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Abstract

Bewley (2022) considered the control of a variable-length pendulum with a simple nonlinear feedback strategy.
Though Lyapunov stability of the resulting controlled system was demonstrated in the discrete-time sense of
Karafyllis (2012), with a candidate Lyapunov function Vs(t), as it evolved along controlled system trajectories,
reducing by a certain fraction after every 2π radians of rotation of the system trajectory around the origin in
phase space, the candidate Lyapunov function Vs(t) proposed did not decrease montonically. The present paper
shows how a nonmonotonic candidate Lyapunov function Vs(t) in such a setting can easily be modified to generate
a new function with V (t) > 0 and V̇ (t) < 0 along system trajectories in a finite region around the origin, thus
establishing exponential stability in the classic sense of Lyapunov.

1 Introduction

The nondimensionalized variable-length pendulum, aka the “varpend oscillator”, is governed (see, e.g., [1]) by

φ̈ = −(sinφ+ 2 ℓ̇ φ̇)/ℓ, (1)

where φ(t) denotes the angle of the pendulum, ℓ(t) = L(t)/L0 is the normalized length of the pendulum, L0 is
the nominal length of the pendulum, t = τ/τ0 is the nondimensionalized time variable, τ denotes the original
(dimensional) time variable, and τ0 =

√

L0/g is the characteristic (dimensional) time constant, where g is the
effective acceleration due to gravity. As studied in [2], simple nonlinear feedback of the form

ℓ(t) = 1 + δ(t)φ(t) φ̇(t), (2a)

δ(t) = C/Vs(t), (2b)

Vs(t) = φ̇(t)2/2 + 1− cos φ(t) (2c)

exponentially stabilizes this system. It was further shown in [2] that, combining (1) and (2), the second-order ODE
governing this system may be written

φ̈+ sinφ =
−(2C φ̇3/Vs) [1− φ (sinφ)/Vs] + [3C φ φ̇/Vs − 2C φ φ̇3/V 2

s ] sinφ

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

, (3)

where Vs(t) is a simple function of φ(t) and φ̇(t) [see (2c)], and that we may ensure that the denominator on the
RHS of (3) remains positive, and thus that φ̈ remains bounded, by assuming that

0 < C < Cmax = [(69− 11
√
33)/2]1/2/3 ≈ 0.56813. (A2)

This upper bound on the maximum allowable C was shown to be tight; for C = Cmax, for a certain value of φ̇/φ, the
denominator of (3) goes to zero, and φ̈ diverges. For C < Cmax, no combinations of φ and φ̇ drive the denominator
to zero. In practice, C should be kept significantly smaller than Cmax in order to ensure a well-behaved controlled
system, accurately governed by the model given in (1) with appropriately small accelerations φ̈.

The dynamics of this controlled system, taking C = 0.1, is demonstrated in Figure 1 via numerical simulation
(using standard RK4 with ∆t = 0.01, and ICs of φ(0) = 1 and φ′(0) = 0); exponential convergence is observed over
13 orders of magnitude, down to machine zero.

Though the system illustrated in Figure 1 is clearly exponentially stable, the fact that Vs(t) did not reduce
monotonically was particularly annoying.
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Figure 1: Simulation of the exponentially-stabilized varpend oscillator (1) with (2) [equivalently, (3)], taking C = 0.1.
(a) Trajectory in phase space {φ, φ̇}, and (b) a simplified measure of the energy of the oscillations of φ(t) as a function
of time, Vs(t). For reference, the black line in (b) indicates a slope corresponding to a reduction of Vs(t) by an order
of magnitude every ∆t = 2.445 · 2π nondimensional time units.
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