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MPDopt: A versatile toolbox for adjoint-based model predictive control
of smooth and switched nonlinear dynamic systems

Sean Summers and Thomas R. Bewley
Flow Control and Coordinated Robotics Labs, UC San Diego

Abstract— Over the years, adjoint-based Model Predictive
Control (MPC) has proven to be a viable and effective tool
for both offline and online optimization of control sequences
for dynamic systems governed by differentiable nonlinear
equations. This paper extends this versatile method to a class of
nonsmooth systems in which the dynamical equation governing
the physical system experiences sudden “switches” when the
system changes operational modes. This extension involves only
minimal alteration of the basic adjoint-based MPC algorithm.
We then further improve this algorithm by introducing control
trajectory smoothing via state augmentation. Finally, we present
a new Matlab toolbox we have developed, MPDopt, that
incorporates all of these developments while being user friendly,
easily extensible, and capable of offline trajectory planning for
wide range of smooth and switched systems of the present class.

I. INTRODUCTION

The objective of Model Predictive Control (MPC) is the
determination of an optimal sequence of control inputs u to
a dynamic (possibly, nonlinear) system to minimize a user-
defined (possibly, nonquadratic) cost function J, typically
measuring both the state variable x and the control input
u over a finite time interval [0,7]. As a mathematical
optimization problem, as long as the dynamic system is dif-
ferentiable, gradient-based approaches based on on steepest
descent, conjugate gradient, or BFGS optimization methods
are straightforward (see [2] and [5]). With such approaches,
to compute the gradient of the cost function J with respect
to the control inputs u, a Lagrange multiplier A (a.k.a. the
adjoint state) times the equation governing the system may
be appended to the cost function. By solving the state ODE
forward in time and an appropriately-defined adjoint ODE
backwards in time, the gradient of the cost function with
respect to the control distribution u is revealed. Given such
an efficient technique to compute the gradient, an iterative
method (typically, steepest descent, conjugate gradient, or
BFGS) may then be used to minimize J with respect to the
sequence of control inputs u in a straightforward fashion.

A. The adjoint method for computing the gradient

We first derive the well-known adjoint method for com-
puting the gradient of a constrained quadratic cost function,
where the state constraint is the nonlinear ODE governing
the system. Similar derivations for computing the gradient
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can be found in [1] and [3]. We first assume that the system
of interest is differentiable and known and may be written
in the form

0<t<T, (1)
t=0, )

%:N(x,u)

X = Xp

where ¢t = 0 is the present time and

o X(t) is the state vector with X the known initial
condition at t = 0
« u(t) is the control at time ¢
o N(x,u) is a known function, differentiable in x and u,
representing the dynamic system of interest.
We also define a cost function J (with weighted norm |x|?Q =
xTQx) as

1T 2 1 2
o [ [ i, ] SN, )
0

where ¢ = T is the terminal time and

J =

e (x is the penalty matrix on the state X,
e (y is the penalty matrix on the control u,
e @ is the penalty matrix on the terminal state x(T).

By appending to (3) an adjoint state A (a.k.a. Lagrangian
multiplier) times the equation governing the system, (1), an
augmented cost function is defined as

SR 2 1 2
7 =5 [|X|Qx+|u|Qu} dt + 5 [x(T)[5,

— /T M (x — N(x,u))dt. 4)
0

We first set V) J = 0, thereby enforcing the equality
constraint (1). We also set VxJ = 0, thereby obtaining an
auxiliary “adjoint” ODE

A=—ATN—Qx T >t>0,

A= Qr(DX(T) =T, ®

where A = w&:x(ﬂ,u:u(ﬂ- Finally, the resultant

gradient V,J is given by

Vo =

where B w&:x(ﬂ,u:u(ﬂ- Note that, with this

method, V,J is a simple function of A, which is defined
in (5) via a march from ¢ = T to ¢t = 0 and which is itself
a function of x, which is defined in (1) via a march from
t=0tot="1T.

BT + Quu, (6)
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B. Nonsmooth optimization

Note that the application of standard gradient-based op-
timization methods to nonsmooth, or switched, systems
commonly result in the optimization algorithm becoming
stuck in a “kink” in the optimization surface. A kink is
defined here as any point on the optimization surface at
which multiple subgradients exist, and neither subgradient
results in a viable direction of descent of the cost function.
The theory of nonsmooth optimization is devoted exactly to
such objective functions which are not continuously differ-
entiable. Methods for solving such nonsmooth problems via
subgradient methods, cutting plane methods, etc., have been
introduced and provide an alternative to smooth optimization
methods. For more in depth information on nonsmooth
optimization analysis and algorithms, see [4]. Unfortunately,
general nonsmooth optimization methods are considerably
more cumbersome than the standard smooth optimization
methods outlined above. Thus, in the present work, rather
than resorting to general nonsmooth optimization methods,
we instead convert our switched system into a smooth
optimization problem.

II. GRADIENT COMPUTATION IN SWITCHED SYSTEMS

In this section, we extend the adjoint based method of
gradient computation presented in I-A to switched systems.
That is, we will consider systems with one or more discrete
switch points at which the continuous-time state equations
governing the system change instantaneously. As mentioned
above, this discontinuity in the state equation results in mul-
tiple subgradients of the cost function at specific points in the
optimization surface. When faced with multiple subgradients,
the adjoint based optimization algorithm may become stuck
in a kink and fail to converge, even though a local optimal
point has not yet been reached. Therefore, a new approach
must be taken by either

(a) adjusting the problem definition such that J becomes
well-conditioned [2], and therefore a smooth gradient
based optimization algorithm may be applied, or

(b) using a nonsmooth optimization algorithm, such as a
bundle method [4], to explicitly find a solution for the
non-differentiable cost function.

Approach (b) may prove to be necessary for harder
problems. Note that nonsmooth optimization approaches are
significantly more cumbersome (and slow to converge) than
optimization algorithms designed specifically for smooth
optimization surfaces. For the present class of problems,
however, approach (a) is shown viable through the use of
multiple terminal constraints applied to the end of each
phase. If such constraints are introduced correctly into
the cost function (3), this makes the optimization problem
smooth, well-conditioned, and amenable to standard
gradient-based optimization methods, as detailed below.

For simplicity, we will initially assume that the system of
interest is a single switch system with known switch time
nominally set to ¢ = 77, terminal time nominally set to ¢t =
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T5 (see V-B for generalization), and nonlinear state equations
of the form

& = Ni(x,u) 0<t<Ty, (7
% = NQ(X,II) T1 <t < TQ,, (8)
X = Xq t=0,. )

1) Optimization of two decoupled phases: In (3) we intro-
duced a weighted terminal constraint into the cost function.
Defining the terminal weighting matrix Q7 appropriately
and applying the iterative optimization algorithm described
previously, this essentially forces the states at the terminal
time t = T to converge to a result very close to x(7") = 0.
By redefining the weighted terminal constraint as a general
weighted constraint function at some time ¢,

[x(1)[8 = [ (x(t),u(®)3,

we can split the optimization into two independent trajectory
planning segments. Thus, our first attempt at obtaining a
trajectory plan for the single switch system is to create two
separate cost functions [the first defining the trajectory while
governed by the equations of motion (7), and the second
while governed by (8)] such that

(10)

T
ho= : ][|x|2 + uf? ]dt+l|f 2, (D)
1 2 0 Qxl Qul 2 T QT
J = 1 b |x|Z 2 a4+ L1 fp, 2 12
2 = 3 X|g,, T ulg,, +2|fT2|QT27( )
T

with the terminal constraints defined as functions of both
state and control variables

frn = Jn (X(Tl)vu(Tl))a
fr, = sz(X(TQ)vu(TQ))'

By separating the original optimization problem into two
distinct, decoupled phases, we now have two smooth opti-
mization problems that are easily solved. For each individual
phase, we may compute the gradient as in section I-A and
iterate via standard gradient-based optimization techniques
until convergence. Unfortunately, there is an important flaw
with this approach. By isolating each phase, the final position
of the system during the first phase is unrelated to the initial
position of the system during the second phase, and the two
phases fail to match up with each other. This problem is
eliminated in the following section.

2) Optimization of both phases simultaneously, with point
constraints: We now address the shortcomings of the previ-
ous approach by summing the two individual cost functions
(11) and (12) to create a single cost function,

1 i 2 2 1 2
3 [, + i, e+ 5imit,

1 2 2 2 1 2
+§ /Tl |:|X|Qx2 + |u|Qu2:| dt"’ §|fT2|QT2(15)

We now have multiple constraints, which we will refer to
as “point constraints”, incorporated in a single cost func-
tion. Note the importance of choosing an appropriate point

13)
(14)

J =
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constraint at the switch time 77. If an unsatisfactory func-
tion is chosen, the dynamic optimization will not be well-
conditioned and thus a good solution will not be achieved.
With the cost function defined in (15), and following the
adjoint-based method presented in I-A, we obtain the nons-
mooth adjoint system

. —AT) —

A\ = ; QXlX T >t>0, (16)
_AQ)\_QXQX T2>t>T1,
3o, F AT t=T, 7
R t="T1,

2 YX1JL21Qm,

where A; and A, are again Jacobian matrices with respect
to x evaluated at x = x(¢) and u = u(t). Further, we obtain
a single, applicable gradient

Qu,u+ BY A 0<t<Ty,
wu+BIAN+ iV A, t=T,
v, = 9w e /71l ! (18)
Qu2u+Bz)\ T <t<Ty,
2
Quu+ BIA+ 5Vulfnly,, t=T1,

where B; and Bj are again Jacobian matrices with respect
to u evaluated at x = x(t) and u = u(t).

3) Example: Application to Multi-functional Ground Ve-
hicle Trajectory Planning - Rover Uprighting Transition:
In designing a multi-functional robotic ground vehicle, the
ability to switch from one configuration to another is valu-
able. As such transitions often involve nondifferentiable
maneuvers, a traditional smooth approach to offline trajectory
optimization is not effective, and a nonsmooth approach is
required. To illustrate this claim, we introduce the nonsmooth
control problem depicting the uprighting of a three-wheeled
rover as illustrated in Figure 1

_J

Fig. 1.

Rover Upright

We assume that at ¢ = 0 the rover has three wheels on the
ground (two drive wheels and one follower wheel mounted
at the top of the arm), with the arm, or pendulum, at an
angle of § = 57/9 radians. Our performance goal is to
upright the vehicle with minimal terminal deviation from the
starting horizontal position within the time interval t = 0 : T,
with the time interval nominally set to 7' = 3 seconds. The
terminal upright position is defined as # = 0 with the arm
of the rover positioned vertically with the follower wheel at
the peak. In deriving the state equations of the given system,
it is obvious that this maneuver falls into the category of
a switched, or hybrid, system as there is a discrete point at
which the continuous time equations of motion governing the
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Fig. 2. Free Body Diagram of the Robotic Rover

system change instantaneously. Thus, we have motivation to
treat this as a nonsmooth system and approach the gradient
derivation as presented in section II. The equation of motion
for the vehicle in the horizontal roving mode (where the
follower wheel at the end of the vehicle arm is in contact
with the ground) is

2
(Jw + (Mp + Mw)rfu)ﬁb = _%

The equation of motion for the the vehicle during the second
phase of the nonsmooth trajectory (as soon as the follower
wheel lifts off the ground) is

.k
btz (19)

(mpL? 4 Jp)0 + Myr, L cos = M,gLsin 6

k .
—}—%(T+/€(9—¢)), (20
MyryLOcos b + (Jo + (M, + My)r2)¢
szer9251n9+%(T—i—k(é—@). 21)

The parameters identified in the system ODE’s
(M, Mp,Jw,Jp,rw,Lk,R,g) are assumed to be known
and constant in time. The control and state variables of the
given ODE’s (see Figure 2) are 7 (Voltage Applied to the
Motors), ¢ (Angular Displacement of the Wheels (rad)),
q5 (Angular Velocity of the Wheels (rad/s)), 6 (Angular
Displacement of Pendulum (rad))), and 0 (Angular Velocity
of Pendulum (rad/s)). Putting the state and control variables

. qT
into generalized form, x = L979,¢,¢} and u = 7, we
re-express (19), (20), and (21) in the nonlinear state-space
form
Ei(x)% = Ni(x,u) 0<t<Ti, (22)
Ey(x)2 = Ny(x,u) Ty <t<Tp. (23)

Given that for the particular system F4(x) and F>(x) are
both square and nonsingular matrices, we may express (22)
and (23) in the nonlinear state-space form given in (7) and
(8) with a switch at time ¢ = T} such that

& — Ny(x,u) 0<t<Ti, (24)
&= Ny(x,u) T1 <t<Th, (25)
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Simulation Results for Nonsmooth Rover Upright Transition
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(c) State Trajectory versus Discrete Time Steps

where Nj(x,u) = E;'(x)Ni(x,u) and Ny(x,u) =
E5 ' (x)N2(x,u). The initial condition of the state variables
at t =0 is set to

xo=[2 00 0],

and the switch time is nominally chosen as 7T} = 2 seconds.
With the trajectory cost defined as (15), we choose appro-
priate values for the penalty matrices and define the point
constraints

fr,x(Th),u(T1)) = Trota(Tr),
= ‘@Q(Tl)u
fr,(x(T2),u(Tz)) = x(T»),

where ['rq; i the total torque applied to the arm of the
vehicle assuming the normal force applied to follower wheel
is zero (i.e., assuming it is not in contact with the ground).
By attributing a very large penalty to this constraint at the
predetermined switch time ¢ = 77, we ensure that the system
passes through a state at ¢ = 77 where the overall torque
applied to the arm is set to zero (i.e. the angular acceleration
of the pendulum is zero at the switch), and therefore a
smooth transition from the horizontal rover mode to the
upright configuration may be accomplished. Also note the
large dynamic penalty we place on the angle of the pendulum
during the second phase of the uprighting transition, which
in effect ensures that the arm accelerates in the upward
direction at the start of the second phase. This keeps the
system consistent with the fact that the arm may not move
through the ground at any point during the trajectory. Using
(18) as the gradient for the nonsmooth system maneuver,
we iteratively update the discretized control sequence such
that (15) is minimized. With the given parameter values and
weighting matrices, we obtain a solution to the nonsmooth
trajectory planning problem which is presented in terms of
Cost Convergence, State Trajectory, and Control Trajectory
in Figure 3.

III. CONTROL TRAJECTORY SMOOTHING VIA STATE
AUGMENTATION

In example II-.3 we produced a satisfactory result for the
nonsmooth uprighting maneuver of a three wheeled rover.

However, the control trajectory obtained via the Adjoint
Based Dynamic Optimization algorithm for nonsmooth
systems is less than ideal. An obvious flaw in this technique
can be seen in the discontinuous tendency of the control
trajectory solution in Figure 3(b). In a real world application,
a control discontinuity this large would be very difficult to
implement. Another apparent flaw in the original solution
of the nonsmooth planned trajectory is the inability of the
algorithm to ’force’ the control effort at the initial/final time
step to zero. Thus the motivation for a smooth, continuous
control trajectory with initial and terminal constraints is
presented and solved via state augmentation.

We begin by identifying the known, single switch system,
as specified in (7), (8), (9), with chosen switch time 7}. We
introduce an augmented state vector

- X
- o
and a control velocity term
gu—y. 27)

The control velocity term becomes the optimized (forcing)
variable in the augmented system state equation(s)

&= Ni(X,v) 0<t<T, (28)
B = No(x,v) Ty <t<Ty (29)
X =Xo t=0, (30)

where
Nl = |: Nl(x) :| and N2 = |: NQ(X) :| .
\ v
We update the Trajectory Cost (15) to include the new
control velocity term
_ 1 e 2 1 2
Jo= 5 ) (W i, e Sl

L g 2 1dt+ 23, .G
g [N+ i, ] der S, 0D

4788



46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

where the point constraint functions are defined

fri = fr(x(T1)), (32)
fro = fn(X(T2)). (33)
The dynamic augmented state penalty matrices are redefined

Qil = |: le Q(?.l j| and Qiz = |: ng Q(l :| 7(34)

and

e Qr, and @, are the point and terminal constraint
optimization penalty matrices

e @y, and @y, are the optimization penalty matrices on
the dynamic control velocity term v

With this new configuration for the dynamic adjoint based
optimization, we can now effectively apply start/end time
constraints to the control variables, as well as restrict the
speed at which the control evolves over time. We are capable
of eliminating the control discontinuity at the initial time step
by initializing the control vector to zero at the start of the
planned trajectory. The terminal constraint may be defined
such that the control effort at the end of the planned trajectory
is pushed to zero, resulting in full control effort available
to stabilize the system in the presence of deterministic
or stochastic disturbances. In addition, for hybrid switched
systems with known (desired) switch time, the state augmen-
tation smooths the control trajectory such that undesirable
discontinuities do not occur. Note that discontinuities may
occur in the control velocity trajectory, however this does
not adversely effect the implementable control trajectory.

4) Example: Application to Multi-functional Ground
Vehicle Trajectory Planning - Rover Upright with Control
Trajectory Smoothing: Given equivalent equations of
motion and parameter values for the single switch Rover
Upright problem as solved in Example II-.3, we wish to
apply control trajectory smoothing via state augmentation
as presented in Section III such that an improved control
trajectory is obtained.

Following the approach of Section III, we augment
the state vector and introduce a new control velocity term
v. We redefine the system of ODE’s in the form of (28) and
(29), and set the initial condition of the augmented state to

_ T

X = [ 000 0] .
Note that with the state augmentation, we have the ability to
specify an initial condition for the control variable, in this
case ug = 0. The trajectory cost is defined as equation (31)

with the penalty matrices redefined and appropriately chosen,
and the point constraints specified as

fr(X(Th)) = Trota(Th),
= i’g (T1)7
fr,x(Tz)) = x(13).

Note that the point constraint function for switch time 77
remains as defined in example II-.3, and the point constraint
at the terminal time 75 has been updated where u(75)
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is appended to the initial point constraint such that the
control at the terminal time 75 finalizes at zero. The solution
presented in Figure 4 shows vast improvement over the prior
result, especially with respect to the control trajectory 4(b).

IV. MPDorT

MPDopt is a standalone MatLab package for Nonlinear
Model Predictive Control offline trajectory planning. The
package is fully automated and has the ability to obtain tra-
jectory solutions for highly nonlinear systems, including both
smooth and nonsmooth classes. The program obtains system
information via user template which it uses to automatically
generate files for the dynamic optimization. The following
outlines the basic functionality of the standalone package:

A. MPDopt: User Defined Input

Augmented State (t = Tp)

Number of States/Controls
Number of Phases
Nonlinear ODE

Point Constraint Functions
Cost Penalty Matrices
Time Window (Per Phase)
Discretizations (Per Phase)
Maximum Iterations
Residual Tolerance

— — X
X:X0:|:llg:|

#x/7#u
p

{Ni(x,u),..., Np(x,u)}
{le (iTl)a sy fTP (XTP)}

{Q*l, ) Q*P}
{Th,...,Tp}
{N1,...,Np}
MazxlIter

tol

Given the single phase, or switched system, characteristics
above, MPDopt automatically generates the required
MatLab script files for the generalized adjoint based
optimization. Note that the control trajectory smoothing via
state augmentation is internal to the program such that the
user may specify the system state matrices in terms of (7)
and (8) rather than (28) and (29).

B. MPDopt: Generalized Algorithm

for k=1:Maxlter

e March the nonsmooth augmented state ODE forward in
time from ¢t = Ty : Tp saving the augmented state values at
each discrete time step, where the generalized state equation
can be expressed as

% ZNZ'()_(,V) T, 1 <t<T;
icL...p)
X =X t="1Ty

e Compute the trajectory cost value Ji (X, v), expressed in
the generalized form

P
T; — _
o= L e, (W, + VB, ] de o+ 31 (eI,
1=

e March the nonsmooth augmented adjoint ODE back-
wards in time from ¢t = T'p : T, where the adjoint ODE can
be expressed

).\ = —A;TA — Qiii T >t>T, 1
A= 1V Ifn KT, +AT) 1 =T Tr)
A= Vslfre X(T))g,, — t=Tr
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Cost Function Convergence
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Fig. 4. Simulation Results for Nonsmooth Rover Upright with Control Trajectory Smoothing

e Compute the cost function gradient V. Jy
Vka:QviV‘FB;»TA T%71<t<T%

e Set search direction using steepest descent (G =
—VyJi) or conjugate gradient method

e Use line search algorithm to find optimal step size [7]

e Compute new Trajectory Cost Value Ji11(X,V)

e Check to see if Residual Tolerance is met

Jk(i,v) — Jk+1(i, V) < tol

if YES = STOP
if NO = advance iterationto k =k + 1
Loop to beginning
end(for)

C. MPDopt: Program Output

« State, Control, and Control Velocity Trajectory
e Cost Convergence
o System Animation (optional and user defined)

V. CONCLUSIONS AND CURRENT WORK

A. Conclusions

In this paper we have derived a method to determine a
sequence of control inputs for a switched system such that
a desired trajectory over a finite time horizon is achieved.
We have extended the well known continuous time adjoint
based gradient computation to a general class of nonsmooth
systems by introducing point constraints into the trajectory
cost equation. Further, we have introduced a method of
control trajectory smoothing via state augmentation which
substantially improves the control trajectory solution given
by the optimization algorithm. Lastly, we have generalized
the adjoint based dynamic optimization leading to the intro-
duction of MPDopt, a standalone trajectory planning MatLab
package for nonlinear, smooth, and nonsmooth classes of
systems.

B. Current Work

Work is currently being done toward both the physical
verification of the derived algorithm and the extension of
MPDopt capability. Planned trajectory solutions will be
applied to a cart and single pendulum swing-up, cart and
double pendulum swing-up, and multiple rover maneuvers
including upright, downright, and underactuated snatch and
throw. Specific areas of interest toward improving MPDopt
include the ability to incorporate hard constraints on the
state and control variables, and, as alluded to in section
I, to the optimization of the time intervals 77 and 75
themselves via time nondimensionalization of the system
and subsequent optimization of the parameters involved in
this time nondimensionalization. There is also interest in
extending the algorithm to include Descriptor Systems.
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