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Abstract— This paper explores the accuracy of several state
estimators used in Mobile Inverted Pendulum (MIP) robots.
Accurate state estimation is essential for effective feedback
stabilization of such vehicles, especially at high spin rates.
The MIP estimation techniques compared in this work are the
Complementary Filter, the Complementary Kalman Filter, the
(proprietary) Digital Motion Processor (DMP) from the (com-
mon) TDK InvenSense MPU-9250, and a dynamically modelled
Extended Kalman Filter (EKF). We also derive from scratch
the equations governing the dynamics of MIPs undergoing
high yaw rates, as used by the EKF, using a Lagrangian
formulation. The MIP was then controlled at several different
yaw rate setpoints, and the tilt angle estimates were compared
with the (“ground truth”) measurements obtained via motion
capture. Our test results indicate that the high yaw rate
dynamic EKF and DMP are significantly more accurate than
the usual Complementary Filter and planar dynamic EKF. The
inaccuracy of the Complementary Filter is likely caused by the
IMU not being aligned with the body’s center of mass, creating
a significant centrifugal force while spinning quickly.

I. INTRODUCTION

A Mobile Inverted Pendulum (MIP) robot is a feedback-
stabilized inverted pendulum that is rigidly mounted to two
individually-controllable coaxial wheels. Many groups have
designed and stabilized MIP robots, using techniques ranging
from PID to State-Space Control. In general, performance of
the feedback stabilization algorithm implemented is limited
by the estimator, which is very challenging in a small
embedded systems with low-cost processors and sensors. In
addition, small light robots can accelerate quickly and oper-
ate on fast timescales, further complicating their estimation.

In order to overcome these challenges, groups have em-
ployed a variety of estimation approaches, such as comple-
mentary filters and Kalman Filters [1][2]. However, many of
these solutions obtain body angle estimates by treating the
accelerometer and gyroscope as a simple inclinometer [1][2].
While a few references have considered body dynamics
during the state estimation process, they only used the
gyroscope and encoders as measurements. Further, all prior
models for estimation that we could find in the literature
were based on planar MIP dynamics, under the assumption
that any yaw motions of the MIP were decoupled from
the longitudinal dynamics. High-performance MIP (and, ul-
timately, ball-balancing) robots [3][4], undergoing high yaw
rates, are not accurately modeled under this assumption.
Smooth stabilization of a very aggressive maneuvers of
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Fig. 1: The eduMIP educational robotics kit developed at the
UCSD Coordinated Robotics Lab, available at Renaissance
Robotics, with markers for motion capture attached.

small MIP like this, or a small ball-balancing robot with
complex dynamics, will likely be dependant on an accurate
situational awareness provided by such state estimators. This
motivates the present investigation, which aims to develop
improved state estimates by reconciling with the raw sensor
measurements with the dynamic equation of motion of the
vehicle itself.

In this paper, we present a 3D model for a MIP un-
dergoing fast yaw dynamics, and introduce an Extended
Kalman Filter (EKF) for state estimation using both the ac-
celerometer and gyroscope measurements. In addition, using
the (commercially-available) Renaissance Robotics eduMIP
depicted in Fig. 1 as a test platform and a motion capture
system to capture “ground truth”, we compared our new
yaw model and estimator to three existing methods: the
complementary filter, the complementary Kalman filter, and
the planar MIP dynamic Kalman Filter.

The most difficult and important state to estimate on a MIP
is the body tilt angle θ. The following subsections describe
and derive the existing state estimators for θ.

A. Complementary Filter

Complementary Filtering is the process of combining
multiple sensor estimate in order to calculate an estimate with
less uncertainty than what each individual estimate would
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have [5]. The angle θ is estimated using the IMU’s gyroscope
and acelerometer measurements. The accelerometer gives a
noisy θ estimate by obtaining the angle of the gravity vector.
The gyroscope outputs a angular velocity ω measurement
which can be integrated to obtain a low noise θ estimate that
suffers from accumulated integration error. To obtain a better
θ estimate, the gyro θ estimate is high-pass filtered added
to a low-passed accelerometer estimate [5]. The resulting
equation in discrete time which is shown in Eq. 1 is one of
the simplest form of estimation for θ.

θ̂k = c θ̂k−1 + ωgyrok−1 dt+ (1− c) θaccelk−1 (1)

where θ̂ is the θ estimate, c = e−σdt, σ is the high-pass/low-
pass cutoff frequency and dt is the controller loop time step.

B. Complementary Filter with Kalman Filter

Complementary Filtering can also be done using Kalman
Filter [5]. This filter only uses the measurement from the
IMU into the Kalman Filter in order to estimate θ [1][2].
This Complementary Kalman Filter setup is shown in Eq.
2, where ygk = ωk + bk is the gyro measurement, ω is the
body’s true angular velocity and b is the sensor bias. θk =
θk−1+ωk dt and yak is the inclinometer angle estimate from
the accelerometer measurements, vk and wk are zero mean
white noise.[

θk
bk

]
=

[
1 −dt
0 1

] [
θk−1

bk−1

]
+

[
dt
0

]
ygk−1 + vk

yak =
[
1 0

] [θk
bk

]
+ wk

(2)

There are several similar estimation methods that do not
use a dynamic model. For example, the state can be estimated
using an Indirect Kalman Filter with a kinematic model,
which was used on the high performance ball-balancing
robot Rezero[4]. There are also other IMU sensor fusion
algorithm that are used to estimate the orientation, such as
for UAV and wearable sensors [6][7][8]. In addition, the
TDK InvenSense MPU-9250, which is the IMU used in our
MIP, has a proprietary Digital Motion Processing (DMP)
algorithm which gives a very accurate angle estimate without
a dynamic model.

C. Dynamic Kalman Filter

The Extended Kalman Filter using the system dynamic
model is shown in Eq. 3 with the fk and hk are the
dynamically modelled system and measurement of the robot.
The accuracy of the Kalman Filter’s estimate relies heavily
on the model.

xk = f(xk−1,uk−1) + vk

yk = h(xk,uk) +wk
(3)

State estimation using Kalman Filter with the MIP dy-
namic equation has been done, but mostly in simulations
where it is assumed that the θ can be measured directly [9]. In
addition, Shimizu et al. developed a MIP Dynamic Kalman
Filter using only the gyroscope and encoder measurements
[10].

TABLE I: Parameter and Time Varying Variable List. Abbre-
viations: CoM = Center of Mass, CoR = Center of Rotation
(origin of the body frame).

Parameter List

mb = body mass. Îb = body inertia about CoM.
mw = wheel mass. Îw = wheel inertia about CoM.
r = wheel radius. l = length of body’s CoM from CoR.
g = gravity constant. d = distance between wheels.
k1 = motor torque gain. k2 = motor back EMF gain.

Time Varying Variable List, i = {1, 2}

θ = pitch angle. φi = wheel i rotation angle.
ψ = yaw angle. ϕi = wheel i encoder rotation angle.
τi = wheel i torque. ui = motor i PWM command ∈ [−1, 1].
p = body CoM position vector.
pwi = wheel CoM position vector.
pw = body frame’s origin (CoR) position vector.
lb = length vector from CoR to body CoM.
lr = length vector of wheel’s CoM to the ground.

The Extended Kalman Filter which uses a 3D high yaw
rate MIP dynamic model has not been explored yet. We
hypothesized that by implementing this model with the Ex-
tended Kalman Filter can yield a significantly more accurate
estimates compared to the Complementary filter and the
Kalman Filter with planar MIP dynamics. The next section
describes the dynamic modeling for MIP robots with high
yaw rate.

II. MIP DYNAMIC MODELING
The linearized planar MIP dynamic model in Eq. 4 as

derived in [11] is well known and used in MIP robots where
the yaw rate is trivial or ignored. Table I lists the parameters
used in Eq. 4 and this section.(

Îb1 +mbL
2
)
θ̈ +mbrl φ̈− gmb θ = −τ

mbrl θ̈ +
(
Îw1 + (mw +mb) r

2
)
φ̈ = τ

(4)

We reformulate the MIP dynamic equation using La-
grangian Dynamics to allow nontrivial yaw rate and deter-
mine the body’s linear acceleration in order to use the IMU’s
accelerometer measurements in the Kalman Filter.

A. Frame of References

The MIP kinematics are defined using two separate coor-
dinate frames: the inertial frame and the body frame about
the center of rotation as shown in Fig. 2. The body reference
frame’s axis {e1, e2, e3} is pointed to the body’s left, back,
and top respectively and the variables defined in the body
frame are represented with a superscript B, e.g. xB . The
rotation from the body into the inertial frame is defined in
Eq. 5 below.

x = RB x
B

RB = Rz(ψ)Rx(θ)
(5)

where the Rx and Rz are the Euler rotation about the inertial
frame’s x-axis and z-axis respectively. The linear position
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Fig. 2: Coordinate frames of the kinematic model. The body
frame origin is the center of rotation for both the body and
the wheels.

of the body frame’s origin about the inertial frame can be
defined with the vector pw which is the average position of
both wheels pw1 and pw2.

B. Kinematic Formulation

The matrices ÎBb and ÎBw in Eq. 6 are the moment of inertia
about the center of mass in the body frame’s orientation for
the body and the wheel respectively.

ÎBb =

Ib1 0 0
0 Ib2 0
0 0 Ib3

 ÎBw =

Iw1 0 0
0 Iw2 0
0 0 Iw3

 (6)

Some of the position and length vectors are defined below:

pw = (pw1 + pw2)/2 (7)

lBb =
[
0 0 l

]T
, lr =

[
0 0 −r

]T
(8)

The upper body rotational speed Ω:

Ω = Rz(ψ)

θ̇0
0

+

00
ψ̇

 (9)

The wheel i rotational speed ωi:

ωi = Rz(ψ)

ϕ̇i0
0

+ Ω, i = {1, 2} (10)

The no slip conditions between the wheel and the ground:

dpwi/dt = r × ωi, i = {1, 2} (11)
ψ = (ϕ1 − ϕ2) r/d (12)

Finally, we have the body linear velocity:

dp

dt
=

d

dt

(
RBl

B
b

)
+

1

2

(
dpw1

dt
+
dpw2

dt

)
(13)

C. Lagrangian Dynamics

The MIP equations of motion are derived using La-
grangian dynamics and transformed into the state space form
to be used with the Kalman Filter. The kinetic and potential
energy into the system are:

Kb =
1

2
(RTB Ω)T Îb (R

T
B Ω) +

mb

2

dp

dt

T dp

dt
(14)

Kwi =
1

2
(RTB ωi)

T Îw (RTB ωi) +
mw

2

dpwi
dt

T dpwi
dt

(15)

Ub = −mb

 0
0
−g

 · p, Uwi = 0 (16)

i = {1, 2}. Then the Lagrangian of the system is L(q, q̇) =
Kb + Kw1 + Kw2 − Ub, which is a function of the time
varying variable q:

q(t) =
[
θ(t) ϕ1(t) ϕ2(t)

]T
(17)

We solve for the system dynamic equations using Lagrange’s
Equation: L1

L2

L3

 =
d

dt

∂L

∂q̇
− ∂L

∂q
− τ = 0 (18)

Since we applied the constraints into the kinematic equation
from Eq. 11 and 12, there is no Lagrange Multiplier in Eq.
18. The force acting onto the system is applied through the
wheel’s motor. The force τ and the motor model τi are:

τ =
[
0 τ1 τ2

]T
(19)

τi = k1ui − k2ϕ̇i, i = {1, 2} (20)

The wheel angles ϕ1 and ϕ2 are not useful for controlling
the robot. To simplify the states, we modify Eq. 18:L∗

1

L∗
2

L∗
3

 =

 L1

L2 + L3

L2 − L3

 = 0 (21)

Next, we do the following change of variables:

u1 = ux + uz ϕ1 = ϕ+ ψd/(2r) (22)
u2 = ux − uz ϕ2 = ϕ− ψd/(2r) (23)

The equations of motion in Eq. 21 are now a function of
q∗ = [θ, ϕ, ψ], q̇∗ and [ux, uz] where ϕ is the average
encoder angles from both wheels, ψ is the yaw rate, ux and
uz are the motor command forward and spin respectively.
We further simply the equations by assuming the body angle
θ and its derivatives are small, similar to our linearized
planar MIP equations in Eq. 4. This approximates sin θ ≈ θ,
cos θ ≈ 1, {θ2, θθ̇, θ̇2} ≈ 0. We can then rearrange Eq. 21
into the general form:

M(q∗) q̈∗ + h(q∗, q̇∗) = τ ∗(ux, uz) (24)
M q̈∗ = b (25)
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M =

m11 m12 0
m21 m22 0
0 0 m33

 , b =

b1b2
b3

 (26)

m11 = Ib1 + 2Iw1 + 2mwr
2 +mb(l + r)2

m12 = m21 = 2Iw1 + 2mwr
2 +mbr(l + r)

m22 = 2Iw1 + (mb + 2mw)r
2

m33 = Iw1d/r + r(dmw + 2(It3 + 2Iw3)/d)

b1 = glmbθ + (Ib2 − Ib3 + 2(Iw2 − Iw3) + l2mb)θψ̇
2

b2 = 2(k1ux − k2ϕ̇)
b3 = 2k1uz − k2dψ̇/r

(27)

Then we can calculate for our dynamic equation of motion:

x =
[
θ ϕ ψ θ̇ ϕ̇ ψ̇

]T
(28)

u =
[
ux uz

]T
(29)

dx

dt
=

[
q̇∗

q̈∗

]
=

[
q̇∗

M−1 b

]
= fc(x,u) (30)

The equation above can be simplified down into the linear
planar MIP dynamic in Eq. 4 by setting ψ̇ = 0 and doing a
change of variable φ = ϕ+ θ.

We can now solve for the body’s linear acceleration as a
function of x using the angular acceleration q̈∗ from above.
The linear acceleration as measured by the accelerometer is:

yBa (x) =

axay
az

 = RTB

 0
0
−g

− d2p

dt2

 (31)

We simplify the yBa using the same small θ and θ̇ assumption
as the equation of motion above. Only ay (body forward/back
direction) is used in the EKF because the other acceleration
measurements were very noisy even when idling. ay is
expressed below:

ay = −lθψ̇2 + (l + r)θ̈ + rϕ̈− gθ (32)

III. EXPERIMENTAL SETUP

We used motion capture to obtain a ground truth model to
test the validity of our various state estimators. We were able
to simultaneously we record all the θ estimates on board the
robot and the camera data from motion capture. To test the
performance of our estimators, we ran our MIP test under
three different experiments: idling balancing, 5 rad/s and 10
rad/s spinning while balancing in place.

A. MIP Hardware

The MIP used in this work is the eduMIP, available from
Renaissance Robotics, as shown in Fig. 1. The Edu MIP
is controlled using the Beaglebone Black and a robotics
cape, which contains the 9-axis IMU, breakout for encoder
counting and motor drivers. Beaglebone can store data into
its hard drive at a sampling rate of 50 Hz. The parameter
values for this Edu MIP can be seen in Table II, which were
estimated using system identification by Zhuo [12].

TABLE II: Edu MIP Parameter Values.

Parameter Value Parameter Value

mb 218 g Ib1 5.91 10−4 kg.m2

mw 24 g Ib2 2.99 10−4 kg.m2

r 35 mm Ib3 2.91 10−4 kg.m2

d 70 mm Iw1 6.42 10−5 kg.m2

l 46 mm Iw2 7.48 10−6 kg.m2

k1 0.12 N.m Iw3 7.48 10−6 kg.m2

k2 0.003 N.m.s/rad g 9.8 m/s2
dt 0.005 s

B. Motion Capture

The motion capture system comprised of four Optitrack 13
cameras placed in four different corners at varying heights
around the testing platform. The camera have a sampling
rate of 120 Hz. During testing, we simultaneously recorded
the motion capture data on a laptop and state estimates on
board MIP’s Beaglebone Black. The data was synchronized
in post by matching the measurements when the robot begins
balancing from its resting position.

C. Controller

In order to balance the MIP, we used a Successive Loop
Closure (shown in Fig. 3) for controlling θ and a simple PD
controller for controlling ψ. The controller’s discrete time
transfer functions are:

D1(z) =
−4.95 z2 + 8.86 z − 3.97

1.000 z2 − 1.48 z + 0.481
(33)

D2(z)P =
−0.189 z2 + 0.372 z − 0.184

1.000 z2 − 1.86 z + 0.86
(34)

Dz = 1.0(ψr − ψ) + 0.05(ψ̇r − ψ̇) (35)

where Dz is the yaw controller which outputs uz , ψr and ψ̇r
are the reference yaw values. This controller uses the DMP
measurement from the IMU and the raw encoder values as
the state into the controller. Since we want to compare the
accuracy of the estimators relative to each other, we want to
use the same controller for all of the test and this controller
worked very well.

Fig. 3: Successive Loop Closure Block Diagram

D. Complementary and Kalman Filter Setup

This section lists the actual equations used by the esti-
mations. The EKF algorithm follows the standard discrete
time EKF algorithm. The controller loop was run at 200 Hz
(dt = 0.005 s).
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1) Complementary Filter: The Complementary Filter was
setup with the cutoff frequency of 4 rad/s, which gave us
c = 0.98 and the following equations:

θaccelk = atan2(−ayk,−azk) (36)

θ̂k = 0.98 θ̂k−1 + 0.005ωgyrok−1 + 0.02 θaccelk−1 (37)

2) Complementary Filter with Kalman Filter: The Com-
plementary Kalman Filter is setup the same way as the Eq.
2, using the following values:

yak = θaccelk = atan2(−ayk,−azk) (38)

Qc = diag([10−8, 10−10]), Rc = 10−4 (39)

where the Qc and Rc are the process and measurement noise
covariance matrices respectively.

3) Fast Yaw Dynamic EKF: The equation of motion
derived in Eq. 30 is the continuous time dynamic equation, so
we need to transform it into a discrete time equation before
we can use it in the EKF. The discrete time equation of
motion was estimated using the Explicit Euler method. Then
the difference equation for the EKF becomes:

xk = f(xk−1,uk−1) + vk (40)
f(xk−1,uk−1) = xk−1 + dtfc(xk−1,uk−1) (41)

f(xk,uk) =
[
f1 f2 f3 f4 f5 f6

]T
(42)

Plugging in the parameters values in Table II into the
equations above yields:

f1 = θk + 0.005 θ̇k (43)
f2 = ϕk + 0.005 ϕ̇k (44)

f3 = ψk + 0.005 ψ̇k (45)

f4 = θ̇k + 0.629 θk + 0.068 ϕ̇k + 0.009 θk ψ̇
2
k − 2.72uxk

(46)

f5 = 0.813 ϕ̇k − 1.12 θk − 0.016 θk ψ̇
2
k + 7.47uxk (47)

f6 = 0.939 ψ̇k + 2.44uzk (48)

and the measurements used in the yaw dynamic EKF is:

yk = h(xk,uk) +wk (49)

h(xk,uk) =
[
ϕk ωgyrok ayk ψk

]T
(50)

ωgyrok = θ̇k (51)

ay = 8.17ux − 7.41 θ − 0.204 ϕ̇− 0.0346 θ ψ̇2 (52)

The process and measurement noise covariance matrices
values used for the EKF are:

Qy = diag([10−11, 10−7, 10−7, 10−5, 10−7, 10−7]) (53)

Ry = diag([10−5, 2.62 10−7, 5.44 10−3, 10−5]) (54)

4) Planar Dynamic KF: The dynamic equation for the
planar MIP dynamic can be calculated from the fast yaw
dynamic equation in Eq. 42 by setting ψ̇ = 0. The dynamic
equation will become linear time-invariant and is defined
with only 4 states: x = [θ, ϕ, θ̇, ϕ̇] and 1 input u = ux.
The measurements used in the planar KF is:

h(xk,uk) =
[
ϕk ωgyrok ayk

]T
(55)

Fig. 4: Estimated θ and the motion captured θ.

TABLE III: Root Mean Squared (RMS) Error between the
estimates and the motion captured θ.

Estimator RMS Error (rad)
No Spin 5 rad/s spin 10 rad/s spin

DMP 0.0148 0.0115 0.0129
Planar EKF 0.0133 0.0256 0.1028
High Yaw Rate EKF 0.0133 0.0107 0.0249
Complementary Filter 0.0228 0.0424 0.1605
Complementary KF 0.0199 0.0432 0.1636

The process and measurement noise covariance matrices
values are:

Qp = diag([10−11, 10−7, 10−5, 10−7]) (56)

Rp = diag([10−5, 3.07 10−6, 3.04 10−3]) (57)

IV. RESULT AND DISCUSSION

The θ estimates under several yaw rates can be seen in
Figure 4 and their respective Root Mean Squared errors
is listed in Table III. The error from Table III shows that
the DMP and yaw dynamic EKF have the overall best
performance with better accuracy under high yaw rates
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compared to the other estimates, like what we expected. The
DMP’s estimate is especially good because it does not use the
system’s dynamic equation to get such an accurate estimate.
So, it is very likely that we can use the DMP’s estimate
without the need of using an observer if the orientation is
the only important state to estimate.

Looking at the acceleration data in Figure 5 shows an
interesting situation. The yaw dynamic EKF’s estimated y3
value did not match the measured value during the 10 rad/s
spinning but the estimated θ is still more accurate than the
others. We believe that there is an offset on the acceleration
data from the IMU placement being not on the top body’s
center of mass, causing the acceleration data to receive a bias
as a function of yaw rate due to the centripetal force. The
complementary filter used the atan2 function to determine θ,
but the estimation during high yaw rate is heavily skewed
due to the accelerator bias and this caused the estimates to
be inaccurate during fast yaw movements.

V. CONCLUSION AND FUTURE WORK

In this paper we surveyed several different state estimators
used on MIP robots and compared their performance using
a ground truth established by a motion capture system. In
addition, we presented our novel high yaw rate dynamic
model and it’s corresponding extended Kalman Filter which
proved to provide better estimates as the robot is performing
dynamic maneuvers. Also, we found that the Complementary
Filter and the Complementary Kalman Filter have almost
identical performance under all tested situations. Remark-
ably, the proprietary DMP estimate from the MPU-9250
appears to very accurate over the conditions tested, even
under high yaw rates, even though it is not based on the
dynamic model of the physical system. The next step of this
project is to implement a similar high yaw rate dynamic
modeled Kalman Filter into our ball-balancing robot [3] to
help us control the robot during aggressive and fast yaw
maneuvers. Compared to the simpler MIP robot, the ball-
balancer is highly nonlinear and the dynamics are heavily
coupled under high yaw rate, which should prove to be a
challenging topic.
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