p')7 is referred to as the perturbation vector. Selecting an L duality
pairing of the form (q*,q’) 2 J; /o q* - q dxdt, the linearized operator in Eq. (2.3) is then
transformed according to the identity

(0, N(@)q) = (N(0)"q", q') + b, 2.4)
where q* = (p*, m*, p*)7 is referred to as the adjoint vector. Even though the L norm

has been selected here, the L, duality pairing is not necessarily the best choice for defin-

ing the adjoint operator in multiscale PDE systems such as the present , and incorporating
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spatial or temporal derivatives into this pairing is recognized to have an important reg-
ularizing effect on the spectra of the resulting adjoint field that must be calculated (for
further discussion of this important topic, see Protas et al. (2004)). After some algebra
involving several integrations by parts, it is straightforward to obtain the adjoint opera-
tor corresponding to the approximate linearized form of the compressible Navier-Stokes

equation in this framework:

op* m m -
e * . * .___V‘ *_ V *
o Vp*+(y—1)p*V 5 m SPrRe p
om* —1)p*
— g: —%Vp*—(y—p—)B—Vp——lg-(V@m*+(V®m*)T>—Vp*—
7 % % u 2. % Us 1 *
- _* B2 )\ v(v.
N'(q)"q Rep [Vm +<H+3)V( m)]
dp* pm (y—1)m m /m
— 2 v+ M T y(p* — (= .V)m*
o T VPt (pp)+p(p )m+
I 2« (M8 1 x YU Poo «
Vv P (m-V)(V- 1P Py
" Rep? [m " +(u+3>(m : m)]+pPrRep P

(2.5)
It is important to note that, in the present derivation, we have associated the “adjoint
pressure” p* with additional forcing of the continuity equation dp/dt, and the “adjoint
density” p* with additional forcing of the selected form of the energy equation dp/dt (note
that this is in contrast with the nomenclature selected by Tam & Auriault (1998)). This
is done, in part, so that the compressible adjoint equations reduce to the corresponding
incompressible adjoint equations (see Bewley et al. (2001)) in the incompressible limit.
In a domain enclosed by solid boundaries, by selecting the appropriate adjoint bound-
ary and initial conditions, we can make the boundary term b in Eq. (2.4), which results
from the several integrations by parts, equal to zero. Alternatively, as in the present anal-
ysis, we may surround the physical part of the domain of interest in both the flow and ad-
joint problems with the numerical equivalent of quiescent far-field boundary conditions
which propagate no information toward the physical domain of interest; this approach
again effectively allows us to neglect the influence of b. By so doing, the adjoint identity

Eq. (2.4) then reveals that the following two analyses are equivalent:

#1) analyzing the effect on g}(x.,.) (that is, the effect on the i’th component of the
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perturbation field at point X = x, and time ¢ = ¢,) created by applying a localized force
g =8(x—x.)8(r — ) to the j’th component of the perturbation equation, and
#2) analyzing the effect on g (x, ) created by applying a localized force g7 = S(x—

x.)0(t —1,) to the i’th component of the adjoint equation.
By the identity Eq. (2.4), we may relate the perturbation and adjoint fields in these two
analyses , as indicated in Fig. 2.5, by

qi(Xeste) = @5 (Xe te)- (2.6)

Perturbation analysis Adjoint analysis

4 87 =d(x—x)d(r —1)
° .

Figure 2.5: Equivalence of a perturbation (left) and adjoint (right) problems when the

boundary terms in the adjoint identity are 0.

Note that the point x. and time 7. do not appear in the formulation of the adjoint sys-
tem in problem #2, but arise only in the subsequent analysis of the resulting adjoint field.
Thus, a single adjoint calculation allows us to quantify the effect of forcing anywhere
in the flow system (for any X, #., and j) on the particular flow quantity ¢;(x,,.). This
relation between the perturbation and adjoint Green’s functions provides an alternative
but equivalent explanation of the significance of adjoint analyses to the one provided in

Fig. 2.1.
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2.5 Adjoint analysis

2.5.1 Calculation of an adjoint Green’s function

le

Figure 2.6: Adjoint density (top) and adjoint pressure (bottom) reveals sensitivity of the
pressure component of the perturbation field at point x, at time ¢, to additional
control forcing in, respectively, the energy equation (top) and the continu-
ity equation (bottom) everywhere in space x. and for all times 7. < .. Note
that, by causality, the adjoint field is zero for 7. > t,; that is, the adjoint field

marches backward in time from ¢t =¢,.

Fig. 2.6 illustrates a computation of the adjoint Green’s function, as formulated at the
end of the previous section, obtained by forcing the adjoint system A (q)* q* = g* with
an isolated force at a particular point in space and time, that is, g7 = 8(x — X, )3(t — t.).
As discussed above, each component j of the resulting adjoint Green’s function, at each
point in space X. and each instant in time f., may be interpreted as the i’th component
of the perturbation to the flow at point X, and time ¢, that would arise due to localized
forcing of the corresponding component j of the flow system at the corresponding point

in space X, and time t.. The calculation reported in Fig. 2.6 takes i = 1, that is, the adjoint
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field shown characterizes the effect on the perturbation pressure p’(x,, ).

It is interesting to note that the disturbance in the adjoint pressure grows rapidly as
it propagates within the jet toward the nozzle at the convective velocity when the adjoint
field evolves (backward in time). In contrast, the disturbance in the adjoint density essen-
tially propagates right through the jet, experiencing significant refraction. This behavior
is further quantified in Figures 2.7, 2.8, 2.9, and 2.10. The component of the adjoint den-
sity that propagates at the convective speed of the jet within the jet shear layers is found to
be quite small. This result indicates, as one might expect, that mass sources are more ef-
ficient than energy sources in modifying the hydrodynamic field in a way which changes

the radiated noise.
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Time
Figure 2.7: Evolution of adjoint pressure in time at the points {x,y} of (solid)

{5D,0}, (dashed) {5D,2.5D}, (dot-dashed) {5D,—2.5D}.

2.5.2 An adjoint Green’s function at temporal frequency f corre-

sponding to far-field noise

An alternative to forcing the adjoint problem at an isolated time 7, is to force it at

a specific temporal frequency f. This corresponds roughly to looking at the sensitivity
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Figure 2.8: Evolution of adjoint density in time at the points {x,y} of (solid)
{5D,0}, (dashed) {5D,2.5D}, (dot-dashed) {5D, —2.5D}.
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Figure 2.9: Evolution of the adjoint pressure at three different locations at the centerline:

at (dot-dashed) x = 8, (dashed) x = 9, and (solid) x = 10.

of the sound field at point x, (at the frequency and phase selected) to additional control
forcing in the governing equations. This correspondence is only approximate, however,

as the system under consideration has time-varying coefficients, and therefore frequency-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

0.0006 —
0.0004 — =

Py

0.0002 [~ , -

-0.0002

-0.0004 L ! L
3s0 360 370 380

Time
Figure 2.10: Evolution of the adjoint pressure at three different locations at the centerline:
at (dot-dashed) x = 8, (dashed) x =9, and (solid) x = 10 shifted the time cor-
responding to the convection velocity. There is an approximate superposition
of the three lines, which indicates that these perturbations convect toward the

nozzle at the convective speed of the jet.

based characterizations of the system’s response are of limited usefulness. Note that,
in systems with constant coefficients, a Bode plot completely characterizes the frequency
response of the system. Such a frequency-domain analysis may only be applied to the case
where only the mean flow is considered. Nonetheless, an approximate characterization
of this sort may still be developed for the present system (in the time domain) simply by
forcing the adjoint system sinusoidally at the frequency of interest during the backward
march for the adjoint field. The computation corresponding to this kind of forcing is
shown in the bottom row of Fig. 2.2.

Instead of forcing the adjoint problem at an isolated point in the computational do-
main x, we can force it along a line near the boundary of the computational domain (that
is, in the “buffer zone” used to approximate the far-field boundary conditions). By so
doing, one may set up a propagating wave in the adjoint field which is the same as if the

computational domain extended deep into the far field and the adjoint problem was forced
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at an isolated point a very long distance away. By varying the forcing along this line sinu-
soidally, one may simulate the arrival of a wave in the adjoint field corresponding to the
effect on the far-field noise in any direction of interest. A representative example is given

in Fig. 2.11. Note that both reflection and refraction of the adjoint field are observed in

this computation.

Figure 2.11: Adjoint density field due to incoming waves from the far field.

2.5.3 Quantification of scattering of adjoint Green’s functions

In an attempt to quantify the scattering of a wave in the adjoint field due to the
unsteady vortex roll-up, the values of the adjoint density and adjoint pressure have been
measured at three different points in the representative adjoint Green’s function analysis
illustrated in Fig. 2.12. The points where the adjoint density and adjoint pressure were
measured are above the jet (where the scattering will be referred to as reflection), at the
centerline, and below the jet (where the scattering will be referred to as refraction). The
time series of these measurements were Fourier-transformed in time, and the results are
plotted in Fig. 2.13. The analysis was performed for adjoint forcing at two different
Strouhal numbers: St = 0.8 (2x the vortex roll-up frequency), St = 2.0 (5% the vortex
roll-up frequency), and St = 8.0 (20 the vortex roll-up frequency).

Perhaps the most important observation to make in Fig. 2.13 is that there is very sig-
nificant frequency broadening in all of the measured adjoint spectra. The adjoint systems
are excited by forcing at the single frequency indicated (St = 0.8, 2.0, or 8.0) but, due to

the time-varying coefficients (from the unsteady flow field q) in the adjoint operator, the
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Figure 2.12: Adjoint pressure wave corresponding to far-field noise at an angle of 60° off

the jet axis and at a frequency of St = 2.0.

measurements of the adjoint field at the indicated points exhibit energy over a broad range
of temporal frequencies. For comparison, the spectra of the hydrodynamic fluctuations
of the base flow is shown in Fig. 2.14. Note that the frequency broadening of the adjoint
field cannot be captured by a steady-flow analysis.

The frequency broadening present when the adjoint field is forced at a higher fre-
quency is much larger than when it is forced at a lower frequency. This fact was noticed
by Suzuki (2001) for the direct problem, and was described as “multiple scattering”. In
the present adjoint analysis, this suggests that high-frequency noise may be modified by
a broad range of possible forcing frequencies.

Note in particular that the frequency spectrum is generally narrower at the point
above the jet (dashed lines) than below the jet (dot-dashed lines), apparently because the
refraction of the traveling wave in the adjoint field is stronger than the reflection of this

wave for the incidence angle tested. Within the jet (solid line), it is observed that the
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Figure 2.13: Temporal spectra measured at the indicated points {x,y} of (solid)

2.5D} of (left) the ad-

{5D,0}, (dashed) {5D,2.5D}, (dot-dashed) {5D, —

o~

joint pressure [;\* s and (right) the adjoint density p

¢ of incoming waves at

*

2.0, and

the same angle and at a frequency of (top) St = 0.8, (center) St

=8.0.

(bottom) St
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downstream station (right) is a result of vortex pairing (recall that the jet is

forced at §; = 0.4).

frequency broadening is strongest.

The low-wavenumber components of the spectra of the adjoint pressure at the cen-
terline are especially strong for all three forcing frequencies tested. This indicates that
low-frequency modulation of the hydrodynamic field via mass sources within the jet can
have a significant impact on the high-frequency noise in the far field, and provides impe-
tus for further studies in jet-noise control based on such characterizations to exploit this
sensitivity.

Note also that all of the spectra are somewhat jagged, and the distance between each
small peak in this jaggedness is A f = 0.2D/U, which is exactly half of the vortex roll-up
frequency. This appears to indicate (as one might expect) that the scattering of the wave
in the adjoint field is closely related to its interactions with the large-scale vortex roll-up.

A second set of cases was also run in which the wave in the adjoint field approaches
the jet at a 90° angle off the jet axis (cf. Fig. 2.12). The results showed very similar

trends, and are thus not included here.
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2.6 Optimization

It has been shown in the previous section that a low-frequency modulation of the
hydrodynamic field will be effective in order to modify the high-frequency acoustic field
at the far field. In the present section, we develop a low-frequency control and apply it to
the jet in order to gain some reduction in the noise radiated by the jet in a given direction.

As mentioned in the previous sections, a common method to optimize a high dimen-
sional system is using a gradient-based optimization technique. These approaches consist
of iterative processes which reduce gradually the cost function of interest by doing suc-

cessive line minimizations in the direction of the gradient.

2.6.1 Cost function

The first step in any optimization is to select the quantity we want to optimize, that
is, the cost function. In the adjoint analyses performed in the previous sections, the cost
function which defined the adjoint field was a pointwise measurement at the far field of
the perturbation pressure at a certain frequency and a certain phase. When interest is on
performing an optimization of the noise radiated by a jet, one of the possibilities for the
cost function is a measurement of pressure fluctuations within an area of interest. These

pressure fluctuations are the base of the cost function chosen here

1 rT
10 =3 [ [ HO) P~ prager e, @

where H(x) defines the interrogation area (it is valued 1 inside the area of interest Q and

0 outside). A penalty on the control effort may be added to the cost function, as in

_ 1 r 2 d2 T *
9(0) = E/ro /QH(X)(p—pmrge,) dxdt+7/TO /Qcp odxdt, 2.8)

although in the present 2D optimization, it has not been included.

2.6.2 Gradient method

Once an appropriate cost function has been chosen, a method to compute the gradient

of the cost function with respect to the control parameters has to be selected. Methods
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such as Finite Differences or Complex Step Derivative (described in more detail in Chap-
ter 3) perform one computation per control parameter, being suitable in problems where
the dimensionality of the controller is low, but resulting in an expensive method for high
dimensional systems. Adjoint methods, on the other hand, require only one flow calcu-
lation and one adjoint computation regardless of the number of control parameters (the
adjoint operator has a dependency on the flow variables, making the simulation of the
flow field necessary). Flow control problems such as blowing/suction in a channel flow,
Bewley et al. (2001), or aerodynamic shape optimization, Jameson et al. (1998), have
already successfully applied adjoint methods.

In the problem of interest, changes in the hydrodynamic field near the exit of the
nozzle will be convected downstream by the jet, and will perturb the far-field acoustics.
It is the aim of this research to change this flow field in order to reduce the noise in an
interrogation area Q; (see Fig. 2.15) via the adjoint based optimization procedure. The
evolution (backward in time) of the corresponding adjoint field, which is forced in the
same interrogation area, needs to be simulated. When the adjoint perturbations reach
the jet, they are convected upstream, and give the required gradient information for the
optimization problem.

The adjoint based method requires a good database of the flow field and its evolution
in time. The analysis will be limited to low Reynolds numbers due to the inherent memory

storage and time requirements of Direct Numerical Simulations (DNS).

2.6.3 Controller

Adjoint methods have been applied in high dimensional problems where the number
of control parameters is such that other methods like finite differences or complex step
derivative are very expensive. Bewley et al. (2001) apply it in a channel flow, where the
control parameters were blowing/suction at the walls, being the actuation at every point
on the wall independent. Wei & Freund (2002) apply a generalized forcing in a small
region over a shear layer, the forcing term taking a different and independent value at

every point in the control region.
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Figure 2.15: Physics of the flow (top) and adjoint (bottom) fields.

The effect of applying periodic control actuation in chaotic systems has been studied
in previous works. Mirus & Sprott (1999) claims that the optimum actuation frequen-
cies correspond to low-order rational multiples of the frequencies of the unstable periodic
orbits embedded in the attractor, as opposed to other researches who claim that the most
successful actuation frequencies are rational multiples of the periodic frequencies that ini-

tiated the chaos, as in Lima & Pettini (1990), the natural frequencies in a period-doubling
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route in chaos, Azevedo & Rezende (1991), or frequencies corresponding to peaks in the
power spectrum, Sitherblom (1997). A periodic-in-time actuation has been preferred in
the present work over some other approaches for applicability reasons.

As seen in previous sections, mass sources are more effective than heat sources in
order to modify the acoustic field with low-amplitude modulation of the hydrodynamic
field. For this reason, the control consists on a forcing term on the right-hand side of the

continuity equation (first subequation of Eq. (2.1))

N(q) = S(X) ) fp(e’t)’ 2.9)

where f(0,¢) is a periodic function in ¢ € [0, T]. It has been generalized to the case where
there is an azimuthal component for future application to the round jet. Note that the
formulation in the present section considers 6 as a variable, although this dependence is
ignored in the 2D setting.

The general form given to f is

M, My

fo(8,0) =Y. Y Agjsin(kwr +z¢)cos((j—1)0+y;), (2.10)
k=1j=1

where o is a fixed frequency. M; is the maximum number of modes in time considered,
and My is the maximum azimuthal modes considered in the actuation. The control pa-

rameters are the amplitudes Ay, and the phases z; and y;.

2.6.4 Definition of the adjoint field and derivation of the gradient

The derivation of the adjoint operator is exactly the same as the derivation in Section
2.4. The simplifications assumed there are again used here for the optimization. The
forcing term g on the right-hand side of Eq. (2.1) is substituted by the control above
described. The adjoint operator is the same as in Section 2.4. However, the forcing and

the cost function will define a different adjoint field, as described below.
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Applying again the adjoint identity Eq. (2.4), the boundary term b is given by

T
b:/g(p*p’—i—m,’-‘m:--l-p*p') |gdx+/0 /aan [p*m'j+m}‘-p'-+-

[ mim mimy o p'mm; Lom;  om}
+ m; 5 + 0 - o2 -V ml-g;;+mi 3%, + (2.11)
[ Pmj P o'pm; po*  _p'm;
+ + — +(y—1 m;— dxdt.
P ( ot 52 (y—1) 0 (m; 5 )

Taking into account that the initial conditions of the perturbation are known

q(r=0)=0, (2.12)

qQ‘t=T)=0 (2.13)

q"(x > ) =0, (2.14)

the boundary term b becomes zero, as it was the case in the adjoint analysis performed in
the previous sections.

The only step left in the complete definition of the adjoint field (once the operator
and the initial and boundary conditions are defined) is the definition of the right-hand-
side forcing of the adjoint equation. The main consideration to take into account when
defining the forcing is to obtain a closed form of the gradient by substituting terms in the

adjoint identity Eq. (2.4) and in the perturbation cost function

7(:6') / / HX)P' (P — Prarger )dxdr 2.15)

Defining the rlgh ‘ '
/ / H(x p Ptarget)dth

0\A)\P — Prarger)
N'(9)" q" = 0 ; (2.16)
0

and substituting in the identity Eq. (2.4) in Section 2.4, a different form of the perturbation

cost function given in Eq. (2.15) is obtained

T
7'(0:0) = /T /Q S(X)p* £1(6,)dxd 2.17)
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Substituting the form of fé(e, t) given in Eq. (2.10), the final expression for the per-

turbed cost function is

M, My
ZAkj/ / x)p*sin(kor +z;) cos((j — 1)0 +y;)] dxdr+

Mt MO

+ 2 sz/ / X)p*Agjcos(kwt +z¢) cos((j— 1)0+y;)] dxdr—.
k=1 j=1

M, Mg
IO / / X)p*Agjsin(kot +z¢) sin((j — 1)0 +y;)] dxdr
k=1j=1

(2.18)
A closed expression for the gradients are now directly available from Eq. (2.18):
sin(kw? +zg)cos((j— 1)0+y;)| dxdt
DAkj WAt Qcos((j— 1)0+;)]
/ / X)p*Agjcos(kor +zg)cos((j— 1)0 +y;)] dxdt (2.19)
DZk Ty

/ / X)p*Ax;sin(kwt +z¢) sin((j — 1)0 +y;)] dxdt
D)’j Ty

Accuracy of the gradient

Both the accuracy of the gradient and the approximations made and explained in
Section 2.4 have been checked with the Complex-Step Derivative method (the result given
by the adjoint method, finite differences, or Complex-Step derivative, should be the same).
This method provides an accurate gradient of the system by transforming all the variables
of the flow into complex variables, applying a perturbation in the complex part of the
controller, and looking at the complex part of the resulting cost function. It is further
described in Chapter 3. The error found in the gradient of the cost function with respect to
the amplitudes A is about 10%, which is an acceptable error in such a high-dimensional
system where a long-time simulation is performed. The error in the gradient of the cost
function with respect to the phase z; is about 20%, higher than what would be desirable.
One of the reasons of the high error is that the adjoint field grows exponentially backward

in time, largely amplifying errors toward the end of the adjoint computation.
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2.6.5 Control update

As mentioned before, the optimization procedure is an iterative process where nu-
merous line minimizations in direction of the gradient are performed (Steepest Descent
Method). An alternative which converges fastest (exactly in N iterations when the cost
function is quadratic, being N the number of parameters to optimize) is the Conjugate
Gradient Method. For this reason, Conjugate Gradient Method, which adds a momentum
term to the gradient direction, has been used in the present optimization. Basically, the

conjugate gradient method updates the control in the following manner
ot = of + afRk, (2.20)
where A is the update direction, and has the expression

k
W= — (%) + BT @2.21)

where Bk is the momentum term, and DJ/D¢ is the gradient. In the steepest descent

method, B* = 0. In the conjugate gradient method, the update direction is initialized as

the momentum term is

SI8

1
hl = — (ﬂ) . Considering the Polak-Ribiere variant of the method, the expression for
ko rpg\kl A%
) -(8%)] (%)

I
T &)

For further discussion of the conjugate gradient, see Chapter 5 of Bewley (Preprint).

(2.22)

2.6.6 Control computation

The adjoint simulation is coded in the same manner as the flow simulation. The
flow field is stored every 25 iterations, and linearly interpolated in the adjoint simulation.
Conjugate gradient (Polak-Ribiere variant) is used in order to perform the control update,

and the parameter o is computed via Brent’s method, described in Press ef al. (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

2.6.7 Results

Before proceeding with the optimization, the flow field is first evolved for 600 numer-
ical seconds in order to reach a statistically steady state and flush out of the domain all the
transient structures. After this time, the control is switched on, as indicated in Eq. (2.9).
However the cost function is not computed until # > 640, so that there is enough time
for the actuation to reach the interrogation area Qp (Fig. 2.15), which has been selected
to be the rectangle x € [4,16], y € [9.5,10.5]. The function f(6,) has been built as the
summation of two modes in time. Therefore there are 4 control variables: two amplitudes
(A10 and Ayp), and two phases (z1 and z2). The frequency of the controller has been cho-
sen to be the same as the one perturbing the jet (corresponding to a Strouhal number of
0.4). The Reynolds number based on the jet diameter is 5000. The system has been dis-
cretized using 800 x 1600 points (axial and vertical directions respectively), which have
been uniformly distributed throughout the domain.

The convergence criterion in the optimization is that the change in cost function in
two consecutive iterations is smaller than 1%. This criterion has been satisfied after 4
iterations, resulting in a reduction of 6% in the cost function.

Fig. 2.16 shows the evolution of the adjoint density in order to observe the growth
of the adjoint field as it approaches the jet exit, as it has been mentioned in previous
sections. The smaller value assigned to the contourlines is the same in all the frames.
However, as the adjoint evolves backward in time, the maximum value increases, and
more contourlines are represented. It can be seen that there is a larger concentration of
contourlines at the exit of the nozzle (jet evolves from left to right in each frame), and that
the number of contourlines increases as time decreases. This growth of the adjoint field
will cause a stronger dependence of the gradient on the flow state within a narrow window
of time, which will prevent the optimization to achieve optimal time-average statistics.

The reduction in noise that has been achieved with the present approach is 6%, which
translates to 0.5dB. This reduction is lower than desired. Two main reasons are attributed
to the low reduction. First, the low number of control parameters we are using. In the

round jet, more parameters are going to be used (time modes and azimuthal modes).
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Figure 2.16: Evolution of the adjoint density.

Second, the system has been forced at a Strouhal number of 0.4. This value has been
taken also in the control actuation. However, as seen by Mirus & Sprott (1999), the
optimum actuation frequencies correspond to the frequency of the unstable periodic orbits
embedded in the chaotic attractor. A dominant frequency in the jet is St = 0.2, caused by
the pairing of the vortices. This frequency is not represented in the controller. Further
reduction of the noise at the far-field is expected when including this frequency in the

controller, or when optimizing the frequency.

2.7 Concluding remarks

An adjoint analysis in an unsteady compressible 2D jet has been performed in order
to obtain insight on control opportunities in this system. Attention has been focused
on the scattering of adjoint Green’s functions corresponding to far-field high-frequency
noise. Significant scattering of the adjoint field is detected both above and below the jet,
as quantified by a spectral analysis of the adjoint field. This scattering is a direct result of
system unsteadiness (vortex roll-up), and cannot be captured by mean flow analyses.

The degree to which frequency broadening extends into the low frequencies within
the jet in the adjoint analyses indicates the degree to which low-frequency alteration of the
hydrodynamic field can be used to effect the high-frequency radiated acoustic field. This
distinguishes promising low-frequency “hydrodynamic” control strategies from simple
(but perhaps impractical) “antinoise” control strategies, which must be applied at the

frequency of the radiated noise.
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An optimization has been performed in a Re = 5000, M = 0.5 jet. A periodic mass
forcing has been used as the control, with two modes in time. A reduction in noise of
6% has been achieved on a specified region. The reduction is expected to be higher as
more modes are considered, and probably when the pairing frequency of the vortices is

included in the control actuation.

Appendix

Formulation of the equations in cylindrical coordinates

2.A.1 Introduction

When performing Direct Numerical Simulation of a round turbulent jet, cylindrical
coordinates are preferred over cartesian coordinates in order to better resolve the shear
layers. The new equations in cylindrical coordinates are laid out in the present Appendix,

as well as the discussion of some numerical issues that arise when using these coordinates.

2.A.2 Governing equations

Navier-Stokes equation in cylindrical coordinates is

g;(pux) - (%(puxux) + %%(rpuxv,) + %%(rpuxm) _ _?9_5 v
%(pw) + E%(pvrux) + %%(rpvrv,) + %%(mvrve) _ 9:_2 _ _3_15 ‘v
%(pve) + E%(pveux) + %%(rpv(?vr) 4 %a%(rp‘)e%) L PVrve _ _%%g_ v,
+u Ve + v,V +vgVg + @

where Vy, V, and Vjy are the viscous terms in the momentum equations, e is the total energy
per unit volume, @ is the irreversible viscous dissipation and gy, q,, and gg are the axial,

radial and azimuthal heat fluxes respectively.
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The viscous terms appearing in the momentum equations are:

OTxx 1 orty 107y

Va= ax+r or +; a0
0Ty, lort, 1lote 1
_ 1 ldre 1 2.23
Vi 0x + r or + r 00 rTee (2-23)
. aTxe 1 arTrg 1 aTeg 1
= T Tr e TR

where T is the symmetric viscous stress tensor. The irreversible viscous dissipation is

Juy ov, dvg
P = —_ - —

aux % avG

+Tr5_ T +To5-+
ar ar or (2.24)
To x| Tr0 9y Too o
r 00 r 96 r 096
n Vrteo  VoTro .
r r
The components of the stress tensor are
Boouy 2 p 1B
=2————-—0+-—0
T Re, 0x 3 Re, +Rea
_ B (P O
Txr_Rea (ax * ar)
g (dvg 10uy
2[5 2T 2.25
T30 Rea<ax+rae) (2.25)
poov, 2 pu BB
=2————— S
trr Re, dv 3 Re, +Rea
B ave+18u, Vo
9= Reg\ or radd r
where O is the dilatation
duy, 1lorv, 10vg
O=——+-———+——=— 2.26
ox + r or + r do (2:26)
and Re, is the Reynolds number based on the speed of sound
Req = 22220 (2.27)
Yoo

This Reynolds number has been selected for its convenience to nondimensionalize the
equations. It has little physical relevance, but it is related to a more pertinent Reynolds
number Re.. = PoUry/los by the Mach number M = U /a... It is assumed that the bulk

viscosity is related to the shear viscosity by a constant ratio.
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The heat fluxes are given by Fourier’s Law

_ —p a7
"~ ReProx
_—p dT
~ RePr or
_—p 10T
~ RePrr 09

dx

(2.28)

qr

qe

where the Prandtl number

Cplt
k*
is assumed to be constant and equal to 0.7 (k* is the thermal conductivity of the fluid).

Pr=

Energy and viscosity

The total energy is the sum of the internal and kinetic energy, which, for a perfect
gas (where the internal energy is related by the temperature by e} = pcjT*, ¢} being the

specific heat at constant volume), can be written as follows

T 1
e— 9Y_+Ep(u§+v%+v5), (2.29)

where we have used the nondimensionalized expression of the internal energy ¢; = pT /.
The perfect gas assumption also relates the thermodynamic pressure, density and tem-
perature by the ideal gas equations of state p* = p*RT*, where R is the dimensional gas

constant. When nondimensionalized, the state equation is

-1
P= pYTT. (2.30)
With these relationships, we can relate the pressure to the total energy by
1
p=(-1) (e—ip(u§+v3+vé)>- 2.31)

To specify the viscous stress tensor T we have assumed a Newtonian fluid, and so its
components are linearly related to the fluid strain rates by the viscosity u* = p*(T'). We
assume Sutherland’s law gives the functional dependence on the temperature:

3
L S e i (2.32)
Yoo Ty T* 4 §*

When computing the viscous terms, some care has to be taken in order to not forget the

derivatives of the viscosity, since it is not constant.
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Passive scalar transport equation

The passive scalar, a variable from which the mixing can be studied, is solved simul-

taneously with the flow equations.

d d 10 19 3G, 135G, 13Gg
g(pé)+a_x(pgux)+;$("p&vr)+;a—e(p§"e)—— % 7 or ro0° (2.33)

The molecular diffusion fluxes are specified by Fick’s law

_ —p &
Gx = ReSc ox
I 234
Gr = ReSc or 34)
_ —p 198
Ge = ReSc r 99
and the Schmidt number, Sc, is defined as
_ ¥
Sc= oD’

where D* is the dimensional mass diffusion coefficient. The Schmidt number is assumed

to be unity, which is appropriate for gas phase flow.

Adjoint field

With the same assumptions as mentioned in Section 2.4, the resulting adjoint operator

is
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(@) q" =
—%pT* —%-Vp*+(y—l)p*V-%—V-m*—%ezvzp*
-ag:*—%’Vp*—(l_plivp—%-(V@m*+(V®m*)T)—Vp*—

el e |
_ag;* +%T_-Vp*+(y_p)¢-v(p*p)+%'(%'V)m*qt (2.35)
+Re“p2 {m-Vzm*+(%+%> (m-V)(V-m*)]+
+ q:)—';‘ Vo + ﬁ"sz%v%* + pp%a;g-vzp*
_a;; _%'Vq)*_]ee—gcpvzq)*

where ¢ = p&. For the jet problem the equation Eq. (2.35) must be expressed in cylindrical
coordinates. The equations then acquire a complicated form. They are given in below.
The first equation of the adjoint field yields (continuity equation)
ap* 1orm; 10m§ om} L[10ru, 10ug duy
% Trar rae ax T tuTle [7?+7a—e+§ -

* * * * 2 ¥ 2 A%

Farl )t E e Y ae

p dr prod p dx PpPrRe
(2.36a)
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The momentum equations are

_Omp  dp* ypdp* (y—1)p*dp

ot ox p Ox p ox
m [am:‘ +am;} _mg [% lam;] _2%8m;_

p | ox or plox r a0 p Ox

p Lo, om: 13*m: & m: ps 1) 00*
‘@[75(’7”72W+ 5 (7 5) ax]‘

—gaaq; =rhs
o war G-pop
ot or p Oor p or

m,om; mp [1om: om§ my|l my [Om: Om;
-2 ‘ﬂ:ae 5 ‘T]‘F[ax ar]“

p [10, om:, 1m: Fm: m: 2 0mj pg 1) 0O*
‘ﬁp{;éﬂ’w) 20 Ta2 2 R % (— 3) ar]‘
—ga;r:rhs

_9mg _19p" _ypop”  (v—1p*dp_
ot r 0 pr 3o pr 09

m, [lam;k omg mg} ™0 {1amg mf]_mx [am(’; lam;]_

ol T F 9 7| | ox Troe

__k [10 Omg, L0y Owy mf 20m u_3+1>1_ag* _
Rep | ror "or r2 062 ox2  r2  r? oo u 3)r 00
¢ 109"

Tproe T

(2.36b)
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The energy equation yields
_op* YP[ dp* | mg dp* ap*] N

o o™ T e T ™

(y—1)p* dp mgdp op|  m, | dm; mgdm; memg om;
T ™t ul T ™ T e Tt
mo |, Omh  moomy  omomy Omgl  omy Omi omgOmi . Om
pz[mrar+r 00 +m"ax +p2 mrar+r a0 +m"ax T
U li( amf) lazm: azm:_m_:_gamg
Rep? "r\rorY or

+

r2 992 + ox? 2 200
10, dmf, 13*m§ *mf§ my 2 om:
+mg (?5“ or )-l_r_2 002 ox2 r2  r2 90 +

13( %)+i%+azm; +
iy ror' or r2 062 ox2

L @—Fl ma®*+@a®*+ma@* +
Rep2\ pu 3 " or r 00 * ox

o[ 00" mody" 3] mo [19 ¢ 1" 3
+p%w+7%+wg Resep? |rarar) T aer T o |t
_ve_p[l9 ooty 1 Pp']
pPrRep [r ar(r or )+ rz 002 + ox? = rhs
(2.36¢)
Finally, the adjoint scalar equation is:
W L[ 00 medet 30w [12 00 1% Po] _
ot p {er 7 90 s ReScp | r ar(r ar )+ r: 002 = ox? = rhs
(2.36d)
In the previous equations we have defined
19 1omy om:
O* = ——(rm}) + == X 2.37
e (2:37)

The right-hand side of the equations (forcing term) has been obtained in the previous

sections considering a time-periodic control actuation.

2.A.3 Numerical problems
CFL restriction

Due to the non-preferred azimuthal direction of the jet, the discretization in the az-

imuthal direction 6 is uniform. For this reason, the CFL number is very restricted near the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

centerline. To avoid it, only a few modes are kept in that region. As indicated in Mohseni
& Colonius (2000), if we consider a grid defined by r, = nAr, with n =0,1,2,..., the
effective spacing in the azimuthal direction is Axg = 2Ar/Ny, where Np is the number of
modes retained. The CFL constraint is dictated only by Ar when the number of retained

modes is

Ng =2nn. (2.38)

Singularity at the origin

The equations have a singularity at the centerline (r=0). Therefore this point needs
special treatment. There are different ways to solve this issue. One the methods to avoid
the problem is the use of cartesian coordinates at the origin, as for example in Freund
et al. (1997). Mohseni & Colonius (2000) use a mesh which does not contain the node
at the origin. Other people use I’Hopital rule. The method that has given the best results
to our problem is the one proposed in Constantinescu & Lele (2001). The variables are
expanded (series expansion), and a set of new exact equations is obtained at the centerline.

The general expansions of a single valued quantity S (like p) and a multi-valued
quantity M (like u, and ug) are:

i " (2 ocm,,r2”> cos(m0)+ Z " (2 anr2n> sin(m0)

m=0 n=

1 o0

r 2 AOn Jpny 2 e 2 ( mn’ COS(mB) +BM s1n(m6)) "
Substituting all the variables with these expansions, and taking the limit when r — 0 yields
new equations at the origin for the coefficients. The equations at the origin corresponding
to the compressible flow are given in Constantinescu & Lele (2001). The new equations
for the adjoint field are given below.

In the case of the continuity equation, we now have

(m3)

dp* L o o)
2 [l B - ) [+ 25|

ol o) Aol 4 BB v [a o)

®)  ox (p) pr 00 ox?

-4—40L(p ):| =rhs
Ooo

Ggo
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The equation for the x-momentum equation at the centerline is

a(m}) aoc(()’(’)) YO‘((){J)) aa(()%) (y— l)0‘00)80‘00

ot ox a(()ﬁ(’)) ox Ot(()%) ox
dalm ) aal . 0B\
20" =20 — Ay ( al;; o) - B S0 +Bi) -
Pogp” () (pre) [ M8 oAg”  Pafe? © dogy
_v[ ) +400, 7 | = —0yg (N+3) 2 I + 32| ~%0 3, =rhs

The equation for the r-momentum yields:
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For the 0-momentum equation we have to take into account that m, can be obtained from

mg by a counterclockwise rotation of /2. Then, if
m; = Alm) cos0 +B( ™) sin®
=4y

the azimuthal component can be written as:

mly = A%'S) cos0 +B§'ga) sin = —A\" sin@ + B cos6
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Energy equation:
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And finally, the scalar equation:

~3r Yo 5, 10 %o —Dyo - EY) 01

. (9) () [ 52,007
90" _ o0 9%0_ _ 4, ) _ glu)glo") af)SS: [82 0 +4a<¢*>} — rhs

Accuracy at the centerline

In order to obtain a better accuracy close to the centerline, it would be desirable to
use our sixth-order Padé. In Freund er al. (1997), where cartesian coordinates where used
at r = 0, the accuracy is the same as at the boundaries, since the origin is treated as an
artificial boundary when computing the radial derivatives. Then, the accuracy is less than

6th order.
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Transforming the domain from (0,R) X (0,2m) to (—R,R) x (0,7) when computing
the radial derivatives achieves sixth order, since the point r = O is treated as any other

point in the grid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

References

AZEVEDO, A. & REZENDE, S. 1991 Controlling chaos in spin-wave instabilities.
Phys. Rev. Lett. 66, 1342.

BEWLEY, T. Preprint Numerical methods in science and engineering. Available at
http://turbulence.ucsd.edu/numerical_methods/notes.pdf.

BEWLEY, T., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbu-
lence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179-225.

CERVINO, L. & BEWLEY, T. 2003 On the extension of the complex-step derivative
technique to pseudospectral algorithms. J. Comput. Phys. 187, 544-549.

CERVINO, L., BEWLEY, T., FREUND, J. & LELE, S. 2002 Perturbation and adjoint
analyses of flow-acoustic interactions in an unsteady 2d jet. In Center for Turbulence
Research, Proceedings of the Summer Program 2002, pp. 27-40.

CoLon1us, T., LELE, S. & MOIN, P. 1993 Boundary conditions for direct compu-
tation of aerodynamic sound generation. AIAA J. 31, 1574-1582.

CoLoNIUsS, T., LELE, S. & MOIN, P. 1997 Sound generation in a mixing layer. J.
Fluid Mech. 330, 375-409.

CONSTANTINESCU, G. S. & LELE, S. K. 2001 A Highly accurate technique for the
treatment of flow equations at the polar axis in cylindrical coordinates using series
expansion. Submitted J. Comp. Phys. .

FREUND, J. 1997 Proposed inflow/outflow boundary condition for direct computa-
tion of aerodynamic sound. AIAA J. 35, 740-742.

FREUND, J. 2001 Noise sources in a low-reynolds-number turbulent jet at mach 0.9.
J. Fluid Mech. 438, 277-305.

FREUND, J., P. MOIN, P. & LELE, S. 1997 Compressibility effects in a turbulent
annular mixing layer. Tech. Rep. TF-72. Mech. Eng. Dept., Stanford University.

JAMESON, A., ALONSO, J. J., REUTHER, J. J., MARTINELLI, L. & VASSBERG, J.
1998 Aerodynamic shape optimization techniques based on control theory. In AIAA
Paper 98-2538.

LAUGA, E. & BEWLEY, T. 2003 The decay of stabilizability with reynolds number in
a linear model of spatially developing flows. Proc. R. Soc. Lond. A 459, 2077-2095.

LELE, S. 1992 Compact finite difference schemes with spectral-like resolution. J.
Comput. Phys. 103, 16—42.

LiMA, R. & PETTINI, M. 1990 Suppression of chaos by resonant parametric pertur-
bations. Phys. Rev. A 41, 726-733.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://turbulence.ucsd.edu/numerical_methods/notes.pdf

48

LYNESS, J. & MOLER, C. 1967 Numerical differentiation of analytic functions.
SIAM J. Numer. Anal. 4, 202-210.

MARTINS, J., STURDZA, P. & ALONSO, J. 2001 The connection between the com-
plex step derivative approximation and algorithmic differentiation. In AIAA Paper
01-0921.

MIRUS, K. & SPROTT, J. 1999 Controlling chaos in a high dimensional system with
periodic parametric perturbations. Phys. Lett. A 254, 275-278.

MITCHELL, B., LELE, S. & MOIN, P. 1999 Direct computation of the sound gener-
ated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113-142.

MOHSENI, K. & COLONIUS, T. 2000 Numerical Treatment of Polar Coordinate
Singularities. J. Comp. Phys. 157, 787-795.

PAPAMOSCHOU, D. 1997 Mach wave elimination in supersonic jets. In AIAA Paper
97-0147.

PAPAMOSCHOU, D. 2003 A new method for jet noise reduction in turbofan engines.
In AIAA Paper 03-1059.

PRESS, W., FLANNERY, B., TEUKOLSKY, S. & VETTERLING, W. 1992 Numerical
Recipes.. Cambridge University Press.

PROTAS, B., BEWLEY, T. & HAGEN, G. 2004 A comprehensive framework for
the regularization of adjoint analysis in multiscale pde systems. J. Comput. Phys.
195 (1), 49-89.

SAIYED, N., MIKKELSEN, K. & BRIDGES, J. 2000 Acoustics and thrust of separate
flow exhaust nozzles with mixing devices investigated for high bypass ratio engines.
In AIAA Paper 00-1961.

SATHERBLOM, H.-E. 1997 Dynamic control of the reversed-field pinch in numerical
magnetohydrodynamic simulations. Phys. Rev. Lett. 4 (1), 174-178.

STANLEY, S. & SARKAR, S. 1997 Simulations of spatially developing two dimen-
sional shear layers and jets. Theoret. Comput. Fluid Dynamics 9, 121-147.

Suzuki, T. 2001 Acoustic wave propagation in transversely sheared flows. PhD the-
sis, Stanford University, Department of Aeronautics and Astronautic, also available
as SUDAAR 739.

Suzuki, T. & LELE, S. K. 1999 Acoustic scattering from a mixing layer: role of
instability waves. In AIAA Paper 99-0228.

TaM, C. & AURIAULT, L. 1998 Mean flow refraction effects on sound radiated from
localized sources in a jet. J. Fluid Mech. 370, 149-174.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

THOMPSON, K. W. 1987 Time Dependent Boundary Conditions for Hyperbolic Sys-
tems. J. Comp. Phys. 68, 1-24.

THOMPSON, K. W. 1990 Time Dependent Boundary Conditions for Hyperbolic Sys-
tems, II. J. Comp. Phys. 89, 439-461.

WEI, M. & FREUND, J. 2002 Optimal control of free shear flow. In AIAA Paper
02-0665.

WHITMIRE, J. & SARKAR, S. 2000 Validation of acoustic-analogy predictions for
sound radiated by turbulence. Phys. Fluids 12 (2), 381-391.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Extension of the complex-step
derivative technique to pseudospectral

algorithms

3.1 Introduction

The complex-step derivative (CSD) technique is a convenient and highly-accurate
strategy to perform a linearized “perturbation” analysis to determine a “directional deriva-
tive” via a minor modification of an existing nonlinear simulation code. The technique
has previously been applied to nonlinear simulation codes (such as finite-element codes)
which employ real arithmetic only. The present note examines the suitability of this tech-
nique for extension to efficient pseudospectral simulation codes which nominally use the
fast Fourier transform (FFT) to convert back and forth between the physical and trans-
formed representations of the system. It is found that, if used carefully, this extension
retains the remarkable accuracy of the CSD approach. However, to perform this exten-
sion without sacrificing this accuracy, particular care must be exercised; specifically, the
state (real) and perturbation (imaginary) components of the complexified system must be
transformed separately and arranged in such a manner that they are kept distinct during

the process of differentiation in the transformed space in order to avoid the linear combi-
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nation of the large and small quantities in the analysis. It is shown that this is relatively
straightforward to implement even in complicated nonlinear simulation codes, thus posi-
tioning the CSD approach as an attractive and relatively simple alternative to hand coding
a perturbation (a.k.a. “tangent linear”) code for determining the directional derivative

even when pseudospectral algorithms are employed.

3.2 Background

The idea of using complex variables in order to differentiate a function was (appar-
ently) first mentioned in Lyness & Moler (1967) and Lyness (1967). The applicability of
this old technique to differentiate a complicated function, such as that computed by an
involved finite-element code, was recognized by Squire & Trapp (1998). Recently, the
CSD technique has become popular in aerodynamic optimization Newman et al. (1998);
Anderson et al. (1999); Martins et al. (2000, 2001). This approach has proven to be very
accurate and easy to apply to finite-element and finite-difference simulation codes but, to
the best of our knowledge, has not yet been extended to pseudospectral simulation codes.

The present note explores the suitability of this extension.

3.2.1 The Finite-Difference (FD) approximation

The directional derivative d of a continuous function J(¢) in the direction ¢; is de-
fined by
DJ .1
a2 220 o~ im Listorenn 500, G

Do e—0+ €
which is simply the amount J(¢) changes when ¢ is updated in the direction ¢, scaled
by the size of the update, in the limit that the size of the update approaches zero. There
are a variety of ways to calculate numerically this seemingly simple quantity. The most
straightforward method to compute d is to consider a Taylor series expansion of the func-

tion 7(¢ + €¢1) near ¢, from which a first-order finite-difference (FD) formula for the
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directional derivative is easily obtained:

@y(¢)'¢1+0(€2) _ g ote)—I(0)

D . + O(¢).

J(0+ed1) =I(0)+¢

Likewise, second- and higher-order finite-difference formulae for the directional deriva-
tive can be easily obtained. The drawback with these methods when using a finite-
precision arithmetic computer is the difficulty in finding the most suitable value for the
step size €, since the accuracy of the numerical approximation of d is very sensitive to
this value. When ¢ is large, the Taylor-series truncation is not valid, and when it is small,
subtractive cancellation errors dominate.

To illustrate, the derivative of a scalar nonlinear function f(x) = \/g;; at x = 1 has

been computed using FD approximations with both single- and double-precision arith-
metic. Figure 3.1 shows that, for large €, the error of these FD approximations scales with
", where n is the order of truncation of the higher-order terms of the corresponding FD
formulae. For small €, the error of all three FD formula in Figure 3.1 is O(1/€) due to
subtractive cancellation errors. In other words, when comparing two numbers which are
almost the same using finite-precision arithmetic, the relative round-off error is propor-
tional to the inverse of the difference between the two numbers. If the difference between
the two numbers is decreased by an order of magnitude, the relative accuracy with which
this difference may be calculated using finite precision arithmetic is also decreased by an

order of magnitude.

3.2.2 The Complex-Step Derivative (CSD) approximation

The CSD approximation makes use of complex variables in order to compute the
directional derivative. If the complex extension J(z) of a real-valued function 7(9) is
analytic, it can be expanded with a complex Taylor series. In particular, the expansion of

J(0+iedy), where i = /—1, may be written:

J(0+iedr) = I(¢) +is@j)g)¢) <01 — €2E1 — i€ Ey 4 O(e%), (3.2)
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where E| and E; are real and are related to the higher-order derivatives of 7. Taking the

imaginary part and dividing by € gives a formula for the directional derivative:

J(d+icdr)
£

d=73{ } + O(e?); (3.3)

note that the error in this formula is 0(82) because the leading-order error of Eq. (3.2) is
real. This method has the advantage that it does not face the problem of the subtractive
cancellation error; that is, d is computed simply by taking the imaginary part of the com-
plex number 7(¢+i€d;). As seen in Figure 3.1, for small €, the relative error of the CSD
approximation reaches an asymptotic value given by the machine precision. Thus, when
the CSD method is applied to this test problem, any choice of the step-size (providing it
is sufficiently small) gives a very accurate result. Similar results are also seen when the
CSD approach is applied to much more complicated functions, such as the calculation of
the drag of a wing using an involved finite-element code Martins ef al. (2000, 2001). As
the CSD technique is both highly accurate and quite easy to apply to an existing nonlin-
ear simulation code (simply convert all real variables in the code to complex and perturb
the imaginary component of the control variable), it has become a popular technique for

computing the directional derivative.

3.3 Extension of the CSD approach to Fourier-based
pseudospectral codes

Many codes in both fundamental turbulence research and numerical weather predic-
tion are pseudospectral. In such codes, products are computed in physical space, spatial
derivatives are computed in some “transformed” space, and the conversion between these
two representations is made efficiently with a fast transform technique, usually some vari-
ant of the fast Fourier transform (FFT). Pseudospectral techniques are essential for the
accurate computation of spatial derivatives in multiscale fluid systems when marginal
resolution is employed.

The most common and, perhaps, simplest pseudospectral approach is that in which
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Figure 3.1: Relative error of the directional derivative of f(x) = \/et:m% at x = 1 given

by (solid) first-order, (dashed) second-order, and (dot-dashed) fourth-order
FD approaches and (circles+dots) the CSD approach using single-precision
arithmetic (left) and double-precision arithmetic (right). Note that both plots

have essentially the same shape.

the transformed system is represented as a Fourier series. Unfortunately, as Fourier-based
pseudospectral codes already employ complex arithmetic, direct application of the stan-
dard complex-step derivative method, as discussed above, is not possible. However, as
the FFT is simply a linear manipulation of an otherwise real problem, the idea behind
the CSD method is still valid. In order to implement the CSD method in an existing
Fourier-based pseudospectral code, it is necessary to convert all formerly real arrays into
complex arrays, double the size of all formerly complex arrays!, and modify the FFT calls

appropriately; we consider here two possible strategies:

A. Simply replace the real—complex FFTs with complex—complex FFTs.

B. Transform the state (real) and perturbation (imaginary) components with separate
real—>complex transforms, storing the results of these two transforms in the original
(complex) data array (now doubled in size) in such a manner that performing spatial
differentiation in the transformed space does not combine the state and perturbation

components of the analysis. For example, in the Fourier-based case with transforms

Note that, when computing the FFT of a real function f (in one-dimensional, two-dimensional and
three-dimensional problems), it is only necessary to store half of the Fourier coefficients, since the other
half may be recovered by the identity f(k) = f*(—k). This identity no longer holds if f is complex.
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applied in the x direction only, defining f = f, + f; where f, is real and f; is pure
imaginary, it follows that f,(k.) = f*(—k:) and fi(k:) = —f} (—kx). Thus, for ex-
ample, one may define the result of the physical —Fourier transform of the quantity

f as:
.

Fr(ke)  fork, >0,
Flke) 2 ¢ Fiky)  for ke <0,

fi(0)  for kx = NX /2 (the so-called “oddball” wavenumber).

\

Spatial derivatives may then be computed using the original simulation code (how-
ever complicated) without further modification. Further, this representation provides
enough information to recover both f, and f; upon separate complex—real inverse
transforms while insuring that the state and perturbation components of the anal-
ysis are not combined during either the (forward and inverse) transforms or when

applying the differentiation operations at each wavenumber.

To illustrate the difference in accuracy between the FD method and the two variants
of the CSD method described above when applied to a pseudospectral simulation code,
both methods have been implemented on an artificial optimization problem in which the

dynamical system is governed by the nonlinear viscous Burgers equation

du du %u
+u

o T Vo
in the periodic domain x € [0,2n]. A pseudospectral technique (FFT) is used to com-
pute the spatial derivatives. The system is advanced in time from O to 7', and the values
v =0.067 and T = 6 were used in the numerical simulation. The initial condition is given
by u(0) = 1 +0.2sin(x) +0.02sin?(x — 1) +¢sin(x — 1), where ¢ is the “control param-
eter”. The function of interest is defined as 7(¢) = fOT f45 '50 |u(x,t)|>dxdt. The relative
errors of both the FD and CSD approximations of dJ/d¢ at ¢ = O are shown in Figure
3.2. The exact value is obtained with a “direct” method, formed by writing a separate
numerical code (sometimes called a “tangent linear” code) which explicitly calculates the

perturbation equation (for further discussion, see, e.g., Adelman & Haftka (1986)). As
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seen in Figure 3.2, for large &, the errors of both the FD and CSD approximations are seen

to scale with € in a manner which is similar to the case evaluated in Figure 3.1.

0 S~

10 .A‘,.A-:\\ ............... ; .................... E...E .................. E .................. I ................. . ..................

Relative error

10 10" 10” 10" 10* 10° 10® 10° 10

Step Size, €
Figure 3.2: Relative error of (dashed) first-order and (dot-dashed) second-order FD ap-
proaches and the CSD approach using (solid) strategy A and (solid-circle)

strategy B.

The CSD approach using strategy B (in which the real and imaginary parts are trans-
formed separately) achieves an asymptotic value of the error for small € in the same
manner as it did in Figure 3.1. The selection of € thus has no effect on the accuracy of the
calculation, as long as it is chosen to be sufficiently small.

However when using strategy A (in which the real and imaginary parts are trans-
formed simultaneously using a complex—complex transform), the error of the CSD
method does not approach an asymptotic value. Instead, it scales like O(1/¢) for small €.
This is due to the fact that complex—complex Fourier transforms combine the real and
imaginary parts of the analysis. Thus, the large (real) and small (imaginary) numbers in
the analysis are combined by the FFTs, leading to numerical inaccuracies which are found

to be comparable to the subtractive cancellation errors of the second-order FD approach.
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3.4 Discussion and extension to other pseudospectral
methods

The present analysis extends directly to other efficient pseudospectral methods based
on fast transforms, such as those based on Chebyshev transforms, sine/cosine transforms,
etc. Note that, at their core, most such methods make use of FFTs and therefore face issues
quite similar to those explored above. More precisely, if the CSD calculation anywhere
involves a linear combination of the state and perturbation components of the analysis,
the CSD method will fail to provide an asymptotic (small) error as € is made small.

However, via a minor modification of the wrappers on the forward and inverse trans-
formation algorithms, it appears always to be possible to transform the state and pertur-
bation components of the analysis separately and to keep these two components isolated
during the process of spatial differentiation in the transformed representation, thereby
retaining the remarkable accuracy of the CSD approach for computing the directional
derivative over a broad range of the perturbation magnitude via a minor modification of
the original simulation code. The CSD method for computing the directional derivative
has thus been found to extend to pseudospectral simulation codes in a favorable manner,
providing an attractive and simple alternative to writing a separate “tangent linear” code

from scratch for the computation of the directional derivative.
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Chapter 4

Identification of time-periodic orbits in

chaotic systems

4.1 Introduction

Many turbulent systems of physical interest, such as jets, wakes, or flow past wings
(in air) and fins (in water), are dominated by the approximately time-periodic
phenomenon of vortex shedding at the largest scales, with a large number of (chaotic)
smaller vortices (over a range of scales) embedded. For control purposes, the precise lo-
cation of these smaller vortices is relatively unimportant, though they do have a significant
statistical influence on the motion of the large-scale vortices that is nontrivial and must
be accounted for adequately. Identifying the fundamental periodic motions of the largest
vortices in such flows will help us to better understand (as claimed by Waleffe (2001)),
and ultimately optimize and control, such quasi-periodic turbulent flow systems, due to
the simpler nature of these coherent structures.

Turbulent flows are typically characterized in numerical methods by marching the
governing equations in time over a long time interval until all transients are “washed-out”
of the domain and the flow approaches an approximately statistically time-periodic state.
A common technique when attempting an optimization problem in this kind of systems is

to state a cost function over a finite-time horizon, and to minimize this cost function via an
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iterative gradient-based optimization over successive horizons (that is, receding-horizon
model predictive control). Normally, the gradient is computed by iterative calculations
of the state and adjoint fields, such as in Bewley et al. (2001). This technique, how-
ever, is in a way ill-suited for optimizing parameters (such as wall compliance properties,
open-loop forcing schedule, etc...) to tune time-averaged statistics (as discussed in Luo
(2004)), mainly because the cost function is a finite-time average. Another drawback of
this technique for these systems is that the adjoint field grows exponentially (in backward
time) in chaotic systems, so that the sensitivity of the parameter change is dominated by a
narrow window of time. The exponential growth can be only partially compensated with
exponential discount functions.

An alternative approach to this chaos control problem has been proposed by
Bewley & Trenchea (2002). The idea is to modify the “skeleton” formed by the first
several periodic orbits of the attractor, in order to favorably reconfigure the entire attrac-
tor. It is necessary in this approach to compute repeatedly the periodic orbits of the state
and adjoint systems. Fig. 4.1 shows the skeleton of the Lorenz attractor formed by the
first seven periodic orbits. The present work focuses on the extraction of the periodic
orbits with period T' < T,,,,y, a necessary step in the optimization of chaotic systems when
following this approach.

At the same time, the problem of finding all time-periodic orbits in a chaotic at-
tractor with period less than or equal to 7,4 is an interesting problem that has attracted
some interest in the literature for low-dimensional attractors. Viswanath (2003) used an
extension of the Lindstedt-Poincaré method to obtain periodic orbits with 14 accurate
digits. In high-dimensional systems, gradient-based methods are preferred. Kazantsev
(1998) computes the gradient of a cost function measuring the periodicity of the orbits
with the computation of the adjoint field, as is presented here in §4.3. There, a Newton
method is used to perform the optimization. The method is checked by applying it to the
low-dimensional Lorenz attractor. The difficulty when using the Newton method is the
necessity of having a good initial guess of the periodic orbit. We avoid this problem by

using conjugate gradient method (§4.3). Kawahara & Kida (2001) find two time-periodic
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orbits in a plane Couette flow. Lan & Cvitanovi¢ (2004) use a variational principle to
obtain periodic orbits of the Kuramoto-Sivashinsky system. Waleffe (2001) finds the so-
called “exact coherent structures” in channel flow applying Newton’s method, obtaining
the initial guess by homotopy from free-slip to no-slip boundary conditions.

Due to the ergodic nature of chaotic systems, a time-evolving simulation on a chaotic
attractor often passes “’close” to the many time-periodic orbits of period less than or equal
to some T, immersed within the attractor (it is well known that periodic orbits are
densely embedded in the attractor of a chaotic system; see, e.g., Ott (2002)), as seen in
Fig. 4.1. Thus, a time-evolving simulation of a chaotic system may be used to estimate

its periodic orbits. An efficient algorithm for accomplishing this is presented in §4.2.

Figure 4.1: Two different views of the “skeleton” formed by the periodic orbits in the at-
tractor (colored tubes), and a generic trajectory (thin black line). The generic
trajectory passes close to the periodic orbits due to the ergodic nature of the

system.
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Once we have obtained several approximately time-periodic trajectories of period
less than or equal to Tj,,,4y, Wwe may refine both the trajectories and their corresponding pe-
riods to see if there is an exactly time-periodic orbit of the dynamic system nearby. Two
algorithms for accomplishing this refinement are presented. The first, in §4.3, considers
iterates which all exactly (that is, to the numerical precision specified) satisfy the gov-
erning equation and are only approximately time periodic, with the degree to which the
trajectory satisfies the periodic boundary conditions improved as the iteration proceeds.
The second, described in in §4.4, considers iterates which are all exactly time periodic and
only approximately satisfy the governing equation, with the degree to which the periodic
orbit satisfies the governing equation improved as the iteration proceeds.

Numerical results for the case of the Lorenz attractor are provided in §4.5, demon-
strating the convergence of the initialization procedure described in §4.2 and comparing
the performance of the two algorithms described in §4.3 and 4.4 for refining the approxi-
mately time-periodic trajectories. Note that the algorithms explored in this work all scale
well with the dimension of the state, as they only require the explicit calculation of vec-
tors, and never even require the solution of a system of simultaneous linear equations.
Thus, the algorithm developed should extend readily to chaotic attractors of much higher
state dimension, such as turbulent flows. This extension is currently under investigation,

and will be reported in future work.

4.2 Obtaining several approximately time-periodic tra-
jectories

As mentioned in the Introduction, we are interested in finding orbits in the chaotic
attractor which are approximately time periodic, and in refining these approximations
in both a time-evolving framework and a time-periodic framework. In this section we
present an efficient algorithm for extracting up to j. approximately time-periodic tra-
jectories (with period T less than or equal to 7},4,) from a time-evolving simulation of a

chaotic system. In the following algorithm, we denote the state as q, the integer enumer-
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ating the timestep as k, and the (fixed) length of each timestep as A¢. To avoid duplicates
in the resulting database, each of the approximately time-periodic trajectories found by
the following algorithm will have a period different from the other approximately time-

periodic trajectories found such that
75— Ty|/(Tj+Ty) 2 Tt/2 for j# f; @.1)

an appropriate value for the parameter 7;,; might thus be about 7;,; = 0.01. The algorithm
follows:

A. Perform a time-evolving calculation of the chaotic system q from random initial con-
ditions. Once a sufficient amount of time has passed that this time-evolving simu-
lation is near the attractor, continue the simulation for an additional time ¢t = T,,4y,
saving this trajectory segment in memory in an array of length kygy = Tax/At, de-
noting the &’th timestep in this array as s;. Also initialize an (initially empty) table of
length j,.. to save the initial conditions, the time period, and the norm of the initial
conditions minus the final conditions of the approximately time periodic trajectories
found, denoting the j’th entry of this table as {q, 7, Ad;}, and initialize jsgyeq = O.

B. Continue the simulation of the chaotic system q for an additional time step and in-
crement k «— k+ 1. Define kpey = mod(k — 1,kmgx) + 1. Compute the k' € [1, kpyax]
which minimizes Aqpew = |qx — Sg |2, and compute the corresponding period Tpe, =

[mod(knew — k' — 1, kmax) + 1] Az. Then check the following:

if (i je1,jgea) [ Trew = Tjl/ (Tnew + T5)] < Tiot/2) then
if (AQuew < AQj) then
{ijTjaA(Ij} — {Sk’aTneWaAQnew}
if (i €1, jygueal, 25 [ Tnew = Tl (Tnew + Ty)] < Ti1/2) then
if (Ad; < Ag;) then
{qj/’ ij’ ? Aq]/} - {qjsaved’ Tjsaved ’ qusaved}
else
{q]’ T'j’ Aq]} — {qjsaved’ 7'.;jxaved’ qusaved}

end
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Jsaved < Jsaved — 1
end
end
elseif (Jsaved < jmax) then
Jsaved — Jsaved + 1
{@smvet Tiaveas Bjavea s (8% Tnew, Alnew }
elseif (Aquew < Maxe(1,j,. A4 ;) then
{4, Tj,8q;} — {si> Tew, Anew}
end
C. Assign sg,,, < qx and continue from step B until the algorithm gives diminishing

returns.

Note that, if the state is high dimensional, it might be necessary to save the array
containing the trajectory segment sy for k = [1,...kmay] to disk. In this case, it is useful to
save an auxiliary array of length k,,,, in memory containing one or more relevant statistics
(e.g., the Ly, Ly, and/or L., norm of the state and one or two representative elements of the
state vector to indicate the phase of the system) at each timestep in order to characterize
the state and eliminate the majority of the candidate K’ before recalling select entries of sy
from disk to calculate the &’ which minimizes Ay, = |qix — Sg |2 in step B of the above
algorithm.

Two significant limitations of this algorithm are:

1. It is not exhaustive, and does not guarantee to find an approximately time-periodic
trajectory near each of the actual time-periodic orbits of the system with period less than
or equal to 7;,,x. In our numerical tests, however, the algorithm was found to be fairly
efficient.

2. It cannot find two different time-periodic orbits with periods which are closer than
the tolerance set by Eq. (4.1) for the particular value of 7;, chosen. However, such orbits

may often be found by simple symmetry arguments. For example, in the Lorenz problem,

if a certain {q1(¢),q2(¢),q3(¢) ont € [0,T]} is a time-periodic orbit of the system, then
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{—q1(t),—q2(t),q3(t) ont € [0,T]} is also a time-periodic orbit of the system.

4.3 Refining the trajectories with time-evolving iterates

Given an initial guess for the periodic orbit itself, q(t) on T € [0,27], and for the
frequency of the periodic orbit, Q = 21/T, where the time ¢ = T/€, we now attempt to

solve the problem governed by the equation
n(q,Q)=0 ont€[0,2n] withq(0)=q(2n) 4.2)

by appropriate determination of q(t) on T € [0,2n] and Q. In the Lorenz system, for

example, the nonlinear operator n(q, £2) is defined by

dql
Q-1 _ -
p o(q2—q1)
d
n(q,Q) = sz—ff+q2+q1q3 : 4.3)

dqs
Q—— 4+ bg; — b
It + 093 —q192 +br

Problem Eq. (4.2) amounts to a high dimensional nonlinear root finding problem, which
in general can be rather difficult.

We will present two techniques for restating this problem as a tractable minimiza-
tion problem that might or might not lead to an exact solution of the actual problem of
interest, as stated above. The first, outlined in this section, will iteratively refine both
the initial conditions q(0) = qg and the frequency Q in an attempt to solve the above
problem. At each iteration of this approach, the system trajectory proceeding from qq
will be calculated directly, then the initial conditions g and frequency €2 adjusted with a
gradient-based search in an attempt to satisfy the desired periodic conditions on the state,
q(2m) = qo. The algorithm developed in this section is based on the calculation of an
adjoint field that is marched backward in time over the interval in question, and thus is
quite similar to that used in weather forecasting (sometimes called 4D-VAR).

The second technique, outlined in §4.4, will iteratively refine the entire trajectory

q(T) on T € [0,2m], in addition to the frequency Q, in an attempt to solve the above
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problem. At each iteration of this approach, the system trajectory will be constructed
from a Fourier series, so the periodic conditions on the state q(0) = q(2n) will be satisfied
exactly; with this approach, the trajectory q(T) on the entire interval T € [0,2n] and the
frequency Q will be adjusted at each iteration with a gradient-based search in an attempt

to satisfy the desired governing equation, n(q,Q) =0 on 7 € [0, 27].

4.3.1 Derivation of gradients

Defining the control variable ¢, which contains the parameters to optimize, in this

case as ¢ = {qo; Q}, we seek the best ¢ to minimize the cost function
1 2
J(9) = 7la(2n) — qol", (4.4)

which is a measurement of the periodicity of the orbit. This cost function is the same as
the one in Kazantsev (1998), and the method to obtain the gradient they use is the same as
here, although the descending procedure they use is the truncated Newton method, which
might be a bit more problematic in high-dimensional systems, due to the need of a ”good”
initial guess, which is more difficult to find in such systems. In the present work we use
Conjugate Gradient method as the descent procedure.

The state variable q is related to ¢ by the state equation, which in this case takes the
form

n(q,Q)=0 onte[0,2n] withq(0)= qp, 4.5)

where again, in the example of the Lorenz problem, the nonlinear operation n(q, ) is
given in Eq. (4.3). Note that the difference between Eq. (4.5) and Eq. (4.2) is that in
Eq. (4.5) periodicity is not imposed. The selection of the norm in the cost function may
be tuned in order to emphasize the components of the system of primary concern in the

optimization problem. For the Lorenz problem, we might define this norm as simply

|q(2n) — go|* £ (q(27) — qo)” (q(271) — qo), (4.6)

where ()7 denotes transpose.
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Consider a small perturbation ¢’ to the control variable ¢ and the concomitant small
perturbation ¢’ to the state variable q. Substituting ¢ «— ¢ + ¢’ (that is, {qo;Q} —
{q0;Q} + {q; Q'}) and q — q+ ¢’ in Eq. (4.5), neglecting terms that are quadratic in

the perturbation, and applying Eq. (4.5), we may write the perturbation equation as
Negq' +NoQ' =0 onte[0,2n] withq'(0) = qq, 4.7)

where, from Eq. (4.3), the operators on the LHS may be written for the case of the Lorenz

equations as

d
Q—d—rl—o(qz—ql) Q%-FG -0 0 ql
r_ dq; _ d
Nyq' = Q:if+q’2+q1q’3+q3q’1 = ¢ Q-+l a g5 |>
dq’ d /
Q—2 +bds— 9142~ 424 —¢ @ Qo +b ] \g
(4.8a)
dqi dq
oYLl 21
dart dr
No@ = | @92 | = | 42 | o, (4.8b)
drt dt
dqs dgs
QI =3
dt dt

Note also that, for the Lorenz problem, combining Eq. (4.4) and Eq. (4.6) leads to

J(0+9¢') = J(0) + (a(2) — 90)" (¢'(2m) — q), (4.9)

where q'(2m) is linearly related to ¢/ = {q;Q’} by the perturbation equation Eq. (4.7).
In order to re-express the linear relationship between q'(21) and ¢’ = {qq; Q'} given

by Eq. (4.7), and thereby rewrite Eq. (4.9) in a more useful manner that only depends on

the control perturbation ¢/ = {q;Q'} , we make use of an adjoint identity. Defining the

inner product (r,q') = [7" r*q'dt, we may write the identity
(r,Nqq') = (Ngr,q') +b. (4.10)

where, noting Eq. (4.8a) and simply integrating by parts, it follows for the Lorenz problem
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that
d
—_Q- _
g0 q3 q2 r
Nyr = o _Qi +1 —
q p q1 r2
d
0 q1 ~Q}E +b r3
—Q% +0Or1 +q3r2 —qar3
d
= —Qf —ori—qirs+r2 |,
d
—Q£ +qir2+brs
(4.11a)
T T
b=Qr' (| _,, — Q' q|_, (4.11b)
We now define the adjoint variable r according to the following adjoint equation
Ngr=0 onte€0,2n] withr(2n)=q(21)—qo. (4.12)
Applying Eq. (4.12) and Eq. (4.7) to the identity given in Eq. (4.10) yields
—(r,NoQ') = Q(q(21) — qo)" q'(21) — Q' (0) g,
and thus we may rewrite Eq. (4.9) as
/ * ] 1 m * * !
Jo+¢) ~(0)+ [r(0) ~aem) +ao] @y - |5 [ Nardr| @, @13)
where, noting Eq. (4.8b),
r
dgqy dgqy dgs dq, dqz dqs
Nip= [ &41 %492 %43 == = —r. 4.14
ol (a’r & )| T e T e 19
r3
Performing a Taylor series expansion of J(¢ + ¢’) near ¢, we may write
DJ
JO+0) ~ (500 4.15
(0+6) = J(0)+(750.0') 4.15)
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We thus see that the “gradient” DJ/D¢ = {DJ/Dqp;DJ/DQ} is defined by the inner
product selected in Eq. (4.15). Appropriate selection of this inner product is a way of
preconditioning the optimization process. The selection of the inner product defining the
gradient may be tuned as explained in Protas et al. (2004) (in the case of PDE systems,
by incorporating spatial filters) in order to focus the initial steps of the optimization on
selected components (in the PDE case, length scales) of the system. For the Lorenz
problem, we might define the gradient such that

(2262 (2] ool 5]
We are free to adjust the parameter p in this definition, which ultimately has the effect
of increasing or decreasing the relative speed at which Q will be adjusted during the
optimization of ¢. Combining Eq. (4.15) and Eq. (4.16) and comparing with Eq. (4.13)
leads immediately to

DJ
Dqp

r(0) —q(2n) + and br__1 /ZnN*rd‘t (4.17)

4.3.2 Estimation of descent parameter

We now consider the problem of updating the control ¢ in some direction ¢’ (gradient
direction in the Steepest Descent method, or gradient direction modified by a momentum
term in the Conjugate Gradient method), scaling this update by a factor o@ which we are
free to choose. We would like to be able to select the value of the scalar o to minimize
the resulting cost function, J(¢ + a¢’); in other words, we would like to perform a line
minimization with respect to the parameter o along the direction of ¢’. Because this line
minimization is an iterative procedure, where multiple function evaluations are required
(one function evaluation on a dynamic system such as the Lorenz attractor is a time evo-
lution of the system over T},,,) , most of the computer time is spent here. It is important
for this reason to have a method to estimate o such that it is as close to the optimal value
as possible. A new method for estimating the parameter o, explained in the Appendix,
and which has proven to save a considerable amount of computation time, is used. We

briefly summarize the method.
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The minimization may be obtained by considering the Taylor series expansion for
J(¢ +00') near J(¢) and keeping terms up to those which are quadratic in the perturba-
tions, then setting dJ(¢ + c¢’)/doe = 0 in the resulting expression and solving for o, as
shown below.

The Taylor series expansion for J(¢ + 0¢’), up to second order terms is

2
T(O+a)) = J(0) + o (@) + 2-7"(6:¢) + O (4.18)

It is straightforward now to obtain the value of o that would minimize the cost function in
case of having a quadratic function (which becomes a good approximation as the control

parameters get close to the values that minimize the cost function):

1( e !
Oy = ~JJH((($’;({;,)). (4.19)
The perturbation cost function J’ can be obtained by perturbing the cost function in

Eq. (4.4):
J'(6:9') = (q(2m) —q0)" (q' (27) — q0) (4.20)

and the second perturbation cost function J” by perturbing Eq. (4.20), and taking into

account that q; = 0:
J"(0;:0") = (a(2m) —qo)" q"(2m) + (' (2m) —q0)" (¢ (2m) —qp). (4.21)

The unknowns in the perturbation cost functions given by Eq. (4.20) and Eq. (4.21)
are q'(2n) and q”(2m), which can be obtained from two evolution equations, the pertur-
bation equation Eq. (4.7) and the corresponding second perturbation equation

aNg / aNq /
dq dq
Notice that perturbing Eq. (4.7) gives a term in Q" which is 0, leading to Eq. (4.22).
n(q, Q) is defined in Eq. (4.3), Nq and Ng, in Eq. (4.8a) and Eq. (4.8b),

Nqq" = —2( Q' — ( )d onte[0,2n] withq”(0)=0. (4.22)

dq'1
— 0o o o0)\/[dq
JONg daq’ oN,
Gq¥=|72 |9 md Gldd=|4¢ 0 4||a
d/
% -q, —4, 0/ \4
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The value of the descent parameter o, obtained by Eq. (4.19) is compared at every
iteration with the value of o that would correspond to the minimum of the cost function
obtained by inverse parabolic interpolation, as will be explained in more detail in §3.3.
After both values are close to a certain precision during a specified number of iterations,
the value given by Eq. (4.19) is taken as the optimum value, saving in this way com-
putational time. However the accuracy of this assumption has to be checked every few

iterations.

4.3.3 Summary of numerical algorithm

We now summarize the Polak-Ribiere variant of the conjugate gradient algorithm to
minimize the cost function J(¢) when ¢ = {qp;Q}, as given in Eq. (4.4). For further
discussion of the conjugate gradient algorithm used here, please see, e.g., Chapter 5 of
Bewley (Preprint).

A. Obtain an initial guess for the “control” variable ¢ = {qo;Q} corresponding to a time-
periodic orbit of the system in Eq. (4.2)-Eq. (4.3) using, for example, the algorithm
presented in §2, and initialize i = 1 and i,¢5,; = 20.

B. Calculate the state q from the state equation Eq. (4.5) (a forward march in time on
=0 - 2n).

C. Calculate the adjoint r from the adjoint equation Eq. (4.12) (a backward march in
time on T =21 — 0).

D. Calculate the gradient g = DJ/D¢ = {DJ/Dqo; DJ/DQ} using Eq. (4.17).

E. Compute the control update direction ¢’ according to the Polak-Ribiere variant of the

conjugate gradient algorithm:

res=glg
if i = 1 then
o=-g
else
_oT
_ res—g,,.8
réSold
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¢’ — —g+po’
end
resyly = res
8old = 8

F. Given q from step B and ¢' = {qp;Q'} from step E, calculate q' from Eq. (4.7)
and then q” from Eq. (4.22) (both of these calculations are forward marches in time
on T = 0 — 27m). Noting the definition of J'(¢;¢’) and J”(¢,¢’) in Eq. (4.20) and
Eq. (4.21), calculate o, using the formula given in Eq. (4.19).

G. Take the initial guess for o. = o, from step F and a guess {0, oy, 1.6 &} for a triplet of
values for o that brackets the actual minimum of J(¢+ ¢’). Use mnbrak and Brent’s
method (see Press et al. (1992)) to refine the value of o that minimizes J(¢ + 0d’)
to some prespecified tolerance (say, 1%) by repeated calculation of J(¢ + ad’), using

Eq. (4.4) and Eq. (4.5), for several trial values of a.

H. Using the converged value of o from step G, update ¢ «— ¢ + ag¢/,

i — mod(i+ 1,iyse) and repeat from step B until convergence.

Note that step G of the above algorithm insures convergence of the optimization
even when the initial guess of ¢ is poor. As convergence is approached, the value of
0,y determined in step F from the local quadratic approximation becomes an increasingly
accurate approximation of the minimizer of J(¢ + 0¢’), and step G may eventually be
dropped altogether, taking oo = o, in step H. A simple check to determine whether or
not step G is necessary is to compute three test values of J(¢ + o¢’) and then perform an
inverse parabolic interpolation (see, e.g., §5.2.3 of Bewley (Preprint))

o = lyo(xl +x3) (x1 — x2) + y1(x0 +x2) (X2 — x0) + y2(x0 + x1) (X0 — Xx1)
2 yo(x1 —x2) +y1(x2 — xo) +y2(xo — x1)
where, eg, {xo,50} = {0J(@®)}, {xi,yi} = {0gJ(0 + 04¢')}, and
{x2,y2} ={1.604,J (¢ + 1.6 0z0') }. If the test

’

|0 —atgl /|0y +0g| < Opr/2

passes (taking, say, o;,; = 0.01), then step G may be safely skipped. Also note that, as

this test increases or decreases confidence in the local quadratic approximation of J(¢)
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between the current value of ¢ and the minimizer, it may be used to increase or decrease

ireser accordingly.

4.4 Refining the trajectories with time-periodic iterates

In this section we present an alternative technique for solving the problem described
at the beginning of §3, by iteration inside a time-periodic framework. At each iteration
of the approach developed in this section, the system trajectory will be constructed from
a Fourier series, so that periodic conditions on the state q(0) = q(2n) will be satisfied
exactly; the trajectory q(t) on 1 € [0,2n] and the frequency Q will be adjusted at each
iteration with a gradient-based search in an attempt to satisfy the desired governing equa-

tion, n(q,Q) =0 on T € [0,27].

4.4.1 Derivation of gradients

Defining the control variable ¢ in this case as ¢ = {q(t) on T € [0,2n];Q}, we seek

the best ¢ to minimize the cost function
1 2

where again, in the example of the Lorenz problem, the nonlinear operation n(q, ) is
given in Eq. (4.3). This cost function measures how well a given trajectory q(t) satisfies
the equation governing the system. The selection of the norm in the cost function may be
tuned (by incorporating filters in time and, in the case of PDE systems, space) in order to
emphasize the time scales (and, in the PDE case, length scales) of primary concern in the

optimization problem. For the Lorenz problem, we may take simply
2n
In? 2 / n’ndr. 4.24)
0

Note that, although the control variable is now much higher dimensional, this optimization
problem is fundamentally simpler than that described in §3.1, as the control variable ¢

appears directly in the cost function in Eq. (4.23), and is not related to the variables
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appearing in the cost function by a dynamic evolution equation (a “state equation™). Thus,
we can calculate the gradient directly, without evaluating an auxiliary dynamic evolution
equation (an “adjoint equation”), as shown below.

Consider a small perturbation ¢’ to the control variable ¢. Substituting ¢ «— ¢ + ¢’
(thatis, {q(t) ont € [0,2n]; 2} «— {q(t) on T € [0,2n]; 2} +{q/(t) on T € [0,27}; Q'}) in
Eq. (4.23), applying Eq. (4.24), and neglecting terms that are quadratic in the perturbation,
it follows that

2n
J@+d)~I(@)+ [ 0 (Nog +NoS)dr =
0 (4.25)

on 2n T

=J(0) + /0 (Nyn)'q dt+ ( ; Nggndr) Q)

where, for the Lorenz example, the linear operations qu’ and NoQ' are defined as

in Eq. (4.8a) and Eq. (4.8b), and the linear operators N(’;n and Non are defined as in

Eq. (4.11a) and Eq. (4.14). Note that the boundary terms in Eq. (4.25) due to integra-

tion by parts of the d/dt terms in Ny vanish immediately due to the time periodicity

enforced (by construction) on q at each iteration [that is, q(0) = q(21), q'(0) = ¢'(2n),

n|;—g = N|¢—og, etc.]. Performing a Taylor series expansion of J(¢ + ¢) near ¢, we may
write

DJ
Jo0+6) ~J(0)+ (5. 0').

We thus see that the “gradient” DJ /D¢ = {DJ/Dq(7) on T € [0,2n];DJ/DQ} is defined

(4.26)

by the inner product selected in Eq. (4.26). Appropriate selection of this inner product
is a way of preconditioning the optimization process. The selection of the inner product
defining the gradient may be tuned (by incorporating filters in time and, in the case of
PDE systems, space) in order to focus the initial steps of the optimization on a certain
range of time scales (and, in the PDE case, length scales) (see Protas et al. (2004)). For

the Lorenz problem, we might define the gradient such that

<%,¢’> = /Ozn (g—;)Tq’dwp(—ll))—ng)Tsz’. 4.27)

We are free to adjust the parameter p in this definition, which ultimately has the effect of

increasing or decreasing the relative speed at which € will be adjusted during the opti-
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mization of ¢. Thus, combining Eq. (4.26) and Eq. (4.27) and comparing with Eq. (4.25),

we identify

D DJ 1 p2n
S Nin(q(1),Q) onte[0,2], and = EE /0 Nin(q(7),Q) dr.
(4.28)

4.4.2 Estimation of descent parameter

The estimation of the descent parameter in this case follows the same procedure as
in §3.2. Simply writing the Taylor series expansion for J(¢ + o¢’) near J(¢) and keeping

terms up to those quadratic in o gives

21
J(¢+oc¢’)z](¢)+oc/0 n’ (Nyq +NoQ')dt+ (4.29a)
2 2n
+ %— /0 [(qu’ +No Q)T (Nyq/ +Ng£2’)] dt
(12 2n T aNQ / / aNq / 7
P57 I (2GR0 + e ) Jas
2
2J(9) + o (0;¢") + %J”(dx ), (4.29b)

where, for the Lorenz case, all operators are defined in §3. Note that in the time-periodic
case, both ¢ and Q" are 0, since q and Q are the control parameters, and the perturbations

q' and Q' are fixed. Minimizing this expression with respect to o gives, as before,
dJ (¢ + ') J'(9)
——=0 = =——= 4.29
da. %= 7). (4.29¢)
where, by Eq. (4.29a)-Eq. (4.29b), J' and J” are given by
2n
J(0;0") = / n’ (Nyq' + NoQ') dr, (4.30)
0
2n
7(0:0) = [ [(Nad +Naf)" (Nog +NaS)+

ON; oN,
T Q Nneal q 7\, /
+n (2(—aq q)Q +(—aq q)q)]d’r.

(4.31)

4.4.3 Summary of numerical algorithm

We now summarize the Polak-Ribiere variant of the conjugate gradient algorithm to

minimize the cost function J(¢) when ¢ = {q(t) on T € [0,2n];Q}, as given in Eq. (4.23).
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The algorithm is a bit simpler than that presented in §3.3, though the control variable is
now much higher dimensional.

A. Obtain an initial guess for the “control” variable ¢ = {q(t) on 1 € [0,27];Q} cor-
responding to a time-periodic orbit of the the system Eq. (4.2)-Eq. (4.3). Such an
initial guess may be obtained using, for example, the algorithm presented in §2 to
determine an appropriate {qo,Q}, then marching the state equation for q over the
interval T € [0,27], then expanding the resulting trajectory using a Fourier series,
keeping a finite number of terms in the expansion (perhaps gradually filtering out the
higher frequencies). Initialize i = 1 and i g5 = 25.

B. Calculate n(q,Q) (for the case of Lorenz, from Eq. (4.3)) on the interval T = [0, 27].

C. Calculate the gradient g £ DJ/D¢ = {DJ/Dqo; DJ/DS} directly using Eq. (4.28).

D. Compute the control update direction ¢’ according to the Polak-Ribiere variant of the

conjugate gradient algorithm:
res=gl'g

if i = 1 then

respiq = res

8old = 8

E. Given the control ¢ = {q(t) ont € [0,2n];Q} and ¢’ = {q(t) on T € [0,27]; Q'} from
step D, and noting the definition of J'(¢;¢’) and J”(¢,¢’) in Eq. (4.29b), calculate o,
using the formula given in Eq. (4.29¢).
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F. Take the initial guess for o = o, from step E and a guess {0, 0,4, 1.6 a4} for a triplet
of values for a that brackets the minimum of J(¢ + a¢’). Use mnbrak and Brent’s
method (see Press et al. (1992)) to refine the value of o that minimizes J(¢ + o¢’)
to some prespecified tolerance (say, 1%) by repeated calculation of J(¢ + a¢’), using

Eq. (4.4) and Eq. (4.5), for several trial values of a.

G. Using the converged value of o from step F, update ¢ « ¢+ 00, i «— mod(i+ 1, ireser )

and repeat from step B until convergence.

Note that, as discussed in detail in the last paragraph of §3.3, step F of the above algorithm

may be dropped as convergence is approached.

4.5 Numerical results

The methods and algorithms presented in the previous sections have been tested in
the Lorenz system, the evolution of which is governed by n(q, Q) =0, with n(q, Q) given
in Eq. (4.3). The value given to the parameters in that equationis 6 = 10, r =28, b = 8/3,
the same as in the original paper by Lorenz (1963). In Viswanath (2003), with the same
values, some periodic orbits were computed with an accuracy of 14 digits, and will be
used here as a reference.

As shown in Viswanath (2003), the system under consideration has periodic orbits
with 7 different periods such that 7 < 4. The periods corresponding to these orbits are
given in the first column of Table 4.1. 2D plots of the corresponding orbits are shown
in Fig. 4.2. Note that the Lorenz system has a symmetry such that the transformation
q1 — —q1, 92 — —q2, g3 — q3 does not change the system, so that for any non-symmetric
orbit shown in Fig. 4.2 there is a mirrored orbit which is also periodic and has the same
period (as mentioned earlier, the method to obtain the approximately time-periodic orbits
described in §4.2 does not capture two orbits with the same period). Table 4.1 shows the
period of the orbits after convergence of the three methods described. The second column
shows the estimation obtained with the algorithm described in §4.2. It can be seen that,

although not exactly, the periods of the approximate orbits match very well the values
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(a) T=1.5586522 (b) T=2.3059072
(c) T=3.0235837 (d) T=3.0842767
(e) T=3.7256417 (f) T=3.8202541

(g) T=3.8695391
Figure 4.2: Periodic orbits with T < 4.
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obtained in Viswanath (2003), up to the precision of the time step used in the simulation,
and the tolerance imposed for convergence. Since these orbits are only approximate,
sometimes two orbits with a similar period are obtained, which later in the refinement
process converge to the same orbit. These approximately time-periodic orbits are used
as initial conditions for the time-evolving iterates (final values of the period given in the
third column of Table 4.1) and for the time-periodic iterates (final values of the period
shown in the fourth column of Table 4.1).

It can be seen that the periods obtained by the time-evolving iterates converge to a
final value that matches the values in Viswanath (2003). The convergence history of the

cost function defined in Eq. (4.4) is shown in Fig. 4.3.

T (Viswanath) T (approximate orbits) | T (time-evolving) | T (time-periodic)
1.5586522107152 1.560 1.5586522107202 | 1.5586538205782
2.3059072639398 2.305 2.3059072639673 | 2.3060675343917
3.0235837034339 3.020 3.0235837035343 | 3.0239132580456
3.0842767758221 3.085 3.0842767759418 | 3.0842797089088
3.7256417715558 3.725 3.7256417718239 | 3.7250350145471
3.8202541634368 3.820 3.8202541637764 | 3.8204379797438
3.8695391125646 3.905 3.8695391129544 | 3.8696469620383

Table 4.1: Period of the periodic orbits corresponding to T < 4.

A question that arises when performing the time-periodic refinement of the orbits
is how many modes we need to keep. The more modes are used, the slowest is the
method, due mainly to the Fast Fourier Transforms needed and the increase in the number
of parameters to optimize. Fig. 4.4 shows the spectrum corresponding to the periodic
orbit shown in Fig. 4.2(g) obtained by time-evolving refinement. It can be seen that
approximately only the first 100 modes contribute to the spectrum, indicating that the
time-evolution of the orbit, performed with a Runge-Kutta, is over-resolved (although
over-resolving is necessary in the time-evolving framework for stability of the Runge-

Kutta scheme). The rest of the orbits with T < 4 have also been analyzed and the same
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Figure 4.3: Convergence history of the cost function defined in Eq. (4.4) in the time-

evolving setting as a function of the optimization iteration.

conclusion has been drawn. The time-periodic optimization can therefore be performed
considering only the necessary modes. We have taken 192 modes for all the orbits.

The fourth column in Table 4.1 shows the time-periodic refinement of the periods
obtained with the algorithm presented in §4.2. In this case the periods also match those
obtained in Viswanath (2003), although not as accurately as the ones obtained by the
time-evolving refinement, even though the criterion for convergence is the same (that is,
stopping the optimization iteration when the relative change in the cost function from one
iteration to the following one is less than a specified €). However, in fluid systems, the
approximation obtained with this method would be satisfactory, and not as much precision
as that given by the time-evolving would be necessary. The history of the convergence for
the different orbits as a function of the iteration number is shown in Fig. 4.5. We should
remark that not necessarily the shortest orbits usually converge faster than the larger ones,

since the number of modes is the same for all of them.
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Figure 4.4: Spectrum of the periodic orbit shown in Fig. 4.2(g).

Finally, Fig. 4.1 shows the skeleton formed by the periodic orbits previously com-
puted and a generic non-periodic orbit. As mentioned in the introduction, due to the
ergodic nature of the attractor, the generic orbit passes close to all periodic orbits, as
quantified in Fig. 4.6. In fact, periodic orbits are known to approach 100% as T4y is
increased for any given value of €, however small.

The skeleton formed by the periodic orbits reflects and gives information about the

structure of the attractor.

4.6 Discussion

We have examined three different methods to obtain time-periodic orbits in a dy-
namic system. Although they have been tested on the Lorenz system, these methods are
appropriate for higher-dimensional systems, as they are completely scalable. It is impor-

tant to notice however, that in the time-periodic framework, the whole sequence of states
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q(t) has to be stored, fact that might lead to the need of larger storage computers.

As mentioned in the previous sections, it is known that periodic orbits are dense in
chaotic attractors (see, e.g., Ott (2002)); that is, for any €, any given location on a chaotic
attractor is within an € neighborhood from a periodic orbit of period less than or equal to
Tinax, provided Ty, is taken large enough (see Fig. 4.6). Examining the periodic orbits of
period less than or equal to T, in a chaotic system is an attractive technique of obtaining
a “skeleton” of where the attractor lies. Once this skeleton is obtained, the entire attractor
may be reconfigured by reconfiguring its time-periodic skeleton. This is basis of the
control approach recently proposed by Bewley & Trenchea (2002), and will be examined

numerically in a forthcoming paper.

4.7 Conclusions

The present paper presents a method to estimate periodic orbits in dynamic systems
up to a period length of 7,4, based on a time-evolving simulation of the system. Two
methods to refine the estimated periodic orbits are discussed, one set in a time-evolving
framework, where the periodicity of the orbit is optimized, and one set in a time-periodic
framework, where the fidelity of the exactly periodic orbit to the governing equation is
optimized. The three methods have been tested with the Lorenz chaotic system, where
accurate results have been obtained.

The extension to higher-dimensional systems, as well as the necessity of finding

periodic orbits in order to posteriorly perform an optimization have been discussed.
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Appendix

Estimation of the descent parameter

4.A.1 Introduction

Gradient-based optimization methods perform a line minimization in the direction
of the gradient (in the case of Steepest Descent) or the direction of the gradient with a

momentum term (Conjugate Gradient):
Ot = oF + kit (4.32)

In both cases, an initial guess for the descending parameter o must be selected. In the
present appendix, a new method to estimate an initial o that is closer to the optimum value
than in the commonly used methods is explained. Results on the performance of the new

estimation are given for the problem of parameter identification in a chaotic system.

4.A.2 Description of the problem

Consider the chaotic system described by the system of equations

Q)=w, q(t=0)=qp,
n(q,Q)=w, q(t=0)=qo 33

yu =Cq+v,
where yu represents the measurements obtained from the system. The problem under
consideration is the identification of the parameters involved in this system by investigat-
ing whether it is possible to find ¢ = (qo, 6, w, v) such that the nominal model (that is,
with w =0, v = 0) is a very good approximation of the dynamics exhibited by the system
(that is, that the state equation reproduces the measurements observed for small values
of v and w). Optimal values of qg,0,w, v (our control variables) will be found via an

iterative optimization procedure.
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Lorenz attractor

The problem under study in this article is the Lorenz attractor, which is governed by

the following system of equations

X1 = G(xz —X1) + w1
Xy = —X3 —X1X3 + w2 4.34)

X3 = —b(X3 + r) +X1X2 + W3

where we define the state variable as q = (x1, x2, x3)7, the vector as 6 = (5, b, r)7, and
the system noise as w = (wy, wy, W3)T. The vector yys consists of a measurement of
the second and third states, corresponding to temperature measurements on the system (
C=(0,1,1)).

We have considered as the nominal state the one with 6 = (o, b, )T = (6,2, 60)7

and w = 0 for all times.

4.A.3 Derivation of gradients

An appropriate cost function for this problem, which penalizes the deviation of the

model system from the nominal system is

1 T
J@ =3 [ (vP+plwPidr . @39)

We are free to adjust the value of p, which increases or decreases the relative weight of the
penalization on w and v. In order to proceed with the optimization, we need to obtain the
gradient of this function with respect to the control variables. An adjoint-based gradient
is obtained in this section.

First consider a small perturbation to the control variables

Wew+w, qo < o + 4o,
(4.36)

Vev4v, 0—0+0,

with the accompanying small perturbation ¢’ to the state variable q. Substituting

Eq. (4.36) and q <« q + ¢’ in the state equation Eq. (4.33), neglecting terms that are
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quadratic in the perturbations, and applying Eq. (4.33), we may write the perturbation
equation for this problem as
Ly =Bo +W, q(1=0)=g),

0=Cq +V,

4.37)

where, in the case of the Lorenz attractor given in Eq. (4.34), the matrix By is given by

X2 — X1 0 0
0 —(X3 + r) —b

The corresponding change in the cost function is
T
J = / V'V + pw W) dt (4.39)
0

Note that v’ is linearly related to (qo,6,w) via the perturbation equation Eq. (4.37). We
will re-express this relationship in a useful manner using an adjoint identity. For this pur-

pose we first define the inner product (r,q') = fOT r*qdr and consider the adjoint identity
(r,Lq') = (L*r,q') +b, (4.40)

from which we can derive the adjoint operator L* and b (after some algebra, it is found
that b = r*q'|;=r — r*q|,=0).

The next step is to define the right-hand side of the adjoint equation. This definition
is arbitrary, and it consists normally of a term which will later on yield an expression of
the gradient which we can evaluate. In the present problem, an adequate form of this term
is

L'r=-C', r(t=T)=0. (4.41)

Inserting the perturbation and adjoint equations into the adjoint identity yields

<r,B(36, + wl> = <—C*V, q/> +0— rr (0)(]6 5

from where a proper relationship between v/ and the perturbation in the parameters is

obtained:

T T . T
/ wdt = [/ Bgrdt] 6'+/ r*w'dt +r*(0)qp. (4.42)
0 0 0
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We may thus rewrite the expression for the perturbation cost function in Eq. (4.39) as
T * T
J = [/ Bérdl] o’ +/ (r+pw)*w dt +r*(0)qp. (4.43)
0 0

Deﬁning the gradient such that
A 6/ ! !
[ W] [ ] ’
[De] D DqO 0

we finally obtain the desired gradients

DJ r DJ DJ

— = Byrdt — = , — =r(0). 4.44

DO /0 er ’ Dw r+ pw qu ( ) ( )
Once the gradients are computed via the adjoint field, any gradient-based optimiza-

tion procedure may be used. In the present paper the conjugate-gradient method will be

used.

4.A.4 Estimation of the descent parameter

We now consider the problem of updating the control ¢ in some direction ¢’ (gradient
direction in the Steepest Descent method, or gradient direction modified by a momentum
term in the Conjugate Gradient method), scaling this update by a factor o which we are
free to choose. We would like to be able to select the value of the scalar o to minimize
the resulting cost function, J(¢ + o’ ); in other words, we would like to perform a line
minimization with respect to the parameter &.. Most of the computer time is spent in
this line minimization, which is an iterative procedure (inside the iterative optimization
procedure). For this reason it is important to have a method to estimate & such that it is as
close to the optimal value as possible. A new method for estimating o is proposed below.

The minimization may be obtained by considering the Taylor series expansion for
J(0 +0a¢’) near J(¢) and keeping terms up to those which are quadratic in the perturba-
tions, then setting dJ(¢ + o¢’) /do. = 0 in the resulting expression and solving for a, as
shown below.

The Taylor series expansion for J(¢ + a¢’), up to second order terms is

2
T(@+a0') = J(9) + o (6:¢) + 5-7"(6:) + O(?). (4.45)
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It is straightforward now to obtain the value of « that would minimize the cost function in
case of having a quadratic function (which becomes a good approximation as the control

parameters get close to the values that minimize the cost function):

A (4.46)

o, = —
q J”(¢; (I)/)
The second perturbation cost function J” can be obtained from the perturbation J’

given in Eq. (4.39)

T
J' = / [v’*v’+v*v”+pw’*w’] dt 4.47)
0
The unknowns in Eq. (4.39) and Eq. (4.47) are v/ and v”, which can be obtained from the
measurements equation in Eq. (4.33)

vV =-Cq
(4.48)

V' = —Cq"
The perturbation variables ¢’ and q” have to be obtained from an evolution equation. q’
is obtained from the perturbation equation Eq. (4.37). An evolution equation for " may

be obtained by perturbing Eq. (4.37):
Ld"+L'qd =B , q'(t=0)=0. (4.49)

Note that the perturbation equation Eq. (4.37) is linear in the perturbation variables,
whereas the second perturbation equation Eq. (4.49) is linear in the second perturbation
variables, but not in the first ones.

This method of estimating the descent parameter o has been implemented in the
optimization code, and compared to other methods in order to show its effectiveness.

The most straightforward method to use for the estimation of & would be to pick
a constant value o, at the beginning of all the optimization iterations. Two different
values have been picked (¢, = 0.1 and o, = 0.01), in order to show the difference in
function evaluations depending on the value picked. For o = 0.1, shown in Fig. 4.7, 344
optimization iterations were needed in order to make the cost function to be below 0.02,

involving 3014 function evaluations (evolution of both state and adjoint systems). For
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o =0.01, in Fig. 4.8, 341 optimization iterations were necessary, but involving only 2283
function evaluations. This difference shows that the estimation of o is very important in
order to reduce optimization time. In the case of o, = 0.01, the estimation is closer to
the actual optimal value for most of the iterations than for o, = 0.1, being the number of
function evaluations much smaller (although the number of iterations in the optimization
loop is very close).

Another way to estimate ¢ is to use the value that gave the optimum in the previous
iteration. This way of picking o will preserve the order of magnitude of the parameter
o, which, as seen Fig. 4.7 does not change much. This preservation of the order of
magnitude cannot be done when picking a constant value of the estimation, unless it is
known a priori. With this method, in the present problem, 326 optimization iterations are
needed in order to lower the cost function to the desired level, involving 2292 function
evaluations, very similar to the case where o, = 0.01 was the initialization parameter in
every iteration (because this constant value gives more or less the appropriate order of
magnitude).

At last, the new method described above has been tested. The result is shown in
Fig. 4.9. It can be seen that during the first iterations the estimation of o does not coincide
with the optimal value, approaching this two values as the number of iteration increases
(after a few iterations). The number of iterations needed with this method is 371, invoking
3521 iterations (this high number is mostly due to the fact that in every iteration both
the perturbation and second perturbation equations are evolved, and then Brent’s method
performs more evaluations than probably needed).

The fact that the value of the estimated o as described above and the optimal value
are close after a few iterations shows that the parabolic approximation becomes more
valid. Defining a ’trust’ variable which measures how good the parabolic approximation
is (comparing the value obtained with the one given by inverse parabolic interpolation),
it is possible to avoid further function evaluations, when this variable acquires a given
value, by using the value of o estimated with Eq. (4.46). With this new variable, 264

iterations where needed, and 1073 function evaluations (counting the evolution of the
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adjoint equation, the state equation, the perturbation equation and the second perturbation
equation). The newly defined variable is restarted whenever the new cost function is larger
than the old one.

In some cases, even when the new cost function is not larger than the old one, it
is better to restart this variable that measures the proximity to the parabolic approxima-
tion every few optimization iterations, since once the trust variable acquires the desired
value, no more comparisons with the parabolic interpolation result is performed. We have
restarted the variable every 20 iterations. The new optimization takes 242 iterations, and
involves 1046 function evaluations, a number much smaller than the first method of o..

In the first methods, the number of iterations in the optimization loop was similar.
However in the last two cases, with the new method and assuming that the parabolic
approximation is correct whenever a trust variable used has an appropriate value, many

less iterations are needed, and the number of function evaluations is greatly reduced.
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Figure 4.5: Convergence history of the cost function defined in the time-periodic setting
as a function of the optimization iteration (top) and same cost function nondi-

mensionalized with the initial value (bottom).
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