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Abstract

Bewley (2022) considered the control of a variable-length pendulum with a simple nonlinear feedback strategy.
Though Lyapunov stability of the resulting controlled system was demonstrated in the discrete-time sense of
Karafyllis (2012), with a candidate Lyapunov function Vi(¢), as it evolved along controlled system trajectories,
reducing by a certain fraction after every 27 radians of rotation of the system trajectory around the origin in
phase space, the candidate Lyapunov function V;(t) proposed did not decrease montonically. The present paper
shows how a nonmonotonic candidate Lyapunov function Vs () in such a setting can easily be modified to generate
a new function with V' (¢) > 0 and V(t) < 0 along system trajectories in a finite region around the origin, thus
establishing exponential stability in the classic sense of Lyapunov.

1 Introduction
The nondimensionalized variable-length pendulum, aka the “varpend oscillator”, is governed (see, e.g., [1]) by
é=—(sing+209)/L, (1)

where ¢(t) denotes the angle of the pendulum, ¢(t) = L(t)/Lo is the normalized length of the pendulum, Ly is
the nominal length of the pendulum, ¢ = 7/79 is the nondimensionalized time variable, 7 denotes the original

(dimensional) time variable, and 79 = +/Lo/g is the characteristic (dimensional) time constant, where g is the
effective acceleration due to gravity. As studied in [2], simple nonlinear feedback of the form

Ut) =1+ 6(t) $(t) $(2), (2a)

6(t) = C/Vi(t), (2b)

Vi(t) = 6(t)?/2 + 1 — cos ¢(t) (2¢)

exponentially stabilizes this system. It was further shown in [2] that, combining (1) and (2), the second-order ODE
governing this system may be written
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where V;(t) is a simple function of ¢(t) and”(ﬁ(t) [see (2¢)], and that we may ensure that the denominator on the
RHS of (3) remains positive, and thus that ¢ remains bounded, by assuming that

0 < C < Chax = [(69 — 111/33)/2]'/2 /3 ~ 0.56813. (A2)

This upper bound on the maximum allowable C' was shown to be tight; for C' = Ci.x, for a certain value of (;5/ ¢, the
denominator of (3) goes to zero, and ¢ diverges. For C' < Ciax, no combinations of ¢ and ¢ drive the denominator
to zero. In practice, C should be kept significantly smaller than Ci,.x in order to ensure a well-behaved controlled
system, accurately governed by the model given in (1) with appropriately small accelerations d)

The dynamics of this controlled system, taking C' = 0.1, is demonstrated in Figure 1 via numerical simulation
(using standard RK4 with At = 0.01, and ICs of ¢(0) = 1 and ¢/(0) = 0); exponential convergence is observed over
13 orders of magnitude, down to machine zero.

Though the system illustrated in Figure 1 is clearly exponentially stable, the fact that V() did not reduce
monotonically was particularly annoying.
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Figure 1: Simulation of the exponentially-stabilized varpend oscillator (1) with (2) [equivalently, (3)], taking C' = 0.1.
(a) Trajectory in phase space {¢, ¢}, and (b) a simplified measure of the energy of the oscillations of ¢(t) as a function
of time, V(t). For reference, the black line in (b) indicates a slope corresponding to a reduction of V(t) by an order
of magnitude every At = 2.445 - 27 nondimensional time units.
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