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PREFACE

Substantial energy shortages and rising fuel costs have been driving factors making the 

development o f new technologies for reducing the drag and improving the efficiency of aircraft, 

ships, and land vehicles more important today than ever before. As near-wall turbulence is respon­

sible for a large fraction of the drag on the surface of such transportation systems, a very signif­

icant amount of effort has been directed towards the control and manipulation of boundary layer 

flow systems, using both passive and active and both open- and closed-loop strategies, in order to 

both delay laminar-to-turbulent transition and attenuate the intensity of fully-developed turbulence. 

Recent breakthroughs in the understanding of the dynamics of the coherent structures dominating 

near-wall turbulence, coupled with tractable extensions of relevant control and optimization theories 

to PDE systems, rapid growth in computational capabilities, and the technological development of 

effective devices for small-scale actuation and sensing of flows, have led to significant progress on 

these challenging problems, though much work remains to be done.

The theoretical problem of the active feedback control of small-scale perturbations in 

wall-bounded turbulent flow systems using actuation and sensing at the walls has enjoyed great 

advancements in the last 5 years. However, practical implementation o f such turbulence control 

strategies requires the development of durable small-scale actuators and sensors, which are yet to 

be produced in large numbers.

Passive approaches, on the other hand, require no actuators, sensors, or external energy 

input, and thus appear to be easier to implement. Passive strategies currently under investigation 

include polymer additives, riblets, large eddy break-up devices (LEBUs), and compliant surfaces or 

coatings.

As a passive approach to boundary layer control, compliant surfaces have captured the 

interest of many researchers for almost half a century, perhaps due to their original inspiration from 

nature (e.g., dolphin skin). In these investigations, the utility of compliant surfaces for transition 

delay has been well established, and the use of compliant surfaces for noise mitigation has also 

been explored. However, the problem of using compliant surfaces to mitigate the intensity of fully- 

developed turbulence has proved to be a much more elusive target, and thus forms the focus of the 

present investigation. Leveraging direct numerical simulation techniques developed in the last two 

decades, this thesis focuses on three issues related to this problem, as summarized below.

Chapter I  - Modeling and simulation o f  the interaction o f  near-wall turbulence

viii
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with compliant tensegrity fabrics

To avoid the use o f expensive finite-element models for the surface deformations, most 

researchers have focused their attention primarily on simple spring-supported plates to represent 

the compliant surface. Though convenient for theoretical analyses, numerical studies have shown 

that this model has little, if any, effect on the statistics of near-wall turbulence. In contrast, our 

work focuses on a completely different type of compliant surface model than has been considered 

previously. By so doing, we hope to find a region in the parameter space defining the surface 

compliance characteristics that has previously been unreachable by simple plate-spring models. We 

thus concentrate our attention on an intriguing structural paradigm called tensegrity, the dynamics, 

optimization, and control of which has been characterized thoroughly by Skelton et al. at UC San 

Diego. Our surface model, which we call a tensegrity fabric, is based on this paradigm.

In this chapter, we study the careful numerical characterization of the turbulent flow / 

tensegrity structure interaction. The turbulence is modeled with direct numerical simulations, as no 

other computational tools are currently available to capture the precise effects of boundary con­

ditions on a near-wall turbulent flow. An efficient pseudospectral flow solver with a 3D time- 

dependent coordinate transformation is developed to calculate accurately the chaotic, multiscale 

behavior of the near-wall turbulent flow system with compliant walls.

We perform a number of simulations of the turbulent flow / tensegrity structure interaction 

using this solver. Three material parameters that parameterize the surface compliance properties 

are varied: specifically, the density, stiffness, and damping of the members o f the tensegrity fabric, 

which are all (in these initial tests) taken to have the same material properties. A significant influence 

of the compliant surface on the statistics o f the near-wall turbulence is reported.

Chapter II - On the contravariant form  o f  the Navier-Stokes equations 

in time-dependent curvilinear coordinate systems

When expressing the Navier-Stokes equation for the flow in moving coordinates, either 

a contravariant formulation or a Cartesian formulation may be used. We have considered both, 

and have found that the former needs to be treated very carefully for the time differentiation o f the 

momentum vector to be handled correctly, which some of the most significant published literature 

on the problem o f computing turbulent flows over moving walls and compliant surfaces has failed 

to do. This chapter draws attention to, and corrects, this error, deriving the correct contravariant

ix
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formulation for general moving curvilinear coordinate systems. However, the Cartesian formulation 

for simulations of the flow over compliant surfaces, as implemented in chapter I, is found to be more 

efficient computationally, and is thus preferred by our group for this problem.

Chapter 111 - Lattices fo r  derivative-free optimization

Although drag is increased and turbulence is intensified by the compliant surface in the 

simulations presented in chapter I, the substantial flexibility of the tensegrity fabric design has not 

yet been exploited. In the present chapter, we develop an efficient algorithm to optimize within 

the large parameter space defining the compliance properties of this structure. In this optimiza­

tion problem, the cost function (which is based on the statistics of a long-time computation of the 

flow) is both non-differentiable and extremely expensive to evaluate. For these reasons, we have 

focused on refining and implementing a recently-developed direct search method, called the surro­

gate management framework (SMF), which is both well suited for such optimization problems and 

easily parallelized. To enhance the efficiency of the SMF, which is typically based on a Cartesian 

mesh over the parameter space, we investigate the use of ̂ -dimensional extrapolations of the body- 

centered cubic (BCC) and face-centered cubic (FCC) crystalline structures as the underlying lattice 

over the parameter space o f interest during the optimization. These lattices allow the trial points 

to be distributed more uniformly in the parameter space. The new lattices are tested in randomly- 

generated optimization problems, and are shown to lead to substantial performance improvements 

in the optimization algorithm.

Appendix - Simulation o f  near-wall turbulence over a moving wall 

using the immersed boundary method

To accommodate the interface motion of the flow, we also investigated the potential use 

of the immersed boundary method in addition to the coordinate transformation method described in 

chapter I. In the immersed boundary method, the flow domain is extended to immerse the irregular 

interface, a Cartesian grid is used over this extended domain, and a fictitious force is applied to the 

“flow” outside the physical part of the flow domain in order to bring the flow to rest at the loca­

tion of the irregular interface defining the actual flow boundary. In comparison with the coordinate 

transformation method, the immersed boundary method is fairly simple, as it does not require re­

construction of grid at each time step. However, when applied in a pseudospectral flow simulation

x
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code, as used in the present work, the immersed boundary method was found to facilitate accurately 

only very small wall deformations. Larger deformations (greater than the wall-normal grid spacing 

at the wall) typically triggered Gibbs phenomenon, exciting small-scale fluctuations that grew and 

eventually destabilized the nonlinear simulation. Thus, though this method appears to be useful for 

the purpose of linear stability analysis, it was eventually abandoned for the purpose of nonlinear 

flow simulations in present work when wall deformations are relatively large.

Future work

An efficient, parallelized SM F optimization code has been developed with each cost func­

tion evaluation being the calculation of the time-averaged drag of a turbulent-flow passing over a 

compliant tensegrity fabric with the parameters specified for that iteration. The work left (over the 

next year or two) is simply to obtain a very large allocation of supercomputer time and actually 

run this optimization code in search of a set of surface compliance parameters that might provide 

significant drag reduction.

xi
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ABSTRACT OF THE DISSERTATION

The Interaction o f Near-wall Turbulence with Compliant Tensegrity Fabrics:

Modeling, Simulation, and Optimization

by

Haoxiang Luo

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2004 

Professor Thomas R. Bewley, Chair

This work focuses on the modeling, simulation, and optimization of a novel type of com­

pliant surface, a tensegrity fabric , for the possible reduction of the drag caused by an overlying 

turbulent flow.

The spatially-periodic tensegrity fabric is modeled with an extension of the tensegrity dy­

namics software developed by Skelton et al., who also designed the plate-class tensegrity structures 

used in this work. To account for the skin friction and pressure forces on the tensegrity structure, a 

simple tessellation is used.

The spatially-periodic turbulent flow is modeled with direct numerical simulation. To 

account for the effect of the interface motion on the flow, a 3D time-dependent coordinate transfor­

mation is adopted to map the deformed flow domain to a regular domain. W hen formulating the 

Navier-Stokes equation governing the flow in moving coordinates, both the contravariant form and 

the Cartesian form are considered. The former needs special care in the time differentiation of the 

momentum vector, and is discussed separately in the tensor framework. The latter is computation­

ally less expensive and is thus used in the bulk of our simulations.

A  significant influence o f the compliant surface on the statistics of the near-wall turbu­

lence is found in simulations at Rex =  150, which show that, when the structure’s stiffness and 

damping are low, the interface forms streamwise-traveling waves which significantly increase both 

drag and turbulent kinetic energy.

To exploit the (yet unexplored) large design flexibility o f the tensegrity fabric, we have 

significantly refined a recently-developed direct search method, called the surrogate management 

framework (SMF), which is suitable for static optimization problems such as the present, in which

xiv
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the cost function is both non-differentiable and expensive to evaluate. Our refinements of the 

SM F focus on the use o f n-dimensional extrapolations of the body-centered cubic (BCC) and face- 

centered cubic (FCC) crystalline structures as the underlying lattice during the optimization, rather 

than the default Cartesian mesh. These lattices both cover the parameter space and distribute the 

vectors o f the minimal positive basis more uniformly than the Cartesian mesh, thus provide signifi­

cantly improved convergence when used as the underlying lattice in pattern search algorithms.
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Chapter I

Modeling and simulation of the 

interaction of near-wall turbulence with 

compliant tensegrity fabrics

This chapter will be submitted as

Luo, H. & Bewley, T. R. 2004 Modeling and simulation of the interaction of near-wall turbu­

lence with compliant tensegrity fabrics. To J. Fluid Mech.

1
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Abstract

This paper presents a new class of compliant surfaces, dubbed tensegrity fabrics, for the 

problem of reducing the drag induced by near-wall turbulent flows. The substructure upon which 

this compliant surface is built is based on the “tensegrity” structural paradigm, and is formed as a 

stable pretensioned network of compressive members (“bars”) interconnected by tensile members 

(“tendons”). Compared with existing compliant surface studies, most of which are based on spring- 

supported plates or membranes, tensegrity fabrics appear to be better configured to respond to the 

shear stress fluctuations (in addition to the pressure fluctuations) generated by near-wall turbulence. 

As a result, once the several parameters affecting the compliance characteristics of the structure 

are tuned appropriately, the tensegrity fabric might exhibit an improved capacity for dampening the 

fluctuations of near-wall turbulence, thereby reducing drag.

In the present flow simulations, a 3D time-dependent coordinate transformation is used 

to account for the motion of the channel walls, and the Cartesian components of the velocity are 

used as the flow variables. For the spatial discretization, a dealiased pseudospectral scheme is used 

in the homogeneous directions and a second-order finite difference scheme is used in the wall- 

normal direction. The code is first validated with several benchmark results that are available in 

the published literature for flows past both stationary and nonstationary walls. Direct numerical 

simulations of turbulent flows at Rex =  150 over the compliant tensegrity fabric are then presented. 

It is found that, when the stiffness, mass, and damping of the members o f the tensegrity fabric 

are selected appropriately, the near-wall statistics of the turbulence are altered significantly. The 

flow/structure interface is found to form streamwise-travelling waves reminiscent o f those found at 

air-water interfaces, but traveling at a faster phase velocity. Under certain conditions, the coupled 

flow/structure system is found to resonate, exhibiting a synchronized, almost sinusoidal interfacial 

motion with relatively long streamwise correlation. Future work will perform an optimization of 

the several parameters affecting the compliance of the tensegrity stmcture in an attempt to exploit 

the extensive flexibility of this design, and its significant influence on the statistics of the turbulent 

flow, in search o f a fabric with drag-reducing characteristics.
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1.1 Introduction

1.1.1 The compliant surface problem

Dominated by so-called “coherent structures” (that is, distinctive vortices with character­

istic statistics that evolve in a chaotic fashion), near-wall turbulence is responsible for significant 

drag penalties in many flows of engineering relevance. Many ideas have been explored in various 

attempts to attenuate turbulence near walls to improve system efficiency. Among them, the use of 

compliant surfaces is one of the most attractive, as this approach requires no control inputs and is 

quite simple in concept: the structure is allowed to flex in response to the fluctuations of the near­

wall turbulence, thereby allowing the energy o f the turbulent fluctuations to be transmitted into the 

structure, where it may be damped out. By reducing the intensity of the fluctuations of near-wall 

turbulence in this manner (if this effect can be realized), presumably the turbulence-induced drag 

might also be reduced.

However, perhaps due largely to a lack of theoretical insight into the choice of an ap­

propriate compliant material, most experiments to date have failed to establish the hypothesis that 

turbulence-induced drag can in fact be reduced by compliant surfaces. Comprehensive reviews and 

comments about the long history of related experiments may be found in Bushnell, Hefner & Ash 

(1977), Carpenter & Garrad (1985) and Gad-el-Hak (1986, 1987, 1996). Despite several unsuc­

cessful experimental trials, two recent exceptions in the literature are worth noting: Lee, Fisher 

& Schwarz (1993) observed a significant reduction of turbulent intensity in their experiments of 

boundary layers over compliant surfaces, and Choi et al. (1997) claimed up to 7% drag reduction 

and up to 5%  reduction of turbulent intensity across almost the entire turbulent boundary layer in 

their experiments, apparently due to the effect of a compliant surface.

Though results are mixed in the fully turbulent regime, compliant surfaces have a well- 

established capability to delay laminar-to-turbulent transition. This has been studied analytically 

by many investigators using linear stability theory (Benjamin, 1960; Landahl, 1962; Carpenter & 

Garrad, 1985; Carpenter & Morris, 1990; Davies & Carpenter, 1997), and has been confirmed in 

experiments (Daniel et al., 1987; Gaster, 1988). Some tend to believe that the efficient swimming 

capability of the bottle-nosed dolphin is due, at least in part, to the transition delay caused by its 

compliant skin (see, e.g., Carpenter, Davies & Lucey, 2000). Unfortunately, the linear stability 

theory that has shed so much light on the compliant surface problem in the transitional regime fails 

to provide much useful guidance in the turbulent regime, where we must instead resort to other
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tools, such as numerical simulation.

As computers continue to become more powerful and numerical simulation tools continue 

to become more efficient and accurate, we can begin to address the compliant surface problem in 

the turbulent regime numerically. Prior work in this area is mostly quite recent. Endo & Himeno 

(20 0 2 ) performed a direct numerical simulation of turbulence over a compliant surface and reported 

approximately 2 to 3% drag reduction. However, their result was soon challenged by Xu, Rempfer 

& Lumley (2003) for the reason of insufficient averaging time. In the simulations of Xu et a l ,  

no drag reduction was found; in fact, wall compliance had no statistically significant effect on the 

turbulent boundary layer whatsoever. In both papers, the rms extent and velocity of the wall motion, 

yWlrms and vw<rms, are quite small. In Endo & Himeno, y+ rmv is about 0.008 and v+rms is about 0.025. 

In Xu et al., we estimate from their figures that y l rms is about 0.05 and v+rmv is about 0.01. It is, 

indeed, improbable that such small wall motions can have a significant influence on the statistics 

of the turbulence, as the length scales of the energetic motions of the coherent structures are much 

larger. The models used for the compliant surface in both of these papers are generalizations of the 

spring-supported thin plate model proposed by Carpenter & Garrad (1985). Governed by a simple 

linear PDE, this type o f model is convenient for theoretical analyses in laminar flows. However, this 

surface model responds only to the normal load (that is, pressure fluctuations), not to the tangential 

load (skin friction fluctuations). As skin-friction fluctuations are related to the first-order terms of 

the Taylor series expansion of the velocity fluctuations near the wall, whereas pressure fluctuations 

are related to higher-order terms (see, e.g., Bewley & Protas, 2004), one might hypothesize that the 

surface response to the skin friction fluctuations of the flow should at least be comparable, in some 

averaged sense, to the surface response to the pressure fluctuations of the flow. In other words, 

a compliant surface, such as the tensegrity fabric, that can respond to both kinds of loads might 

present certain advantages. Motivated by this hypothesis, we have focused on tensegrity fabrics 

exclusively in this work.

1.1.2 Tensegrity fabrics: a new class of compliant surfaces

As mentioned in the abstract, the truss paradigm known as tensegrity is a stable preten- 

sioned collection of structural members always either under tension (“tendons”) or compression 

(“bars”). Such structures are often particularly mass efficient for bearing loads. Further, no individ­

ual structural member ever experiences bending moments. The same structural paradigm appears 

to form the molecular foundation for spider fibers (Ingber, 1997, 1998), which is nature’s strongest
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material per unit mass (several times stronger per unit mass than steel). In contrast with the spring- 

supported plate model, the tensegrity fabric is an inherently discrete structure with a relatively in­

volved topology. However, the calculation of the dynamics of the present tensegrity structure is 

straightforward when framed appropriately, as discussed in detail in §1.5.

Note that, with this work, we are not proposing tensegrity as a new model for viscoelas­

tic materials such as a rubber coating. Instead, we are exploring the possible development of an 

altogether new class of compliant surfaces. If our computations show that this type o f compliant 

surface holds promise for exhibiting drag reducing capabilities, we will then explore the manufac­

turability o f appropriately tuned tensegrity fabrics via extensions of existing textile technologies, 

incorporating compressive elements into the weave.

1.1.3 DNS models for channel flows with moving boundaries

This work performs a direct numerical simulation of an incompressible turbulent flow in 

a channel with deformable walls. A time-dependent coordinate transformation is applied to map 

the deformed channel into a regular domain. Similar simulations that compute the dynamics of 

incompressible channel flows with moving boundaries can be found in Rosenfeld & Kwak (1991), 

Carlson, Berkooz & Lumley (1995), Mito & Kasagi (1998), and Fulgosi et al. (2003); the rest of this 

section will review such related simulation codes. A new flow solver was developed from scratch in 

this work that is substantially different from these several existing codes in one manner or another, 

thus allowing us to tune the numerical code to be maximally efficient and accurate for the particular 

problem o f interest here.

Rosenfeld & Kwak (1991) presented a solution method for the incompressible Navier- 

Stokes equations in generalized moving coordinates. Their equations are in a contravariant form 

derived in the discrete setting using a finite volume discretization. Their method is appropriate for 

any general moving flow domain, with one of the validation cases being the laminar flow in a non­

periodic, two-dimensional channel with an oscillating bump on the wall. In the turbulent channel 

flow solver by Mito & Kasagi (1998), spanwise wall deformation is applied as a simple active 

open-loop control strategy to reduce drag. They also formulated their equations in a contravariant 

form obtained by casting the Cartesian equations into curvilinear coordinates. In their work, a finite 

difference scheme is used for all spatial derivatives.

In the present work, we employ a pseudospectral method to compute spatial derivatives 

in the homogeneous directions of the (spatially-periodic) channel flow, which is substantially more
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accurate at the resolution used than the finite difference or finite volume methods used by more 

general flow solvers.

There are other pseudospectral codes for flows with moving interfaces in literature. Carl­

son et al. (1995) developed a pseudospectral code to simulate the flow in a channel with a three- 

dimensional moving wall, and later applied the code to study the drag o f emerging obstacles on the 

boundary (see Carlson & Lumley, 1996a,b). Note that the contravariant formulation of the govern­

ing equations used in these works, which is quite involved, is slightly flawed, due to some missing 

terms in the temporal differentiation of the momentum vector in moving curvilinear coordinates (for 

further discussion, see Luo & Bewley, 2004).

In comparison, the present formulation is more straightforward. The coordinate trans­

formation in both our work and that o f Carlson et al. (1995) is nonorthogonal, as (for reasons of 

simplicity) the grid is deformed in the y  direction only. Due to this nonorthogonal coordinate trans­

formation, the contravariant formulation of the Navier-Stokes equation, as used by Carlson et al., is 

quite involved and expensive to solve. Thus, the present work uses a simpler Cartesian formulation 

of the governing equation, as described in detail in §2 .

Fulgosi et al. (2003) performed a pseudospectral direct numerical simulation of turbu­

lence in a sheared air-water flow with a deformable interface. In their work, the two-phase flow is 

confined to a channel, and the two time-varying subdomains containing each phase are mapped into 

rectangular domains, on which the transformed Navier-Stokes equation is solved using pseudospec­

tral techniques.

In both Carlson et al. (1995) and Fulgosi et al. (2003), the momentum and pressure equa­

tions are solved using Fourier/Chebyshev/Fourier spatial discretization techniques in the streamwise/wall- 

normal/spanwise directions. Thus, most of the terms in both formulations must be treated explicitly, 

except for the directly invertible part o f the Laplacian operator. In the present work, we choose a 

finite difference method to compute the derivatives in the wall-normal direction and solve the mo­

mentum equation in physical space. Although this approach is less accurate than a Chebyshev 

approach, it allows us to treat most of the terms in the governing equation containing wall-normal 

derivatives implicitly, even when these terms contain non-constant coefficients related to the geom­

etry. Thus, the method used in the present work has a less restrictive CFL constraint on the time 

step than explicit (Chebyshev-based) codes, at the cost o f a requiring increased grid resolution in 

the wall-normal direction to achieve a desired degree of accuracy.

To accommodate the interface motion of the flow, we also investigated the potential use
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of the immersed boundary method (Luo & Bewley, 2003). In the immersed boundary method, the 

flow domain is extended to immerse the irregular interface, a Cartesian grid is used over the entire 

extended domain, and a fictitious force is applied to the “flow” outside the physical part o f the flow 

domain in order to bring the flow to rest at the location of the irregular interface defining the actual 

flow boundary. In comparison with the coordinate transformation method, the immersed boundary 

method is fairly simple, as the numerical grid remains fixed even as the walls flex. However, when 

applied in a pseudospectral flow simulation code, as used in the present work, the immersed bound­

ary method was found to facilitate accurately only very small wall deformations. Larger deforma­

tions (greater than the wall-normal grid spacing at the wall) typically triggered Gibbs phenomenon, 

exciting small-scale fluctuations that grew and eventually destabilized the nonlinear simulation. 

Thus, though this method appears to be useful for the purpose of linear stability analysis, it was 

eventually abandoned for the purpose of nonlinear flow simulations in present work, in which wall 

deformations are greater than the wall-normal grid spacing.

1.2 Governing equation

1.2.1 Domain transformation

Defining r\u(x i ,x i , t )  and r\i(xi ,x^ ,t)  as the upper and lower wall displacements in the 

wall-normal direction from the respective nominal positions of the walls (x2 =  ± 1), and defining 

i'll =  (flu ~  r | / ) / 2  and flo =  (fl„ +  f l / ) /2 , the following time-dependent coordinate transformation 

may be used to map the irregular physical domain into a rectangular domain

xi = £ i

X 2 =  ^ 2 ( l + f l l ) + f l 0
(1-1)

*3 = ^ 3  

t = t,

where jt,- denotes the Cartesian coordinates and denotes the curvilinear coordinates. This domain 

transformation is illustrated in Figure 1.1. Note that the code developed in this work allows both 

walls to deform, as seen in some of the code validation tests reported in §4, though only the lower 

wall is deformed in the main compliant surface simulations reported in §7, as illustrated in Figure

1.1. Note also that we use the variables (x ,y ,z) and {x\ ,X2 ,x^}  interchangably to denote the stream- 

wise, wall-normal, and spanwise directions. The nominal domain size is Lx x Ly x Lz, where Lx and
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Lz are identified in the sections to follow and Ly — 2.

The incompressible Navier-Stokes equation that governs the flow system is

d u i  d u m  1 d p  d 2Ut

■& + a ^  =  ^ p 5 + v a 3 ‘ “  "J  J

dui
— -  =  0 
d X i  ’

(1.2)

where p is the (constant) density, p  is the hydrodynamic pressure, and v is the kinetic viscosity. 

Distances x,- are normalized by the half-width of the channel h, velocities m, are normalized by the 

mean friction velocity ux o f the corresponding turbulent channel flow with solid walls, and time t 

is normalized by h/u^. (Note that, where explicitly specified, the scaling is different for some of 

the code validation tests in §4.) The spatially-uniform pressure gradient in the x\ diection, Px, is 

adjusted in time to maintain constant mass flux in the physical domain. The Jacobian of the spatial 

transformation and its determinant are

dx

a l

\

1 0 0
dx? ()X2 dx?.
% i d b

0 0 1

j =
dx dx2

W l

Note that J  is independent of £2- The inverse spatial transformation matrix is

*
dx

I

\

\
1 3x7

Defining the nontrivial elements of the transformation as

d%2 d^ 2

< h = i r *

we may apply the substitutions

d_
dt
d_

dxj
d_

dx{

d d 
dt +(pTa ^ !

for i =  1,3, 

for i =  2 ,

to express the derivatives in (A.2) in terms of the new coordinates.

d ^ i+(Pid ^ 2

d

(1.3)
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Figure 1.1: Domain transformation.
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W2+<P/9,+(P?%

Figure 1.2: Cell transformation.

1.2.2 Choice of dependent variables

Velocity vectors in a curvilinear coordinate system may be defined as Cartesian vectors, 

whose bases are associated with the original (x) coordinates, or contravariant vectors, whose bases 

are associated with the deformed (£) coordinates. In either case, multiplying the Navier-Stokes 

equation by the transformation Jacobian determinant J  results in a governing equation in a strong 

conservation form which is favorable (for the purpose of momentum conservation) in numerical 

codes. However, using the contravariant form generally involves several additional terms to achieve 

the correct expression of both the temporal and spatial derivatives in a moving coordinate system; 

for further discussion of this approach, see Luo & Bewley (2004). The contravariant formulation 

thus renders the governing equation more involved and expensive to solve even in a relatively simple 

flow such as the present, in which the transformation only affects the wall-normal coordinate. In this 

work, therefore, we choose to represent the velocity vectors in Cartesian form, thereby simplifying 

the computation significantly.

To understand our choice o f primitive variables, consider the problem of mass conserva­

tion from finite volume point of view. Figure 1.2 illustrates the transformation o f a single computa­

tional cell. In the transformation used in this work, the vertical grid lines are not deformed by the 

transformation. As a result, among 6 faces o f  the cell indicated, only top face and bottom face have 

their surface normals inclined from the corresponding cartesian basis vectors. Horizontal flow (u\ or 

it3, in the x\ or X3 direction) will cause fluid to pass through both o f these faces. W hen considering 

the conservation o f mass in this cell, we may assume that all of its faces are stationary, as the effects
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of the cell’s motion are taken into account in the geometrical conservation law (see Rosenfeld & 

Kwak, 1991), which is satisfied by the analytical coordinate transformation (11.34). Thus, in the 

case of the top face (whose surface normal is 112), the volume flux out of the cell is

u - n 2 =  u - ( J ^ 3 x ^ - d t ,  1) = U2

W

(  d*2 \  
"36i
1

- f a l  \  db/

U2

\ « 3 /

^C Pl^

1

V<P3/

=  (Cpi/«i +M2 +  < P 3 ^ « 3 )^ 3 ^ i ,

where x denotes the cross product. Similarly, the volume flux through the positive x\ and ;t3 faces 

are
, dx r dx dx2

u ' H i  = U - ( ^ r - < ^ 2  X =  ■ ^ U \ d t >2d t )3 = M d t )2 d % 3 ,

u • n3 =  u • ( ^ - ^ 1  x ^ ^ 2) =  d ^ 2 =  J m  d^  d ^ 2'

To summarize, the volume flux through these three faces are Ju\ in the t,\ direction, m2 + ty\Ju\ +  

(p37 m3 in the ^2 direction, and J 113 in the £3 direction; the volume flux through the opposite three 

faces are analogous. Note that these three components form a vector which equals to the contravari­

ant velocity vector in the curvilinear coordinates multiplied by the volume dilatation factor J. To 

avoid using such a contravariant vector for the reason o f simplicity as described previously, and 

additionally avoiding the repeated application of this volume dilitation factor in the numerical code, 

we define the following Cartesian vector

and the modified pressure

qi = Ju\ 

q i = u2 

qs =  JU3

P =  J p /9

(1.4)

(1.5)

as the primitive variables in our numerical code. As a consequence, the q \-  and c/3-momentum 

equations are represented in strong conservation form due to their weighting by J. Requiring the 

net mass flux into each cell be zero, w e may write the continuity equation for this system as

r>f , d ( < P l 9 1 + 9 2  +  9 3 9 3 )  , 3 9 3 _ n
{qi) 9^1 d^ 2 ^ 3

(1.6)

where £>(■) denotes the divergence operator.
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With the aforementioned chain rules (1.3), the momentum equation in the new coordinates 

may be written as

where Ti(qi) is the term associated with the motion of the coordinates, N ^ q j)  is the convection term, 

Gi(p) is the pressure term, and Li(qi) is the viscous term. All four of these terms are written out in 

full in Appendix I. A.

To maintain a constant bulk velocity Ubuik, the necessary spatially-uniform stream wise 

pressure gradient Px is computed by integrating the u\ momentum equation over the entire physical 

domain,

1.2.3 Boundary conditions

Periodic boundary conditions are assumed in the streamwise direction (£ i) and spanwise 

direction (£3) for the dependent variables, {q,/5}, and the wall deformation functions, {r|u,r|/}. 

For most o f the cases (unless explicitly specified otherwise), no-slip and no-penetration boundary 

conditions are assumed at the two walls,

1.3 Numerical algorithm

The numerical algorithm used for solving the unsteady incompressible Navier-Stokes 

equation in this work is based closely on that in Bewley, Moin & Temam (2001), in which the 

flow in a rectangular channel is controlled by unsteady wall-normal blowing and suction. As in 

that work, a hybrid pseudospectral / finite-difference method is used for the spatial discretization, 

and a mixed Crank-Nicolson (CN) /  3rd-order Runge-Kutta (RK) method is used for the temporal 

discretization. Several additional considerations are necessary in present work, however, as the gov­

erning equation is considerably more involved due to the coordinate transformation that accounts

(1.7)

u\ dx 2 dx3 dx  1 =  constant

d Z i d ^<PlP +  VCPl
2 f J J d ^  d b

(1.8)

q\ =<?3 = 0 , at ^2 =  ± 1
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for the moving boundaries. In addition to the flow variables, the geometry-related time-varying 

coefficients, tp,■ and (pT, need to be spatially discretized. Further, not all terms involving derivatives 

in the wall-normal (^2) direction can be treated implicitly, as was possible in Bewley et al. (2001). 

For example, the terms with cross derivatives in the wall-normal direction and in one of the homo­

geneous directions (£1 or £3) must be treated explicitly. In addition, since the various Fourier modes 

can not be fully decoupled in the evaluation of the Laplacian, the pressure equation needs to be 

solved iteratively, subject to a boundary condition that is derived by imposing the incompressibility 

condition at the (possibly moving) walls.

1.3.1 Spatial discretization

The grid is chosen to be evenly spaced and non-staggered in the streamwise direction 

(4 i) and the spanwise direction (£3) so that spectral techniques may be used to compute spatial 

derivatives in these directions. In the wall-normal direction (£2), the grid is staggered and stretched 

using a hyperbolic tangent function, facilitating the grid refinement necessary to resolve the near­

wall region accurately (see Figure 1.1). The variables qi, (p;, and (px are discretized on the family of 

gridpoints j  =  0 ,1 ,2 , . . .  ,N Y ,  where j  =  0 corresponds to the lower wall and j  =  N Y  corresponds 

to the upper wall. The variables q\, <73, and p, on the other hand, are discretized on the family of 

gridpoints j  — 1 +  ^ ,2  + j , . . .  ,N Y  -  5 , where the gridpoint j  =  n -  \  is midway between the

gridpoints j  =  n — 1 and j  =  n, i.e.,

Correspondingly, two grid spacing families are defined as 

A^2 =  ^2,n — ^2,n-l,

A^2,„ =  £2, n + l ~ k n - l  =  \  ( A^2„+* + A^2 ,« -j) ■

Second-order accurate linear interpolation is used to interpolate a variable a discretized 

on the n family of gridpoints onto the n — 5 family,

1 ,an~ 1 = - { a n +  an- 1) , 

and to interpolate a variable b discretized on the n — ^ family onto the n family,

=  2 A ^  ( ^ 2 , n ~ \ b 2}n + \  + ^ 2 , n + \ b 2 ,n -  i  )  ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

With the arrangement of the discrete variables on the numerical grid as described above, 

the three components of the momentum equation are enforced at the gridpoinjts at which the cor­

responding velocity components are discretized, and the continuity equation is solved on the cells

differentiation in the £,• direction. All derivatives in the and £3 directions, with corresponding

script 5 is used to emphasize that the derivative is computed spectrally. The derivatives in the ^2 

direction are computed with quasi-second-order accurate centered finite difference formulae which 

approach second order accuracy as the grid is refined when the stretching function is held constant. 

Specifically, the terms in the equation (1.7) are discretized as follows, where the rotation indices are 

i =  1,3 and j  =  1,3 and summation notation is implied:

•  The terms associated with the motion of the coordinates:

centered at the pressure points. We use the notation to denote a numerical approximation of

wavenumbers kx and kz, are computed in Fourier space, i.e., =  ikx a and =  ikza, where

i =  the hat (~) indicates the Fourier transform in the appropriate direction(s), and the sub-

T. (tpT*7i)rt (tPr^iOn-l

•  The convection terms:

N:
8*(<P2 q i q j ) n.

+  <P2<Py\
8*(<P2tf297')n

K j

{Q2 Q2 )„+> -  { m 2 )„_ > 
+  (P2 ------------ 7E-------------- 1

•  The pressure gradient terms:
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•  The viscous terms:

L- i =

+

+

i

+

A k n - i

1

A^ , » - |

c p |

<Pj,« - 9 j , n - l
8j9i,n-l
~ w

9 ; ,n
(9j9.-)n+ I — (<pjgi)„-l

A^ 2 ,n
• 9  j , « - r

A 2,n :

+

+

A ^ n -

&s_

9  j,n

A ^2 ,n

9  j,n

A^2 , n

92
A^2,/t

9,,,/l+ *

A^2,n

S,s92,/i , 92,n+l 92,n—1
i % r + n " 2A52„

^ 2,«+| ^ 2 ,n-

-  q2,n+l~q2,n _  92,n -  92,ft 1
■/’"+ 2 A£- i52,n+j

92,n+l “  92,n 92,n ~  92,/i-l

A ^2,„-

A^2,„+ I Ak n - i

Note that, in the expression for Lin_ 1 (for i =  1,3), one-sided finite differences are substituted to 

approximate the first order derivatives at each wall.

The discretization of the continuity equation (11.26) is

( ( p i 9 1 + g 2 +  9 3 9 3 ) « - ( 9 l 9 l + 9 2  +  9 3 9 3 ) n - l  , S ‘v ? 3 , n - i  „  m
i> te) , -J = - 5E-  + ----------------------^ ----------------------- + - 8 5 -  0-9)

For consistency, the discrete version of the Laplacian operator (1.27) is obtained by taking the dis­

crete divergence of the discretized pressure gradient. That is,

£(/>)„_, = D { G i ) n_ h

( t p iG i + G 2  +  93G3)n -  ( 9 1 ^ 1 + G 2  + 9 3 G 3 ) n - l
■ + +  ■

S^G3,«-i (1.10)

8 S1 A^2,„-> 8^3 ’

Note that, although the continuous form of the Laplacian operator in the Poisson equation for the 

pressure is the same as the continuous form of the Laplacian operator in the streamwise and span- 

wise momentum equations, L\  (■) and L3(■), their discretizations as defined above are different. The 

discretized Laplacian operator in the pressure equation involves 5 pressure nodes in the wall-normal 

direction, whereas the discretized Laplacian operator in the momentum equation involves only 3 

nodes.
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1.3.2 Temporal discretization

A low storage 3rd-order Runge-Kutta (RK) scheme is used to advance the flow from time 

step m  to the next step m +  1. At each RK substep k ( k  =  1, 2, or 3), a fractional-step method (Ak- 

selvoll & Moin, 1995; Bewley et a l ,  2001) is used to march the flow and project the flow field onto 

a divergence-free subspace. In this paper, we use superscript k  to indicate the intermediate RK time 

level, not the full time step. Therefore, qt=0 corresponds to q at time step m, and q*=3 corresponds 

to q at the next time step m +  1 .

In the fractional-step method used, on each RK step an intermediate flow field, q*, which 

is non-divergence-free, is first solved with the pressure accounted for explicitly. Other terms are 

split into two groups —  one group is computed explicitly, the other implicitly. This is done to relax 

the time step restriction related to the stability of explicit codes while maintaining accuracy. Let 

the operator A; represent the terms treated explicitly and fi, represent the terms treated implicitly 

in the Navier-Stokes equation, and let At  denote the time interval for a full timestep (that is, 3 RK 

substeps). The first step of the fractional-step method at each RK substep may then be written

p* ( f l f o p  + B \ - \ qy 1))  + %A ?-1( ^ - 1) +  b A * - 2( $ - 2)

2 pt ( - G * ( / - V S h / P , ) ) ,

A t \  —  • - /  ■ - • -  ( L 1 1 )
+  .  /

where Pi, and are the RK coefficients, and the operators are given in detail in Appendix I.B. 

Note that when k  =  1, q* is computed using current flow field information qi=0 only, since C,\ — 0; 

we thus refer to this as a self-starting scheme.

Some nonlinear terms in (1.11), while involving derivatives in the wall-normal direction 

only (such as in the q \ -momentum equation, (pi and tp3 in the ^-m om entum

equation, and 5(f>1g| 29l‘?3 in the (^-momentum equation), are nevertheless treated explicitly. This is 

done to decouple the three momentum equations, which are first solved for q*2, then for q\,  and 

finally for q \. If the wall deformation is small (i.e., (pi and (p3 are near zero), explicit treatment 

of these terms will not affect significantly the time step restriction. Other nonlinear wall-normal 

derivatives may be linearized (subject to second order error) according to:

q'jq 'j^ Iq - jq )  1 q) ' q) l .

Further details of solving (1.11) may be found in Appendix I.B.

Since the intermediate velocity field, q*, is a second order approximation of the solenoidal 

velocity field q* (Akselvoll & Moin, 1995), we may use the same boundary conditions for both q*
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and q*, simplifying the numerical code. These boundary conditions are obtained by simple linear 

interpolation onto the RK substep k  of the boundary conditions at two consecutive time steps.

The second step o f the fractional-step algorithm at each RK substep is to solve a projection

where the discrete form of the Laplacian operator is given by (1.10). This projection is used to make 

the velocity field divergence free. The Poisson equation is solved in Fourier space. Note that the 

product of the non-constant coefficients (p, and the pressure update <|) in physical space produces 

convolution sums in the Fourier space, coupling the equation at all wavenumber pairs and making 

the Fourier transform of the Laplacian difficult to invert. We thus split the Laplacian operator into 

two parts. The terms with the various Fourier modes decoupled are treated implicitly, and the rest 

are treated explicitly. The equation is then solved iteratively,

where s is the iteration index. The equation converges quickly when the wall deformation is small. 

In present work, it typically takes 10 iterations or less for the accuracy to be satisfactory. After (j> 

converges, the flow field and pressure are updated by

1.3.3 Pressure equation

In present problem, the boundary velocity is unsteady. At the beginning of each timestep, 

k  =  0 , the desired boundary condition on cj2 o f the end of the time step is either prescribed (as in 

some of the test problems in §1.4) or obtained by marching the evolution equation for the compliant 

surface over a single timestep (based on the current skin friction and pressure forces applied by the 

flow), and is then linearly interpolated onto the three RK substeps to obtain the boundary condi­

tions for each substep. Thus, the time rate of change of the fluid velocity at the wall (that is, the 

acceleration o f the wall), wau, which is approximated with a simple two-point finite difference, 

is held constant for RK substeps k  =  2 and k =  3, but changes at k =  1. Consequently, there is

equation for the pressure update § =  p k — p k 1 based on the divergence of the intermediate field:

=  RH S 5- 1 =  y ^ D k(q*) -  ( L k -  L) (<r *), (1.12)

qk =  q * - 2 m G km (1.13)

and

(1.14)
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a change in the boundary condition for the pressure at the beginning of each timestep. In order 

for q* to be an accurate approximation of qi=1, we update the pressure at the beginning of each 

timestep to accommodate this change in the boundary condition on the pressure, before marching 

over first RK substep. To do this, we could solve a full pressure Poisson equation at the beginning 

of each timestep using a consistent discretization (that is, imposing the discrete divergence opera­

tor on the discrete momentum equation, as described in Luo & Bewley (2004)). However, for the 

current problem with a 3D time-dependent coordinate transformation, such a Poisson equation has 

a cumbersome right-hand-side forcing term which is expensive to compute. Thus, we instead solve 

an additional projection equation, subject to zero forcing on the interior but a non-homogeneous 

boundary condition, and perform an additional pressure update at the beginning of each timestep.

Orszag, Israeli & Deville (1986) and Gresho & Sani (1987) have shown that the Neumann 

boundary condition implied by projection of the momentum equation onto the surface normal vector 

n2, i.e.,

is an appropriate boundary condition for the pressure equation in this type of problem.

To apply this boundary condition, we first derive the discrete form of (1.15) for Vp ■ n2 by 

imposing the discrete divergence operator on the discrete momentum equation at the boundaries and 

applying the incompressibility condition. We then calculate the change o f Vp • n2 at the boundaries

use this change to determine the boundary condition on an additional pressure update equation 

(a Laplace equation with inhomogeneous boundary conditions) solved at the beginning of each 

timestep. (As the velocity field is already divergence free at this point, the RHS forcing on the 

interior o f this equation is zero.) As this approach is both new and a significant factor in the accuracy 

o f the resulting code, though it is somewhat involved, the relevant equations are described in detail 

in Appendix I.C.

u • Vu +  vV u • n2 (1.15)

induced by a change in the wall velocity (which happens at the beginning o f each timestep), and
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1.4 Code validation

We now apply the code discussed in the previous section to reproduce several existing 

results in the published literature for both laminar and turbulent channels flows with both stationary 

and moving walls in order to validate the accuracy o f the new code.

1.4.1 Laminar flow through a sinusoidal channel

In the first test, we consider the laminar flow in a two-dimensional symmetric channel 

whose walls are sinusoidally deformed in the streamwise direction, that is,

fl/ — —Tin =  ecos(xi),

where e -C 1 is the deformation amplitude. With the domain transformation used by the present 

code, this flow is solved in a fixed curvilinear coordinate system. This problem has been solved 

analytically for Reynolds numbers far above that of creeping flow in Tsangaris & Leiter (1984) 

using a perturbation method to derive an asymptotic solution via a series expansion in 8 of the 

stream function, truncated to the first-order terms. This result was reproduced numerically in Luo & 

Bewley (2004) using a 2D contravariant formulation of the Navier-Stokes equation, showing fairly 

close agreement with the asymptotic solution of Tsangaris & Leiter for deformation amplitudes up 

to 8 =  0.2 and Reynolds numbers up to Re =  400.

In the present section, we attempt to reproduce the asymptotic flow solution result using 

the new code (based on a 3D Cartesian formulation), at both low Reynolds numbers (Re <  400) 

and small deformation amplitude (e =  0.1), for which the asymptotic solution of Tsangaris & Leiter 

(1984) and the numerical solution of Luo & Bewley (2004) match almost exactly.

The flow parameters tested are listed in Table 1.1, which are the same as those in the first 

test case of Luo & Bewley (2004), except that we now use a 3D grid (albeit very coarse in the 

spanwise direction). Note that, in this subsection, the Reynolds number is based on the centerline 

velocity Uc and channel half width h, that is, Re =  Uch /v ,  and all velocities are normalized by Uc and 

distances normalized by h. Figure 1.4.1 shows the comparisons of the velocity profiles for u\ and 112 ■ 

It can be seen that the numerical simulations agree very well with the asymptotic results when Re is 

small, with very slight discrepancies becoming evident as Re  is increased. Further, the discrepencies 

with the asymptotic result are almost identical to those exhibited by the numerical solution computed 

in Luo & Bewley (2004) using a (completely different) 2D contravariant formulation, indicating that
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Flow parameters Domain size No. Fourier modes (dealiased collocation points)
Re =  1 ,10,75,200,400 ) Lx — 2  7t =  32(48)
e =  0.1 Ly =  2 Ny — 64

Lz =  n IIa?

Table 1.1: Simulation parameters for the laminar flows through a sinusoidal channel.

these discrepencies are in fact due primarily to the breaking down of the validity of the asymptotic 

solution, not an inaccuracy of the numerical solution.

For small Reynolds numbers, the flows are dominated by viscous effects, and the velocity 

profiles are smooth, almost parabolic curves, as shown in Figure 1.4.1. For Re =  1, the vertical 

velocity is near zero at the throat o f the channel (x\ =  0 ), indicating that the flow in the converging 

section of the (periodic in x \ ) channel loses almost all o f its vertical momentum by the time it reaches 

the nozzle throat. As the Reynolds number is increased, inertial effects become more significant, 

and not all of the vertical momentum is lost by the time the flow reaches the thorat, leading to 

slightly negative values of U2  aXx\ = 0  (for X2 >  0) as shown. For larger Re, the extremum o f the 

^ -p rofiles  shift toward the wall due to heightened inertial effects. Further, in the diverging parts o f 

the channel, the u \-profiles are less steep near the walls, indicating that separation is imminent; see 

Luo & Bewley (2004) for additional plots o f this flow in the separated regime.

1.4.2 Three-dimensional laminar flow over a bump

In the second test, we consider a channel flow passing over a 3D Gaussian bump on 

the center of the lower wall, as depicted in Figure 1.4. A similar flow was originally simulated 

by Mason & Morton (1987) using a Blasius boundary layer as the mean flow and a bump defined 

using a cosine function. Carlson et al. (1995) introduced a slightly modified test flow to validate 

their pseudospectral channel flow code. In both Carlson et al. (1995) and the present tests, the 

undisturbed flow profile is taken to be a laminar channel flow, and the bump is defined by a Gaussian 

function, which is a bit smoother than the cosine function used by Mason & M orton (1987). The 

bump is defined by

v\i{x\,X2) =  6 exp

The parameters used for the simulation are listed in Table 1.2. The flow is initialized at 

t — 0 as laminar channel flow with the bump absent. For t > 0, the bump starts to grow in amplitude 

until it reaches its final shape at t =  5h/Uc, during which time fluid is extracted over the upper wall
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Figure 1.3: Velocity profiles (normalized by Uc) at various cross sections (jci =  0 ,1 ,2 ,3 ,4 ,5 ,6 ) o f the channel for steady flow with e =  0.1 and 

various Reynolds number. Left: u\ component; right: 1/2 component. Solid: numerical results (using the present 3D Cartesian formulation); dashed: 

perturbation analysis.
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Figure 1.4: Domain of the laminar flow over a 3D Gaussian bump.

Flow parameters Domain size No. Fourier modes (dealiased collocation points)
Re =  2083 ( ^ p )  L.Lx — 7t 

Ly =  2

Nx =  64(96) 
Ny =  95 

Nz =  32(48)
8 =  0.12 
0  =  0.18

Table 1.2: Simulation parameters for the laminar flow over a 3D obstacle.

at the appropriate rate to maintain incompressibility. All visualizations reported in this section are 

taken at t =  30h /U c.

Two cross flow planes located at x\ =  1.28 and*] =  1.87 (see Figure 1.4), where the bump 

height is dimenished to about 0.07e, are chosen to study the flow behavior upstream and downstream 

of the bump. The flow patterns and streamwise vorticity in these two planes are shown in Figures 

1.5 and 1.6. On the upstream side, the approaching flow is diverted to the two sides and lifted by the 

bump; on the downstream side, the flow converges to fill the region behind the bump. Qualitatively, 

the streamwise vorticity distributions in these two planes are almost identical to those reported by 

Carlson et al. and M ason & Morton. Normalized by the local length scale e and the local velocity 

Ui, defined as the mean velocity of the laminar flow that would exist at a distance e away from the 

wall in the absence of the bump and given in laminar channel flow by

the maxima/minima of the streamwise vorticity are located at the wall and given by ± 0 .9 9 f///e  in
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Figure 1.5: The velocity vectors (up) and the streamwise vorticity contours (down) in plane A (up­

stream of the bump). Positive/negative values of the vorticity are denoted by solid/dashed lines. An 

outline o f the maximum extent of the bump (situated further downstream) is also indicated (solid).

plane A  (upstream) and ±0.55(7//e  in plane B (downstream). These values are only slightly different 

from the corresponding values of ± 0 .9 1 f///e  (upstream) and ±0.61 (7//e (downstream) obtained by 

Carlson et al., who did not specify the exact locations of the analysis planes they reported. The 

corresponding results reported by Mason & Morton, who considered a perturbed Blasius boundary 

layer flow instead of a perturbed laminar channel flow, are ±0.88(7//e (upstream) and ±0.64(7//e  

(downstream).

The pressure disturbance field on the lower wall o f the channel is projected onto a hor­

izontal plane and depicted in Figure 1.7. The pressure on the leading side of the bump reaches 

a maximum of 0.46p(/;2, and drops to a minimum value of —0.97pU f  near the crest as flow ac­

celerates to divert around the bump. The egg-shaped positive contours and bean-shaped negative 

contours on the obstacle are qualitatively similar to those reported by M ason & Morton, where the 

maximum value of the wall pressure is 0.60p Uf.  The pressure contours far from the obstacle in 

Figure 1.7 are different from those reported in Mason & Morton, as periodic boundary conditions 

are used in the horizontal directions in the present work, but not in Mason & Morton (1987). The 

streamlines in the streamwise symmetry plane in Figure 1.7 indicate that there is a region of flow
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Figure 1.6: The velocity vectors (up) and the streamwise vorticity contours (down) in plane B (down­

stream of the bump). Positive/negative values of the vorticity are denoted by solid/dashed lines. An 

outline o f the maximum extent of the bump is also indicated (dashed).

separation behind the bump, as also observed in Mason & Morton.

1.4.3 Moving-boundary test

In the third test, we consider a (2D) flow with a moving boundary. As the present code 

is written to accommodate wall compliance, it is necessary to validate this code in test flows with 

moving boundaries. Unfortunately, there are very few fundamental test flows of this sort available 

in the literature for comparison. In previous work by our group, Luo & Bewley (2004) performed 

simulations of a laminar flow through a two-dimensional channel with an oscillating Gaussian bump 

using the (involved) contravariant formulation of the Navier-Stokes equation which is completely 

different from the present code (which is formulated with Cartesian vectors). We will use this result 

to validate the present code in the moving-boundary case.

Consider the laminar flow in a 2D channel with an oscillating Gaussian bump whose 

motion is prescribed by
(x\ — L-)^ 

r\i {x\ , t) =  8 sin (cor) exp 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

0.5

0.5 2.5
X 1

- 0.8

-0.85

n’'1 -0.9

-0.95

0.5 2.5
I

Figure 1.7: Up: surface pressure disturbance field projected vertically on to a horizontal plane where 

negative values are denoted by dashed lines; down: the streamlines in the streamwise center plane.
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Flow parameters Domain size No. Fourier modes (dealiased collocation points)
Re =  200 ( ^ ) Lx — 71 A , =  42(64)
e =  0.1 Ly =  2

OOliaT

a  =  0 .2 Lz =  n Nz =  4(6)

Table 1.3: Simulation parameters for the laminar flow over an oscillating bump.

where s  is the maximum amplitude of the bump, co is the oscillation frequency, and a  is a constant 

parameterizing the length of the bump. The bump is uniform is the spanwise direction, so the lam­

inar flow is two dimensional. In order to maintain incompressible flow, the upper wall is assumed 

to be penetrable and the normal velocity of the flow at the upper wall is taken to be identical to the 

vertical velocity of the lower wall. The simulation parameters are listed in Table 1.3.

Two simulation results are presented, one with slow wall motion, co =  0.5 and the other 

with faster wall motion, to =  4. In Figures II .6  and II.7, the instantaneous streamlines and pressure 

are compared with the results from Luo & Bewley (2004). As seen in Figures II .6 and II.7, in both 

simulations, the agreement between the two codes is excellent. Several symmetries o f the present 

(3D) code in the moving boundary case were also checked by aligning this (2D) flow and bump in 

various directions. For further discussion of the physics of this flow, see Luo & Bewley (2004).

1.4.4 Turbulence over a stationary wavy wall

In the fourth and final test, we consider the problem o f flow over a wavy wall in the 

turbulent regime. Turbulence over a wavy wall has been studied both theoretically and experimen­

tally in many investigations; see, e.g., De Angelis et al. (1997), Ohta et al. (1998), Zilker et al. 

(1977) and Zilker & Hanratty (1979). Due to the existence of a periodic variation o f the streamwise 

pressure gradient in such flows, the flow in this geometry displays certain characteristics that are 

not found in plane channel flow. Flow separation regions may be formed behind the crests if  the 

amplitude-to-wavelength ratio is large enough. In this test, two simulation results are presented, 

one for which this ratio is moderate, causing intermittent separation regions, as was studied by Ohta 

et al. (1998), and the other for which this ratio is large, causing stationary separation regions, as 

studied by De Angelis et al. (1997).

In the first simulation, the geometry considered has a flat top wall and a rippled bottom 

consisting of one wave, with rp (x i) =  —ecos(2 tix/L x) where e is the wave amplitude. Parameters 

used in the test are given in Table 1.4. Note that the friction velocity wT used for the definition of Rex
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Figure 1.8: Flow at Re  =  200 passing over an oscillating Gaussian bump uniform in the span- 

wise direction with the oscillation frequency co =  0.5 at t  =  3.0h/U c- Left: instantaneous stream­

lines \|/; right: pressure contours. Solid: 3D simulation; dashed: results from Luo & Bewley 

(2004). Quantification of error: |j\|/crror||2 / 1|\ | / ||2 =  1.4e -  04; max£i(\|/error) /  ||\g ||2 =  2.2e -  04; 

ll£ W -||2 / ! |p ||2 = 2.2e-03-,ma.XQ.(perror) / \ \p \\2 =  8 .7 e -0 3 .

xw -0 .5

0 0.5 1 1.5 2 2.5 3

xw -0.5

0 0.5 1 1.5 2 2.5 3
x .  x .

Figure 1.9: Flow at Re =  200 passing over an oscillating Gaussian bump uniform in the span- 

wise direction with the oscillation frequency co =  4 at t  =  1 .8/i/f/c. Left: instantaneous stream­

lines V|/; right: pressure contours. Solid: 3D simulation; dashed: results from Luo & Bewley 

(2004). Quantification of error: ||'M/erro/-1|2 /  llvll2 =  3-8e -  04; max£j(\jcerrof) / , "n 2  =  1.5c -  03; 

||Pe/-ror||2 /  \\pW2 =  4 -2e -  °3; maXaiPerror)/ \ \ p \\2 =  2-5e ~  02-
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Flow parameters Domain size No. Fourier modes (dealiased collocation points)
Rex =  150 Lx =  2 .5n N x =  64(96)
e =  0.1 Ly =  2 Ny =  94

L z =  1.25ji N z =  64 (96)

Table 1.4: Simulation parameters for the turbulent flow in a wavy channel with a moderate slope.

- 0.1

-1 -

Figure 1.10: Instantaneous contours of shear stress on the wavy wall. Dashed lines indicate positive 

values, and solid, dense lines indicate negative values where the flow separates.

in this test is defined with the averaged total drag on both walls, including the pressure drag caused 

by wall curvature. The amplitude-to-wavelength ratio is e /L x =  0.013. The grid resolution in each 

direction, in units of v/wT, is A£+ =  12.3, =  0.71 ~  5.9, and A£j" =  6.1. The time step is 0.002

normalized by h /u T, or 0.3 normalized by v / u x, resulting in a CFL number of about 0.6.

Figure 1.10 shows the instantaneous contour plot of the streamwise shear stress on the 

wavy wall. The negative shear stress contours (solid lines) indicate the regions where flow separates 

from the wall. In animations of this simulation, these separation regions appear intermittently, and 

are located randomly in the spanwise direction but mostly behind the wavy crest in the streamwise 

direction.

The spanwise averaged skin friction of the flat (upper) wall X/, the skin friction of the 

wavy (lower) wall xw, and the form drag on the wavy (lower) wall p wx are plotted in Figure 1.11, 

where the form drag is caused by pressure forces and is calculated by p wx =  —pcpi p. These quanti-
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Flow parameters Domain size No. Fourier modes (dealiased collocation points)*—HIIsoas Tx — 2  7i A, =  84(128)
e =  0.052 Ly = 2 Ny =  128

Lz =  n N z =  84(128)

Table 1.5: Simulation parameters for the turbulent flow in a wavy channel with a larger slope.

ties agree with the results o f Ohta et a l  (1998) well by visual inspection. In both the present results 

and Ohta etal.  (1998), the time-averaged shear stress on the wavy wall, xw, is always positive along 

the channel, which implies that the time-averaged flow does not separate from the wall, although 

there is often instantaneous local flow detachment, as shown in Figure 1.10.

Figure 1.11 shows the spanwise-averaged and time-averaged pressure coefficient Cp (aver­

aged pressure normalized by p u\), the non-dimensional pressure gradient P (normalized by pu \ /v ) ,  

and the local friction velocity uXf  — y / x j j p / u x on the flat wall. Comparing these quantities with 

Figures 6  o f Ohta e t a l ,  only shows minor visible differences. From Figure 5 o f Ohta e t a l ,  

the integral o f the drag over the flat and wavy walls, T f  = ^ xX fd x /p u \L x and Tw = f ^ x xwd x /p u xLx 

respectively, are both slightly less than 1, with additional form drag, D f orm =  p wxd x /p u xLx, on 

the wavy wall as the rest portion of the averaged overall drag. This is confirmed in our work, where 

T f  w 0.92, Tw ps 0.92 and D f orm rs 0.16. (Note that the average value of (m̂ / ) 2 over the channel 

in Figure 6  of Ohta e t a l  seems to be greater than 1, which appears to be inconsistent with their 

reported value of T f.)

Our second simulation is compared to case S2 in De Angelis et a l  (1997), where the 

amplitude-to-wavelength ratio is e/A, =  0.05. The simulation domain contains 6  periods o f wall 

oscillations. Table 1.5 lists the simulation parameters. The Reynolds number Rex =  171 is based on 

the mean shear velocity ux, which is defined using the total drag in the channel. To be consistent with 

De Angelis et a l ,  we also use a constant mean pressure gradient which maintains the corresponding 

regular channel flow at the same Reynolds number to drive the flow. The grid resolution in each 

direction, is A£+ =  8.4, =  0.58 ~  5.0, and =  4.2. The time step is At+ =  0.26 and the

corresponding CFL number is about 0.7.

Figure 1.12 shows the respective comparison of profiles o f pressure and shear stress on 

the wavy (lower) wall, which show that our results match those of De Angelis et a l  very well. 

Negative shear stress at the valley of each wave indicates consistent flow separation in that region. 

Small discrepancies are unavoidable since in De Angelis et a l  the upper wall is assumed to be a 

slip wall and thus their channel (after appropriate scaling) is not exactly equivalent to the the lower
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Figure 1.11: Up: spanwise averaged components of drag on the walls. T f  friction stress on the flat 

wall; xw: friction stress on the wavy wall; p wx: form drag on the wavy wall. Down: friction velocity 

u+j, pressure coefficient Cp and pressure gradient coefficient (3 along the flat wall.
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Figure 1.12: Spanwise averaged pressure (up) and shear stress (down) on the wavy wall with the 

amplitude-to-wavelength ratio o f 0.05. Solid: our simulation; dashed: simulation from De Angelis 

etal.  (1997).

half channel in our work, as our upper wall is a no-slip flat wall and the mean shear stress at the 

center plane is not exactly zero.

1.5 The compliant surface model: tensegrity fabric

1.5.1 Introduction

The compliant surface model we consider is based on a special structural paradigm known 

as tensegrity, as mentioned previously. Invented by Buckminster Fuller and often realized in cre­

ative artwork, tensegrity structures have been extensively characterized in the work of Skelton et al. 

(2001). This and related work have characterized the geometry, statics, dynamics, controllability, 

deployability, and many other interesting characteristics o f these interesting structures. One partic­
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ular class o f tensegrity of interest in the present work is the plate-class tensegrity structure, which is 

formed by joining stable tensegrity unit cells together so that they tile the plane (Masic & Skelton, 

2002). Figure 1.13 shows the top views o f different possible unit cells interconnected to form a plate 

by attaching certain nodes of a cell to the tendons of its adjacent cells and conversely, attaching cer­

tain nodes o f the adjacent cells to its tendons. Further details about the geometry and equilibrium 

conditions o f such structures can be found in Masic & Skelton (2002). With slight modifications, we 

extended the four-bar plate class tensegrity structures shown in Figure 1.13 to form our compliant 

surface model, as described below.

The tensegrity fabric, which is our compliant surface model, is formed by simply extend­

ing periodic pattern of a plate-class tensegrity infinitely in plane and fixing its bottom nodes on 

ground. In present research, we choose to study 4-bar-unit configuration only since in this paradigm 

the two periodic directions are perpendicular, which is consistent to the canonical rectangular flow 

domain. The geometry o f a fabric unit cell at equilibrium is illustrated in Figure 1.14. Both the 

fixed base and flexible top of the cell consist of four nodes which form two identical squares in 

parallel planes. The two squares are twisted such that the angle between them is a  =  | .  There 

are four horizontal tendons connecting the top nodes, and another four vertical tendons connecting 

the top nodes and base nodes. The geometry of the cell may be determined by the radius of the 

squares, r, and the distance between the squares, hc. Other parameters can be derived from r  and 

hc. For example, the bar length is lb — ^ h 2 +  ( 2 + V 2 ) r 2, the edge of the squares is a =  s / l r ,  and 

the vertical tendon length at equilibrium is lv =  \ ] h 2 +  {2 -  \ /2 ) r2. To maintain equilibrium, the 

bar force /* , the vertical tendon force / v, and the horizontal tendon force fa  satisfy the condition 

II/*II: ll/vll : II//,II — Ib'-lv'-r. Note that the direction o f each force is parallel to the corresponding 

structural member, and that fa  is compressive force and fa and fh  are tensile forces.

Figure 1.15 shows geometry o f the two neighboring unit cells connected to each other. 

Node 1 on the top o f cell B  is attached to tendon 7j of cell A, and node 2 on the top o f cell A is 

attached to tendon Tz o f cell B. The overlapping portion of the two tendons, 7j and Tz, is such that 

the base edges of the two cells are overlapping as well. As a matter o f fact, in a 4-bar plate-class 

tensegrity where the bottom tendons are present, the overlapping structural elements at the base 

are attached in the same manner as those on the top. In this 4-bar unit configuration, the ratio of 

overlapping portion, ao, to the total length of T\, a, is a constant, ao/a  = 2 — \f2 .  In the same 

way, a unit cell is connected to four neighbor cells in a tensegrity fabric, and each cell would stay 

in equilibrium and preserve its original geometry. When two tendons overlap at some portions,
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Figure 1.13: tensegrity cells and their corresponding plate-class structure. Left: 3-bar-unit configuraton; middle: 4-bar-unit configuraton; right: 

6 -bar-unit configuraton.
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Figure 1.14: A 4-bar-unit tensegrity cell. Left: an oblique/perspective view; right: top view.

Cell B,Cell A

Figure 1.15: Connection of two unit cells. The bottom is indicated with dashed lines.

the overlapping portions may reduce to a new tendon with the tension equal to the sum of the two 

tendons’ forces.

By designing the fabric in such a manner, failures o f individual members do not com­

promise the integrity of the entire tensegrity fabric, but simply lead to a modest deformation o f the 

nearby cells, thus providing robustness in the overall system.

1.5.2 Dynamics of the tensegrity structure

Prof. Skelton’s group have done extensive study on dynamics o f general type o f tensegrity 

structures. We now slightly modify their work and extend it to the tensegrity fabric.

In order to derive the equation for dynamics o f the entire interconnected tensegrity fabric, 

we first consider a single bar of length lb and linear density pb with one node subject to force f 

(Figure 1.16) and the other node fixed. The two orientation angles, 0 and p are used to describe

0
the position of the bar q

<t>
. The inertia about the fixed node is IQ =  By the angular

momentum conservation law, we may easily derive the bar’s dynamics,

M(q)q + C(q,q)q = tf(q)f, (1.16)
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X,

Figure 1.16: Dynamics o f a bar with one node fixed, 

where M  is the inertia matrix given by

lo 0
M (  q) =

0  Ia sin 0

C (q ,q ) is the Coriolis and Centripetal matrix with C (q ,q )q  given by

- \ l 0  sin(2 0 ) <j>2 

/o sin(2 0 )<j)0

(1.17)

(1.18)C(q,q)q

and the matrix H  is given by

cos 0  cos*  cos 0  sin* — sin0 
H ( q )  = lb (1.19)

— sin0 sin <)> sin0 cos<|> 0

Consider now a multiple-bar system consisting o f Nb bars. We now add the subscript i to 

all of the quantities associated with the /’th bar, then combine the equations for all o f the bars and 

rewrite them in a compact form. To start, we make the following definitions:

M(q) =  BlockDiag[M \ , . . .  ,M,-,. . .  ,M N„]

(1.2 0 )

H(q) =  BlockDiag[H\ HNb\

C(q,q)q = [(C(q, ,qi)qi)r , ... ,  (C(q,-,q,-)q/)7',... ,  (C(q/v.i,,q^)qNJ 7']r .

Note that, from here forward, q, f are redefined for the entire multiple-bar system, as indicated 

above. We may now express the dynamics of the multiple-bar system in the form

M(q)q +  C(q,q)q =  H(q)f. (1.21)
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4

6

(a) (b)

Figure 1.17: A 3-bar tensegrity unit cell, (a) Oblique view (with node 6  closest to viewer and node 

5 farthest from viewer), (b) top view (with nodes 2, 4, & 6  closest to viewer and nodes 1, 3, & 5 

farthest from viewer).

1.5.3 Interconnection of the multiple-bar system

In a tensegrity structure, the bars are interconnected by tendons. In the dynamical equation

(1.21), this interconnection appears in the calculation of the nodal force vector f as

where S is the connectivity matrix, f, is the tendon force vector, and fe is the external force vector 

acting on the nodes (in our case, generated by the flow). The connectivity matrix S, whose elements 

consist only of l ’s, - 1  ’s, and 0 ’s, defines to which two nodes each tendon is connected.

To show what the connectivity of the structure means and how the nodal force is computed 

from the tendon force based on the connectivity, we now illustrate with a simple 3-bar unit tensegrity 

cell whose nodes are free of constraint, as depicted in Figure 1.17. In a tensegrity fabric, the principle 

of connectivity for the free nodes and the way to use connectivity to calculate forces on free nodes 

are exactly the same as in the example. There are 3 bars (B\ to Bj),  6  nodes, and 9 tendons (7) to 

Tcj) in this cell structure. Denoting Nb as number of bars, Na  as number o f nodes, and N t as number 

of tendons, we have Nb =  3, Na =  6 , and N, =  9 in this example. Note that in a typical tensegrity 

system, we require that there are no bar-to-bar connections, so the number o f nodes is exactly twice 

the number o f the bars. Assume that there are external force vectors fe2, fe4, f e6 imparting on the 

top nodes 2, 4, 6 , respectively. We denote p, as the position, v,- as the velocity o f  the f  th node, and 

define the f  th tendon vector 1,- to be the vector from the starting node to the ending node of tendon

f = S f , + f e, (1.22)
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7}, as shown in the following table:

ndon Starting node Ending node Tendon vector

T i 5 1 ll = P l  - P 5

t 2 1 3 h  =  P3 — P i

T i 4 6 13 =  P6 -  P4

t 4 6 2 U =  P2 -  P6

t 5 1 6 15 = P 6 ~ P l

t 6 3 2 16 =  P2 -  P3

Ti 5 4 I7 =  P4 -  P5

4 2 18 =  P2 -  P4

t 9 3 5 19 =  P5 P.3

The associated connectivity matrix S has dimension 3A^ x 3N,. In block matrix form, the 

connectivity matrix S o f the 3-bar unit and the tendon force vector f, are

k

r  ............................................................................................................k
- h h 0 0 h 0 0 0 0

0 0 0 - h 0 - h 0 0

0 - h 0 0 0 h 0 0 h

0 0 h 0 0 0 - h h 0

h 0 0 0 0 0 h 0 - h

0 0 - h h - h 0 0 0 0
k

_ k  _

where I3 is a 3 by 3 Identity matrix. In the above matrix, the /’th block column is associated with 

the /’th tendon in a prescribed manner. For example, the first tendon 7i starts from node 5 and ends 

at node 1, so in the first block column o f S, we put - I 3 at the first block row and h  at the fifth block 

row. The general rule is that if the / ’th tendon 7] starts from node j  and ends at node k, then in the 

/ ’th block column of S, the fc’th block row element is —Ij and / t h  block row element is / .  With f/;
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defined as the tension force vector of the f  th tendon, we may now compute the nodal force as

fl ~ h h 0 0 h 0 0 0 0

f2 0 0 0 - h 0 - h 0 - h 0

f3 0 - h 0 0 0 h 0 0 h

u 0 0 h 0 0 0 - h h 0

f5 h 0 0 0 0 0 h 0 - h

1 0 0 ~ h h - h 0 0 0 0

1 1

f-2
0

r*

k
k
0

%
k

+
k
0

jr+
s

00

.  _

1

1.5.4 Tendon forces in the interconnected system

The tension force in each tendon is based on Hooke’s law, with linear damping incorpo­

rated which is proportional to the rate of change of the tendon vector. Define a tendon’s length to be 

/,■ =  ||I,||. W hen a tendon’s length is less than its rest length, the tendon is considered slack which 

does not produce any force. The force vector of the /’th tendon is thus modeled with

k
fo-(li ~  — Ql;, if  k >  k,

0 , if k < lo.
(1.23)

where k, is the linear stiffness of the /’th tendon per inverse unit rest length, /o, is its rest length, and 

<;,• is its damping coefficient.

1.5.5 Periodic boundary condition for the infinite tensegrity fabric

The tensegrity fabric with the recurrent pattern exhibits homogeneous material properties 

from macroscopic view although each composing unit cell is heterogeneous. A  well-adopted way 

of studying an incompressible homogeneous material with infinite dimension is to crop the material 

to a finite patch and assume periodic condition for the boundaries, which has been applied to the 

overlying flow. Therefore, to be consistent, it is necessary to extend the assumption to the tensegrity 

fabric. However, it is not as obvious to specify periodic condition for such an anomalous discrete 

structure as for a continuum system. Thanks to the repetitive pattern of the structure, the periodic 

specification may be stipulated for the individual structural members at the boundaries. To show the 

procedure, we take the example of one-dimensional periodic array of the 4-bar unit cells connected
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Cell BCell A

period length

Figure 1.18: Illustration of periodic boundary condition for a 2-cell fabric patch. The ghost elements 

are drawn in dashed lines.

together as seen in Figure 1.18. Assume that the finite patch consists o f only two mutually attached 

cells, A  and B. With the periodic connection assumption, the ghost cells of A  and B, A' and B', are 

connected to the right and left end, respectively. The attachment nodes are marked with 1, 2' and 1', 

2  in the figure.

In practice, however, we don’t need to generate the two ghost cells when specifying the 

geometry o f the periodic patch. We only need to specify the nodes in the ghost cells that are attached 

to the patch, which we call ghost nodes. In present example, the ghost nodes are node 1' and 2' which 

are associated to node 1 and 2, respectively. Note that tendon 12' and tendon F 2  are identical, and 

we specify only one of them in the patch. One can easily extend the method to a two-dimensional 

periodic structral array.

To compute the dynamics of a finite tensegrity fabric with periodic boundary conditions, 

the influence of the ghost tendons to the boundary bars needs to be taken into account. A t the same 

time, the position and velocity of the ghost node i need to be updated to match its associated node i' 

as the structure evolves in time. That is,

Pi' =  P i +  L , P i ' = P i ,  (1-24)

where L  is the periodic vector of the tensegrity fabric. When computing the force imparting on node 

2 , the forces generated by tendons T-i and 12 ' which impart on the ghost node 2 ' are transmitted onto 

node 2. Similarly, when computing the force on node 1, the force of tendon T\ on the ghost node 1' 

is transmitted onto it. Therefore, the nodal forces on a tensegrity fabric may be computed in three 

steps:

1. f  =  Sf, for all nodes including the ghost nodes.
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2 , f, +  f> —> f, for node i which has a corresponding ghost node.

3. f + fe —> f  to account for the external nodal forces.

1.6 Simulation of a turbulent flow over tensegrity fabrics

1.6.1 Nondimensionalization of the tensegrity parameters

Once the topology, geometry, and prestress o f a tensegrity fabric are defined, the struc­

ture’s characteristics are governed by the material properties o f its unit cell, which include mass per 

unit length o f each bar p*., stiffness k ;- and damping c,j o f each tendon. These parameters are nor­

malized by the metrics used by the flow system. The procedure may be done by simply considering 

the linear acceleration equation of a free (ungrounded) bar subject only to the pressure disturbance 

from the flow,

■ /V 4 0e2, (1.25)P b j l b j p c ,  —  y
j

where //,, is the length o f the bar, pCj is the center of mass, p w is the hydrodynamic pressure distur­

bance generated by the overlying flow, and Ao is the interface area associated to the top node o f the 

bar on which the external pressure is lumped.

If we use L  for the length scale, T  for the time scale, it can be easily seen the following 

dimension similarities are valid

P . , ~ f > .T \

Since in the present flow system, L  is normalized by the half channel width h, p w is 

normalized by pux, T  is normalized by h /u x, then the final normalization is

Pfr, ~  ph.2, K j~ p h u * ,  qj ~  ph 2 u%. (1.26)

1.6.2 Representation of the flow/structure interface

Geometrical configuration o f the flow/structure system is shown in the Figure 1.19. All 

the bars in the tensegrity fabric are assumed to be grounded. Discretized with the third-order Runge- 

Kutta scheme, (1.21), which governs dynamics o f the compliant surface, is coupled with (1.7), which 

governs dynamics o f the flow, and is marched in time to simulate the turbulence/structure interac­

tion. Two techniques have been identified to form the flow/structure interface between the (con­

tinuous) flow above and the (discrete) structure below. The first is to simply stretch a massless,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

Figure 1.19: Illustration of the computational domain for a turbulent flow over a tensegrity-based 

compliant surface.

tensionless and non-penetrable membrane over the top of the tensegrity structure, transmitting the 

force generated by the flow to the top nodes of the structure. Another option includes the attachment 

of small mechanical ’’scale” to each surface node of the tensegrity structure, mimicking the scales 

on a shark’s skin. No-slip and no-penetration are assumed for the boundary condition on the inter­

face in either case. In our simulation model, we assume that the force from the flow is transmitted 

to the top nodes of the structure in a simple fashion approximating the latter technique. The surface 

is tessellated into small patches surrounding each node. The friction and pressure forces induced 

by the flow are then integrated over each patch and lumped to the associated node o f the tensegrity 

structure. Since the bar nodes o f the tensegrity structure do not coincide with the grid points in the 

flow model, the vertical displacements and velocities of the nodes are interpolated onto the uniform 

x\ -  X3 grid so they could be fed back to the flow system as the boundary condition.

1.6.3 Simulation parameters

In the flow/structure simulations, all velocities are normalized by ux which is the viscous 

velocity from the corresponding regular channel flow with the same bulk mass flux. The Reynolds 

number for the flow is Rex =  uxh / v  =  150. (This corresponds to the Reynolds number based on the 

mean centerline velocity o f the regular channel flow o f Re — Uch / v  =  2663, and to the Reynolds 

number based on the bulk velocity of Reb =  Ut,uikh/v =  2280.) The size o f the computational domain
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is 5.62571 x 2 x 71. That is, in wall units, the domain length and width are L+ «  2651 and L,1 «  471. 

The number of Fourier modes used is 144 x 94 x 52 in the and £3 directions respectively (i.e., 

216 x 94 x 78 dealiased collocation points). The tensegrity fabric used in the simulations consists 

o f 45 unit cells in length and 8 cells in width, each of which has edge length of 0.36h and hight of 

0.51/i (the hight is taken to be twice of the radius of the cells). Tendons are pre-stretched so they 

are about 2 ~  3 times as long as their rest length.

For preliminary studies, we assume that all structural members have uniform material 

properties, i.e., pb, = Pb, k, =  k and Q =  q.

1.7 Results

A fully developed turbulent flow in the regular channel is used as the initial conditions for 

all the compliant channel flows. Transient process is ignored, and flow statistics is taken from long 

enough time intervals. Table 1.6 shows the selected flow statistics for some various combinations of 

tensegrity parameters, along with the statistics of the flow in the regular channel with the same bulk 

velocity. The statistics includes the total drag D w on the compliant wall, drag on the flat wall D f ,  

root-mean-square (RMS) of the compliant wall pressure p w,rm s, RMS wall velocity v w<rms, maximum 

wall deformation at a time instance RMS of wall deformation y„ rms, power done on the flow 

by wall pressure p w v w , form drag on the compliant wall D f orm and the turbulent kinetic energy 

('T K E ) in the channel.

W hen the structure is stiff and has high damping, e.g., case I where p̂ , =  0.08, k =  0.10 

and q =  0.05, the compliant surface barely changes the flow statistics. In case I, the wall deforma­

tion and the wall motion are both very small, so the flow acts as if  the interface were a solid flat 

wall. W hen the structural damping is reduced, as in case II and III where q =  0.035 and q =  0.03, 

respectively, the interface starts to move more and the flow statistics is changed significantly. The 

total drag on the interface is increased by 5% in case II and 17% in case III, and the TKE is increased 

by 3% and 12% respectively. In next section, we will show that these changes are caused by the 

resonant vibration o f the compliant structure and we will characterize the vibration mode.

In case IV and V, w e keep the damping q =  0 .05, but reduce the tendon stiffness K to 

0.06 and 0.03, respectively. The flow statistics is slightly modified. The wall deformation grows 

as the the structure gets softer. However, the wall does not move much faster than in case I due 

to high system damping. In case VI, we reduce the bar density p b  to 0.04. Not surprisingly, the
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potential influences of external disturbances and its own restoring forces on this lighter structure are 

counteracted by the increased effect o f internal damping, so the flow is not affected much by the 

surface compliance.

Case VII and VIII have both the stiffness and damping lowered. In case VII where k  =  

0.04 and <; =  0.035, the instantaneous wall deformation reaches 5 viscous units, and in case VIII 

k  =  0.04 and <; =  0.03, it reaches 9 viscous units. The flow statistics is greatly affected by the surface 

compliance. The total drag on the interface is increased by 6 % in case VII and 22% in case VIII, 

and the TKE is increased by 7% and 23% respectively. We distinguish these two cases from case II 

and III because, although case VII and VIII have larger wall deformations, but the motions o f the 

structure are less synchronized than they are in case II and III. We will discuss in detail in §1.7.2.

1.7.1 Case II and III

Interestingly, all the cases in the present work where the flow statistics is significantly 

modified by the wall compliance show that, the deformation of the wall is dominated by spanwise 

ridges that travel in the streamwise direction, reminiscent of the interface o f air-water flow in Fulgosi 

et al. (2003). The wavy interface in Fulgosi et al. travels at a much slower phase speed than in 

the present work and has no significant influence on the air flow. This section investigates more 

details o f the flow/structure interaction in case II and III where the wall seems to be resonant under 

excitation o f the flow disturbances, causing strong flow oscillations.

Figure 1.20 visualizes the shape and velocity of the interface at an instant moment for 

case III. The wall deformation is approximately sinusoidal in the streamwise direction, and the wall 

velocity has about 90° phase shift ahead of the wall, indicating that the wave is traveling in the 

same direction as the flow. Case II has the similar wall deformation with a smaller interfacial wave 

amplitude.

The wavelength, X, o f the interfacial motion may be seen from the statistics of stream- 

wise two-point correlation function1 o f the wall displacement, R(yw,yw), which is plotted in Figure 

1.21(a). The location of first valley point may be treated as the half wavelength. Therefore, for both 

case II and III we have X+ =  530. The correlation functions also show that the interface in case III 

has more regular sinusoidal shape since its autocorrelation decays more slowly than that in case II. 

In the streamwise spectra of wall deformation (Figure 1.21(b)), the corresponding vibration mode 

for the two cases, kx =  1.78, is much stronger than other modes. The hump in the high spectra 

’The spatial correlation function o f  two quantities, /  and g, is normalized, given by R ( f , g )  =  <J v ‘J p x+^i>.
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Figure 1.20: Visualization of the flow/structure interface in case III. Up: wall displacement from its 

nominal position x% = — 1; down: wall velocity.
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Figure 1.21: Spatial characteristics of the wall deformation yw for case II (dashed) and case III 

(solid), (a) streamwise autocorrelation; (b) streamwise spectra in log-log scale.

area represents response o f the wall to characteristic disturbances of the continuous length scales in 

near-wall turbulence. Spikes on the hump coincide with the geometry lengths in the tensegrity cells, 

implying that they are caused by the discrete nature of the structure. Compare to case I I I , case II 

has weaker spectra.

The time correlation function of a fixed point on the wall, Z(t) ,  and the time spectra of 

wall oscillations o f the two cases, are shown in Figure 1.22. From them we may estimate the period 

and frequency of resonance, which are tp =  0.6, and f j req =  1.6, respectively. Therefore the phase 

traveling speed of the wave is c /u x — h / t p «  6 .

In all cases, pressure is an order of magnitude higher than shear stress disturbances and 

is the dominant excitation force that deforms the wall. Therefore, we focus on the relation of wall 

motion and pressure. Figure 1.23 shows the correlation of wall pressure and wall deformation, 

R (pw,yw), and the correlation of wall pressure and wall velocity, R (pw,vw). Autocorrelations of y w, 

vw are provided as references. R{pw,yw) is shifted about 100° to the right o f R(yw,yw), meaning 

that pressure peaks at the upstream side of the wave crests. R (pw,vw) is shifted about 180° from 

R(vw,vw), meaning that pressure is in opposite phase with the wall velocity and (pwvw) is negative, 

so that kinetic energy is transmitted from the flow to the wall structure.

Instantaneous pressure disturbances on the wavy interface are visualized in Figure 1.24(a). 

Different from the turbulence over a stationary wavy wall where the pressure peaks at the upstream 

side of the wave but reaches to minimum near the wave crests, the pressure in present case has min-
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Figure 1.22: Temporal characteristics o f the wall deformation yw for case II (dashed) and case III 

(solid). Left: time autocorrelation; right: time spectra in log-log scale.
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Figure 1.23: Streamwise correlations o f the wall deformation, velocity and pressure for Case III.
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imum at the downstream side o f the wave crests, causing downstream wall to elevate. In addition, 

adverse pressure gradient slows down the flow and therefore reduces the shear stress at downstream 

side, and sometimes even causes flow separation (Figure 1.24(b)). Deformation o f the compliant 

wall has the wave slope ywkx =  0.027. This is much smaller compared to deformation o f the station­

ary wavy walls discussed in §1.4.4 and comparable to deformation of air-water interface in Fulgosi 

et al. (2003) where it is shown that, at a shear Reynolds number Rex =  171, the slow interface mo­

tion has only slight effects on the air flow near the interface. In our case, changes to the flow are 

mainly caused by the resonant motion of the interface.

Near-wall quasi-streamwise vorticies are stronger due to the interfacial motion. Figure 

1.25 visualizes the discriminant2 field in the near-wall region where the isosurface level is 10-4 . 

The deformation o f wall is indicated by the color bar in the figure. It can be seen that the vorticies 

are more generated above the valleys o f the wall.

Profiles o f root-mean-square (RMS) values of velocity fluctuations, Reynolds stress, and 

mean velocity of case III are given in Figure 1.26, together with the corresponding profiles in regular 

channel turbulence with the same bulk flow. Note that the lower wall is a moving rough surface, 

statistics is taken from the planes where £2 is constant. When the wall deformation is small, these 

planes are approximately parallel to the wall. Near the lower wall, the flow disturbances are in­

creased dramatically due to the wall compliance. U2 ,rms and K3)mu are more than 2 0 % higher, and 

u\,rms is slightly higher, than in the regular channel case. The Reynolds stress, ~{u\U 2 ), is much 

larger and therefore produces more turbulent kinetic energy. Near the flat wall, the flow disturbances 

are barely modified, indicating that compliance of the lower wall has little influence on the upper 

wall. However, the profile o f the mean velocity, ( m i ) ,  is distorted on both sides, with lower values 

on the lower wall side, but higher values on the upper wall side. This means that the flow at the 

lower part o f the channel is significantly slowed down by the high drag on the compliant wall, and 

that the flow at the upper part is speed up due to the constant total bulk flow constraint. Therefore, 

it is expected that the skin friction on the upper wall is higher than that in the regular channel case.

Two-point correlation functions of the velocity fluctuations R(m, ,m, ) near the wall (x^  =  

5.6) region and near the channel center region (x j =  118) for case III are shown in Figure 1.27 and 

Figure 1.28, respectively. Their Fourier transform, the energy spectra are shown in Figure 1.29

2 A scalar quantity derived from the velocity gradient tensor A y  = d u t /d x j  which in present work is defined in wall
units, the discriminant D  o f  the flow characterizes the local topology o f  the flow observed in a frame m oving with the 
fluids, and provides a handy identification technique for location o f  “vortex-type” structures in the turbulent flow. Define 
the second and third invariants o f  A to be Q =  {[tr(A)\2 - t r ( A 2) } /2  and R = —det(A),  and the discriminant is given by 
D  =  (2 7 /4 )/f2 +  G3. Details may be found in Perry & Chong (1987) and Blackburn, Mansour & Cantwell (1996).
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(a) wall pressure

(b) shear stress

Figure 1.24: Instantaneous pressure and streamwise shear stress on the interface in case III.
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(a) view 1

r* -0.5

(b) view 2

Figure 1.25: The discriminant o f the flow in case III at the isosurface level I0 -4 . The color bar 

indicates the amplitude o f the interface deformation.
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Figure 1.26: Profiles of the flow field for case III. Dashed: statistics from the regular channel flow; 

solid: statistics from the compliant channel.

and Figure 1.30, respectively. Near the wall region, the correlations o f the velocity fluctuations are 

clearly modified. #(«,-,«,) in the streamwise direction monotonically decreases near the wall in the 

regular channel case, but fluctuates above and below zero due to the sinusoidal wall deformation in 

case III. The fluctuation mode is indicated by the spikes in their spectra plots, which is the same as 

the vibration mode of the compliant structure. The spanwise correlations near the wall are greatly 

lifted by the vertical boundary motion which is nearly uniform in the *3 direction. Correspondingly, 

they have more power for all kz modes as shown in the energy spectra. However, the characteristic 

length scale of quasi-streamwise vortices seems to be unaffected by the wall motion, since these 

spanwise correlation functions still maintain their basic shape. In contrast, the wall motion has less 

influence on the correlations near the channel center, where all the spanwise modes have slightly 

more power than in the regular channel case and the high streamwise modes are nearly unchanged.
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Figure 1.27: Streamwise (upper tow) and spanwise (down row) two-point correlations of velocities 

at Xj =  5.6 for case III. Dashed: statistics from the regular channel flow; solid: statistics from the 

compliant channel.
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Figure 1.28: Streamwise (upper tow) and spanwise (down row) two-point correlations of velocities 

at x \  =  118 for case III. Dashed: statistics from the regular channel flow; solid: statistics from the 

compliant channel.
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Figure 1.29: Streamwise (upper tow) and spanwise (down row) one-dimensional spectra a t x j  =  5.6 

for case III. Dashed: statistics from the regular channel flow; solid: statistics from the compliant 

channel.
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Figure 1.30: Streamwise (upper tow) and spanwise (down row) one-dimensional spectra at =  118 

for case III. Dashed: statistics from the regular channel flow; solid: statistics from the compliant 

channel.
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1.7.2 Case VII and VIII

In case VII and VIII where the wall structure is soft and damping is low, the interface 

forms large streamwise traveling ridges. The wall pressure disturbances, wall velocity, wall shear 

stress and the discriminant field in the lower channel for case VIII are visualized in Figure 1.31 

and Figure 1.32. In these two cases, the wall deformation has less regular sinusoidal shape than in 

case II and III. The distribution of the pressure and shear stress disturbances is similar to that in 

case II and III. The pressure and shear stress are high at the upstream side o f the ridges and low at 

the downstream side. The flow detaches the wall at the downstream side and re-attaches near the 

bottom o f the valleys. The vortex-type motion of the flow in case VIII, indicated by the discriminant 

isosurfaces, is mainly focused above the valleys and is stronger than that in case III.

From the two-point correlation functions R(yw,yw) and their spectra (Figure 1.33), the 

dominant wave mode for both case VII and VIII is kx =  1.35 and the wavelength is A+ =  700, but 

case VIII has larger wall deformation. From the time correlation functions Z(t)  (Figure 1.34), the 

oscillation period of the wall is 0.94 for both cases. Thus the phase traveling speed is c/w* «  5, 

slower than that in case II and III.

In case VIII, the slope of the wave is about y wkx «  0.05. The form drag in the two cases 

is 0.013 and 0.065 respectively, both less than one-third of their own total drag increase, so the 

skin-friction increase is still the main factor for the drag rise.

Profiles of RMS velocity fluctuations, Reynolds stress — (u\U2 ), and mean velocity —{u\) 

o f case VIII are given in Figure 1.26, together with the corresponding quantities in the regular 

channel turbulence with the same bulk flow. Case VII has similar profiles but the effects o f the 

compliant surface is less dramatic. Compare to case III, case VIII has larger velocity and pressure 

fluctuations, and higher Reynolds stress near the compliant wall, and the mean velocity profile is 

more skewed due to higher drag on the lower wall (interface).

The deformed tensegrity fabrics in case III and case VIII are visualized in Figure 1.36. 

The flow/structure interface displacements are about 3% of the fabric height in case III and about 

10% o f the fabric height in case VIII.

1.7.3 Dependence on domain size

When studying an infinite but homogeneous system such as turbulence over a compliant 

surface in the present problem, it facilitates numerical analysis and therefore is a well-adopted
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(a) wall pressure
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(b) wall velocity

Figure 1.31: Visualization of the flow for case VIII. The interface is deformed from its nominal 

position X2 — —I.
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(a) shear stress

(b) discrim inant

Figure 1.32: Visualization of the flow for case VIII. The interface is deformed from its nominal 

position X2 =  — 1. In (d) the isosurface level is 10-4  and the color represents o f wall deformation.
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Figure 1.33: Spatial characteristics of the wall deformation yw for case VII and VIII. Left: stream- 

wise autocorrelation; right: streamwise spectra in log-log scale. Dashed: case VII; solid: case 

VIII.
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Figure 1.34: Time correlation of the wall deformation. Dashed: case VII; solid: case VIII.
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Figure 1.35: Profiles o f the flow field for case VIII. Dashed: statistics from the regular channel flow; 

solid: statistics from the compliant channel.
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(a) case III

(b) case VIII

Figure 1.36: Visualization o f the deformed tensegrity fabrics under flow disturbances. Red color 

represents high elevation of the surface, and blue color represents low elevation. The flow goes 

from left to right.
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Lx Dw D f Pw,rms vw,rms yw.max TKE
2.5n 1.74 1.11 9.1 0.19 6.5 5.86
3.75ti 1.14 1.02 4.3 0.06 2 .0 3.91
5.6257t 1.17 1.03 5.0 0.07 2.4 3.95
7.57t 1.17 1.02 5.0 0.07 2 .6 3.97

Table 1.7: Comparison o f statistics from the flow over the compliant surface of case III with various 

channel sizes.

procedure to cut out a finite block and impose periodic boundary condition. However, one needs to 

be careful that the finite block has to be large enough so that the artificial periodicity does not change 

the fundamental physics of the system. In this paper, we have tested four different channel lengths, 

Lx =  2.571, 3.75ti, 5.625ti, and 7.5ti, for in the streamwise direction the compelling flow phenomena 

are observed. Case III where the compliant structure is resonant under flow perturbations is used for 

the test. The number of tensegrity unit cells in the x\ direction is 20, 30, 45, and 60, respectively. 

Grid spacing is kept the same in these tests to resolve fine scales of the flow. If the walls were 

rigid and flat, all these channel lengths would be large enough to contain the characteristic scales in 

present turbulent flow and able to provide sufficient data for accurate statistics. However, without a 

priori knowledge of length scales of the flow in presence of a compliant surface, it is necessary to 

to ask the question and check if the domain size is sufficiently large.

Streamwise traveling waves of the flow/structure interface exist for all the tests. However, 

the interface deforms more and oscillates faster when the channel length is small. Selected flow 

statistics are compared in table 1.7. When Lx =  2.5n, the wave amplitude reaches y ^ max =  6.5, and 

the RMS o f wall velocity fluctuations is vWirms =  0.19. The form drag is significantly increased and 

the total drag on the interface is about 74% higher than the regular channel. As the channel length 

gets larger, the flow statistics is convergent. The explanation for this is that disturbances are spatially 

correlated more when periodicity is imposed at the edge of a shorter box. In some situations the 

close-correlated disturbances may incite each other, causing waves to grow as in the case where 

Lx =  2.57t.

Streamwise correlation of the interfacial wave and its spectra for all the tests are plotted 

in Figure 1.37. When Lx — 2.5n (Lx — 1178), the wavelength is X ‘ — 590, about half o f channel 

length, and the wave spectra are much higher than in the other tests. The three longer boxes contain 

about 3, 5 and 6  waves, respectively. Their sreamwise spectra are very close. The relative error of 

the wavelength between cases o f Lx =  5.62571 and of Lx =  1.5n  is less than 4%.
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Figure 1.37: Comparison of the statistics o f the wall deformation yw in case III for various box 

lengths. Left: streamwise autocorrelation; right: streamwise spectra in log-log scale. Dotted: Lx =  

2.5n; dash-dotted: Lx =  3.75k; dashed: Lx =  5.625k; solid: Lx =  1.5%. Note that Lx =  5.625k 

appears to be sufficient to obtain approximate convergence of these statistics.

The profiles o f RMS velocity fluctuations for the four box lengths are shown in Figure 

1.38. It can be seen that, except for Lx =  2.5k, all the other three cases have very close results. 

Therefore, we conclude that Lx =  5.625k is long enough to capture both the interfacial features and 

the flow field characteristics. Further enlargement of the channel length would lead to expensive 

computational cost.

1.7.4 Visulization and statistics of the other cases

For completeness, the flow/structure interface displacements in other cases than III and 

VIII are visualized in Figure 1.39 to Figure 1.41, and their RMS profiles of velocity fluctuations are 

given in Figure 1.42. Except case II and VII which are discussed in previous sections, in the rest of 

the cases, I, IV, V, and VI, the wall compliance only produces small interface deformations and has 

no significant influence on the flow statistics.

1.8 Concluding remarks

The purpose o f  this paper was to present a new type o f  structure, tensegrity fabric, as the 

fundamental paradigm of the compliant coating, to model the dynamical interaction of a turbulent 

flow of a moderate Reynolds number and the tensegrity fabric, and to investigate the effects o f the 

compliant surface on near-wall turbulence. The final goal of this research is to find the appropriate
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Figure 1.38: Comparison of RMS velocity disturbances in case III for various box lengths. Dotted: 

Lx =  2.5n; triangle: Lx = 3.15n; solid: Lx =  5.625n; point: Lx =  7.5n. Note that Lx =  3.75tt appears 

to be sufficient to obtain approximate convergence of these statistics.

properties of surface compliance that can reduce turbulence-induced drag.

Unlike the spring/plate surface model to which a turbulent flow is not sensitive, the 

tensegrity-based compliant surface may have significant effects on the near-wall turbulence. This 

paper performs preliminary study of three main material parameters, the structure’s density, stiff­

ness, and damping, that represent the surface’s properties. Simulations show that, when the struc­

ture’s stiffness and damping are low, the interface forms streamwise traveling waves, resembling an 

air-water interface but convecting with a much faster phase speed. For some combinations of the 

tensegrity parameters, the compliant wall may be resonant under excitation o f flow disturbances. 

The wavy motion o f the interface causes large increase o f drag on the wall and turbulent kinetic 

energy of the flow, and shear stress accounts for major portion o f the drag increase.

High sensitivity o f the turbulent flow to surface compliance is important for the wall to 

interact with the flow in a favorable way, although current results seem to point to the contrary to 

the aim of the research. Besides the spanwise aligned deformations of the flow/structure interface, 

we have also found that the interface may form streamwise aligned ridges as seen in case V where 

the wall deformation amplitude and motion are still too small to have significant effect on the flow. 

This could be promising since it has been found that streamwise aligned wall deformations, such as 

riblets o f proper size (Choi et al., 1993), may have drag reduction effect, and that active spanwise
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Figure 1.39: Visualization of the deformation of the flow/structure interface from the nominal posi­

tion X2 =  - 1  for case I and II.
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• 0.01

(b) case V

Figure 1.40: Visualization of the deformation of the flow/structure interface from the nominal posi­

tion X2 =  - 1  for case IV and V.
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(b) case VII

Figure 1.41: Visualization of the deformation of the flow/structure interface from the nominal posi­

tion X2 =  - 1  for case VI and VII.
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Figure 1.42: RMS profiles of velocity fluctuations for the cases other than III and VIII. The corre­

sponding plot for case III is shown in Figure 1.26 and for case VIII is shown in Figure 1.35. Dotted: 

statistics from channel flow with solid walls; solid: statistics from the channel flow with compliant 

walls.
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oscillating wall (Jung et al., 1992) may bring similar benefit. In addition, the tensegrity fabric 

has more design flexibilities that we have not been able to explore yet, e.g., the tensegrity cell’s 

geometry, material properties of each structural elements in a cell. Considering obscure physics 

behind, our future work is to optimize the tensegrity fabric in order to find its favorable properties.

The software that simulates the dynamics of the flow/structure system couples a Fortran90 

code that solves the turbulent flow with a moving boundary using a time-dependent coordinate 

transformation, and a C++ code that calculates dynamics of a large array o f structural elements 

which are highly unstructured in the computer memory. The current simulation contains 7 x 105 

grid points and a structure of 1440 bars and 3653 tendons. A typical run costs about 20 hours on an 

IBM P655+ (8-way) node. Therefore, an efficient optimization strategy is essential to success.

I.A List of the terms in Eq. (1.7)

acpx<7r Ti{qi) d^  ,

r 2(<?2) =  C()T| | ,

~  / x d(Px43
T M = - ^ r -

v  /  n 3<P2<71<71 3<P1<P2<71<71 3q>2<7i<72 3<P2<71<73 3<P3<P2<71<73
l [ q j )  3 $ !  +  3 ^  3 ^  3 ^ 3  3 f e  ’

A,  ,  ̂ 3<P2<71<72 , „  3<P2<71<72 , „  3 ? 2 < 7 2  , 3<P2<72<73 , „  3<P2<72<73
N 2 ^ ) = - ^ r + v ' ~ ^ r + ^ - w + ~ w ~ + m ~ ^ ~ '

A,  ! A 3<P2<73<71 , 3 < P l< P 2 < ? 3 ^ 1  , 3<P2<73<72 , 3 < p 2 < ? 3 ^ 3  , 3 < p 3 <p2 <73<73

~ w ~  ~ w " "

dp 3< p  ip
G '(P )  =  +  '3^i 3^2

G 2 ( p )  =  <pl
,2  3p

GsiP) =

3 & ’
dp 3 < P 3 /5

3^3 3^2 '
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T , , (  d 9 (p iA 2 2 a2 f  d a<p3- \ 2
L \{q \)  -  ^  J  ^ + (P2 d^ >  +  [ d ^ 3 +  J  91 >

r / N (  9 9 V  2 ^ 2 M  3 V
2 t e ) -  V a | T + ( p i a ^ J  ® + < p 2 a l f 2 + U ^ + ( P 3 a W  9 2  ’

,  , , / a  a c p r \ 2 2 a2 / a  acp3- \ 2
L 3 f e ) - V a ^ + a i r J  ^ 3+ (p2a ^ 9 3 +  v a ^ + a l T /  9 3 ‘

Note that p  =  J p / p is the modified pressure.

The continuous version of the Laplapcian operator L (p )  for solving the pressure equation 

has the same form as L \ (•) and L3(-),

L ( p ) = D [ G i( p ) } = ^  +  d̂ j  p  + t i ! | + ( A  +  I | l )  p. (1.27)

We distiguish £ (•)  from L,(-) because they are discretized differently as seen in section 1.3.1.
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I.B Details of solving Eq. 1.11

The explicit operators in Eq. 1.11 are listed as follows: 

w  -   ̂ . .  5 , ^ P i t f i A  , . S ( p r  ( 8q \

A , M = ‘ v w { ^ + ~ s 5 ~ J + v w ( ^
5 / 8 m  5(p3 g A  5(P3- / S g i  

5 ^  V S ^3  S f e  ) + v S ^  U q 3

8 (P 2 g lg l  8 (p 2 g lg 3  8(p3(p2gW 3

8£i 8^3 8q2 ’

. / s 8  /  S m  8 ^ 2  A 8  /  8<72

A 2 (9 y )  = v g ^  ( 5 ^ + C p i S ^ j  + V ( p l S ^  V 8 |T  

8  f  bq 2 8 ^ 2  A 8  /  8 ^

+  V8 f c l 8 5  +  lP3d +V,P35 5 ( s i ;

8cp2g i ^2 8(p2<2,3<72 8cp2 ^ i  <r/2 5cp2^ 2<73
- - 6 H ----------- S g —

8  / S m  S t p i ^ A  . 8 c p r  f d q 3'
M q j )  V8 ^  VS^i +  8^2  )  +V  8^2 V s^i 

+  v  —  I 5(p3f/3^  ! V 8(P3 ' ^ S73
8^3 VSq3 8^2 J  +  5^2 V8^3

8(p2<7l73 S(p2<?3<73 S(Pl (P29173

5£i 8 ^ 3  8 ^ 2  ’
„ , \ ,.8<Pr f&<Piqi \  , 2 5 , , , S ( p 3 f & w q i  \
B' W  =V 85 ( ^ )  + %85 (.65J 55 (-6 5 -J

S(PlCP2^ 1^1 S(p2^1<72 Scpx<?l

5^2 8^2 8^2 ’
/ \ 8  /  8 fl2 A 2 8  /  S a 2 A 8  /  8<72

* ( « j )  = « p 1 § 5  ( f . ^ j  + v o 2M -  ( ^ j

bq2 q2 rn S<72 
92 8^2 8^2 ’

n  /  a , . 8 cpi- / S t p i ^ A  2 8  / ^ A  , . .S t p 3 -  z 's < p 3 ^ 3 a

=v 55 ( 1 5 - J +V,P2E  (55 j  +V 55 (-6 5 -J
_  8cp2<?3<3,2 _  8<p3tp2<?3g3 _  8 (pxqs

S q 2 8 ^ 2  8 ^ 2  '

The Runge-Kutta coefficients used in the present computations are:

Yi

4
(32 =

1
(33 =

1

15’ 15’ 6 ’
8 5 3

15’
Y2 = 12’ 73 = 4 ’

IIC4

17
c3 =

5
0 ,

_ 6 0 ’ _  12
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Re-organize the linearized equation (1.11) so that its left-hand-side contains only terms 

computed implicitly and its right-hand-side contains only terms computed explicitly,

{1 + $kA tM i -  vP*Ar(22}<72 — H  

{ l  +  $kAtM i - v $ kA tQ i}q \ = R u  

{ l  + $kAtM 3 - v $ kAtQ 3 } q *3 =  R 3,

(1.28)

(1.29)

(1.30)

which are solved for the intermidiate field q* in the order of q*2, q\ and q\. M, and <2, are the 

tridiagonal systems given by

HiM x =  <pf 2 -^ jg -  h S<Pt

M 2 =  2(p*8^ ” 1 k 8 '

_ , nk ( s < P i g i -  , H -  ,
M3 = ( P2 + 5^2

and

Q\ M  ( 8<P l ‘ ̂  _8 .  ( _ M  S ( p3+ m ) H  \ H J  + H  \ H

G 2  =  <Pl 

<23

H  V ' H J  \ 8 & J  ' ^ 2  V ^ 8 ^ 2

5 ^2  V H

The right hand side terms, /?,, are given by

Ri = c f r x + y kA tA \- 1 (qkj- 1) +  ^ A tA kl- 2 (q)~2) -  2$kAt ( G \{pk~ l ) + J kP ,

+  (<P l ) k~ X+  v3fcA/

+  P&Ar

s tp j—1 ■ ( H r H i ~ l \  , / 2 ^ - 1  s  ( H f l \  , s ^ 1-

8^2 8^2 8^2 V 8^2
+  ■

5^2 8^2

i ((p2<Pl — tp2 M  l ) g \  \ \  1 

H i
rn. - i  t i r ' t f r 1 8<p H c f r 1 

H i  8fe

R i = 4 .  l + y kA tA \ \ q kj  1) +  CfcA tA \ 2 (qk 2) -  2$kAtGk2 (pk *)

+ v3tAr 

+  p*Ar

(I)*-1—  I m
f a u P  85,

k- 1 k - 1

8^2
■ - < K
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a n d

, k - \

+  vP^Af

PiA/

k— 1 Jc~ 1S tp f 1- / 5(Pt l ql
s^2 I S^2

s ^ r 1-
5^2

-<02
k_ M ~ l 4 ~ l , 5 ( ^ 3 - ^ 2  ^ 3  0 ^ 3  ‘<?3 1 5(P*

5^2 Sq2 8^2

I.C Boundary conditions on the additional pressure update equation 

solved at the beginning of each timestep

As described in §1.3.3, an additional pressure update is performed at the beginning o f each 

timestep to account for the change in the wall velocity. We now derive the boundary conditions on 

this additional pressure update equation, demonstrating the procedure for the lower wall only. We 

begin by approximating the mixed RK/CN march over the first RK substep with an explicit Euler 

scheme, in which the discrete momentum equation for the first RK substep may be written

on interior,q\ =  q1~x +2P*At [ - 7 * - 1 - N f~ l + v L \~ l -  G f"1 ( p ^ )  -  P ^ l

q* =  q f (specified) on walls,

(1.31)

where k  =  1. We then determine the pressure ^updated is necessary to make q* divergence free in 

this approximation, and finally proceed with the mixed RK/CN march over the three RK substeps 

with the standard fractional-step algorithm. Note that the Laplacian of the updated pressure p la te d  

is identical to the Laplacian of the pressure before the update on the interior o f the domain (that 

is, D*-1 (G \~{ (PupJated)] =  Dk~ ] (G^ ' 1 (pk 1)]), though the boundary conditions on the equations 

defining the pressure are different.

We begin by applying the discrete divergence operator (1.9) evaluated at j  — \  and RK 

time level k — 1,

8 ^ 1 1 ( t P l , ! 1? ! , !  + 42,1 + (p3, l 1<73, l )  - # 2,0 8^31
Dk~ \ q i ) k =

S£l A §2. 8^3  ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

to Eq. (1.31). Then we may write 

2 A t
D*-i -T k" x - N k~ x - J k~ xP^~x5n j — Dk~ x (Gk~ x)

^2,0 92,0*
2 Pi At ^2 , 0 1 ^2,0* + V '̂2,Q1 ^2,0

fit-1  / ^ - l (I.32a)

1 jk~ 1 p i - 1 1
J r X !

^ 2 ,12

where

1
, o  ’f i o  1 ~  tplo1 K o  1 "I" T2 ,0  1 +  ̂ 3,0'  ̂ 3*

^ f.0 1 =  + 4 0 1 + < 0 1̂ 3,01.
s ^ k — 1 __ f n k — \ / - i k — \  | s ^ k — 1 I f fJ c — 1 s~*k— 1
^ 2 , 0  —  ^ 1 , 0  < J l , 0  + ^ 2 , 0  +  ^ 3 , 0  3 ,0  ’

f i t - 1 _  m * - l T * ” 1 , r t - 1  1 1 T k~ 1 _i_ \ P
‘- ' I f )  ~  ^ 1 ,1  ^ 1 ,1  2,1 + ^ 3 , 1  3,1 "E ’ 2 , j

( 8 A*-1 8 Lk~ x1 °.yl^ 1
1

s^ i 5 ^

(I.32b)

(I.32c)

(I.32d)

(I.32e)

where Lk2 q1 represents the extrapolation of the viscous term at the boundary by using its divergence- 

free property. Note that by the metric invariants o f the coordinate transformation,

_ t _ 1  / _Zr_1 _ f c _  1 ~  v

and by the continuity constraint

We require

D k~x(Jk~ xP^~xb a )i  =  0,

D k- l { f r l ) h =Q.

, * D k- x(q*)l_ + D k- x(T k- x) = 0 .  

We also notice that, from the previous timestep,

D k~l (Gk~ l )i + D k~ x(Nk~ x) i  = 0 .

Now what is left in (I.32a) is a projection of the momentum equation onto the wall normal vector 

112 — ^7<pi 1 ycp3)  , i.e., a discretized form o f (1.15), and may be rewritten as

where 1 =  J k~ 1 Pk~ 1 tp ^ 1.

a projection of the momentum equation onto th 

1 discretized form o f (1.15), and may be rewritten

J c  k — 1

Gk~ x(nk~ x ) — 0 ^2,° _  f k - l  _  j - y j k~ l _  p k~ 1
2 ,0  updated) 2 P * A i  2 ’°  2)0 2 -° 2 >° ’

(1.33)
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Note that, in (1.33), Lajo is calculated from (I.32e), and f i f l  and /Vxo may be simplified 

and calculated using the velocity boundary conditions and the continuity constraint,

2^  „  M l  , 8cpig3\
T2'° ~

$2,0 ~  0.

The boundary condition of the pressure at the end of previous time step, G |q1 (Pk~l )> may 

be computed from the available pressure pk~x using the definition (I.32d). Subtracting G^q1 (Pk~l) 

from both sides of the equation (1.33), we have an equation whose left hand side is

Gif t  (/^updated) “  (P*” ‘ ) =  <S£o($)> 0 -34)

which is the boundary condition at the lower wall of the Laplace equation for the pressure update

$ =  Updated ~ P k~ 1’

L k~ x(§) =  0. (1.35)

We may similarly obtain the boundary condition for $ at the upper wall, then solve this equation 

by splitting and solving in Fourier space using the same iterative procedure as shown in (11.42). 

Finally, we may determine the updated pressure, p ^ a itd  > from the pressure at the end of the previous 

timestep, pk~x, and the projection variable <j>.
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Abstract

The contravariant form of the Navier-Stokes equations in a fixed curvilinear coordinate 

system is well known. However, when the curvilinear coordinate system is time-varying, such as 

when a body-fitted grid is used to compute the flow over a compliant surface, considerable care is 

needed to handle the momentum term correctly. The present paper derives the complete contravari­

ant form o f the Navier-Stokes equations in a time-dependent curvilinear coordinate system from 

the intrinsic derivative of contravariant vectors in a moving frame. The result is verified via direct 

transformation. These complete equations are then applied to compute incompressible flow in a 

2D channel with prescribed boundary motion, and the significant effect o f some terms which are 

sometimes either overlooked or assumed to be negligible in such a derivation is quantified.

II.l Introduction

The Navier-Stokes equations in a fixed curvilinear coordinate system were established 

long ago using coordinate transformation; one may find the standard form of these equations and 

their derivation in tensor calculus textbooks (e.g. Aris, 1962). However, such a general form of the 

Navier-Stokes equations have not been used widely in numerical simulations, since the calculation 

of the covariant derivatives in curvilinear coordinate systems is generally quite expensive. Many re­

searchers have opted for alternative forms of the Navier-Stokes equations when they deal with flows 

in complex geometries via mapping into a regular domain. Such an approach can also be applied to 

time-dependent curvilinear coordinate systems. For example, a formulation is widely used in which 

Cartesian based velocity components multiplied by the Jacobian of the transformation (i.e., the vol­

ume flux components) are used as the flow variables (e.g. Thomas & Lombard, 1979; Hixon, 2000). 

Another commonly used formulation incorporates the velocity vectors in both the Cartesian coor­

dinate system and the curvilinear coordinate system (e.g. Pulliam & Steger, 1980; Smith & Shyy, 

1995; Sheng et a l ,  1995; Lei et al., 2000; Hodges & Street, 1999). In this formulation, though 

the contravariant velocity vector is introduced to make the equations simpler, the acceleration of 

the momentum is ultimately determined in the Cartesian coordinate directions. Voke & Collins 

(1984) proposed a contravariant velocity-vorticity formulation of the Navier-Stokes equations for 

both compressible and incompressible flows in a fixed general coordinate system. Their formula­

tion avoids explicit use of the connection coefficients and the transformation matrix elements in the 

governing equations at the expense of the computation of the contravariant form o f the vorticity.
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Rosenfeld & Kwak (1991) presented a discrete contravariant formulation of the incom­

pressible Navier-Stokes equations in generalized moving coordinates using a finite volume method 

that satisfies the geometric conservation laws for time-varying computational cells. However, the 

corresponding PDE in the continuous setting is not readily apparent from this inherently discrete 

formulation.

Under some circumstances, for example, when the transformation is relatively simple, 

the use o f the continuous tensorial formulation of Navier-Stokes equations is manageable. Carlson, 

Berkooz & Lumley (1995) extended the tensorial formulation to the moving coordinate system case 

and used direct numerical simulation to calculate turbulence in a channel with time-dependent wall 

geometries. Their formulation was used later by Xu, Rempfer & Lumley (2003) to simulate tur­

bulent flow over a compliant surface. Because of the specific transformation used in their work, a 

change in orientation of a vector into the new coordinate system is ascribed only to its wall-normal 

component and many connection coefficients vanish. However, when deriving the temporal deriva­

tive of a vector tensor in a moving frame, one has to be careful, since additional terms may appear 

due to the moving coordinates. The derivation of Carlson et al. omits some of these potentially 

important terms. Simply treating the temporal derivative of the contravariant form o f the velocity 

vector in the same way as for a scalar variable, such as density, fails to capture all o f the terms in 

this formulation, thereby possibly compromising the accuracy of the subsequent computations.

Ogawa & Ishiguro (1987) also derived the temporal derivative of tensor vectors, as consid­

ered in the present work, via a different approach than that used here, specifically, by considering the 

infinitesimal geometric motion of the curvilinear coordinates. The form of the Navier-Stokes equa­

tions they obtained, which is consistent with the present derivation, involves the covariant deriva­

tives of the velocity of the coordinates that are missing in the analysis of Carlson et a l.. In the 

present work, we derive the intrinsic temporal derivative of tensor vectors using an alternative ap­

proach, the quotient rule of tensor analysis, and then obtain the complete contravariant form of the 

Navier-Stokes equations in time-dependent curvilinear coordinate systems. Unlike the derivation 

of Ogawa & Ishiguro, which is based on geometrical arguments, the tensor derivation given in the 

present paper may be easily generalized to tensorial equations of order higher than one (vectors) if 

necessary. We also demonstrate use of the equations by applying them to solve flows in 2D channels 

with moving boundaries. Note that, in addition to approaches based on coordinate transformation, 

there are many other available techniques for computational fluid dynamics in systems with moving 

boundaries, e.g., volume tracking methods, level-set methods, and immersed boundary methods,
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etc. Readers are referred to Shyy et al. (1996), Sheth & Pozrikidis (1995), and Fadlun et al. (2000) 

for more information.

II.2 Derivation of the Navier-Stokes equations in moving coordinate 

systems

II.2.1 Equations of motion in a fixed coordinate system

In order to introduce the notation to be used, we first consider a time-invariant transfor­

mation x l = x '( ^ 1,^ 2.^ 3) from the Cartesian coordinates x to the curvilinear coordinates £. (Note 

that superscripts indicate contravariant components, not powers, in the present notation.) We define 

the transformation matrix
0 X

c = 9£ ’ = W  (IL1)

and its inverse

C = p ,  c‘j  =  5T 7- (H-2)d x ’ 1 dxJ v ’

The metric tensor and its inverse are defined by

Sij =  g lJ =  c‘kc{, (II.3)

respectively. The Jacobian of the transformation is defined by

J = \C \ .  (II.4)

The transformation relationship between the contravariant velocity vector v in the Carte­

sian coordinate system and its counterpart u in the curvilinear coordinate system is

v;  =  c /m ', or ul =  cljv i.  (II.5)

The same relationship also applies to other contravariant vectors.

The mass and momentum conservation equations in contravariant form in a fixed coordi­

nate system may be written as follows (Aris, 1962, pp. 178-179)

!  +  (P“ '),- =  o
(II.6)

p ( ^ - + My i ) - p / i +  r y ,
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where the contravariant vector / '  is the external body force per unit mass and T l> is the contravariant 

stress tensor. In the above equations, a comma with an index in a subscript denotes covariant 

differentiation:
du‘

ulj  =  ^ + r jkuk , (ii*7)

where are the components of connection coefficients, also known as the Christoffel symbol of 

the second kind. Now consider a time-dependent transformation from a Cartesian coordinate system 

x to a curvilinear coordinate system £

(II.8)
t =  x.

It is tempting (see, e.g., the derivations of Carlson et al., 1995) to simply apply the chain rule

+ ^  (II9)
dt dr dt d t j  ’

and the relations (II. 1) - (II.5) in order to re-express the temporal derivative terms in (II.6) and to cast

it in the moving coordinate system. But is this correct? The answer is not obvious for an equation

as complicated as (II.6). However, we may use a simple counterexample to show that such a simple

substitution in fact misses some terms which are sometimes important. Consider a uniform flow

free from the external force. Its velocity components in the Cartesian coordinate system are vl =  1,

v2 =  v3 =  0. Suppose we use the following coordinate transformation:

x l =  t}  c o s t  — £2sinx / c o s t  — s in x \  _ I c o s t  s in x \
2 . j-2 ’ C =  . ’ C =  . ’ (IU 0 )xr =  q 1 sinx +  qzcosx \s in x  c o s t  I \ - s i n x  c o s t /

which simply means that the new coordinate system is rotating counterclockwise at a constant speed. 

We can see immediately [by (II.5)] that the velocity components in the new coordinate system are 

u l =  cosx, u2 =  — sinx (the third component is neglected since this is a two-dimensional problem). 

Since u is independent of £, and the connection coefficients Tl-k are all zero, by (II.7) we have 

u‘j  =  0. However, applying (II.9) would produce the momentum equation

dul dul d t /  dul dul , ,  \
~5i~ — TT~ aeT — — (11-11)dt 9x dt dtd dr

which is clearly incorrect. Apparently, the Coriolis force is not correctly accounted for in the rotat­

ing coordinates by following this approach.

To solve the apparent dilemma, we examine the intrinsic temporal derivative of a tensor 

vector in a moving frame and apply the differentiation to the contravariant velocity vector while
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using Reynolds’ transport theorem to derive correctly the desired form of the Navier-Stokes equa­

tions.

We shall rewrite the definition of F ^ , the Christoffel symbol of the second kind, to facili­

tate this derivation. The common definition of the Christoffel symbol is given by

r  =  e i p \ j k  p 1 =  - e ip ( rigp] +  ^ gpk -  
jk 8  l J ' Pl 2  \d £ ,k dQ  d i p ) '

where [jk,p] is the Christoffel symbol of the first kind, as defined in (Aris, 1962, p. 162) by

"  p  d t j  ‘

\ i k  d ] ~  -  f ^ 8 p i  +  ^ 8 p k - ^ 8 ! ^ \  -  Y
dxm d /  dxm

The Christoffel symbol of the second kind may thus be written

r)rm Fir171 Fir1
r >  =  g‘-  Ijk.p] =  ^  = ^ r  di-12)

II.2.2 The intrinsic derivative

We now follow the procedure in (Aris, 1962, p. 166) to derive the intrinsic derivative. 

Consider a time-dependent coordinate transformation (II.8). The velocity vectors o f the moving 

coordinates are

U ‘ =  ^ - ,  and U j =  (11.13)
dr dt

in the Cartesian space and curvilinear space, respectively, and they satisfy the contravariant trans­

formation rule, i.e., Ul =  c';-C/C

Let § i  be an arbitrary parallel covariant vector field with constant components in Cartesian 

space (x ,f), and S, be its covariant counterpart in the curvilinear space (§,x). Consider a curve 

describing the path o f a fluid particle, parameterized by x l(t) and %‘(t) in the two coordinate systems, 

respectively. Note that %‘(t) can be determined from x ‘(t) and the implicit function =  Q{xk ,t) 

implied by the transformation (II.8). The two parametric equations x(t') and £(t) satisfy

‘̂  =  dJ ? + ^ ĉ  =  - Uk + ckvp =  - Uk +  uk, (H.14)
dt dt dxP d t 1

where vp =  ^  and uk =  ckpvp are the velocities of the particle in the Cartesian space and curvilinear

space, respectively. We are now looking for a derivative with respect to t, namely the intrinsic

derivative, denoted as ~ ,  which meets two requirements: (1) it should reflect the total variation

of a tensor vector along the curve due to infinitesimal change of t (correspondingly, in Cartesian

coordinates, this derivative will reduce to the material derivative), and (2) it should preserve tensor
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character so that it can be applied to any coordinate system. By the first requirement, ^  should 

vanish along the curve, as B, represents physically the same constant parallel vector field as B,. 

Since we have ^  ^  =  0, which holds for all points along the curve, this condition is

d&i d  . ,■ . jdB ; dcj
d f  = S (^ ) =  ^ + s ^ = a  (IL1S)

Multiplying this equation by c‘r and summing over i, noting that clrcj — 5/, we obtain the condition 

for the covariant B r to be a parallel field,

d B r  +  n  r' d d ‘ 
~ d f  1 r~dt

+  BjClr - ± =  0. (11.16)

This suggests that, for a covariant vector Br, the intrinsic derivative we are seeking is

D t d t dt

which indeed satisfies both requirements [fulfillment of the second requirement is seen from the 

derivation o f (11.16), noting that ^  =  c ( ^ J .  In the same way, we may obtain a similar derivative 

for a parallel contravariant vector field.

M ore generally, we now use the quotient rule to derive the tensor character for such a 

derivative of an arbitrary contravariant vector field.Switching dummy indices in (11.16) by i —> Z, 

and then r —> i,

dBi _ id c j (  ;dc\ d c \c [ \  (  :dcl: ddA  ,dc\ ,TT
~dt =  ~lh = y ‘ ~dt d l ^  J  = j  ~  J  ~

Now let A 1 be any time-varying contravariant vector field in (£,x)-space. Then A'B,- and 

its derivative along the curve £(r), , are both scalars which are independent of the coordinate

systems. However, by (11.17)

.  d- i B l+ A ‘B M d4  _  ( f + ^ f \  (n , 8,
d t d t d t d t d t \  d t d t J

d (A ‘B ■')
Note that the dummy index i in the first term has been switched to j .  Since ' d is a scalar

tensor and Bj  is an arbitrary covariant vector, the quotient rule implies that the term in brackets is a

contravariant vector. It is the intrinsic derivative we are seeking and may be written as

DAJ dA j Ai-jdc\
—  =  —  + A 'cJl — L. (11.19)
Dt d t d t

Note that the material derivative ^  along the curve %{t) is

d _ _ d _ d x  d _ d* t
d t ~  d x d t  +  d g  d t ~  dx +  d t ' ( }
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Substitute (11.14) and (11.20) into (11.19), and the intrinsic derivative becomes

D t  ~  a x  +  as* a? +  c' V a x +  a t

=  ^  / a ^  . , a c [
a x  ^ a s *  1 a s *  y  d t  ' a x  

= ̂ +(^+r̂ ')̂ "+Â ^

where the definition of Christoffel symbol of the second kind in (11.12) has been used. Furthermore, 

since
a c [  _  d_ (dJ_\ _  _ a _  / a ^ \  _  a ^  _  a * W  _  a x *  z 

a x  _  3x  v a s *  y  “  a s * - v ^ y  ~  ^  d x k ~  a s *  -*

where the covariant derivative and partial derivative are the same in Cartesian space, and U lk is 

actually a mixed second order tensor, then

• d r 1
r ) ° S ± -  7J . M 1i. -  I I IC]

3x
=  c jc fU ‘k =  U j. (11.22)

Finally, the intrinsic derivative of the contravariant vector A ' becomes

^ -  =  ^ - + A ji (ui -£ /* )  + A iu [ .  (11.23)
Dt 3x ’ v '

The additional terms that arise in the intrinsic temporal differentiation are due to the mo­

tion of the base vectors which are also spatially varying. To see this let us consider a Cartesian 

vector

a =  aj e{j),

where the coefficient is the component of the contravariant counterpart o f a in the curvilinear 

coordinate system (S,x), and e^) is a set of Cartesian base vectors for (S,x)-coordinates, defined by

„ ___ — TVta
eU) ~  WeU) = W  =  c‘l '  der’vat*ve ° f  a  whh respect to t along the curve £(/) is

da  da da dQ
dt 3x a^« dt

da ' ( da ' : d e r j \ \d Q
- ^ * ( 1) + a ~ f c + { ^ eu ) + a ^ ) ^ r  (IL24)

da1 • ; ; d t 1
• J t i J  a _ V _ L  e , ..

dt J CW’

de(l

+ alU Ji + a Ji- 
dx ’l dt

where the definition of equations (11.12) and (11.22) have been used to show and
d e ,. = rj(.e((t), and the dummy indices are swapped to complete the derivation. The expression in
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brackets is just the contravariant form of the intrinsic derivative and shows that the additional terms 

come in with both the temporal and spatial variability of the base vectors.

It should be pointed out this differentiation is not the same as the convective derivative, 

as described in Oldroyd (1950) and (Aris, 1962, p. 185), which is used to study inherent material 

properties, especially for non-Newtonian flows, even if  our moving coordinates are chosen to be 

the material coordinates in which case the intrinsic derivative reduces to UU =  ^  + A ‘U Ji . The 

convective derivative is simply which reflects the rate of change of A> in material coordinates. 

Note that the convective derivative when expressed in the fixed curvilinear coordinates, has an 

involved form reminiscent of (11.23), but represents something different. The intrinsic derivative 

^  also takes into account the change caused by the motion o f material coordinates themselves.

II.2.3 Equations of motion in a moving coordinate system

We now apply Reynolds’ transport theorem. Let F (£ ,x ) be any function and V (t)  be a 

closed volume moving with the fluid. Then

w , I S U r - ! I L [ ^ A dV
holds for any tensor F. If F  is a scalar, e.g., F =  p, then the term A'U  j in (11.23) does not exist and 

the covariant derivative reduces to the partial derivative, so we have ^  ^  4 . ^ ( u l -  U ‘). By the

mass conservation law we require the integration in (11.25) to vanish, and thus obtain the continuity 

equation

(11.26)

which, incidentally, is exactly the same as what we get by replacing (II.9) into the mass conserva­

tion equation in (II. 6 ) in a fixed curvilinear coordinate system. The temporal terms in the energy 

conservation equation transform in a similar manner.

If F  =  p u‘ is the momentum vector, by the definition of the intrinsic derivative in (11.23) 

and the momentum conservation law, we have

§i 1 1 H  ̂ =I I L  [̂ r+ “v>) (p“i) j+
- / / / v J P /  +  # 1'- 

Therefore the momentum conservation equation may be written

^  +  (uj  -  Uj ) u\j +  uj U ‘j  =  f  +  - T ‘j .  (11.28)
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Note that the continuity equation (11.26) has been substituted to make the above equation simpler.

W hen the £ coordinate system is fixed, i.e., t / ; =  0, then the equations (11.26) and (11.28) 

reduce to (II.6) as expected. Conversely, however, the extra terms which arise from the temporal 

intrinsic differentiation of a tensor vector, —U 'u ‘j  + u'U 'j, are not obviously seen in (II.6). Simply 

applying the chain rule (II.9) for temporal differentiation in the momentum conservation equation 

in (II.6) instead produces — t / 7^ ,  which is not equivalent to -U ^ u 1 ■ +  u W 1-.

II.2.4 Example: Uniform flow in a rotating coordinate system

We now re-examine the example of the uniform flow in a spinning coordinate system, as 

introduced in (11.10). The velocity of the spinning coordinate system is

Since the covariant differentiation reduces to partial differentiation in this case and ulj  =  0, in this 

example equation (11.28) reduces to

fluid, as Ogawa & Ishiguro (1987) pointed out, equations (11.26) and (11.28) become the expressions 

in Lagrange coordinates, or material coordinates, which are often used to describe the mechanics 

of solids. We now consider the problem of stagnation point flow where the Cartesian velocity 

components and pressure (divided by the constant density) are given by, v1 =  occ1, v2 =  —a x2, p  =

cosM  x

which may be written

sinx COST

COST sinx

Thus, (11.28) is seen to hold in the present example.

II.2.5 Example: Stagnation point flow in a material coordinate system

W hen UJ =  uJ, that is, the velocity of the coordinate coincides with the velocity of the

— \  [(x1 )2 4- (x2)2}, and a  is a constant scalar. The velocity vector satisfies the Cartesian momentum 

equation which, in terms of the material derivative, reduces to

(11.29)
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where d ‘ is the contravariant pressure gradient vector divided by the density in Cartesian space. 

Motivated by (11.29), we define the material coordinate system

= x 1e~at feat 0 \ .  ( e ~ m 0

•Q _  x 2 gat y  o e~m J y 0 eMt

Note that in this special flow, the lines ^  =  constant remain parallel to the x 2 axis and the lines =  

constant remain parallel to the x l axis though these lines move along with the fluid particles. Since 

UJ =  uJ, the contravariant form of the momentum conservation equation (11.28) in this example 

reduces to
du?1
—  +  UJU ‘ : =  d \  (11.30)
a t

where d l denotes the counterpart of d ‘ in the new coordinate system. Note that, by the definition of 

U, we have

™ y - a i ;2

and by the relationship between contravariant vectors we have

(  a 2^ N
d =  Cd =

y a 2£2

so that, again, (11.28) is seen to hold in the present example.

As it can be seen, in both examples, although the coordinate systems are orthogonal, the 

extra terms arising from temporal differentiation of tensor vectors in a moving frame do not vanish.

II.3 Derivation by direct transformation

The Navier-Stokes equations in a time-dependent curvilinear coordinate system may also 

be obtained by directly transforming the equations in Cartesian system using the chain rule, though 

this approach is somewhat cumbersome and does not shed any additional light on the derivation or 

its physical significance. That is, taking the Cartesian-based momentum equation

d v ‘ . d v ‘ 1 3 ? *

a T + v a ? = /  +  p ^ ’ (IL31)

where f  and t lk are the counterparts of f l and T lk respectively in Cartesian space, we may transform 

the equation by applying chain rule to all the derivatives, substituting v with u, multiplying it by c\ 

and invoking index summation. From a physical perspective, this means projecting the momentum
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Figure II. 1: Physical domain and the computational domain.

equation into the new coordinate system. We show here how the transformation of the temporal 

term is handled, which is the term of interest in this paper.

Clearly, (11.32) and (11.33) add up to the left-hand side of (11.28).

II.4 Application: flow in a channel with moving walls

A practical example of the use of such coordinate transformation is to compute the flow 

in a channel with moving walls. Consider first an incompressible flow in a periodic channel of 

length Lx whose two walls slightly deform about their nominal locations (x2 =  1 and x 2 =  - 1 )  

continuously with respect to time, as depicted in Fig. II.l. In the present study it is sufficient to 

demonstrate the relevant points in two dimensions; extension to three dimensions, though involved, 

is straightforward.

If we define . x) and r |/(^ 1,x) to be upper and lower wall displacement from their 

nominal positions, respectively, in the wall normal direction, and r|i =  {r\u — rp ) /2 , r|o =  (t|« +

(11.32)

Similarly, the inertial term becomes

(11.33)
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r|;)/2, then the time-dependent transformation

' x 1 ^ 1

x2 =  ^2( l + r i 1) +  rio (H.34)

t — x

may be applied to transform the deformed domain into a rectangular domain. The time-independent 

version of this transformation has been used by Gal-Chen & Somerville (1975b,a) to simulate the 

meteorological phenomena o f up-slope winds above a mountainous terrain. Carlson et al. (1995) 

and Kang & Choi (2000) used the three-dimensional version of the transformation to calculate 

turbulence in compliant channels. Note that conformal mapping or orthogonal transformation could 

be used to solve the present two-dimensional test problem with significantly less effort. However, 

our main purpose here is to illustrate a particular issue in general coordinate transformation on a 2D 

test problem.

By definitions (II. 1) to (II.4), we have ( 2 x 2  instead of 3 x 3 matrices are considered for 

this 2D problem)

c j i °y e j 1 °N
\  a*2 dx2 J ’ I i dx2
\ W  W J  \ ~ ^ W

r  =  i q  =  | J  =  i +Ti , ,  £ = (
\ ~ 7 W ,

and the connection coefficients are

r )k = r 22  =  0,

-2 ... 1 d 2x 2 1 /  2 d 2r g  a 2rio \

T u  J 3 (^ )2  i + m  ^  a(^i)2  +  X V ) 2) '

2 _  p2 =  1 d 2X2 1 9 r |i

12 21 J d t; ldt; 2 l + r i i d ^ 1 '

To simplify the notation, we define the following non-constant transformation coefficients

_  d £ 2 =  1 d x 2 =  1 f  2 d m  9r)0
m  9*1 7 9 ^  1 +1H V 9^* 9^!

9 2  ■
9^2 1 1
dx2 7 1 +  r| i ’

=  9£2 =  l d x 2  =  1 /  g29rii 9r|o
T dt J  dx 1 + 1)1 \  9 t  dx 

The two components o f the momentum equation (11.28) may be written, after some manipulations,
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as

9 m1 9 m1 ^ u 1 2^m1
- ^ + ( P t^ 2 + M

9 9 \  /  9 3 \  j 2 d2n*
v9 ^  +  Cpi9 ^ J  V9^r  +  (pl9 l 2 y “ +Cp29(f2)2

I (  d p  d p  

p W +(Pl9l 2 J +V ■Px,

d u 2 d u 2 , 9(pT ,  9cpT , 9m2 2 9m2 i 2  2  d J  , , 1 9 2x 2
"■ ' T ^ t^ F ?  —“ FFi—  M F t?  “*“M aFT +  M 5F? +  M M aeT M “ -----------9x ^ 9 £ 2  “ 9^1 9 ^  91;1 9^2  ^  7  9^ ' / 9 ( ^ ) 2 (H.35)

' ----------------------v ----------------------'

1 ( d p  d p  \  1 2  d p

=  - ? * '  \ W + ', l w ) ~ p ' f l W ~ ' t ' P‘

+  V ( p 2
d  d  \ 2 , 2 \  2  d 2J u 2 i 9m1 „9m ’

9 ^  +  CPl9 |2 j   ̂ ) +<P23(^2j 2+M S l + 2 d £ lS 2  + 2 t f 5 S2’

where v is the kinematic viscosity, Px is the uniform streamwise ( j c 1 -direction) pressure gradient that 

maintains the bulk flow, and

51 =  ( 9 f r +  Cpl9f2) 52’ 
d2*2 9J

S2~  9 ( ^ ) 2 + ( P l 9 ^ ’
2 dJ

S3 =(pl52 +  920|T -

By applying the metric invariants o f the coordinate transformation, we may also express the con­

servative form of the momentum equation (see Appendix, equation (11.37)), which is preferable for 

implementation in a numerical algorithm. In the particular transformation shown above, applying

(II.9) would cause the two under-braced terms — u1^  — in the u2 momentum equation in

(11.35) to be absent. The continuity equation and boundary conditions are given in the Appendix.

II.4.1 Numerical algorithm

To solve (11.35), the volume flux components q l =  Ju1, q2  =  Ju2, and the modified pres­

sure p  =  J p /p  are chosen as the primitive variables. The numerical algorithm is based on that in 

Akselvoll & M oin (1995) and Bewley, Moin & Temam (2001). The grid is chosen to be evenly 

spaced in the streamwise direction (£*) and non-staggered so that Fourier transformation techniques 

may be used to compute spatial derivatives in this direction. In the wall-normal direction (^2) the 

grid is staggered and stretched using a hyperbolic tangent function allowing the near-wall region to 

be better resolved. Spatial derivatives of this direction is discretized using the second order centered 

finite difference scheme.

The flow is advanced in time using a low-storage third-order Runge-Kutta method. At 

each Runge-Kutta substep, all terms involving derivatives and cross derivatives o f the primitive
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variables are treated explicitly, and all terms involving only q2 derivatives of the primitive variables

are treated with an implicit Crank-Nicholson method.

At the beginning of a time step, a full pressure equation is solved with a Neumann bound­

ary condition that is derived by imposing the discrete continuity constraint upon the discrete mo­

mentum equation. A t the end of each Runge-Kutta substep, a projection function is solved to bring 

the velocity field to be solenoidal and to update the pressure. Readers are referred to the Appendix 

for the details o f this numerical method.

To maintain the constant bulk velocity Ubuik (which is normalized by the nominal domain 

size), the uniform streamwise pressure gradient Px is computed by integrating the ux momentum 

equation over the entire domain,

The discrete numerical integration scheme in the code exactly conserves both mass and momentum. 

By computing Px with (11.36), constant mass flux is numerically guaranteed. The Reynolds number 

is thus based on the bulk volume flux

mass flux, and h =  1 is the half channel width. Time is normalized by jj-.

II.4.2 Laminar steady flow in channels with sinusoidal walls

The first case considered is the laminar flow in a symmetric channel with sinusoidal walls, 

as depicted in Fig. II. 1, with r\i = - r \ u — sco s(^ 1). This case, though not addressing the problem 

of a moving coordinate system, validates the correctness of the present code against an analytic 

result in the case of a stationary coordinate system. The parabolic laminar profile in an unperturbed 

channel is used as the initial condition. The wall deformation starts to grow gradually until the final 

geometry is reached and then remains unchanged, and the simulation continues until the steady 

state is reached. The results are compared with that from Tsangaris & Leiter (1984), who solved the 

laminar steady flow in sinusoidal channels for Reynolds numbers far above that for creeping flow. In 

their work, a perturbation method is used with the wall amplitude e as the perturbation parameter.

constant

J  - c p i p  +  vcpi

(11.36)

R e =  —
Uch  3 Ubuikh
v  ~  2  vv

where Uc =  \Ubuik is the centerline velocity of the corresponding Poiseuille flow with the same
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The stream function is expanded in a series, and the first-order variation is derived, which boils 

down to solving numerically a linear system of 4th-order differential equations with two unknown 

functions and with variable coefficients.

Fig. 2 and Fig. 3 show the comparison of the Cartesian velocity components (v1 and v2) 

profiles for e =  0.1 and e =  0.2 at Reynolds numbers Re =  1 .0 ,10,75,200,400. In our simula­

tions, the number of Fourier modes is 32 x 64 in the t ,1 and t ,2 directions respectively (i.e., 48 x 64 

dealiased collocation points), and the length of the computational domain is Lx =  2n. The resolu­

tion was doubled in both directions and the calculations repeated with no significant change of the 

results.

The comparisons show that our simulations agree very well with the results obtained by 

Tsangaris & Leiter when both the wall deformation parameter e and the Reynolds number Re are 

small. However, the discrepancies become more evident as e or Re is increased. The influence 

of e is expected because the perturbation analysis o f Tsangaris & Leiter is less accurate when the 

perturbation parameter e is increased. The influence of Re is also expected since the leading-order 

truncation error from the perturbation series is related to Reynolds number as well.

Our simulations also show that the critical Reynolds number for flow separation to hap­

pen at e =  0.2 is about Recrit =  171, and the separation point is about =  2.6 which is slightly 

upstream the maximum width of the wavy wall of the channel. These are slightly different from 

what Tsangaris & Leiter predicted, where Recrit =  185 and the separation point is about =  2.4. 

As Reynolds number is increased above Recrit , separation regions in the diverging portion of the 

channel are formed, as illustrated in Fig. II.4.

II.4.3 Moving boundary simulation

To illustrate the important effects of the sometimes-neglected terms in the Navier-Stokes 

equations in time-dependent curvilinear coordinates, we simulate the laminar flow in a channel with 

an oscillating Gaussian protuberance at center o f the lower wall and corresponding blowing/suction 

applied at the opposite wall. The wall deformation is prescribed by

Tp (£ ',* ) =  e sin (cot) e x p ---------- ^ —

where e is the amplitude of the wall deformation, co is the oscillation frequency, and a  is a constant 

determining the width of the protuberance.
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Figure II.2: Cartesian velocity profiles at various cross sections (xl =  0 ,1 ,2 ,3 ,4 ,5 ,6 )  o f the channel for steady flow with e =  0.1 and various Reynolds 

numbers. Left: v1 component; right: v2 component. Solid: numerical results; dashed: perturbation analysis.
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Figure II.4: The streamlines for the case with e =  0.2 and Re =  400 showing the separation regions 

of the flow field.

To maintain the incompressibility of the flow, the upper wall is made porous and the 

velocity of the fluid through the upper wall is identical to the velocity o f the lower wall. In all tests 

of this section, the channel length is chosen to be Lx =  n, Reynolds number is Re =  200, and the 

wall deformation parameters are e =  0.1 and a  =  0.2. In the simulation, the number of Fourier 

modes is 42 x 84 in the t ,1 and t ,2 directions respectively (i.e., 64 x 84 dealiased collocation points) 

and the time step is 0.01. The time step was reduced by a factor of 10 and there was no significant 

change of the results.

Due to the oscillation of the boundary, this flow exhibits time-periodic behavior. Fig. II.5 

shows both the instantaneous streamlines’ and pressure’s oscillating patterns at different time phases 

within one period cycle ^  =  n  (i.e., co =  2). The streamline patterns show that center of the two 

walls serves as the fluid source or sink in the transversal direction of the flow. W henever the lower 

wall is moving upward, serving as a source (i.e., t =  0.1, 0.5, 2.5), the instantaneous streamlines 

near the wall are combed downstream, which means the fluid is pushed up by the wall and drifts

downstream with the main flow, and at the upper wall region, the instantaneous streamlines are con­

tracted toward the wall by the corresponding fluid extraction. By similar reasoning, when the lower 

wall is moving downward, serving as a sink (i.e., t =  1.0, 1.5, 2.0), the instantaneous streamline 

patterns near the lower wall and the upper wall reverse. The pressure patterns oscillate in time as
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well. A t t =  0.1, a high-pressure region is formed at the front side o f the bump due to the interaction 

between the viscous fluid and the rising obstacle, and a low pressure region is formed at the back. 

Form drag is therefore introduced in addition to the skin friction. The high pressure region gradu­

ally fades and the low pressure region shifts upstream as the bump descends (t =  0.5 and t =  1.0). 

When the wall moves down farther (t =  1.5), the low pressure region shifts to the upstream side of 

the bump and another high pressure region is formed downstream. Then the low pressure region 

gradually fades and the high pressure region shifts upstream (t — 2.0 and t — 2.5).

We also simulated the flow with under-braced terms in equation (11.35) intentionally omit­

ted in the code. Since these terms arise from the temporal derivative, we may expect that the errors 

associated with their omission would be small if the wall motion is slow, but large if the wall mo­

tion is fast. Two comparisons are carried out, one with oscillation frequency to =  0.5, the other with 

to =  4. The resulting instantaneous streamlines and pressure contours at a phase o f the oscillation 

are shown in Fig. II .6 and Fig. II.7. In the slow wall motion case, to =  0.5, the calculations with 

the terms omitted approximate our correct results fairly well. However, in the faster wall motion 

case, to =  4, the effects o f omitted terms in the calculation become more evident. In Fig. II.7, where 

the wall is moving upward, the streamlines appear to overshoot above the bump, and undershoot 

downstream due to this omission. The pressure contours also become more irregular when the two 

terms are absent from the calculation.

II.5 Conclusions

In time-dependent curvilinear coordinates, the temporal derivative of a tensor vector is 

more complicated than the temporal derivative of a scalar. From equation (11.23), we can see that, for 

a contravariant vector A7, its temporal intrinsic derivative involves its own covariant differentiation

(A^U 1) and the covariant differentiation of the velocity o f the coordinates (AlU \). Treating A7 as a
' 3 Iscalar during time differentiation is incorrect, as it drops some important terms. Since U \ =  cj 

as we have shown, and c\ =  ^  is actually the component o f the base vectors o f the new coordinate 

system, the term A 'U \ arises because base vectors of the new coordinates are moving. Generally, 

in a time-dependent coordinate system A lU \  w on’t vanish even if  the coordinate lines are straight 

and/or orthogonal, as shown by the two examples in Sections II.2.4 and Sections II.2.5.

Assuming that the extra terms in question are small is only valid when the coordinate sys­

tem is moving sufficiently slowly. We have demonstrated that these terms are not always negligible
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Figure II.6 : Effects of the sometimes-neglected terms in the Navier-Stokes equations on flow of 

Re =  200 when wall oscillation is slow (a) =  0.5). Time instance: t =  3.0. Left: instanta­

neous streamlines \|/; right: pressure contours. Solid: the correct results; dotted: results with 

neglected terms. Quantification of error: ||\irerrOT||2 / | | t |/ | |2 =  0.2%; m axn(\|/error' / " , "i2  =  0.5%;

\\Perror\\z/\\p \\2  =  l l % ’ ™*Q.(Perwr)/ \\p \\2 =  35%.
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Figure II.7: Effects o f the sometimes-neglected terms in the Navier-Stokes equations on flow 

of Re =  200 when wall oscillation is fast (co =  4). Time instance: t =  1.8. Left: instanta­

neous streamlines \j/; right: pressure contours. Solid: the correct results; dotted: results with 

neglected terms. Quantification of error: ||\(/errar||2 / | | \ | / | | 2 =  1.6%; maxa(v|/error) / | | v l l 2 =  6 .8 %; 

WPerrorh/ | |p ||2 =  15%; V03Xa{perror)/  | |p ||2 =  5^%.
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by simulating incompressible flows in a two-dimensional channel with prescribed boundary motion.

II.A Numerical implementation

In primitive variables, i.e., the volume flux components q l — Ju 1, q2 =  Ju2, and the 

modified pressure p  =  J p /p ,  the conservative form of governing equation (11.35) for the compliant 

channel can be written as

d4 -  +  r ( q j ) +  iV V )  -  - G \ p )  +  vL '(g ') -  P‘, (11.37)
dx

where T '(q ‘) is the term involving cpT, N l(qJ) is the convection term, Gl(p) is the pressure gradient 

term, vL l(ql) is the diffusion term, and Pl is the uniform pressure gradient term. They are given by

. ^ dqhpT
3 ^2

rj,2 _ dq2((>x i9<P t_  2 ^ P r
a F  q a ^ 1 q dt?

. dqlq \ p2 dqlq2 (f>2

a ^ 1 a^2

2 d q xq h p2 , d q 2q 2ty2 , 0 ,„2 l 2 ^  , , , 2 . i „ i  d V
^  a ^ 1 a^2 9  3^1 + 9 2?  <i 3 (^ 1)

i =  ap  : a^cp!

2

a^i 3^2

a ^

2 a v

r 2 - m  (  dp I 3 ^ ( p l  ^  I rn 2  9 / 2(P1 ( ^ 1  +  3^2 J  + (p2 3^2

L l - f j r  +  w )  (<71) + CP2 ;va ^  a^2 ;  ^ '  Y2 a ( F )2

/ a  a  \ 2 , 2 \  ? 9 2 F  i acp2<y1 ~ 9 9 2 < ? 1
=  I  1- m i   1 (n \ -I- m 2---- -—- -I- ffl'i/i ?i -I- 2  —— co 4- 2 —. . .l2 =  ( a F +(pla F j  ^  W 2 W ? +<P* V + 2 - W S 2 + 2 - W s ^

P l = JP r

P 2  =JViPx-

Weighted by J, the continuity equation is
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where D t is the divergence operator. The boundary conditions are the no-slip and no-penetration 

boundary conditions which can be expressed as

One exception in present work is the example of moving boundary with Gaussian protuberance 

where the upper wall is made porous and the boundary condition for the upper wall is thus q2 \i}=+\ =

II.A. 1 Temporal discretization

The flow is marched in time with a low-storage third-order Runge-Kutta method based 

on the scheme used by Akselvoll & Moin (1995) and Bewley et al. (2001). In each of the three 

Runge-Kutta substeps k =  1,2,3,  two fractional steps are used: (1) an intermediate flow field f  is 

obtained by solving the momentum equation with some terms treated explicitly and some implicitly 

(Crank-Nicholson); (2) the velocities c f  are projected to the divergence free space and the pressure 

is updated by the the projection function.

Let the operator A; represent the terms treated explicitly and B, represent the terms treated 

implicitly where the subscripts simply indicate the operator components, not covariant components. 

The discretized momentum equation may be written as

^ * = ± 1  =  0

A

A

(11.39)

(11.40)

+ 2^k (G i{pk- l ) - P i)
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where the explicit and implicit operators are given by:

, 8  f b q x Scpi^r1 \  8  (  bqx\  8 qlq l q>2

 ̂ j  + v 6 |2  ( <Pl8^ r J  8 Q ~

■ 8  f b q 2 bq2 \  8  /  bq2

21 1 -vS5T VS5r+<Pl6pj +v(p'5p (ap  

+ v ^ S l + 2 ^ «  +  2 ? # S3

b q q y i
S^»

a^i z a ^ 2

2 1 1 & ^  S*2 ^  I l&pr
iq  q S^ 1 V8S1 J Sfc1

■ 8  /  8( p i g lN \  2 S ( b q l \  bqxq2 q>2 S^*cpT
Bl(? ) =V5̂ 2 ( <Pl_8̂ 2“J +V(p28̂ 2 J §|2“

/  S  /  8 q 2 \  2  §  f  &‘12 \  &q2q 2(P2 2 1 2 & /W >  =«P'5p ( ‘P 'sp  J ^ s p  l a p  j  -  “ 6p— « 6 ?
8<?2 (px 2 ^ P t

“ “ s p -  ^ S^2 ’
SJ

and means the numerical differentiation. The Runge-Kutta coefficients used in the present com­

putations are:

P i = 15’ fc  =  ^ ,  fe  =  J ,

Yl 15’ Y2 1 2 ’ Y3 ~  4 ’

?.=«, c » = - £ ,  & = - £ .

Note that, in the same way as in Akselvoll & M oin (1995), the non-linear term q2 q2 needs to be 

linearized for the present system to be solvable.

To make the intermediate flow field divergence free, we solve a projection function for

§  =  p k - p k~ l :

A<)>
i  hql 

2(3*81 8£? ’

where A is the Laplacian operator given by

m 1 j t y ,  5 (N>A
911 S^1 8£2 ) +  92 (11.41)

8 ^ 2

This Poisson equation is solved in Fourier space. Since the non-constant coefficients make the 

Laplacian non-invertible, we split the operator into two parts and solve the equation iteratively,

(11.42)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

where 5 is the iteration index. After (|> converges, the volume flux components and pressure are 

updated by

II.A.2 Pressure equation

At the beginning of each time step, we solve a full pressure equation which is obtained by 

taking divergence of the equation (11.37):

Note that the divergence of the uniform pressure gradient vanishes, which is true (within the machine 

accuracy) in the discrete case as well. The Laplacian A is the same as in (11.41), so the pressure 

equation is solved with the same iteration strategy as that used in (11.42).

The grid is discretized with a hyperbolic tangent stretching function and staggered in 

the wall-normal direction, q2  is assigned on the family of gridpoints j  =  0 , 1, 2 , . . ., where j  —  0 

corresponds to the lower wall, and q 1, p  are assigned on the family of gridpoints 7 =  5 ,1  +  5 , 2  + 

5 , . . . ,  where j  =  ^ is midway between j  =  0 and j  =  1, and so on. Neumann boundary conditions for 

pressure are derived by enforcing continuity of the flow at the first interior gridpoint. We illustrate 

the procedure for the lower wall, q2 =  - 1.

The discrete q x momentum at j =  \  and the discrete q 1 momentum at j  — 1, in an explicit 

Euler scheme, may be written as

/  =  / - 2 ( 3 t 5xG‘($) (11.43)

and

(11.44)

Ap = D i ( - T i - N i + vL i) . (11.45)

(11.46)

and the boundary condition for qr  is

2*1 i k 1
<7 \j=o =  q  I / o -

Applying the discrete divergence operator to q* at j  =  that is,

(11.47)
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where h i is the distance between gridpoints j  =  0  and j  =  1, and requiring it to be zero, we have

hi
2

2 3 iSx hi
2

' 8 $
T (—T 1 —N l — G l +  vL1 — P 1) | -= i (11.48)

1 r
+ V i

2

(■- T 2  - N 2 - G 2  +  v L 2 -  P2) | . j +  (N 2 + G2) | -  (N 2 +  G2) | . 0

where the boundary nodes q2k 1 /=0 and (N 2  +  G2) |;= o have been introduced. Note that the expres­

sion in the first parentheses on the left hand side vanishes since q *-1  is divergence free. We split 

(11.48) into two equations:

0 =  w  {~ Nl ~ Gl) ^ + ^  [{~ n2 ~  G2) li=I +  {n2+ ° 2) l;=o] ’ (IL49)
2

2 k 2 k ~ l r -r +  hi
S T l \ t_ i  o \
 — +  T2|j=i ) + N 2|j=0

j=o

=  -  (G +  P )\j=o +  v  hi

6^

5Z.11 i
(11.50)

8 i;

where h p 21 y—i =  P 2 \j=o has been applied since P‘ is divergence free. Note that (11.49)

has the form of the simplified pressure equation, so it may treated as the Poisson equation (11.45) 

evaluated at j  =  \-  Equation (11.50) may be used to compute G2|7=o which is the Neumann boundary 

condition for (11.45). Actually, by realizing that in theory T ‘ and L l are divergence free, we have

s r 1! • i o „ s l 1 | ,= i „
hh ~ b f ± + T \ j = ^ T \ i ^  h\ - g r - + L \i=i V o -

Therefore, (11.50) is essentially the q2 momentum equation evaluated at the lower boundary.
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Abstract

In the efficient derivative-free optimization of problems in several undetermined parame­

ters, it is often beneficial to coordinate the search by performing it over a discrete set o f points that is 

gradually refined. A general class of such discrete optimization algorithms for which convergence 

proofs are now available is called generalized pattern search (GPS) algorithms. In such algorithms, a 

positive basis is used to define the local pattern of test points at each poll step of the iterative search. 

This positive basis is selected from many possible choices based on the vectors from the current 

candidate minimum point (CMP) to the several nearby nodal points on the ^-dimensional set of 

points being used to coordinate the search. However, if the usual n-dimensional cubic (a.k.a. Carte­

sian) mesh is used, the positive basis so constructed is either distributed nonuniformly in parameter 

space and based on nodal points other than the nearest neighbors to the CMP, or requires more new 

function evaluations than necessary to complete any given poll step. Such shortcomings can signif­

icantly reduce the effectiveness or efficiency of the poll step, thereby slowing the convergence of 

the optimization algorithm. Additionally, especially for large n, the cubic mesh does not “pack” or 

“cover” or “quantize” the parameter space very uniformly, thus requiring an excessive number of 

mesh refinements in order to approximate the actual minimum point sought with a desired degree of 

accuracy. The present paper considers alternative point sets, arranged as lattices, for GPS algorithms 

that may help to mitigate these shortcomings. These lattices may be thought of as n-dimensional 

extrapolations o f the face-centered cubic and body-centered cubic crystalline structures, and are 

shown to provide significantly improved convergence when used as the underlying framework for 

GPS algorithms.

III.l Introduction

Multidimensional optimization problems are most easily solved when derivative (that is, 

gradient, and sometimes Hessian) information can be computed or approximated. However, when 

the function to be minimized is inherently noisy, such as when it is obtained from lab experiments 

or as a statistical measure of a computer simulation o f a chaotic system such as turbulence, it is 

often not feasible to perform derivative-based optimizations. In such cases, derivative-free (that is, 

function-based) optimization strategies are the methods of choice.

In the function-based optimization of a single variable (otherwise known as a line search), 

a key element of a robust, efficient optimization scheme is that it not “stall” by performing function
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evaluations that are “too close” to one another too early on in the optimization. Implementing this 

concept involves a certain degree of ad hoc tuning of the numerical algorithm, but effective and 

general methods are by now quite well established (see, for example, Brent’s method in Press et al., 

1986).

In the function-based optimization of several variables, the fundamental idea of not per­

forming function evaluations “too close” to one another in order to “get the most” out o f each 

function evaluation still applies. An effective class of methods that has emerged to implement this 

fundamental idea, called generalized pattern search (GPS) algorithms, is to perform the optimization 

on a lattice covering the (appropriately nondimensionalized) constrained or unconstrained param­

eter domain under consideration, optimizing (at least, locally) the function evaluated on selected 

nodal points on this lattice, then refining the lattice and repeating the optimization process until a 

desired degree o f localization of the optimum is obtained.

Local convergence proofs for GPS algorithms are by now quite well established (Torczon, 

1997; Booker et al., 1999; Coope & Price, 2001). In order to insure convergence, the essential step 

of any GPS algorithm once a candidate minimum point (CMP) is identified is the poll step, which 

in effect tests several nearby nodal points around the CMP. These test points are selected such that 

the set of vectors to each of these test points from the CM P create a “positive basis” (that is, a set 

of vectors such that any point in the vicinity of the CM P can be reached with a linear combination 

of these vectors with non-negative coefficients). If, at any time during the poll step, any of these 

test points turns out to have a smaller function value than the current CMP, the current poll step is 

terminated prematurely, a new CMP is identified, and a new poll step is initiated around the new 

CMP. If, however, all neighboring test points forming the positive basis around the CM P turn out to 

have larger function values than the function value at the CMP, then the CM P is taken to be a (local) 

minimizer on the current lattice. The lattice is then refined and the process repeated. Since the 

polling process is relatively “expensive” in terms of the number o f function evaluations it requires, 

it is generally desirable to design the poll process to require the minimum number of new function 

evaluations possible.

To incorporate constraints, the lattice may be restricted to a range o f acceptable values, 

and the routine forced to evaluate the function only on those “feasible” nodal points which satisfy the 

constraints. W hen a CM P occurs on a constraint boundary, in order to insure that the optimization 

doesn’t stop prematurely, it is important that the boundary o f the lattice be “fit” to the constraint 

surface, and at each poll step a positive basis be tested within the constraint surface in addition to a
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poll vector directed inward to the feasible domain from the constraint surface.

Note that GPS algorithms offer a lot o f flexibility as to the choice of both the lattice 

overlying the parameter space and the pattern of test points selected from this lattice to be explored at 

each poll step, as long as the vectors from the CMP to these test points form a positive basis, which is 

required to insure convergence of the algorithm. Note that the directions of the positive basis vectors 

at each poll step are restricted to the directions defined by the vectors from the CM P to the nodal 

points in the vicinity of CMP, as the function evaluations are constrained to lie on the pre-defined 

lattice in such algorithms. Note also that, in current practice, the standard n-dimensional cubic 

lattice Z", also referred to as a point lattice or the Cartesian mesh or grid, is used as the underlying 

lattice in almost all lattice-based optimization packages, such as the Genetic Algorithm and Direct 

Search Toolboxes in Matlab. This choice is so widespread that this lattice often underlies lattice- 

based optimization algorithms implicitly, without even being explicitly identified in the formulation 

of the optimization algorithm. The present work discusses some attractive alternatives to this default 

choice.

In a particularly significant development, Booker et al. (1999) proposed a powerful exten­

sion of the GPS algorithm that alternates between a search step and the standard GPS poll step. By 

utilizing the poll step, this method retains the local convergence proofs o f GPS algorithms. How­

ever, by additionally utilizing the search step, the rate of convergence o f the algorithm, in addition 

to the function value at the local optimum found by the algorithm, can be substantially improved. 

Any of a number o f various strategies can be used during the search step to look for a nodal point 

on the lattice with an improved function value. In particular, Booker et al. (1999) proposed and 

characterized a new strategy, referred to as the Surrogate M anagement Framework (SMF), in which 

a “surrogate” approximating function (such as a Kriging function) is fit to the available function 

evaluations on the lattice. During the search step, the minima of this surrogate function are used to 

provide estimates o f new areas o f interest in the domain to explore with new function evaluations 

on the lattice. (This is akin to the inverse parabolic interpolations performed by Bent’s method in 

one-dimensional line searches.) The minima of the surrogate function may themselves be found 

fairly quickly with any o f a variety of techniques, such as so-called evolution-based strategies, as 

the surrogate function is designed to be quite easy to compute. Other nodal points in the domain 

may also be probed during the search step in order to explore regions in the parameter space which 

are still relatively poorly characterized, though initializing the search using a relatively coarse lattice 

typically reduces this “extra probing” of the domain that is necessary to achieve an adequate result.
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The SM F has proven to be especially suitable for problems in which the objective function 

is very expensive to evaluate, and has quickly grown in popularity for such problems. For example, 

the SMF has been successfully applied by Marsden et al. (2004) to optimize the shape of an airfoil 

in order to reduce the noise generated by the time-dependent flow near its trailing edge. In such a 

problem, which is typical o f a wide range of related derivative-free optimization problems one might 

consider in fluid mechanics, each function evaluation entails an unsteady flow simulation requiring 

many hours o f supercomputer time, and maximally-efficient optimization strategies are essential.

In the SMF, in addition to optimizing the efficiency o f the poll steps, a well designed 

positive basis might also help to improve the accuracy of the surrogate function itself, thereby also 

improving the efficiency of the search steps. It appears as if  such an improvement in the search 

steps would be a fairly problem-specific improvement, so this possibility is not explored further in 

the present paper. Rather, the focus of the present paper is on the several beneficial effects a well 

designed lattice and a carefully chosen positive basis has on the poll steps of GPS algorithms.

III.2 Favorable properties for packings used by GPS algorithms

The discretization of the parameter space onto an ordered set o f nodal points, or a packing, 

is necessary for GPS algorithms, as described above. However, there is tremendous flexibility in the 

selection of this packing. We now identify four general characteristics that render such a packing 

well suited for GPS algorithms:

111.2.1 Enumeration

The packing, and the nearest neighbors o f  each nodal point in the packing, should be 

straightforward to enumerate. As the intent is that the function evaluations performed during the 

course of the optimization be sparsely distributed, it should be straightforward to calculate various 

nodal points of the packing when needed, without storing (unnecessarily) the coordinates of a high­

dimensional array of node locations in the computer memory.

111.2.2 Refinement

When the packing is refined by a factor o f  two, the nodal points o f  the original packing 

should also be nodal points o f  the refined packing. This property insures that function evaluations 

on the original set o f nodal points may be reused with maximal effectiveness in the subsequent opti­
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mization on the refined set o f nodal points, and thus a minimal number of new function evaluations 

will be needed in the optimization on the refined set of nodal points.

111.2.3 Uniformity

The packing should uniformly “pack” or “cover” or “quantize” the domain. This implies 

that, at every level o f refinement, one of the nodal points in the packing is as close as possible 

to actual minimizer, wherever this minimizer happens to be in the domain. This facilitates the 

determination of a nodal point in the packing that approximates the actual minimum point with 

a minimal amount of error after the fewest possible number of refinements of the packing in the 

optimization algorithm.

111.2.4 Neighborhood

The nodal points in the neighborhood o f  any potential CMP in the packing should be ar­

ranged to facilitate the selection o f  a positive basis that a) requires as few  new function evaluations 

as possible, b) is evaluated on the nearest neighbors to the CMP in the packing ( if  possible), and  

c) is distributed as uniformly as possible in terms o f  their directions from  the candidate minimum  

point. These properties insure that the polling steps are completed as quickly as possible and ef­

fectively isolate the optimum of the function to the smallest region possible before moving to the 

refined packing, thereby (potentially) leading to a reduced number of points over which the algo­

rithm will search on the refined packing. Also, in the case of the SMF, increased uniformity of test 

points at each poll step may lead to improved accuracy of the surrogate approximating function, as 

mentioned previously.

111.2.5 Objective of paper

This paper considers alternatives to the standard cubic lattice for GPS algorithms in n 

dimensions (focusing on cases with 2 <  n <  15) which, at the cost o f being just slightly more 

difficult to enumerate, are as well suited or superior to the standard cubic lattice in terms of the 

other properties listed above.
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III.3 Notation

This paper utilizes an extrapolation of the body-centered cubic and face-centered cubic 

crystalline structures to n dimensions, and discusses the suitability of these structures for forming 

the lattice underlying a pattern search algorithm. In fact, a substantial body of literature has grown 

around the topic of n-dimensional crystallography (see, e.g., Janssen et al., 1999; Janner, 2001; 

Janssen et al., 2002). The field has its origins in chemistry and physics for the case n =  3, and can 

be traced back to the second half o f the nineteenth century. In fact, Hilbert’s eighteenth problem (of 

the 23 problems stated by Hilbert (1900) at his historic address at the 1900 International Congress 

of Mathematicians) is closely related to this field of study. Schwarzenberger (1980, pages 132-135) 

provides a nice review o f some of this older literature.

Many o f the involved concepts of n-dimensional crystallography, such as detailed charac­

terizations of symmetry groups, are not needed in this work. The more relevant body of literature 

for the present study is that o f n-dimensional sphere packing, which has important applications in 

coding theory. The definitive reference on this and related subjects is the lucid and comprehensive 

textbook by Conway & Sloane (1999). We now summarize the central concepts and notation used 

in the present work, following the notation of Conway and Sloane to the maximum extent possible1.
n

•  The inner product of two vectors: (u, v) — u ■ v =  ^  w, v,- =  u\ vi +  «2 ̂ 2 +  • ■ • +  «« v„.
i=i

•  The vector length: \u\ = \J (u ,u ) .

•  The angle between two vectors: cos Z(n,  v) =  \U). V\ .
\ u \ M

•  The volume of a sphere of some radius r, defined as the set o f all points in the domain of distance 

less than or equal to r from its center point, may be computed by straightforward integration. It is 

given by V^r", where
471 271

v 2 =  7t, V3 =  T , v »  =  - V 2).

•  The projection p  of a vector /  onto the plane normal to the vector r is given by

P =  f ~ ( f , r )  t 4 .  (III.l)
VI

Note that (r, p ) =  0.

•  A positive basis is defined as a set o f m  vectors, where n +  1 < m < 2 n ,  which span, with non­

negative coefficients, all directions in the domain in the neighborhood of a CMP, with no subset

'Note that, for brevity as well as generality, we suppress the use of the prefix “hyper-” oft used in n > 3 dimensions,
preferring the simpler forms sphere, cube, p lane, etc., instead of the more exotic constructs hypersphere, hypercube,
hyperplane, etc.
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of these vectors similarly spanning the same space. A maximal positive basis is a positive basis 

consisting of 2n vectors, and a minimal positive basis is a positive basis consisting of n + 1  vectors.

•  Necessary and sufficient condition for the set {vi , V2 , . . .  vm} to be a positive basis (paraphrased 

from Theory 3.6 of Davis (1954a)): the matrix containing the vectors {vi , V2 , . . .  vm} as columns has 

fu ll row rank, and it is possible to write, fo r  all i,

m
—Vi =  ^  o.jVj with all ctj > 0 ,

¥ j

whereas it is not possible to write this condition i f  any o f  the vectors v,- is eliminated from  the set 

and m is reduced by one.

•  The skewness of a minimal positive basis, 5, is defined here as S =  (cLmox/Omm)-!, where

and a min are the maximum and minimum angles, respectively, between the vectors of the minimal 

positive basis. Note that 5 =  0 corresponds to a uniformly distributed minimal positive basis.

•  A packing is an ordered set o f nodal points in n-dimensional space.

•  A lattice packing, or lattice, is a packing such that, if  shifted such that the origin is a nodal point 

in the packing, then, if u and v are any two nodal points in the packing, u +  v and u — v are also 

nodal points in the packing. Any n-dimensional lattice Ln has a dual lattice, L*, given by

L* =  { x €  R" : (x,u) e  Z  Vn e  L„}.

Two lattices M  and M ' are said to be congruent if one may be obtained by appropriately shifting, 

scaling, and rotating the other; this condition is denoted M  = M '.

Note that lattice packings (such as the cubic, hexagonal, FCC, BCC, checkerboard, and 

staggered lattices used in this work) automatically satisfy the first and second properties identified in 

§2 , whereas nonlattice packings (such as hexagonal close packing and diamond packing) often fail 

to satisfy one or both of these properties. Additionally, lattice packings have the convenient features 

that the distribution o f nodal points in the neighborhood of any potential CM P in the domain is 

identical, thereby simplifying the implementations of the poll step in the optimization code. Thus, 

the rest o f this paper focuses exclusively on lattice packings.

•  The packing radius of a lattice, p, is the maximal radius of the spheres in a set of identical 

nonoverlapping spheres centered at each nodal point.
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• The packing density of a lattice, A, is the fraction of the volume of the feasible domain included 

within a set o f identical non-overlapping spheres of radius p centered at each nodal point on the 

lattice. Lattices that maximize this metric are referred to as close-packed.

•  The covering radius of a lattice, R, is the maximum distance between any point in the feasible 

domain and the nearest nodal point on the lattice.

•  The covering thickness of a lattice, 0 ,  is the number of spheres o f radius R  containing an arbitrary 

point in the domain, averaged over the domain.

•  The Yoronoi cell o f a nodal point on a lattice, V(Pi), consists o f all points in the domain that are 

at least as close to the nodal point Pi as they are to any other nodal point Pj.

•  The mean squared quantization error per dimension of a lattice, G, is the average mean square 

distance o f any point in the domain and the nearest nodal point, divided by n and normalized by the 

appropriate power of the volume of the Voronoi cell. Shifting the origin to be at the centroid o f a 

Voronoi cell V(Pi), it is given by

c _ j;fv(Pd\x \2dx

Zador (1982) noticed that this metric may be reduced by quantizing space with lattices other than 

Z", which is one of the primary motivations of the present paper.

•  The kissing number of a lattice, x, is the number o f nearest neighbors to any given nodal point in 

the lattice. In other words, it is the number of spheres of radius p centered at the nodal points that 

touch, or “kiss”, a sphere centered at any given nodal point.

Note that the packing density A, the covering thickness 0 ,  and the normalized mean- 

squared quantization error G  are related but distinct quantifications of the uniformity of the lattice, 

whereas the kissing number x is an indicator of the degree of flexibility available when selecting a 

positive basis from nearest neighbors on the lattice.

III.4 Comparison of the cubic and hexagonal lattices for 2D optimiza­

tion

We first compare the suitability of the two lattices depicted in Figure III. 1 in terms o f the 

four properties listed in §2 for GPS optimization in the case with n =  2.
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111.4.1 Enumeration

Assuming hereafter that the coordinates are normalized by the unit cell size in each di­

rection, the (x ,y ) coordinates o f the nodal points on the 2D cubic lattice, Z2, are enumerated by 

(11,12), where ii and 12 are any two integers. Similarly, the (x,y) coordinates of the nodal points 

on the 2D hexagonal lattice, A 2 , are enumerated by (q +  *’2 5 , « 2 ^ ) -  Constraints may be applied 

simply by restricting the acceptable range o f i\ and/or *2-

111.4.2 Refinement

When refined by a factor of two, the nodal points on the original lattice are also part o f 

the refined lattice for both the 2D cubic and hexagonal lattices; the additional grid lines after the 

refinement are indicated with dashed lines in Figure III. 1.

111.4.3 Uniformity

As discussed in §3, there are three natural techniques to quantify the uniformity of a 

lattice. The first technique is to consider a set o f identical non-overlapping spheres (in 2D, disks) 

centered at each nodal point, as depicted in Figure III.2, and evaluate the maximal fraction o f the 

domain contained in such spheres. As described in §3, this is referred to as the packing density of 

the lattice, A. The second technique is to consider a set of overlapping spheres centered at each 

nodal point that are just large enough that every point in the domain is covered by at least one 

sphere, as depicted in Figure III.3, and to quantify the degree of overlap that results by determining 

the average number of spheres containing any point in the domain. This is referred to as the covering 

thickness of the lattice, 0 .  The third technique is to evaluate the mean squared quantization error 

per dimension of the lattice, G, as defined in §3.

The measure G is a quantification of the average quantization error. The measure 0 ,  on 

the other hand, might be thought o f as a quantification of the “worst case” quantization error, as it 

is based on the most remote points in the domain (referred to as “deep holes”) that are farthest from 

the nodal points o f the lattice. The measure A, presumably, is a quantification o f lattice uniformity 

that might be thought of as somewhere between these two extremes. All three measures, in addition 

to the kissing number t and skewness parameter 5, are straightforward to calculate, and are listed in 

the 2D case in Table III. 1. Note that the hexagonal lattice is superior to the 2D cubic lattice by all 

five of these measures.
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Figure III. 1: Layout of the 2D cubic (left) and hexagonal (right) lattices.

Figure III.2: Packing of the 2D cubic (left) and hexagonal (right) lattices.

Figure III.3: Covering o f the 2D cubic (left) and hexagonal (right) lattices.
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n lattice A 0 G X S

cubic (Z2) 0.785 1.571 0.08333 4 0.5W
i

hexagonal (A2 =  A |) 0.907+ 1.209+ 0.08019+ 6 + 0

Table III. 1: Characteristics o f the 2D cubic and hexagonal lattices: the packing density A, the cover­

ing thickness 0 ,  and the mean squared quantization error per dimension, G, quantifying the lattice 

uniformity, the kissing number x quantifying the flexibility available in selecting the positive basis 

from nearest neighbors, and the skewness parameter S  quantifying the uniformity of the best (in 

terms o f angular uniformity) minimal positive basis (with S  =  0 indicating that a uniform distribu­

tion is possible). A number in parentheses in the superscript indicates that that number of polling 

points in the minimal positive basis referred to are not nearest neighbors to the CMP, but are taken 

from the next shell o f neighbors, as no minimal positive bases can be constructed from nearest 

neighbors on the corresponding lattice. The dagger (+) denotes a value of a metric that is known to 

be optimal among all lattices of the same dimension, whereas the double dagger (+) denotes a value 

of a metric that is thought to be optimal among all lattices of the same dimension. The reader is 

referred to Conway & Sloane (1999) for further discussion of the alternative lattice names, such as 

A \,  etc. See Table III.2 for the n =  3 case and Table III.3 for 4 <  n <  15.
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111.4.4 Neighborhood

For the 2D cubic lattice, there are two ways to form a positive basis from nearby nodal 

points, neither o f which is ideal. One way is simply to select the In  =  4 nearest neighbors to form a 

maximal positive basis, as indicated by the positive basis marked in the neighborhood of the CM P in 

the left half of Figure III.la . Though the angle between the basis vectors are uniform, this positive 

basis consists o f (2n) — {n + 1) =  1 more test point than it needs to, thus typically requiring an extra 

function evaluation at each poll step. If a minimal positive basis (using n +  1 =  3 test points) is 

desired in the 2D cubic case, it is necessary to select at least one test point which is not a nearest 

neighbor o f the CMP, as indicated by the positive basis marked in the neighborhood of CM P in the 

right half o f Figure III.la . As is easily seen, the angles between the basis vectors in this case are 

highly nonuniform, with 90° between two of the vectors and 135° between either of these and the 

third. The relative lengths of these basis vectors are also nonuniform, with one \ fn  «  1.414 times 

longer than the other three. On the other hand, for the 2D hexagonal lattice, there are two natural 

ways to form a positive basis (as indicated in Figure III. lb), both of which are ideal in that they are 

(a) minimal (requiring n +  1 =  3 function evaluations to complete the poll step), (b) evaluated on 

nearest neighbor nodal points, and (c) distributed uniformly in parameter space.

111.4.5 Summary of the 2D case

As discussed above and quantified in Table III.l, the hexagonal lattice is either equiva­

lent or superior to the cubic lattice in terms of all four properties identified in §2  for lattice-based 

optimization in two dimensions using GPS algorithms. Therefore, the hexagonal lattice is (or, at 

least, should be) the preferred choice for unconstrained lattice-based optimization in two dimen­

sions. (When constraints are applied, the problem of selecting the most suitable lattice becomes 

case specific, and a lattice which happens to fit the given constraint boundaries might be preferred.)

111.5 Comparison of the cubic, FCC, and BCC lattices for 3D opti­

mization

We now describe briefly the three lattices depicted in Figures III.4-III.6 and compare 

their suitability in terms o f the four properties listed in §2 for GPS optimization in the case n — 3. 

Note that all three of these lattices appear prominently in standard chemistry textbooks (see, e.g.,
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Figure III.4: The 3D cubic lattice, (a) The unit cell, (b) The arrangement of the 2n =  6  nearest 

neighbors o f a CM P (blue), which form a maximal positive basis, (c) A minimal positive basis 

using n +  1 = 4  nodal points that are not nearest neighbors of the CMP.

Figure III.5: The 3D FCC lattice, (a) The unit cell, (b) and (c) The arrangement o f the n2n~ l =  12 

nearest neighbors (yellow and red) of a CM P (dark blue). From a viewpoint normal to the diagonal 

planes indicated in (a), one sees several layers of nodal points on top of each other, with the nodal 

points in each layer configured in a hexagonal pattern, and the nodal points in one layer lying directly 

over the voids in the neighboring layers; this provides one (of two) “close-packed” configurations 

in 3D, and is sometimes referred to as cubic close packing.

Navrotsky, 1994).

III.5.1 Enumeration

Assuming as before that each coordinate direction is normalized by the unit cell size in 

that direction, the 3D cubic lattice, Z 3, is enumerated by («'i, t'2 , *3 ), where each ij is an integer.

The face-centered cubic (FC C ) lattice, D 3, is a straightforward generalization of the 

3D cubic lattice. It is formed by taking the union of four 3D cubic lattices, one o f which might 

be described as the “base mesh” defining the unit cells, with the three others offset from the base
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Figure III.6 : The 3D BCC lattice, (a) The unit cell, (b) The arrangement o f the 2” =  8 nearest 

neighbors o f a CM P (blue). Note that, in this case, there are two families (red and green) of n + 1 =  4 

nodal points forming regular tetrahedra around the CMP, thereby forming uniformly distributed 

minimal positive bases.

Figure III.7: The augmented BCC lattice.

mesh by 1/2 of the unit cell size in exactly 2  o f the coordinate directions, which we may denote 

Z3 U ([2] +  Z3) where [2] denotes all possible permutations of the vector (0, 5 , 5 ).

The body-centered cubic (BCC) lattice, £>3, is another straightforward generalization of 

the 3D cubic lattice. It is formed by taking the union of two 3D cubic lattices, one o f which might 

again be described as the base mesh defining the unit cells, with the other offset from the base mesh 

by 1/2 o f  the unit cell size in all o f  the coordinate directions, which we may denote Z 3 U ( [ 1 ] + Z 3) 

where [1] =

Constraints are applied by restricting the range of the component lattices in one or more 

directions. Note that the 3D cubic and BCC lattices restricted in one coordinate direction form 2D
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cubic lattices on the boundary, whereas the FCC lattice restricted in one coordinate direction forms 

a rotated 2D cubic lattice on the boundary.

It is shown below (§5.2-5.5) that the BCC lattice appears to be superior in many rele­

vant respects to the cubic lattice. It is thus natural to propose an “augmented” BCC packing which 

preserves these superior BCC characteristics for the optimization problem even when constraints 

are binding. For constraints which restrict the packing in one coordinate direction at a time, one 

might propose the strategy depicted in Figure III.7. The augmented packing depicted in this fig­

ure is a BCC lattice on the interior (red and blue points), with additional points (yellow) on the 

2 -dimensional boundaries where one constraint is binding and more additional points (cyan) on the 

1-dimensional boundaries where two constraints are binding. This strategy is not well justified in 

the 3D case, however, as the 2D and ID  versions of the BCC lattice do not exhibit favorable prop­

erties (in fact, they simply reduce to Z 2 and Z 1). On the other hand, this strategy is easily extended 

to the n-dimensional extrapolation of the BCC lattice, D*, as described in §6  and referred to as the 

“staggered” lattice. Following the same procedure as described here for the augmented BCC pack­

ing, the n-dimensional augmented staggered packing reduces to ( n — 1)-dimensional and (n —2 )- 

dimensional augmented staggered packings when one or two constraints are binding, thereby retain­

ing the favorable properties of the staggered lattice on the boundaries. The approach may be further 

extended to facilitate cases when even more constraints are binding simultaneously —  in such cases, 

however, the optimization problem would most likely be considered as poorly parameterized, and 

some of the binding inequality constraints may be replaced by equality constraints during the opti­

mization, thereby reducing the dimension of the optimization problem and substantially accelerating 

convergence.

111.5.2 Refinement

As may be verified by inspection, when refined by a factor o f two, the nodal points on the 

original lattice are also part of the refined lattice for all three lattices depicted in Figures III.4-III.6.

111.5.3 Uniformity

All three metrics discussed in §4.3 to quantify the uniformity of the lattice (namely, A, 0 ,  

and G), are also straightforward to calculate in the 3D case, as reported in Table 111.2. Note that the 

BCC and FCC lattices are both superior to the 3D cubic lattice by all three measures.
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n lattice A 0 G X S

cubic (Z 3) 0.524 2.721 0.08333 6 0.392(1)

3 FCC (D3) 0.740+ 2.094 0.07875 12+ 0.333

BCC (D*) 0.680 1.464+ 0.07854+ 8 0

Table III.2: Characteristics of the 3D cubic, BCC, and FCC lattices. See Table III. 1 legend for 

details.

III.5.4 Neighborhood

Figure III.4a depicts the unit cell o f the cubic lattice in n — 3 dimensions. The situation is 

analogous to the 2D cubic case, as discussed in §4.4. As depicted in Figure III.4b, the arrangement 

of the 2n = 6  nearest neighbors of a CM P (blue) in the cubic lattice form a maximal positive basis, 

meaning that it is impossible to select a positive basis with any subset of these nearest neighbors. As 

depicted in Figure III.4c, using n + 1  =  4 nodal points, one of which is not a nearest neighbor of the 

CMP, it is possible to construct a minimal positive basis. Note that the angles between the minimal 

positive basis vectors in this configuration are nonuniform, with 90° between any pair o f three of the 

vectors and acos(—1 / y/n) «  125.3° between any of these three and the fourth. The relative lengths 

of these basis vectors are also nonuniform, with one \ fn  ~  1.732 times longer than the other three. 

These qualities make the standard cubic lattice less than ideal for pattern search algorithms.

Figure III.6 a depicts the unit cell of the BCC lattice. As depicted in Figure III.6b, the 

arrangement of the 2" =  8 nearest neighbors of a CMP (blue) in the BCC lattice may be divided into 

two families (red and green) of n +  1 =  4 nodal points, each forming regular tetrahedra around the 

CMP. Either family may be selected to form uniformly distributed minimal positive bases.

Figure III.5a depicts the unit cell of the FCC lattice. As depicted in Figures III.5b and 

III.5c, the arrangement o f the 12 nearest neighbors (yellow and red) o f a CM P (dark blue) do not 

facilitate the construction o f a uniformly distributed minimal positive bases from nearest-neighbor 

lattice points. However, it is straightforward to select a non-uniformly distributed minimal positive 

basis using n +  1 =  4 o f these m2”" 1 =  12 nearest neighbors, such as those indicated in red. These 

n +  1 points are all equidistant from the CM P and more uniformly distributed than the minimal 

positive basis in the 3D cubic case (Figure III.4c), with 90° between some of the vectors and 120° 

between others.
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III.5.5 Summary of the 3D case

As discussed above and quantified in Table III.2, the BCC and FCC lattices are both either 

equivalent or superior to the cubic lattice in terms of all four properties identified in §2  for lattice- 

based optimization in three dimensions using GPS algorithms. Therefore, one of these two lattices 

is (or, at least, should be) the preferred choice for unconstrained lattice-based optimization in three 

dimensions.

Note that the BCC lattice was originally proposed for lattice-based optimization strategies 

in very early work (in 1954 and 1969 respectively) by Davis (19541?) and Box et al. (1969). This ap­

proach, referred to as fractional factorial design, was far ahead of its time, predating both the use of 

positive bases to insure convergence in lattice-based optimization and, in fact, the digital computer 

itself. As Davis and Box were not aware of the role of positive bases in the convergence of lattice- 

based optimization strategies, the advantages o f the BCC lattice for lattice-based optimization were 

not fully recognized (until now).

III.6 Extending the approach to higher dimensions

As reviewed in Conway & Sloane (1999), there are a variety o f families o f n-dimensional 

lattices that reduce to the familiar BCC and FCC lattices in the special case n =  3. For brevity, in 

the present work, we restrict our attention to the following three lattices:

•  The n-dimensional cubic lattice, Z ”, though perhaps difficult (if not impossible) for humans to 

visualize, is quite straightforward to work with. It is enumerated by ( q , *2 , . . . ,  in), where each ij is 

an integer.

•  The n-dimensional checkerboard lattice, D n, is enumerated by ( q , q , • • •, fi,), where each ij is an 

integer and  the sum q  + 1 2  +  • • • +  in is even. In three dimensions (scaled appropriately), this lattice 

is the FCC lattice studied previously.

•  The dual of the n-dimensional checkerboard lattice, D*, which for brevity we will call the 

staggered lattice, is defined by a simple combination of two n-dimensional cubic lattices offset by 

the vector [1] =  (^, ■ ■ ■, j ) .  In three dimensions (scaled appropriately), this lattice is the BCC 

lattice studied previously.

Except for some notable exceptions (identified in Table III.3), it is often not possible to 

select uniformly distributed minimal positive bases from neighboring nodal points on these lattices
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in H-dimensions when n >  3. Further, it is difficult (if not impossible) to determine the most uni­

formly distributed minimal positive basis possible in any given case by inspection. Thus, a very 

practical problem from the standpoint of actually performing GPS optimization using these lattices 

is the identification o f the most uniformly distributed minimal positive bases possible in such cases. 

This may be thought of as a discretized version of Tammes’ problem, which is summarized nicely 

in Conway & Sloane (1999) as the question: “W here should m  inimical dictators build their palaces 

on a planet so as to be as far away from each other as possible?” . In the present work, we have an 

n-dimensional planet and would like to distribute optimally m =  n + 1  such dictators on a large but 

discrete set o f locations where they may build their palaces.

We have performed an intensive investigation to determine “stencils” for the most uni­

formly distributed minimal positive bases possible for both the staggered and checkerboard lattices 

for dimensions n =  4 to n =  15. The results of this search are listed in the appendix. To simplify the 

notation used, the staggered and checkerboard stencils listed in the appendix are shifted and scaled 

to put the CM P at the origin and the nodal points at integer coordinates. Note that, for economy of 

notation, the values “+ 1” and 1” are denoted simply by or in the appendix.

In the checkerboard case, the nearest neighbors are located at all possible permutations of 

(0 , . . .  ,0 , ± 1 , ± 1) for any choice of signs.

In the staggered case, the nearest neighbors are located, for n <  3, at (± 1 , ± 1 , . . . ,  ± 1 ) for 

any combination o f signs. The nearest neighbors for n > 5 are located at all possible permutations 

of ( 0 , . . . ,  0, ± 2 ) for any choice of sign. For n =  4, the nearest neighbors are located at the union of 

both of these sets o f nodal points.

III.6.1 Exhaustive search strategy

The search for the optimized stencils for the most uniformly distributed minimal positive 

bases was in fact quite involved. W hen the dimension n  is fairly low, an exhaustive search may be 

completed. Exploiting symmetries to the maximum extent possible and immediately disqualifying 

all cases that were not suitable candidates2, we were able to explore exhaustively the staggered 

problem through n =  8 and the checkerboard problem through n =  6 . Thus, it is known with cer­

tainty that the bases listed in the appendix for these cases are the most uniformly distributed bases 

possible.

2For example, those for which the angle between any two basis vectors is less than som e prespecified threshold, 
which would fail to be optimal, or those for which two basis vectors are exactly 180° apart, which would fail to provide 
a minimal positive basis.
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To search exhaustively for the most uniformly distributed minimal positive basis possible 

using nearest neighbor points in the staggered case, the coordinates were first shifted to put the 

CMP a t ( j , 5 , . . . , 2 ), and the nearest neighbor points (the vertices of an n-dimensional cube) were 

enumerated from 0 to 2" — 1. The enumeration of each vertex was then represented in binary nota­

tion, which also (coincidentally) gave its physical coordinates. (For example, the third vertex in 3D 

has coordinates [0,1,1], which is also the number three in binary notation.) The angular distance 

between any two vertices could then be characterized by the Hamming distance (Conway & Sloane, 

1999, page 75), as provided by bitwise comparison o f its enumeration in binary form. This led to 

a very fast code. The candidate combinations were then tested to see if  they were indeed positive 

bases using the test described in §3. As the exhaustive search continued (using a fairly streamlined 

recursive algorithm), the most uniformly distributed minimal positive basis found so far was saved, 

and all others discarded.

The exhaustive search for the most uniformly distributed minimal positive basis in the 

checkerboard case was quite similar, with a different enumeration of the neighboring points.

III.6.2 “Force”-based search strategy

The difficulty of exploring all possible permutations to find the most uniformly distributed 

minimal positive basis grows extremely rapidly with the dimension of the problem. Thus, in high 

dimensional problems, even though the exhaustive search code was quite efficient, an alternative 

(non-exhaustive) search strategy proved to be quite useful. With this strategy, in both the staggered 

and checkerboard cases, n + 1  nearest neighbors to the CM P were first selected at random. An equal 

“charge” was then assigned to each of these points, as if each point was a charged particle con­

strained to lie on an n-dimensional sphere, and the “total force” / ,  was computed at each “particle”. 

After computing the magnitude m j of the force f j  projected onto the surface of the sphere [using 

(III.l)], the particle with the greatest value of m j (that is, the particle that was “furthest from equilib­

rium”), was moved in order to minimize the resulting maximum value o f m j everywhere in the entire 

system, and the process repeated. Such an approach is akin to putting (randomly) n + 1  charged par­

ticles on an n-dimensional sphere and letting these particles come to their own equilibrium, except 

that the particles were constrained to lie on a set of several discrete points on this sphere, and (for 

computational expediency) only one point (that is, the point furthest from equilibrium) was allowed 

to move at each step. The force was always taken to be a repulsive force (opposite of the direction 

towards the particle creating the force). The model for the force magnitude was taken as l/ |A x |p ,
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where Ax  is the separation between the two points and p  is an even positive integer. A  fairly large 

value of p  (e.g., 10) was found to work best, as using such a force model focused the algorithm 

on minimizing the “worst case” separation between particles, thereby resulting in a more uniform 

distribution.

The optimized minimal positive bases so determined (see the tables in the appendix) in 

fact may be used to generate entire fam ilies of bases by performing any of a large number o f possible 

reflections (swapping +  for -  and -  for +  in one or more columns) and/or permutations (swapping 

one or more pairs of columns); such operations preserve the angles between the various vectors of 

the minimal positive bases so generated. Thus, we refer to the optimized minimal positive bases in 

the tables in the appendix as stencils, as they may be used to generate large families o f optimized 

minimal positive bases. W hen performing a GPS, one may switch randomly (or according to some 

heuristic strategy) between different bases in this family at each poll step to prevent bias in any 

particular coordinate direction during the search.

A primary shortcoming of the cubic lattice in the optimization setting is its extremely low 

kissing number —  it only has 2n nearest neighbors. Note that Charles & Dennis Jr. (2004) consid­

ered a strategy in which the positive basis was constructed not only from nearest-neighbor points on 

a cubic lattice, but also from several points that are farther away from the CMP, facilitating a larger 

range o f choices for the vectors from which the positive basis could be constructed. The staggered 

(for n =  4) and checkerboard (for n >  4) lattices present a natural way to circumvent this difficulty, 

as these lattices have much higher kissing numbers, providing many more nearest neighbors from 

which a very large family of minimal positive bases may be constructed from the generating sten­

cil. Thus, these lattices provide many more opportunities for distributing the vectors of a minimal 

positive basis in a desired fashion (according to any of a number of possible heuristic strategies) 

than the constraining set o f nearest neighbors that the cubic lattice allows, without requiring the use 

of non-nearest neighbor test points during the poll step. This facilitates the efficient localization of 

the minimum point by the optimization algorithm to the smallest region possible on a given lattice 

before it is refined, thereby maximizing the effectiveness of each poll step.

III.6.3 Incorporating previous function evaluations

Note also that, if a function evaluation at one of the nearest neighbors to the CM P is 

already available before the poll step begins, the (randomized) basis (selected from the family de­

scribed in the previous section) may be reflected such that one of the points in this basis is this
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previously computed point, thereby reducing the number of new function evaluations required to 

complete the poll step to n.

In the case that generating a new positive basis is computationally less expensive than 

performing a function evaluation, if  two or more function evaluations on nearest neighbor points are 

already available before the poll step begins, it is most expedient to generate a new positive basis 

from scratch, using the force-based method described above while fixing the particles corresponding 

to the points with the previous function evaluations and adjusting the remaining particles in order to 

minimize the maximum projected force over the entire set of particles, while selecting enough new 

points to insure that a positive basis is in fact generated using this technique, which may be verified 

a posteriori.

III.7 Comparison of the cubic, checkerboard, and staggered lattices 

for optimization in n  dimensions

As we did in §4 for the case n =  2, and in §5 for the case n =  3, we now compare our 

three candidate lattices (cubic, staggered, and checkerboard) for n-dimensional optimization for 

cases with 4 < n <  15 in terms of the four properties listed in §2 for GPS optimization. Note that 

cases with n >  15 may be studied following a similar procedure.

III.7.1 Enumeration

As already mentioned in the first paragraph of §6 , the n-dimensional cubic, staggered, and 

checkerboard lattices are all straightforward to enumerate.

Constraints are applied by restricting the range of the component lattices in one or more 

directions. Note that an n-dimensional cubic lattice restricted in one coordinate direction forms an 

(n — 1)-dimensional cubic lattice on the boundary, restricted in two coordinate directions forms an 

(n — 2)-dimensional cubic lattice, etc. Similarly, an n-dimensional checkerboard lattice restricted 

in one coordinate direction forms an ( n -  1)-dimensional checkerboard lattice, restricted in two 

coordinate directions forms an (n — 2 )-dimensional checkerboard lattice, etc.

On the other hand, an n-dimensional staggered lattice restricted in one coordinate di­

rection forms an ( n — 1)-dimensional cubic lattice on the boundary, and further restricted in two 

coordinate directions forms an (n — 2)-dimensional cubic lattice, etc. Following the procedure de­

scribed at the end o f in §5.1, it is straightforward to augment the staggered lattice on the boundary in
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order to retain the staggered nature of the packing (and its favorable properties) when one or more 

constraints are binding.

III.7.2 Refinement

It is readily seen from their enumerations in the first paragraph o f §6  that, when refined 

by a factor o f two, the nodal points on the original lattices are also part o f the refined lattices.
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n lattice A 0 G % S

cubic (Z4) 0.308 4.934 0.08333 8 0 .3 3 3 0

4 checkerboard (D 4) 

=  staggered (D*4)
0.617+ 2.467 0.07660* 24+ 0.333

cubic (Z5) 0.164 9.195 0.08333 10 0 .2 9 5 0

5 checkerboard (D5) 0.465* 4.598 0.07579 40* 0.333

staggered (D p 0.329 2.498 0.07563 10 0 .6 1 7 0

cubic (Z6) 0.0807 17.44 0.08333 12 0 .2 6 8 0

6 checkerboard (Dg) 0.323 8.721 0.07559 60 0.333

staggered (D p 0.161 4.360 0.07512 12 0 .5 5 2 0

cubic (Z7) 0.0369 33.49 0.08333 14 0 .2 4 7 0

7 checkerboard (D7) 0.209 16.75 0.07569 84 0.333

staggered (D p 0.0738 4.569 0.07486 14 0 (8)

cubic (Z 8) 0.0159 64.94 0.08333 16 0 .2 3 0 0

8 checkerboard (Dg) 0.127 32.47 0.07591 112 0.333

staggered (D^) 0.0317 8.117 0.07474 16 0 .3 3 3 0

cubic (Z9) 6.44e-3 126.8 0.08333 18 0 .2 1 6 0

9 checkerboard (Dg) 0.0729 63.40 0.07620 144 0.333

staggered (D p 0.0129 8 .666 0.07469 18 0.309(10)

cubic (Z 10) 2.49e-3 249.0 0.08333 20 0 .2 0 5 0

10 checkerboard (Dio) 0.0398 124.5 0.07650 180 0.333

staggered (D p ) 4.98e-3 15.56 0.07470 20 0 .4 4 8 0 )

cubic (Z 11) 9.20e-4 491.4 0.08333 22 0 .1 9 5 0

11 checkerboard (D u) 0.0208 245.7 0.07681 220 0.333

staggered (D p ) 1.84e-3 16.81 0.07474 22 0 ( 0

cubic (Z 12) 3.26e-4 973.4 0.08333 24 0 .1 8 6 0

12 checkerboard (D 12) 0.0104 486.7 0.07710 264 0.333

staggered (D p ) 6.52e-4 30.42 0.07480 24 0 .2 1 6 (0

continued on next page
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continued from previous page

n lattice A 0 G X 5

cubic (Z 13) l . l l e - 4 1935 0.08333 26 0.179(‘)

13 checkerboard (Du,) 5.03e-3 967.3 0.07737 312 0.333

staggered (D*u ) 2.22e-4 33.13 0.07487 26 0.207(14)

cubic (Z 14) 3.66e-5 3856 0.08333 28 0.172^>

14 checkerboard (D u ) 2.34e-3 1928 0.07763 364 0.333

staggered (D \4) 7.32e-5 60.24 0.07495 28 0.303(15>

cubic (Z 15) 1.16e-5 7703 0.08333 30 0.166^)

15 checkerboard (D 15) 1.05e-3 3852 0.07788 420 0.333

staggered (D*l5) 2.33e-5 6 6 .00 0.07504 30 q(16)

Table III.3: Characteristics of the n dimensional cubic, checkerboard, and staggered

lattices for 4 <  n <  15. See Table III. 1 legend for details.

III.7.3 Uniformity

All three metrics discussed in §4.3 and 5.3 to quantify the uniformity of the lattice (namely, 

A, 0 ,  and G) in the 2D and 3D cases may also be calculated in the n-dimensional case, as reported in 

Table III. 3, though the formula for the calculation of G is fairly involved for the D* lattice (Conway 

& Sloane, 1999). The staggered and checkerboard lattices are found to be superior to the cubic 

lattice by all three measures for all values o f n in the table.

In particular, the checkerboard lattice has a covering thickness 0  which is a factor of two 

better than the cubic lattice for all n, whereas it has a packing density A which is a factor of two 

better for n =  4, growing to a full two orders of magnitude better for n =  15.

On the other hand, the staggered lattice has a packing density A which is a factor of two 

better than the cubic lattice for all n, whereas it has a covering thickness 0  which is a factor of two 

better for n =  4, growing to a full two orders of magnitude better for n — 15.

For n >  4, the staggered lattice has a slightly better mean squared quantization error per 

dimension, G, than the checkerboard lattice, both o f which show a distinct improvement over the 

cubic lattice.
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III.7.4 Neighborhood

As in the 2D and 3D cases, there are two ways to form a positive basis from nearby 

points on the n-dimensional cubic lattice, neither of which is ideal. One way is to select the 2n 

nearest neighbors to form a maximal positive basis. Though the angle between the basis vectors 

are uniform, this positive basis consists of (2  n) — ( n + l ) = n  — 1 more points than it needs to, thus 

typically requiring an extra n — 1 function evaluations at each poll step. If a minimal positive basis 

(using n + 1  points) is desired, it is necessary to select at least one point which is not a nearest 

neighbor point. The angles between the basis vectors in this case are nonuniform, with 90° between 

any pair o f n of the vectors and a c o s ( - l / y /n) between any of these vectors and the last, which is 

^fn  times as far from the CM P as the others.

For n >  4, the staggered lattice has the same unfortunate properties, as it has the same 

nearest neighbors as the cubic lattice. However, the staggered lattice also has several more neighbors 

in a shell slightly outside these nearest neighbors. This shell o f neighbors was used in the minimal 

positive bases reported in the second column of the appendix and in the skewness calculations 

reported in Table III.3.

On the other hand, the checkerboard lattice has a much higher kissing number. For this 

lattice, it was always found to be possible to construct a minimal positive basis (that is, using just 

n +  1 polling points) from nearest neighbor points alone.

As discussed in detail in §6  and tabulated in the appendix, a substantial investigation 

has been conducted to identify minimal positive bases for 4 <  n < 15 for both the staggered and 

checkerboard cases that are optimized based on their uniformity. The skewness of these optimized 

bases are reported in Table III.3. Remarkable, the positive bases in the 3D, 7D, 11D, and 15D 

staggered cases are uniformly distributed. The uniformity of the positive bases in the other cases 

are generally comparable to the cubic case.

As mentioned in the introduction, it might be desirable to select the positive basis from 

nearest neighbor points in order to effectively isolate the optimum of the function to the smallest 

region possible before moving to the refined lattice, thereby (potentially) leading to a reduced num­

ber of points over which the algorithm must search on the refined lattice. In order to develop a 

metric to quantify this concept, we may define q,asis as the radius of the sphere intersecting the min­

imal positive basis points, and n̂eighbors as the radius of the sphere intersecting the nearest-neighbor 

points. The ratio r — q^asis/'"neighbors is  depicted in Figure III.8 for several values o f n for both the
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1.5

1
159 133 5 7 11

Figure III.8 : Ratio r =  Agasis/'"neighbors of the radius /-basis of the sphere intersecting the cubic (solid) 

and staggered (dashed) minimal positive bases reported in Table III. 3 and the radius /'neighbors of the 

sphere intersecting the nearest-neighbor points (smaller is better); note that the sphere intersecting 

the cubic minimal positive basis is not centered at the CMR For the checkerboard lattice, r =  1.

cubic case and the staggered case. (Note that ratio o f the volumes of these //-dimensional spheres 

is given by r"; the ratio of the volumes is thus found to be quite large for large n.) A successful 

polling step might be thought of as isolating (approximately) the actual minimum point to lie within 

the sphere containing the polling points tested. The tighter isolation of the actual minimum point 

by a successful polling step on nearest neighbor points (as possible, e.g., using a minimal positive 

basis on the checkerboard lattice) thus might be preferred in the optimization setting to the looser 

isolation of the optimum point by a successful polling step on a minimal positive basis selected from 

non-nearest-neighbor points.

III.7.5 Summary of the n-dimensional case

In balance, in terms o f the four properties identified in §2 for lattice-based optimization in 

n  dimensions using GPS algorithms, the staggered and checkerboard lattices appear to be preferable 

to the cubic lattice. Note that we do not yet know which of the metrics reported is most strongly 

correlated with the convergence rate o f the subsequent optimization calculations. However, given 

that the alternative lattices tested appear to be significantly better suited to the cubic lattice in terms 

of any particular metric of interest that quantifies the relevant properties (see §2 ), such alternative 

lattices appear to be quite promising for use in a variety of GPS algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134
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Avg. cond. = 60

,-3

,-7

20 100 120 140 160 180

Figure III.9: Convergence of the GPS optimization strategy for n =  2, using the (solid) cubic and 

(dashed) hexagonal lattices, for a simple quadratic optimization problem. The cost function J  is 

plotted as a function the cumulative number of function evaluations performed.

III.8 Convergence tests of GPS optimizations using the alternative lat­

tices

We now perform several GPS optimizations in n dimensions (for 2 <  n <  15) using the 

cubic, hexagonal, BCC, FCC, checkerboard, and staggered lattices in order to compare their perfor­

mance.

The problem that is optimized in these tests is both artificial and easy to solve by other 

means, but serves as a useful benchmark to quantify the relative performance o f the GPS algorithm 

in various dimensions using various lattices. The problem we set out to solve is simply to minimize 

the quadratic function /  =  (Ax — b ) 2  for several randomly-generated A  and b with |A| /  0. The 

polling patterns used were the minimal positive bases listed in the Appendix, and were held constant 

during optimizations. The average performance from 1,000 tests in each case is presented, thereby 

providing well averaged statistics of the convergence rates. No “search” step (as used by the SMF) 

was used, so the tests reflect only the efficiency o f the poll step. A simple “incomplete opportunistic 

poll procedure” was used: every time a reduced function value was found, the CM P was moved 

to this new point, a new poll step was initiated, and the first trial point in this new poll step was 

evaluated in the last direction moved. Once a poll step on an entire minimal positive basis completed 

successfully (without finding any reduced function values), the lattice was refined by a factor of 2 , 

and the process repeated.
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For each case, two different average condition numbers of A TA  were tested in order to 

quantify the effect o f condition number on convergence. This was done by taking A  as an appropriate 

power of a randomly-generated nonsingular matrix. The results are shown in Figures III.9 - III. 12, 

and speak for themselves. In the (more difficult) poorly conditions problems (that is, the right 

column of subfigures), the optimization schemes based on the checkerboard and staggered lattices 

are typically a factor of two or more faster to converge than the optimization scheme based on the 

standard cubic lattice.

Note that the GPS algorithm used in these tests is quite inefficient; there are many tech­

niques that may be applied to significantly improve convergence, such as applying the SM F search 

step, reflecting/permutating the minimal positive basis used at each new poll step, performing lattice 

coarsening (when appropriate) in addition to lattice refinements, etc. However, the purpose of these 

tests was not to develop the most efficient GPS algorithm possible, but rather, simply, to indicate the 

gains possible by incorporation of the present lattices in a series of simple GPS optimizations. The 

tests performed are adequate for this purpose. Note also that, when the SM F search step is added to 

the GPS algorithm, different properties of the lattice (as listed in §2) might play a more dominant 

role, so strict decisions about the superiority of one mesh over another can not be made from these 

tests.

III.9 Concluding remarks

Various lattices have been investigated for derivative-free optimization schemes such as 

GPS algorithms. These lattices have been compared in terms of four generally desired properties 

for lattices underlying GPS optimizations (identified in §2), and have been characterized by five 

apparently relevant metrics. In all cases, the alternative lattices proposed exhibit distinct advantages 

over the standard cubic lattice, which is typically used as the default choice in GPS optimizations 

today. Further, numerical tests on a simple quadratic optimization problem provide solid numerical 

evidence for the potential advantages of the use of such alternative lattices in GPS optimization 

codes.

Various arguments may be made concerning which o f  the four properties identified, or 

the various metrics quantifying these properties, is “most significant” in the optimization setting. 

It is currently not known which argument is most valid. The present work thus raises as many 

questions as it answers. The problem of finding the best lattices to optimize A, 0 ,  G, and x in
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Figure III. 10: Convergence of the GPS optimization strategy for n =  3 to n =  6 , using the (solid) cu­

bic, (dashed) staggered, and (dot-dashed) checkerboard lattices, for a simple quadratic optimization 

problem. The cost function J  is plotted as a function the cumulative number of function evaluations 

performed.
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Figure 111.11: Convergence of the GPS optimization strategy for n — 7 to n =  10. (See Figure III. 10 

for explanation.)
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Figure III. 12: Convergence of the GPS optimization strategy for n — 11 to n =  15. (See Figure III. 10 

for explanation.)
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various dimensions has been the topic of intense scrutiny, as well summarized in Conway & Sloane 

(1999). Future work should explore these additional lattices in order to provide potentially greater 

gains in these four metrics, beyond that achieved by D n and D*. A fifth metric has been identified in 

this work, the skewness S  o f the optimized minimal positive basis on the lattice, which might also 

play a significant role in the selection of the best lattices for GPS optimization.

III. A Tables of optimized stencils of minimal positive bases

Table III.4 to III .6 on three following pages list the optimized stencils of minimal positive 

bases for n =  3 to 15. For explanation of both what these stencils mean and how they were obtained, 

see §6 .
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Appendix

Simulation of near-wall turbulence over 

a moving wall using the immersed 

boundary method

This chapter is taken from

Luo, H. & Bewley, T. R. 2003 Design, modeling, and optimization o f tensegrity compliant 

surface for reduction of drag induced by the turbulent flow. Smart structures and materials 

2003: modeling, signal processing, and control (SPIE proceedings series), 3-6 March, San 

Diego, 5049-57.
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To accommodate the interface motion of the flow, we also investigated the potential use 

of the immersed boundary method in addition to the coordinate transformation method described in 

chapter I. Though this method is not accurate enough for relatively large wall deformations when 

applied in a pseudospectral flow simulation code, as used in the present work, it may still be useful 

for the purpose of linear stability analysis. Therefore, we discuss the method in this chapter.

A .l Immersed boundary method

We use a Direct Numerical Simulation (DNS) code to model the incompressible flow in 

a channel. To accommodate the time-varying boundary, an immersed boundary method is used to 

avoid an expensive boundary-conforming grid reconstruction at each time step. Peskin (1977) first 

developed the immersed boundary method and applied it to biological systems such as the flow 

of blood in a heart. Several variations of this method have since been developed and applied to 

a variety of complex problems with time-varying geometries. The method is sometimes used in 

situations where there is a real “immersed” interface between two different fluids. For example, 

Sheth & Pozrikidis (1995) implemented a method with a pointwise body force distribution over the 

interface for solving the problem of the deformation of liquid drops in a shear flow. The method is 

also commonly used in situations in which there is no actual fluid on the other side of the boundary, 

but (for computational reasons) an artificial flow domain is defined so that the time-varying physical 

boundary of the fluid system essentially becomes “immersed” . For example, Goldstein, Handler & 

Sirovich (1993) presented a feedback scheme for the body force, and simulated the turbulent flow 

through a ribbed channel. Fadlun et al. (2000) applied a direct forcing scheme proposed by Mohd- 

Yusof (1997) to solve the flow problem inside an IC piston/cylinder assembly at high Reynolds 

number.

The basic idea of the immersed boundary method is that a time-invariant regular grid is 

used despite the boundary’s complexity. Flow fields on both sides of the “immersed” boundary 

are solved, even if  one of these fields should be considered as artificial. Body forces are added 

within this artificial region to enforce the desired boundary conditions and dynamic motions of at 

the immersed interface.

In the present system, the flow is confined by the deformed and time-varying walls in a 

channel. We thus augment the physical flow domain, assuming there exists an artificial flow outside 

the channel walls with the same physical properties (mass, density) as the actual flow between the
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Figure A. 13: Diagram of the computational domain.

channel walls. Thus, the physical walls of the channel become “immersed” . In this project, we 

consider small amplitude wall deformations only, r |+ <  5, where r| denotes the wall displacement 

and +  denotes distance in viscous units. To accommodate the small boundary variations, we adopt 

the direct forcing scheme mentioned above so that evaluation o f the body force can be avoided when 

solving the Navier-Stokes equation. However, we still need to calculate the divergence o f the body 

force when solving the Poisson equation for the pressure field.

A.2 DNS flow model

The augmented flow domain is illustrated in the figure A.13. Two extra slabs are added 

at the top and the bottom. We allow only the bottom interface to deform so we may use the upper 

interface as a reference. The lower wall deforms in such a manner that the total volume of the 

physical domain does not change. The physical domain is denoted as £2, the augmented domain as 

Q. T+, r ~  stand for the upper and lower immersed boundaries, respectively, and f + , f “ stand for 

the upper and lower external boundaries, respectively. The channel size is (0 ,L X) x  (—ft — 5 ,f t+ 8 )  x  

(0,Lj); without loss of generality, we assume ft =  1. The mean flow is aligned in the x\ direction.

The flow, for the physical domain and the artificial domain alike, is governed by the 

incompressible Navier-Stokes equation

011
—  +  V (uu) + Vp =  vAu — iPx +  f
dt (A.2)

V -u =  0,

where p  is the pressure divided by the density p and v is the kinetic viscosity. The variables x; 

are normalized by the half-width of the channel ft, u is normalized by the mean friction velocity
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mt  =  (xw/ p ) 1/2, and t is normalized by h /u x. The Reynolds number based on the mean friction 

velocity and the half channel width is defined by Rex =  uxh /v .  iPx is the time-varying but spatially- 

uniform pressure gradient in the xi direction, which is adjusted in such a way as to maintain constant 

mass flux in the physical domain at every time step.

Direct forcing f is applied in the virtual interface region such that the no-slip and no­

penetration boundary conditions

u  =  ij, (A.3)

is satisfied at each time step, where r| is the vertical motion of the wall. The horizontal motions are 

ignored since the wall deformation is very small.

Periodic boundary conditions are assumed in the streamwise (xi) and spanwise (J C 3 )  direc­

tions. The external boundaries are modeled with

di£ du
«2 =  0, xr— = 0 ,  on f d'; xr— I f.± = constant = x^ |p ± .  (A.4)

6 x 2 0x2

The “slip” condition is used to simplify the dynamics of the flow in the artificial region outside the 

immersed channel walls. These choices provide an approximately linear mean profile across the 

immersed interface, which improves accuracy in the numerical implementation.

A.3 Numerical scheme

The computational scheme is based on the numerical method adopted for the turbulent 

flow prediction in Bewley, Moin & Temam (2001). Details about the temporal discretization can be 

found in Akselvoll & M oin (1995). The scheme may be summarized as follows:

(1) A  pseudospectral method is used for terms containing x\ and X3 derivatives, and a 

finite difference method is used for terms containing *2 derivatives. A uniform, collocated grid is 

used in the x\ and x j  directions, and a stretched, staggered grid is used in the X2 direction.

(2) A low-storage 3rd order Runge-Kutta scheme is used for the temporal evolution. The 

derivatives with respect to the homogeneous directions (x\ and X 3 )  are treated explicitly in time, 

and the derivatives with respect to the inhomogeneous direction (X2) are computed with the implicit 

Crank-Nicolson method in time.

Using to our “direct forcing” scheme, we do not calculate the external force f  when solving 

the NS equation. Instead, we solve the equation with the no-slip/no-penetration constraint g(u) =  0. 

In the discrete implementation, the positions of the interface are generally not coincident with the
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X 2 j - i
interface

X 2X 2 j-2 '

Xh-2 Xli-i XU XU+i Xh+2

Figure A. 14: Diagram of the deformed wall and the staggered grid.

grid points (see, e.g., Figure A.14), so the constraint g(u) =  0 represents a numerical interpolation 

procedure to approximate the velocities at the immersed interface.

In the present work, we use an interpolation procedure based on Taylor series expansions. 

We use linear interpolation for the streamwise and spanwise velocity components and quadratic 

interpolation for the wall-normal velocity component. The velocities on the grid points that are 

close to the interface are constrained to satisfy the formulae

Uli+ 1i J+1«i j  H----------
J~2 X2 i+<i+1

«1 !

- ^ a 2 =  0 ,
- * 2 . 1 

1 2

, u2j+ l- u 2j_l
«2 , +  ir ,--------------------- r  A i

2 (X2j+1 - X 2j_1)

,.+1 -  2u2j +  u2j I ^  :1 U2

2 (x2j+l - X 2j_l )
11, (A.5)

M 3 , +  > 
« 3 ,  1 + - - - - - -

x2,+>; + 2

M3, , 
 >-1

-*2 , i
]~ 1

a 2 =  0 ,

where Ai and A2  are illustrated in Figure A. 14.

The external force f is directly evaluated by the NS equation. 

„ 9u
dt

+  V (uu) +  V p  — vAu +  iPx (A.6 )

Since the external force f is not divergence free, the term V • f is included when solving 

Poisson equation for the pressure.

A.4 Code validation

We first test our DNS code with the immersed boundary method on the canonical channel 

flow problem in which both immersed walls are stationary and not deformed. The Reynolds number 

is Rex =  100 and 42 x 64 x 42 Fourier modes are used (i.e., 64 x 64 x 64 dealiased collocation grid
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points). We compared the statistics with a simulation that does not have an immersed boundary 

and has been extensively validated by Bewley et al. (2001). Selected statistics are shown in Figure 

A. 15. The correspondence o f two simulations in the physical domain region is fairly good. In Figure 

A. 15(b), we can see that the mean velocity profile is extended linearly into the two artificial regions, 

so the linear interpolation approximation for u\ and uj at the interface regions is justified. The 

profile o f the pressure fluctuations (not shown here) in the immersed boundary simulation shows 

there is a jum p across the immersed interface, which implies that the interface provides something 

of a “barrier” between the real flow and the artificial flows.

The second test is the active wall motion control. The control scheme is that, based 

on measurements of the vertical velocity somewhere close to the wall, same amount o f opposite 

control velocity as the measurements is applied at the wall. Choi et al. (1994) first investigated the 

scheme and obtained more than 20% drag reduction. The control actuation they used was unsteady 

blowing/suction. Inspired by this research, Endo, Kasagi & Suzuki (2000) employed vertical wall 

motion actuation based on the same kind of measurements. The simulations they did with Rex =  150 

and r i ^  «  1 showed that drag was reduced about 10%. Then Kang & Choi (2000) did the similar 

work with Rex =  140 and r\̂ max <  5, and the drag was reduced up to 13% ~  17%.

In our test, we prescribe the wall motion as follows

3 r| . .  max{u2\ +=15}
—  =  — a u 2\ +=i5 - p r i ,  a  = ------ — --------- , (A.7)
O t Vmax

where Vmax is a pre-defined constant. The formula means that the velocity of the wall is opposite 

to the vertical velocity component {ui) 15 viscous unit away from the wall with the amount scaled 

by a factor a  to reduce the control intensity. The second term is a damping term used by Endo 

et al.. The purpose is to slow down wall movement and reduce the deformation magnitude when 

the displacement is large.

Figure A.16 shows some statistics from the simulation for Rex =  100 and ~  0.03. 

Time-averaged drag on the two immersed walls shows that drag on the lower wall is about 4.5% less 

than that on the upper wall, which is quite slight compared to what Endo and Kang have obtained. 

Note that the control we applied is very weak. Currently we are still tuning the code to accommodate 

stronger control actuation.

From the profile of the RM S  o f velocity fluctuations (Figure A. 16(b)), we can see clearly 

that the streamwise velocity fluctuation intensity is lower at the bottom wall side compared the 

upper wall side. If we zoom in the region close to the lower wall (Figure A. 16(c)), we see that the
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minima of vertical velocity fluctuation is shifted away a little away from the wall. This is a typical 

feature of the opposition control which represents a virtual barrier above the wall preventing the 

high momentum flow from being transported to the wall, and thereby drag reduction is obtained.
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