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Abstract—A method for estimating the rotation center posi-
tion (RCP) of a rigid body in the x-y plane using two offset
accelerometers is presented. RCP estimation via inertial mea-
surement is motivated by the related problems of detecting foot
slippage of legged robots and detecting stair edges for treaded
robots, for applications in which alternative methods such as
discontinuity recognition, visual tracking, and/or tactile feed-
back are impractical. The RCP may be directly solved for as a
function of the two offset tangential acceleration measurements,
when the RCP is colinear with the two accelerometers, and
when the common-mode tangential accelerations, due to linear
acceleration and/or gravity, can be independently measured
or estimated. Angular velocity estimates may be enhanced
by combining calculated angular acceleration with gyroscope
measurements, even when both the RCP and common-mode
tangential accelerations cannot be independently measured. An
input variance modulated variable cutoff low-pass filter is also
proposed for RCP estimation in the absence of independent
measurements, which is validated on a balance-beam inverted-
pendulum apparatus.

I. INTRODUCTION

The combination of low-cost sensors and estimation al-

gorithms has played a significant role in advancing the

capabilities and utility of robots. For example, the dexterity

of haptic manipulators has improved remarkly thanks to

recent advancements in tactile sensing and high-bandwidth

visual feedback [1]. Inertial sensing, however, remains an

attactive strategy for mobile feedback-stabilized robots, as

it is more computationally tractable using current embedded

microcontrollers, and as it avoids the challenges of state esti-

mation using vehicle-mounted cameras subject to occlusions,

lighting variations, and contextual ambiguity.

MEMS-based sensors have permeated technologies such

as vehicle stability control systems, motion capture [3],

and video games, due to their low cost and relatively low

computational overhead. Yet, even seemingly basic tasks

such as localization are intractable using off-the-shelf inertial

sensors alone, and significant challenges associated with

shock and vibration remain. Moreover, most inertial mea-

surement units are assumed to be nearly collocated with the

rotation center position (RCP), although this restriction may

be overcome on well-characterized systems when angular

acceleration measurements are available [4]. When the RCP

is poorly characterized, inertial RCP estimation is a desirable

alternative to visual and/or tactile RCP feedback.
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Fig. 1. Switchblade prototype in the perching configuration for climbing
stairs.

This paper outlines approaches incorporating offset tangen-

tial acceleration measurements for estimating angular accel-

eration and velocity, common-mode acceleration, and rotation

center position. The treaded-vehicle perching problem is

briefly introduced, motivating an estimation approach based

on a kinematic state model [5] for robust RCP estimation

during transitional maneuvers. Angular velocity may be

calculated directly from two offset tangential acceleration

measurements, which significantly reduces angular velocity

estimate high frequency noise when combined with gyro-

scope measurements. The common-mode acceleration vari-

ance decreases quadratically as a function of accelerometer

seperation, and is minimized when both accelerometers are

equidistant from the RCP, but increases with angular acceler-

ation when the RCP is uncertain. Conversely, the sensitivity

of calculated RCP variance to both measurement noise and

common-mode acceleration variance decreases with angular

acceleration. A first-order low-pass filter is proposed in order

to refine the calculated RCP, by modulating the cutoff fre-

quency according to the calculated RCP variance sensitivity

to white measurement noise. The estimated RCP converges

satisfactorily for persistently exciting angular acceleration on

a balanced beam inverted-pendulum apparatus.
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Fig. 2. Using tread actuation to restore equilibrium while perching on the
edge of a step.
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Fig. 3. Offset tangential acceleration measurements as a function of rotation
center position for a perching treaded vehicle.

II. MOTIVATION: TREADED VEHICLE PERCHING

A treaded vehicle, dubbed “Switchblade”, is part of a

coordinated research program in our lab focused upon agile,

compact vehicles for navigating rough terrain. One of the

more advanced maneuvers under investigation is the climbing

of stairs by approaching them in an upright inverted orien-

tation, leaning the center of mass over the edge of the first

step, and then driving forwards while perching on this stair

edge (Fig. 2).

Using solely tread actuation, the perching dynamics are

E

(

θ̈

φ̈

)

= N + τ,

where

E =

[

J +m (h− r)
2
+mr2γ2 mr (h− r)

mr (h− r) Jm +mr2

]

,

N =
(

mg (h− r) sin θ +mgrγ cos θ −mr2γ
(

2φ̇θ̇ − θ̇2
)

mgr sin θ +mr2γθ̇2

)

,

the relative angular displacement of the tread motor shaft is

γ = φ− θ,

and the torque applied by the motors is

τ =

(

−su+ bmγ̇
su− bmγ̇

)

.

When the no-slip condition holds, the position of the point

of contact along the length of the tread, relative to the vehicle

midpoint is

d = rγ,

where r denotes the radius of the tread sprocket.

The perching dynamics are most similar to the balanced-

beam inverted pendulum, which may be controlled using

feedback-linearized state-space control [6]. Integral action on

the vehicle angle may be added in order to compensate for

small positional estimate bias due to tread slippage; however,

it cannot be guaranteed to converge at a rate sufficient

for successfully transitioning between upright roving and

perching maneuvers.

A practical means of pivot position measurement is there-

fore imperative for successful deployment of this particular

stair climbing maneuver in the field. Pressure sensitive mem-

brane linear potentiometers mounted beneath the treads of the

current prototype provide direct edge position measurement,

provided that sufficient pressure is applied at a single contact

point; however, inertial edge measurement could be more ro-

bust, and would provide an added benefit of fewer additional

sensors.

The tangential accelerations measured at both ends of the

vehicle due to radial and angular motions (Fig. 3) are,

y =

(

a1
a2

)

=

(

(h− rγ) θ̈ + σa
2

− (h+ rγ) θ̈ + σa
2

)

, (1)

where σa
2 represents zero mean, white noise on both ac-

celerometer measurements.

Denoting perturbations of the motor shaft angular dis-

placements, γ′, about a nominal displacement, γ0, so that

γ = γ0 + γ′, the corresponding measurement perturbations,

y
′, are given by

y
′ =

(

h− rγ0
−h− rγ0

)

θ̈′ +

(

σa
2

σa
2

)

,

where θ̈′ = A(1, :)x′ + Bw(1, :)w
′ + B(1, :)u′, the state

perturbations, x
′ =

(

θ̇′ θ′ φ̇′ φ′
)T

, and where A,

B, and Bw are the corresponding state space matrices for

the state, control input, and plant disturbance perturbations,

respectively.

As the perturbation in γ becomes large, the linearization

must be re-evaluated, requiring some type of gain-scheduled

estimation strategy. This difficulty, as well as the strong

assumption that the treads will not slip, creates an incentive

for an estimation approach based on a kinematic model,

particularly since, in the context of perching, two offset
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Fig. 4. Estimating angular velocity using both angular velocity and
acceleration measurements.

tangential measurements, combined with an independent es-

timate of the acceleration due to gravity, provide sufficient

information in order to solve uniquely for the RCP.

III. ANGULAR ACCELERATION AND VELOCITY

ESTIMATION

The angular acceleration may be calculated directly using

offset accelerometers [2], which may be integrated in order

to augment gyroscope measurements. Consider the general

case of a body accelerating angularly and linearly (i.e., an

unconstrained version of the configuration depicted in Fig.

3), with two sensors measuring the tangential acceleration

at known distances from the center of rotation. The actual

angular acceleration is related to the actual tangential accel-

erations by

θ̈ =
a2 − a1
2L

. (2)

Taking into account the variance of the angular acceleration

measurement noise, the variance of the calculated angular

acceleration is

σθ̈
2 =

σa
2

2L2
, (3)

where the accelerometer measurement noise variance, σa
2, is

assumed to be zero-mean and white. Therefore, the variance

decreases quadratically with increasing sensor seperation,

L, so long as this added seperation does not significantly

increase the component of measured acceleration due to

structural modes.

Over short time horizons, angular velocity may be calcu-

lated via direct integration of the calcuated angular acceler-

ation; however, the resulting angular velocity estimate accu-

mulates a large bias due to amplification of low frequency

noise. When gyroscope measurements are available, this bias

may be bounded by combining low-pass filtered gyroscope

measurements with high-pass filtered and integrated synthetic

angular acceleration measurements, as depicted in Fig. 4.

The resulting Power Spectral Density (PSD) of the angular

velocity estimate noise asymptotically approaches the PSD

of the gyroscope measurement noise at low frequencies, as

the “crossover frequency”, C, is raised (Fig. 5).
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Fig. 5. Angular velocity estimate noise PSD, when measurement noise is
zero mean, white with variances σg

2 = 1 rad/sec, σ
θ̈
2 = 10 rad/sec2.

The total filtered measurement noise energy over a finite

frequency range of interest [0,Ω],

E =
1

2π

∫ Ω

0

σg
2

∣

∣

∣

∣

C

jω + C

∣

∣

∣

∣

2

+ σθ̈
2

∣

∣

∣

∣

1

jω + C

∣

∣

∣

∣

2

dω

=
1

2π

∫ Ω

0

σg
2 C2

ω2 + C2
+ σθ̈

2 1

ω2 + C2
dω

=
1

2π

(

Cσg
2 +

σθ̈
2

C

)

tan−1 (Ω/C) ,

is minimized for the crossover frequency,

C∗ =

√

σθ̈
2

σg
2
=

√
2σa

2Lσg

,

when Ω >> C, and where the accelerometer and gyroscope

noise are zero-mean and white, with variances σg
2 and σa

2,

respectively.

The resulting angular velocity estimate has greatly re-

duced high frequency noise compared to the raw gyroscope

measurement, without the significant phase loss incurred by

solely low-pass filtering the gyroscope measurement (Fig. 6).

Higher crossover frequencies, C, may be used in practice

in order to attenuate the bias resulting from null-output

accelerometer calibration error. Although generally not re-

quired for feedback control, explicit estimation of angular

acceleration is a better alternative to differentiating gyro-

scope measurements for the purpose of linearization about

a time-varying trajectory, and may also be used to boost the

effective measurement range of the gyroscope, by dropping

the crossover frequency towards zero as the gyroscope output

saturates.

In discrete time, the low-pass filtered gyroscope measure-

ments may be calculated using the recursion,

yk =
C∆t (gk + gk−1)− (C∆t− 2) yk−1

C∆t+ 2
;
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Fig. 6. Simulated angular velocity estimator response to angular accelera-
tion chirp, for the case when accelerometer measumrent noise is biased by
+/− σa

2.

similarly, the integrated and high-pass filtered angular accel-

eration may be calculated using

zk =
∆t (ak + ak−1)− (C∆t− 2) zk−1

C∆t+ 2
.

The estimated angular velocity is simply

xk = yk + zk,

where both yk and zk are computed according to the bilinear

transformation shown above, where ∆t is the sample time,

and gk, ak denote the current gyroscope measurement and

calculated angular acceleration (2), respectively.

IV. COMMON-MODE ACCELERATION ESTIMATION

The actual common-mode, or transverse (body-frame),

acceleration is

ẍb =
(L+ d)a1 + (L− d)a2

2L
,

where a1 and a2 are the actual tangential accelerations. Tak-

ing into account the noise of the acceleration measurements,

σẍ
2 =

L2 + d2

2L2
σa

2 +
(a1 − a2)

2

4L2
σd

2, (4)

where σd denotes the uncertainty of the position of the rota-

tion center. Note that, unlike the calculated angular accelera-

tion uncertainty, the transverse acceleration uncertainty is not

constant, as it is itself a function of the actual accelerations.

The minimum common-mode acceleration variance,

σẍ
2 =

1

2
σa

2,

when d = 0; i.e., the accelerometers are ideally equidistant

from the center of rotation when there is no uncertainty about

the location of the actual center of rotation, d (Fig.7).
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Fig. 7. The calculated transverse acceleration sensitivity to accelerometer
measurement noise increases quadratically as the actual rotation axis moves
away from the midpoint between the accelerometers.

Rewriting (4) in terms of the actual angular acceleration

and the actual center of rotation gives

σẍ
2 =

L2 + d2

2L2
σa

2 + θ̈2σd
2; (5)

thus, the calculated transverse acceleration sensitivity to RCP

variance increases for large angular accelerations.

A unique RCP solution exists only when the actual

common-mode acceleration or actual angular acceleration

can be independently determined. Denoting aN as the tan-

gential acceleration measured at a point colinear with a1 and

a2, and offset a distance N from the midpoint between a1
and a2,

aN = (N + d) θ̈ +X =
a1 + a2

2
+Nθ̈,

where X denotes the actual common-mode acceleration (in

the direction of the tangential acceleration measurements).

Therefore, any tangential acceleration measurement colinear

with a1 and a2 provides no new information, as it is an offset

linear combination of these two measurements.

V. RCP ESTIMATION

In many applications, the common-mode acceleration is

dominated by the component of gravity due to angular

orientation, which can either be directly measured by an

encoder, or estimated using an appropriately mounted IMU.

In these cases, the RCP may be calculated directly using two

offset accelerometers roughly colinear with the actual RCP.

The actual position of the rotation center, d, is

d =
1

θ̈

(

a1 + a2
2

−X

)

=
2L

a2 − a1

(

a1 + a2
2

−X

)

, (6)

where a1 and a2 are the actual tangential accelerations, and

X is the actual common-mode acceleration (X = g cos θ
for the stair-edge perching problem). Taking into account the
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accelerometer measurement noise, and the uncertainty in the

estimate of the common-mode acceleration,

σd
2 =

1

θ̈2

(

L2 + d2

2L2
σa

2 + σX
2

)

, (7)

where

θ̈2 =
(a2 − a1)

2

4L2
and σθ̈

2 =
σa

2

2L2
,

where the accelerometer measurement noise variance is σa
2,

and where σX
2 denotes the variance of estimate of the actual

common-mode acceleration, X . Thus, both the variance in

the calculated RCP and common-mode acceleration decrease

quadratically with sensor seperation, and are minimized when

both accelerometers are equidistant from the actual center of

rotation. In contrast to common-mode acceleration estima-

tion, however, the RCP variance decreases with increased

angular acceleration.

In the absence of additional RCP measurements, it is

proposed that the estimated rotation center, d̂, be updated

by a weighted linear combination of the previous estimate

with the current calculated position:

d̂k+1 = (1−A)d̂k +A
2L

a2k − a1k

(

a1k + a2k
2

−Xk

)

, (8)

where the normalized cutoff frequency, A = C∆t, is adjusted

according to the current calculated variance (C is the cutoff

frequency in rad/sec, ∆t is the sample time in seconds).

The filter PSD over the finite frequency range ω =
[0, π/∆t] rad/s is

∣

∣X(ejhω)
∣

∣

2
=

A2

2 (A− 1) (coshω − 1) +A2
,

resulting in an approximately linear relationship between nor-

malized cutoff frequency, and white input noise attenuation

(Fig. 8), so that an approximately constant variance RCP

estimate is acheived via

A =
3σE

2

2σd
2
, (9)

where σE
2 is the desired output variance, and when d is in

fact zero mean.

As the actual variance is not constant, the calculated vari-

ance becomes highly uncertain in the absence of persistently

exciting input measurements. When an upper and lower

bound can be set on d (for instance, if the system has other

physical constraints which limit the possible range of d), we

may eliminate the dependence of (7) on d. Assuming that the

center of rotation always lies between the two accelerometers,

we may conservatively assume that d = ±L, so that

σd
2 ≈ V =

1

θ̈2

(

σa
2 + σX

2
)

,

in which case, the uncertainty of V , (that is, the approximate

uncertainty of σd) is
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Fig. 8. Discrete time low pass filter attenuation of zero mean, white noise
input, as a function of normalized cutoff frequency, A.

σV
2 =

1

θ̈6

2
(

σa
2 + σX

2
)2

L2
σa

2;

that is, the calculated variance is itself highly sensitive to

measurement noise for small angular accelerations. In order

to prevent the inclusion of outliers into the estimate we may

conservatively assume the worst-case variance,

σd
2 =

1

θ̈2

((

L2 + d2

2L2
+

2
(

σa
2 + σX

2
)2

L2θ̈4

)

σa
2 + σX

2

)

.

(10)

VI. EXPERIMENTAL RESULTS

The algorithm outlined by (8), (9), and (10), with σE =
0.06 m, produced promising results when implented on a

balanced-beam inverted-pendulum (Fig. 10). As expected,

the calculated RCP variance was large for small angular

excitation, and vice-versa. The estimation algorithm appears

to reject most outliers, yet converges rapidly with increased

angular excitation. At the highest levels of angular excitation

(towards the end of the data set), the estimate variance

actually degrades, likely due to excitation of unmodeled

structural modes.

The beam balancing apparatus used in this experiment

consists primarily of a motorized linear bearing attached to a

nominally horizontal beam with a central pivot (Fig. 9). Two

±1.5g Analog Devices ADXL203 accelerometers are fitted to

the linear bearing, spaced 0.5m apart. Each sensor exhibited a

stationary measurement variance of σa = 0.15 m/s2 using a

National Instuments 9201 ADC (12 Bits, ±10V ). The linear

bearing diplacement w.r.t. the beam fulcrum was directly

measured by a rotary encoder attached to a motorized pulley.

The plotted data was logged at 100Hz, during which both

the linear bearing position and beam angle were controlled

by hand.
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Fig. 9. Experimental apparatus for validating rotation center estimation.

VII. CONCLUSION

A method for estimating the planar rotation center position

of a rigid body using two offset accelerometers has been

developed. The RCP may be directly solved for as a function

of the two offset tangential acceleration measurements when

the RCP is colinear with the two accelerometers and when

the common-mode tangential accelerations, due to linear

acceleration and/or gravity, can be independently measured or

estimated. The RCP uncertainty fluctuates significantly, as its

sensitivity to accelerometer measurement noise is inversely

proportional to the actual angular acceleration. The RCP

uncertainty is least sensitive to measurement noise when the

accelerometers are widely spaced and equidistant from the

actual RCP.

Future work will focus upon implementing the RCP es-

timator on the current treaded robot prototype, which has

already demonstrated the capability of perching using prop-

erly initialized wheel encoder measurements (attached video).

Implementation on a single legged hopping robot for the

purpose of detecting foot slip will also be investigated.
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