
MPDopt: A versatile toolbox for adjoint-based model predictive control

of smooth and switched nonlinear dynamic systems

Sean Summers and Thomas R. Bewley

Flow Control and Coordinated Robotics Labs, UC San Diego

Abstract— Over the years, adjoint-based Model Predictive
Control (MPC) has proven to be a viable and effective tool
for both offline and online optimization of control sequences
for dynamic systems governed by differentiable nonlinear
equations. This paper extends this versatile method to a class of
nonsmooth systems in which the dynamical equation governing
the physical system experiences sudden “switches” when the
system changes operational modes. This extension involves only
minimal alteration of the basic adjoint-based MPC algorithm.
We then further improve this algorithm by introducing control
trajectory smoothing via state augmentation. Finally, we present
a new Matlab toolbox we have developed, MPDopt, that
incorporates all of these developments while being user friendly,
easily extensible, and capable of offline trajectory planning for
wide range of smooth and switched systems of the present class.

I. INTRODUCTION

The objective of Model Predictive Control (MPC) is the

determination of an optimal sequence of control inputs u to

a dynamic (possibly, nonlinear) system to minimize a user-

defined (possibly, nonquadratic) cost function J , typically

measuring both the state variable x and the control input

u over a finite time interval [0, T]. As a mathematical

optimization problem, as long as the dynamic system is dif-

ferentiable, gradient-based approaches based on on steepest

descent, conjugate gradient, or BFGS optimization methods

are straightforward (see [2] and [5]). With such approaches,

to compute the gradient of the cost function J with respect

to the control inputs u, a Lagrange multiplier λ (a.k.a. the

adjoint state) times the equation governing the system may

be appended to the cost function. By solving the state ODE

forward in time and an appropriately-defined adjoint ODE

backwards in time, the gradient of the cost function with

respect to the control distribution u is revealed. Given such

an efficient technique to compute the gradient, an iterative

method (typically, steepest descent, conjugate gradient, or

BFGS) may then be used to minimize J with respect to the

sequence of control inputs u in a straightforward fashion.

A. The adjoint method for computing the gradient

We first derive the well-known adjoint method for com-

puting the gradient of a constrained quadratic cost function,

where the state constraint is the nonlinear ODE governing

the system. Similar derivations for computing the gradient

This work was supported by Los Alamos National Laboratory
Sean Summers, ssummers@ucsd.edu, and Professor Thomas R. Bewley,

bewley@ucsd.edu, are affiliated with the Flow Control and Coordinated
Robotics Labs at the Center for Control Systems and Dynamics at the
Mechanical and Aerospace Engineering Department of the University of
California, San Diego.

can be found in [1] and [3]. We first assume that the system

of interest is differentiable and known and may be written

in the form

dx
dt

= N(x, u) 0 < t < T , (1)

x = x0 t = 0, (2)

where t = 0 is the present time and

• x(t) is the state vector with x0 the known initial

condition at t = 0
• u(t) is the control at time t
• N(x, u) is a known function, differentiable in x and u,

representing the dynamic system of interest.

We also define a cost function J (with weighted norm |x|2Q ,

x
T Qx) as

J =
1

2

∫ T

0

[

|x|
2
Qx

+ |u|
2
Qu

]

dt +
1

2
|x(T)|

2
QT

, (3)

where t = T is the terminal time and

• Qx is the penalty matrix on the state x,

• Qu is the penalty matrix on the control u,

• QT is the penalty matrix on the terminal state x(T).

By appending to (3) an adjoint state λ (a.k.a. Lagrangian

multiplier) times the equation governing the system, (1), an

augmented cost function is defined as

J =
1

2

∫ T

0

[

|x|2Qx
+ |u|2Qu

]

dt +
1

2
|x(T)|2QT

−

∫ T

0

λT (ẋ − N(x, u))dt. (4)

We first set ∇λJ = 0, thereby enforcing the equality

constraint (1). We also set ∇xJ = 0, thereby obtaining an

auxiliary ”adjoint” ODE

λ̇ = −AT λ − Qxx T > t > 0,
λ = QT (T)x(T) t = T,

(5)

where A = ∂(N(x,u))
∂x

|x=x(t),u=u(t). Finally, the resultant

gradient ∇uJ is given by

∇uJ = BT λ + Quu, (6)

where B = ∂(N(x,u))
∂u

|x=x(t),u=u(t). Note that, with this

method, ∇uJ is a simple function of λ, which is defined

in (5) via a march from t = T to t = 0 and which is itself

a function of x, which is defined in (1) via a march from

t = 0 to t = T .

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrA08.3

1-4244-1498-9/07/$25.00 ©2007 IEEE. 4785

B. Nonsmooth optimization

Note that the application of standard gradient-based op-

timization methods to nonsmooth, or switched, systems

commonly result in the optimization algorithm becoming

stuck in a “kink” in the optimization surface. A kink is

defined here as any point on the optimization surface at

which multiple subgradients exist, and neither subgradient

results in a viable direction of descent of the cost function.

The theory of nonsmooth optimization is devoted exactly to

such objective functions which are not continuously differ-

entiable. Methods for solving such nonsmooth problems via

subgradient methods, cutting plane methods, etc., have been

introduced and provide an alternative to smooth optimization

methods. For more in depth information on nonsmooth

optimization analysis and algorithms, see [4]. Unfortunately,

general nonsmooth optimization methods are considerably

more cumbersome than the standard smooth optimization

methods outlined above. Thus, in the present work, rather

than resorting to general nonsmooth optimization methods,

we instead convert our switched system into a smooth

optimization problem.

II. GRADIENT COMPUTATION IN SWITCHED SYSTEMS

In this section, we extend the adjoint based method of

gradient computation presented in I-A to switched systems.

That is, we will consider systems with one or more discrete

switch points at which the continuous-time state equations

governing the system change instantaneously. As mentioned

above, this discontinuity in the state equation results in mul-

tiple subgradients of the cost function at specific points in the

optimization surface. When faced with multiple subgradients,

the adjoint based optimization algorithm may become stuck

in a kink and fail to converge, even though a local optimal

point has not yet been reached. Therefore, a new approach

must be taken by either

(a) adjusting the problem definition such that J becomes

well-conditioned [2], and therefore a smooth gradient

based optimization algorithm may be applied, or

(b) using a nonsmooth optimization algorithm, such as a

bundle method [4], to explicitly find a solution for the

non-differentiable cost function.

Approach (b) may prove to be necessary for harder

problems. Note that nonsmooth optimization approaches are

significantly more cumbersome (and slow to converge) than

optimization algorithms designed specifically for smooth

optimization surfaces. For the present class of problems,

however, approach (a) is shown viable through the use of

multiple terminal constraints applied to the end of each

phase. If such constraints are introduced correctly into

the cost function (3), this makes the optimization problem

smooth, well-conditioned, and amenable to standard

gradient-based optimization methods, as detailed below.

For simplicity, we will initially assume that the system of

interest is a single switch system with known switch time

nominally set to t = T1, terminal time nominally set to t =

T2 (see V-B for generalization), and nonlinear state equations

of the form

dx
dt

= N1(x, u) 0 < t < T1,, (7)
dx
dt

= N2(x, u) T1 < t < T2,, (8)

x = x0 t = 0,. (9)

1) Optimization of two decoupled phases: In (3) we intro-

duced a weighted terminal constraint into the cost function.

Defining the terminal weighting matrix QT appropriately

and applying the iterative optimization algorithm described

previously, this essentially forces the states at the terminal

time t = T to converge to a result very close to x(T) = 0.

By redefining the weighted terminal constraint as a general

weighted constraint function at some time t,

|x(t)|2Q ⇒ |f(x(t), u(t))|2Q, (10)

we can split the optimization into two independent trajectory

planning segments. Thus, our first attempt at obtaining a

trajectory plan for the single switch system is to create two

separate cost functions [the first defining the trajectory while

governed by the equations of motion (7), and the second

while governed by (8)] such that

J1 =
1

2

∫ T1

0

[

|x|2Qx1
+ |u|2Qu1

]

dt +
1

2
|fT1

|2QT1

, (11)

J2 =
1

2

∫ T2

T1

[

|x|2Qx2
+ |u|2Qu2

]

dt +
1

2
|fT2

|2QT2

, (12)

with the terminal constraints defined as functions of both

state and control variables

fT1
= fT1

(x(T1), u(T1)), (13)

fT2
= fT2

(x(T2), u(T2)). (14)

By separating the original optimization problem into two

distinct, decoupled phases, we now have two smooth opti-

mization problems that are easily solved. For each individual

phase, we may compute the gradient as in section I-A and

iterate via standard gradient-based optimization techniques

until convergence. Unfortunately, there is an important flaw

with this approach. By isolating each phase, the final position

of the system during the first phase is unrelated to the initial

position of the system during the second phase, and the two

phases fail to match up with each other. This problem is

eliminated in the following section.

2) Optimization of both phases simultaneously, with point

constraints: We now address the shortcomings of the previ-

ous approach by summing the two individual cost functions

(11) and (12) to create a single cost function,

J =
1

2

∫ T1

0

[

|x|2Qx1
+ |u|2Qu1

]

dt +
1

2
|fT1

|2QT1

+
1

2

∫ T2

T1

[

|x|2Qx2
+ |u|2Qu2

]

dt +
1

2
|fT2

|2QT2

.(15)

We now have multiple constraints, which we will refer to

as “point constraints”, incorporated in a single cost func-

tion. Note the importance of choosing an appropriate point

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA08.3

4786

constraint at the switch time T1. If an unsatisfactory func-

tion is chosen, the dynamic optimization will not be well-

conditioned and thus a good solution will not be achieved.

With the cost function defined in (15), and following the

adjoint-based method presented in I-A, we obtain the nons-

mooth adjoint system

λ̇ =

{

−AT
1 λ − Qx1

x

−AT
2 λ − Qx2

x

T1 > t > 0,
T2 > t > T1,

(16)

λ =

{

1
2∇x |fT1

|2QT1

+ λ(T1)
1
2∇x |fT2

|
2
QT2

t = T1,
t = T2,

(17)

where A1 and A2 are again Jacobian matrices with respect

to x evaluated at x = x(t) and u = u(t). Further, we obtain

a single, applicable gradient

∇uJ =























Qu1
u + BT

1 λ 0 < t < T1,

Qu1
u + BT

1 λ + 1
2∇u |fT1

|
2
QT1

t = T1,

Qu2
u + BT

2 λ T1 < t < T2,

Qu2
u + BT

2 λ + 1
2∇u |fT2

|
2
QT2

t = T2,

(18)

where B1 and B2 are again Jacobian matrices with respect

to u evaluated at x = x(t) and u = u(t).

3) Example: Application to Multi-functional Ground Ve-

hicle Trajectory Planning - Rover Uprighting Transition:

In designing a multi-functional robotic ground vehicle, the

ability to switch from one configuration to another is valu-

able. As such transitions often involve nondifferentiable

maneuvers, a traditional smooth approach to offline trajectory

optimization is not effective, and a nonsmooth approach is

required. To illustrate this claim, we introduce the nonsmooth

control problem depicting the uprighting of a three-wheeled

rover as illustrated in Figure 1

Fig. 1. Rover Upright

We assume that at t = 0 the rover has three wheels on the

ground (two drive wheels and one follower wheel mounted

at the top of the arm), with the arm, or pendulum, at an

angle of θ = 5π/9 radians. Our performance goal is to

upright the vehicle with minimal terminal deviation from the

starting horizontal position within the time interval t = 0 : T ,

with the time interval nominally set to T = 3 seconds. The

terminal upright position is defined as θ = 0 with the arm

of the rover positioned vertically with the follower wheel at

the peak. In deriving the state equations of the given system,

it is obvious that this maneuver falls into the category of

a switched, or hybrid, system as there is a discrete point at

which the continuous time equations of motion governing the

Fig. 2. Free Body Diagram of the Robotic Rover

system change instantaneously. Thus, we have motivation to

treat this as a nonsmooth system and approach the gradient

derivation as presented in section II. The equation of motion

for the vehicle in the horizontal roving mode (where the

follower wheel at the end of the vehicle arm is in contact

with the ground) is

(Jw + (Mp + Mw)r2
w)φ̈ = −

k2

R
φ̇ +

k

R
τ. (19)

The equation of motion for the the vehicle during the second

phase of the nonsmooth trajectory (as soon as the follower

wheel lifts off the ground) is

(mpL
2 + Jp)θ̈ + MprwLφ̈ cos θ = MpgL sin θ

−
k

R
(τ + k(θ̇ − φ̇)), (20)

MprwLθ̈ cos θ + (Jw + (Mp + Mw)r2
w)φ̈

= MprwLθ̇2 sin θ +
k

R
(τ + k(θ̇ − φ̇)). (21)

The parameters identified in the system ODE’s

(Mw,Mp,Jw,Jp,rw,L,k,R,g) are assumed to be known

and constant in time. The control and state variables of the

given ODE’s (see Figure 2) are τ (Voltage Applied to the

Motors), φ (Angular Displacement of the Wheels (rad)),

φ̇ (Angular Velocity of the Wheels (rad/s)), θ (Angular

Displacement of Pendulum (rad))), and θ̇ (Angular Velocity

of Pendulum (rad/s)). Putting the state and control variables

into generalized form, x =
[

θ, θ̇, φ, φ̇
]T

and u = τ , we

re-express (19), (20), and (21) in the nonlinear state-space

form

E1(x)dx
dt

= N1(x, u) 0 < t < T1, (22)

E2(x)dx
dt

= N2(x, u) T1 < t < T2. (23)

Given that for the particular system E1(x) and E2(x) are

both square and nonsingular matrices, we may express (22)

and (23) in the nonlinear state-space form given in (7) and

(8) with a switch at time t = T1 such that

dx
dt

= N̂1(x, u) 0 < t < T1, (24)

dx
dt

= N̂2(x, u) T1 < t < T2, (25)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA08.3

4787

0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Cost Function Convergence

Iteration

C
o

s
t

V
a

lu
e

(a) Trajectory Cost Value versus Iterations

0 50 100 150 200 250 300 350
−20

−15

−10

−5

0

5

10

15

Control Trajectory

Discrete Time Steps

u
1

(b) Control Trajectory versus Discrete Time
Steps

0 50 100 150 200 250 300 350
0

1

2

State Trajectory

x
1

0 50 100 150 200 250 300 350
−4

−2

0

2

x
2

0 50 100 150 200 250 300 350
−5

0

5

x
3

0 50 100 150 200 250 300 350
−10

−5

0

5

Discrete Time Steps

x
4

(c) State Trajectory versus Discrete Time Steps

Fig. 3. Simulation Results for Nonsmooth Rover Upright Transition

where N̂1(x, u) = E−1
1 (x)N1(x, u) and N̂2(x, u) =

E−1
2 (x)N2(x, u). The initial condition of the state variables

at t = 0 is set to

x0 =
[

5π
9 0 0 0

]T
,

and the switch time is nominally chosen as T1 = 2 seconds.

With the trajectory cost defined as (15), we choose appro-

priate values for the penalty matrices and define the point

constraints

fT1
(x(T1), u(T1)) = ΓTotal(T1),

∼= ẋ2(T1),

fT2
(x(T2), u(T2)) = x(T2),

where ΓTotal is the total torque applied to the arm of the

vehicle assuming the normal force applied to follower wheel

is zero (i.e., assuming it is not in contact with the ground).

By attributing a very large penalty to this constraint at the

predetermined switch time t = T1, we ensure that the system

passes through a state at t = T1 where the overall torque

applied to the arm is set to zero (i.e. the angular acceleration

of the pendulum is zero at the switch), and therefore a

smooth transition from the horizontal rover mode to the

upright configuration may be accomplished. Also note the

large dynamic penalty we place on the angle of the pendulum

during the second phase of the uprighting transition, which

in effect ensures that the arm accelerates in the upward

direction at the start of the second phase. This keeps the

system consistent with the fact that the arm may not move

through the ground at any point during the trajectory. Using

(18) as the gradient for the nonsmooth system maneuver,

we iteratively update the discretized control sequence such

that (15) is minimized. With the given parameter values and

weighting matrices, we obtain a solution to the nonsmooth

trajectory planning problem which is presented in terms of

Cost Convergence, State Trajectory, and Control Trajectory

in Figure 3.

III. CONTROL TRAJECTORY SMOOTHING VIA STATE

AUGMENTATION

In example II-.3 we produced a satisfactory result for the

nonsmooth uprighting maneuver of a three wheeled rover.

However, the control trajectory obtained via the Adjoint

Based Dynamic Optimization algorithm for nonsmooth

systems is less than ideal. An obvious flaw in this technique

can be seen in the discontinuous tendency of the control

trajectory solution in Figure 3(b). In a real world application,

a control discontinuity this large would be very difficult to

implement. Another apparent flaw in the original solution

of the nonsmooth planned trajectory is the inability of the

algorithm to ’force’ the control effort at the initial/final time

step to zero. Thus the motivation for a smooth, continuous

control trajectory with initial and terminal constraints is

presented and solved via state augmentation.

We begin by identifying the known, single switch system,

as specified in (7), (8), (9), with chosen switch time T1. We

introduce an augmented state vector

x̄ =

[

x

u

]

, (26)

and a control velocity term

∂u
∂t

= v. (27)

The control velocity term becomes the optimized (forcing)

variable in the augmented system state equation(s)

dx̄
dt

= N̄1(x̄, v) 0 < t < T1, (28)
dx̄
dt

= N̄2(x̄, v) T1 < t < T2, (29)

x̄ = x̄0 t = 0, (30)

where

N̄1 =

[

N1(x̄)
v

]

and N2 =

[

N̂2(x̄)
v

]

.

We update the Trajectory Cost (15) to include the new

control velocity term

J =
1

2

∫ T1

0

[

|x̄|2Qx̄1
+ |v|2Qv1

]

dt +
1

2
|fT1

|2QT1

+
1

2

∫ T2

T1

[

|x̄|2Qx̄2
+ |v|2Qv2

]

dt +
1

2
|fT2

|2QT2

, (31)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA08.3

4788

where the point constraint functions are defined

fT1
= fT1

(x̄(T1)), (32)

fT2
= fT2

(x̄(T2)). (33)

The dynamic augmented state penalty matrices are redefined

Qx̄1
=

[

Qx1 0
0 Qu1

]

and Qx̄2
=

[

Qx2 0
0 Qu2

]

,(34)

and

• QT1
and QT2

are the point and terminal constraint

optimization penalty matrices

• Qv1
and Qv2

are the optimization penalty matrices on

the dynamic control velocity term v

With this new configuration for the dynamic adjoint based

optimization, we can now effectively apply start/end time

constraints to the control variables, as well as restrict the

speed at which the control evolves over time. We are capable

of eliminating the control discontinuity at the initial time step

by initializing the control vector to zero at the start of the

planned trajectory. The terminal constraint may be defined

such that the control effort at the end of the planned trajectory

is pushed to zero, resulting in full control effort available

to stabilize the system in the presence of deterministic

or stochastic disturbances. In addition, for hybrid switched

systems with known (desired) switch time, the state augmen-

tation smooths the control trajectory such that undesirable

discontinuities do not occur. Note that discontinuities may

occur in the control velocity trajectory, however this does

not adversely effect the implementable control trajectory.

4) Example: Application to Multi-functional Ground

Vehicle Trajectory Planning - Rover Upright with Control

Trajectory Smoothing: Given equivalent equations of

motion and parameter values for the single switch Rover

Upright problem as solved in Example II-.3, we wish to

apply control trajectory smoothing via state augmentation

as presented in Section III such that an improved control

trajectory is obtained.

Following the approach of Section III, we augment

the state vector and introduce a new control velocity term

v. We redefine the system of ODE’s in the form of (28) and

(29), and set the initial condition of the augmented state to

x̄0 =
[

5π
9 0 0 0 0

]T
.

Note that with the state augmentation, we have the ability to

specify an initial condition for the control variable, in this

case u0 = 0. The trajectory cost is defined as equation (31)

with the penalty matrices redefined and appropriately chosen,

and the point constraints specified as

fT1
(x̄(T1)) = ΓTotal(T1),

∼= ẋ2(T1),

fT2
(x̄(T2)) = x̄(T2).

Note that the point constraint function for switch time T1

remains as defined in example II-.3, and the point constraint

at the terminal time T2 has been updated where u(T2)

is appended to the initial point constraint such that the

control at the terminal time T2 finalizes at zero. The solution

presented in Figure 4 shows vast improvement over the prior

result, especially with respect to the control trajectory 4(b).

IV. MPDOPT

MPDopt is a standalone MatLab package for Nonlinear

Model Predictive Control offline trajectory planning. The

package is fully automated and has the ability to obtain tra-

jectory solutions for highly nonlinear systems, including both

smooth and nonsmooth classes. The program obtains system

information via user template which it uses to automatically

generate files for the dynamic optimization. The following

outlines the basic functionality of the standalone package:

A. MPDopt: User Defined Input

Augmented State (t = T0) x̄ = x̄0 =

[

x0

u0

]

Number of States/Controls #x/#u

Number of Phases P
Nonlinear ODE {N1(x, u), ..., NP (x, u)}
Point Constraint Functions {fT1

(x̄T1
), ..., fTP

(x̄TP
)}

Cost Penalty Matrices {Q∗1, ..., Q∗P }
Time Window (Per Phase) {T1, ..., TP }
Discretizations (Per Phase) {N1, ..., NP }
Maximum Iterations MaxIter
Residual Tolerance tol

Given the single phase, or switched system, characteristics

above, MPDopt automatically generates the required

MatLab script files for the generalized adjoint based

optimization. Note that the control trajectory smoothing via

state augmentation is internal to the program such that the

user may specify the system state matrices in terms of (7)

and (8) rather than (28) and (29).

B. MPDopt: Generalized Algorithm

for k=1:MaxIter

• March the nonsmooth augmented state ODE forward in

time from t = T0 : TP saving the augmented state values at

each discrete time step, where the generalized state equation

can be expressed as

dx̄
dt

= N̄i(x̄, v) Ti−1 < t < Ti

i ∈ {1, ..., P}

x̄ = x̄0 t = T0

• Compute the trajectory cost value Jk(x̄, v), expressed in

the generalized form

Jk =
P
∑

i=1

1
2

∫ Ti

Ti−1

[

|x̄|2Qx̄i

+ |v|2Qvi

]

dt + 1
2 |fTi

(x̄Ti
)|2QTi

• March the nonsmooth augmented adjoint ODE back-

wards in time from t = TP : T0, where the adjoint ODE can

be expressed

λ̇ = −AT
i λ − Qx̄i

x̄ Ti > t > Ti−1

λ = 1
2∇x̄ |fTi

(x̄(Ti))|
2
QTi

+ λ(Ti) t = Ti(6= TP)

λ = 1
2∇x̄ |fTP

(x̄(TP))|
2
QTP

t = TP

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA08.3

4789

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7
x 10

4 Cost Function Convergence

Iteration

C
o
s
t
V

a
lu

e

(a) Trajectory Cost Value versus Iterations

0 50 100 150 200 250 300 350
−15

−10

−5

0

5

10

15

Control Trajectory

u
1

Discrete Time Steps

(b) Control Trajectory versus Discrete Time
Steps

0 50 100 150 200 250 300 350
0

1

2

State Trajectory

Discrete Time Steps

x
1

0 50 100 150 200 250 300 350
−4

−2

0

2

x
2

0 50 100 150 200 250 300 350
−5

0

5

x
3

0 50 100 150 200 250 300 350
−10

0

10

x
4

Discrete Time Steps

(c) State Trajectory versus Discrete Time Steps

Fig. 4. Simulation Results for Nonsmooth Rover Upright with Control Trajectory Smoothing

• Compute the cost function gradient ∇vJk

∇vJk = Qvi
v + BT

i λ Ti−1 < t < Ti

• Set search direction using steepest descent (Gk =
−∇vJk) or conjugate gradient method

• Use line search algorithm to find optimal step size [7]

• Compute new Trajectory Cost Value Jk+1(x̄, v)

• Check to see if Residual Tolerance is met

Jk(x̄, v) − Jk+1(x̄, v) < tol

if YES ⇒ STOP

if NO ⇒ advance iteration to k = k + 1
Loop to beginning

end(for)

C. MPDopt: Program Output

• State, Control, and Control Velocity Trajectory

• Cost Convergence

• System Animation (optional and user defined)

V. CONCLUSIONS AND CURRENT WORK

A. Conclusions

In this paper we have derived a method to determine a

sequence of control inputs for a switched system such that

a desired trajectory over a finite time horizon is achieved.

We have extended the well known continuous time adjoint

based gradient computation to a general class of nonsmooth

systems by introducing point constraints into the trajectory

cost equation. Further, we have introduced a method of

control trajectory smoothing via state augmentation which

substantially improves the control trajectory solution given

by the optimization algorithm. Lastly, we have generalized

the adjoint based dynamic optimization leading to the intro-

duction of MPDopt, a standalone trajectory planning MatLab

package for nonlinear, smooth, and nonsmooth classes of

systems.

B. Current Work

Work is currently being done toward both the physical

verification of the derived algorithm and the extension of

MPDopt capability. Planned trajectory solutions will be

applied to a cart and single pendulum swing-up, cart and

double pendulum swing-up, and multiple rover maneuvers

including upright, downright, and underactuated snatch and

throw. Specific areas of interest toward improving MPDopt

include the ability to incorporate hard constraints on the

state and control variables, and, as alluded to in section

II, to the optimization of the time intervals T1 and T2

themselves via time nondimensionalization of the system

and subsequent optimization of the parameters involved in

this time nondimensionalization. There is also interest in

extending the algorithm to include Descriptor Systems.

REFERENCES

[1] T.R. Bewley, J. Kim, ”A Linear Systems Approach to Flow Control”
Annual Review of Fluid Mechanics, Vol. 39: 383-417, Jan. 2007.

[2] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization, Else-
vier Academic Press, London, UK; 1986.

[3] C. Lemarechal, J.F. Bonnans, J.C. Gilbert, and C.A. Sagastizabal,
Numerical Optimization: Theoretical and Practical Aspects, Springer-
Verlag Berlin Heidelberg, 1997.

[4] C. Lemarechal and J.-B. Hiriart-Urruty, Convex Analysis and Mini-

mization Algorithms I:II, Springer-Verlag Berlin Heidelberg, 1993.
[5] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons,

1987.
[6] A. Ruszczynski, Nonlinear Optimization, Princeton University Press,

Princeton, NJ, 2006.
[7] T.R. Bewley, Numerical Renaissance: Simulation, Optimization, &

Control, http://renaissance.ucsd.edu/book/Welcome.html
[8] R. Fletcher Practical Methods of Optimization, John Wiley & Sons

Ltd., 1987
[9] E.W. Kamen, B.S. Heck Fundamentals of Signals and Systems,

Prentice Hall, Upper Saddle River, New Jersey, 1997
[10] S.J. Leon Linear Algebra with Applications, Prentice Hall, Upper

Saddle River, New Jersey, 1998

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA08.3

4790

