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Abstract— The state estimation and control of a ball-
balancing robot under high yaw rate is a challenging problem
due to its highly nonlinear 3D dynamic. The small size and
low-cost components in our Micro Ball-Balancing Robot makes
the system inherently very noisy which further increases the
complexity of the problem. In order to drive the robot more
aggressively such as translating and spinning at the same time,
a good state estimator which works well under high yaw rates is
required. This paper presents the derivation of a high yaw-rate
Ball-Balancing Robot dynamic model and the implementation
of said model in an Extended Kalman Filter (EKF) using raw
on-board sensor measurements. The EKF using the new model
is then compared to a Kalman Filter which uses a linearized
dynamic model. The accuracy of the attitude estimates and
the controller performance under high yaw rates were verified
using a motion capture system.

I. INTRODUCTION

A Ball-Balancing Robot (BBR) is a robot that balances
itself on top of a ball by applying torque through omni-
directional wheels such as in [1][2][3] or through an inverse
mouse ball mechanism such as in [4][5]. This class of robots
features complex and nonlinear 3D dynamics. However, its
dynamic equation can be linearized by assuming trivial yaw
dynamics, small roll and pitch angles, and small angular
speeds. The controls of most existing BBRs were designed
based on this linear dynamic model. However, driving the
robot at high yaw rates violates the linear model’s trivial
yaw dynamics assumption and the controller tends to become
more unstable during the spin. Our Micro Ball-Balancing
Robot (MBBR) [1], shown in Fig. 1, is one of the smallest,
if not the smallest, BBR in the world. It weights 650 g and
is 25 cm tall, which is much smaller and lighter than the
other existing BBRs. As a type of an inverted pendulum
robot, the natural frequency of the system is proportional
to the square root of the length of the center of mass
from the center of rotation. Therefore, the MBBR’s smaller
body accelerates faster which demands the controller to react
quicker to the change in the system states. The low-cost
nature of the components contributes to the high friction
and noise in the system which further increases the difficulty
of the estimation and controls. In particular, the omniwheels
can have microslips when transitioning between the two rows
of the wheel’s rollers, adding vibrations and noise into the
measurements. All of the challenges above motivate us to
develop a nonlinear dynamic model which works well under
high yaw rate and use it in controllers and state estimators.
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Fig. 1: The most recent iteration of the Micro Ball-Balancing
Robot, with motion capture markers attached.

This new model can then be used to drive this robot more
aggressively, e.g. translating while spinning at the same time.

Past works in this topic include the indirect Kalman
Filtering used by Rezero [2]. In their work, the states were
estimated using Kalman Filter (KF) from the kinematic re-
lationship between the IMU and the encoder measurements.
The formulation of a BBR 3D dynamic model has been done
by [6] and [7]. However, [6] did not use the model in an
estimator or controller. The KF used in [7] was not explained
in detail and they assumed that robot’s attitude angles can be
directly measured. The linearized BBR dynamic model was
used by most of the existing BBRs; the model was simplified
down into two decoupled Mobile Inverted Pendulum (MIP)
problems in the x-y plane (roll and pitch). The MIP dynamic
model is well known and can easily be linearized [8], and
used in linear controllers and estimators. We also have shown
that the attitude estimation accuracy can be improved by
using a high yaw-rate dynamic model in an Extended Kalman
Filter (EKF) on a MIP robot [9].

In this paper, we derive the nonlinear high yaw-rate
BBR model, implement said model in an EKF and use the
estimated states in a state feedback controller. The accuracy
of the state estimation were evaluated by comparing the the
EKF attitude estimates with motion capture measurements.
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Fig. 2: Diagram of the frame of references, some position
vectors, and angular speed.

Fig. 3: Perpendicular omniwheel alignment diagram, repre-
sented by the α and β angles.

A KF using linearized BBR model is used as a comparison
to show that the high yaw-rate model EKF has a better esti-
mation accuracy and stability compared to the linear model
KF. The implementation of a high yaw-rate BBR dynamic
model in an EKF using on board raw measurement data is
novel and the methodology is extensible to other lightweight
low-cost robots. The EKF is chosen instead of the other
nonlinear KFs, such as Unscented KF, because it is simple
to implement. The Jacobian of the high yaw-rate model is
also easy to calculate which makes the implementation of
the EKF easier than other nonlinear KFs.

II. DYNAMIC MODELING

This section contains the derivations of the BBR dynamic
equation of motion using Lagrangian Dynamics, which fol-
lows similar derivations done by Hoshino [3]. The equation
of motion is derived symbolically in ’Wolfram Mathematica
10.0’, which then is simplified into the high yaw-rate model
used in the EKF. The list of parameters and variables used
in the derivations can be seen in Table I.

A. Frames of Reference and Wheel Transformation

The frames of reference used in the derivations are the
inertial and the body frames, as shown in Fig. 2. The
variables defined in the body frame are represented by using

TABLE I: List of parameters and time varying variables.
CoM = Center of Mass, CoR = Center of Rotation.

Parameter List

mt = top body mass. Ît = top body inertia about CoM.
mb = ball mass. Îb = ball inertia about CoM.
r = ball radius. Iw = omniwheel inertia about its CoR.
rw = omniwheel radius. l = length of body’s CoM from CoR.
k1 = motor torque gain. k2 = motor back EMF gain.
g = gravity constant.

Time Varying Variable List, i = {1, 2, 3}
θx = roll angle. φx, φy , φz = ball rotation angles.
θy = pitch angle. ϕi = encoder i rotation.
θz = yaw angle. ui = motor i PWM command ∈ [−1, 1].
τi = motor i torque.
pt = top body CoM position vector.
pb = ball CoM position vector.
lb = length vector from ball’s CoM to the body CoM.
lf = length vector from ball’s CoM to the ground.
la = length vector from ball’s CoM to the IMU.

the superscript B. The transformation from body to inertial
frame is shown in (1) below:

x = RB(θ)x
B , θ =

[
θx θy θz

]T
RB(θ) = Rz(θz)Ry(θy)Rx(θx),

(1)

where Rx(θx), Ry(θy) and Rz(θz) are the rotation matrices
of the Euler rotations about the inertial frame’s x, y and z
axis respectively. Then RB(θ) is the body’s intrinsic rotation
in the body’s z-y′-x′′ axis (intrinsic yaw-pitch-roll), which
is one of the standard Tait-Bryan angles.

The omniwheels in the MBBR are aligned perpendicularly
as shown in Fig. 3. α is the omniwheel contact angle from
the ball’s north pole about the body frame and β is the
omniwheel’s tilt angle about the wheel’s axis perpendicular
to the surface of the ball. The normalized vectors ŵi,
i = {1, 2, 3}, represent the omniwheel’s spinning axis and
the direction of the torque τi applied by the motor i. The
optical encoder attached on the motor i measures the angle
ϕi which can be used to determine the ball rotation angle
φ. Assuming that there is no slip between the omniwheels
and the ball, the applied torque and encoder measurement
at omniwheel i in body coordinates are (r/rw)τiŵi and
(rw/r)ϕiŵi respectively. Let ϕB be the ball rotation angle
as measured by the encoders and τB be the total torque
applied to the ball. Then ϕB and τB can be calculated from
τi and ϕi as shown below:

ϕw =
[
ϕ1 ϕ2 ϕ3

]T
, τw =

[
τ1 τ2 τ3

]T (2)

ϕB = (rw/r)
∑3

i=1 ϕiŵ
i = (rw/r)Tob ϕw (3)

τB = (r/rw)
∑3

i=1 τiŵ
i = (r/rw)Tob τw, (4)

where the matrix Tob =
[
ŵ1|ŵ2|ŵ3

]
is the transformation

matrix from the omniwheel axis to the body frame. Our
omniwheels are perpendicular, therefore (Tob)

−1 = (Tob)
T .

B. Kinematics Formulation
This section derives the body and the ball kinematic

equations which will be used for deriving the kinetic and
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potential energy of the system. The inertia of the body and
the ball, represented by the matrix Ît and Îb respectively, are
shown below:

ÎBt = diag(It1, It2, It3) Îb = Ib I3×3. (5)

The length vectors used in the derivation are defined below:

lBb =
[
0 0 l

]T
, lf =

[
0 0 −r

]T
. (6)

The body rotational speed Ω about the inertial frame:

Ω = Rz(θz)Ry(θy)

⎡
⎣θ̇x0
0

⎤
⎦+Rz(θz)

⎡
⎣ 0

θ̇y
0

⎤
⎦+

⎡
⎣ 0
0

θ̇z

⎤
⎦ . (7)

The ball rotational speed ω about the inertial frame:

ω =
[
φ̇x φ̇y φ̇z

]T
= RB(θ) ϕ̇

B +Ω. (8)

The ball linear velocity ṗb can be derived by using the no
slip conditions between the ball and the ground, as shown
below:

ṗb = lf × ω, φ̇z = 0. (9)

This constraint is applied here in order to avoid the use of
Lagrange Multiplier in the dynamic equation. This no slip
condition also constrains the φ̇z to zero, which affects the
encoder measurement ϕ̇ in (8). Then ϕ̇ can be expressed in
terms of φ̇x and φ̇y as shown below:

ϕ̇B = RB(θ)
T
([

φ̇x φ̇y 0
]T −Ω

)
. (10)

Finally, we have the body linear velocity:

ṗt =
d
dt

(
RB (θ) lBb

)
+ ṗb. (11)

C. Motor Dynamics

The back electromotive force (EMF) from the DC brushed
motors used in the robot also contributes to the system
dynamic. The torque applied by each motor is:

τi = k1ui − k2ϕ̇i, i = 1, 2, 3, (12)

where ui = [−1, 1] is the PWM command into the motor.
Using the transformations in (3) and (4) into (12) yields:

τB = k1u− k2 (r/rw)
2
ϕ̇B (13)

u =
[
ux uy uz

]T
= (r/rw)Tob

[
u1 u2 u3

]T
. (14)

D. Lagrangian Dynamics

The BBR dynamic equation is derived using Lagrangian
Dynamics which then simplified and transformed into the
state space form. The energy equations for the Lagrangian
are derived for the top body, the ball and the wheels. The
potential and the linear kinetic energy of the wheels are as-
sumed to be negligible compared to the body and the ball due
to their small mass. However, the no slip constraint between
the ball and the wheels creates a coupling. This coupling and
the fast wheel speed may cause a nontrivial increase in the
rotational energy. In order to keep the equations simple and
prevent cross terms between the Ω and ω, we assume that

Ω is much smaller than the wheel speed ϕ̇i. Then the wheel
i’s angular velocity vector ωwi is shown below:

ωwi = Ω+ ϕ̇i ŵ
i ≈ ϕ̇i ŵ

i. (15)

Let Iw be the wheel inertia about its axis of rotation. Then
the total angular kinetic energy of the wheels Kw is:

Kw =
3∑

i=1

Iw
2
ωT

wi ωwi =
Iw
2
ϕ̇T

w ϕ̇w

= (Iw/2)(r/rw)
2(ϕ̇B)T ϕ̇B . (16)

The kinetic and potential energy of the body and the ball
are:

Kt =
1
2 (R

T
B Ω)T ÎBt (RT

B Ω) + 1
2 mt ṗ

T
t ṗt

Kb =
1
2 ω

T Îb ω + 1
2 mb ṗ

T
b ṗb

Ut = −mt

[
0 0 −g

]
pt, Ub = 0.

(17)

The following states x(t) are used in the dynamic equation:

x(t) =
[
q q̇

]T
, q =

[
θx θy θz φ∗

x φ∗
y

]T
, (18)

where φ̇∗
x and φ̇∗

y are the inertial frame ball rotation speeds
rotated about the inertial z-axis by θz as shown below:

φ̇∗
x = cos (θz) φ̇x + sin (θz) φ̇y (19)

φ̇∗
y = − sin (θz) φ̇x + cos (θz) φ̇y. (20)

By choosing φ∗
x and φ∗

y as the states, we can eliminate all
sin (θz) and cos (θz) terms after the simplification in Section
II-F. Then the Lagrangian of the system is:

L(q, q̇) = Kt +Kb +Kw − Ut. (21)

The system dynamic equation can be solved by using the
Lagrange’s Equation:

d

dt

∂L

∂q̇
− ∂L

∂q
− τL = 0, (22)

where τL is the total generalized force applied by all the
motors through the omniwheels. τL is defined as follows:

τLj = (τB)T
(
∂ϕ̇B

∂q̇j

)
, j = {1, 2, 3, 4, 5}, (23)

where τLj and q̇j are the j-th component of τL and q̇
respectively. The no slip constraints are already applied
during the kinematic formulations, so there is no Lagrange
Multiplier due to system constraints. Then using the La-
grange’s Equation in (22), we can form the system dynamic
equation ẋ(t) = f(x(t),u(t)) which needs to be simplified
before being used in the EKF because of its sheer length and
nonlinearities.
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E. Sensor Dynamics

The MBBR uses the following sensors to estimate the
states: the optical encoders and IMU gyrometer and ac-
celerometer measurements. In particular, the accelerometer
is greatly affected by the dynamic of the robot. Therefore,
we need to derive the sensor dynamics before they can be
used in the EKF. The encoders measure the ball rotation
angle with respect to the body frame (yB

en = ϕB), where
ϕ̇B was derived in (10). The gyrometer measures the body
angular velocity (yB

gy = ΩB) which was derived in (7). The
accelerometer measures the linear acceleration at the IMU’s
position about the body frame. Let pa be the position of the
IMU in the inertial frame and lBa = [lax, lay, laz]

T is the
length vector from ball’s center of mass to the IMU. Then
using a similar kinematics derivation to (11), we can derive
the accelerometer measurement dynamics below:

ṗa = d
dt

(
RB(θ) l

B
a

)
+ ṗb (24)

yB
ac = RB(θ)

T
([

0 0 −g
]T − p̈a

)
. (25)

The acceleration components of p̈a can be derived from the
system dynamic equation ẋ(t) = f(x(t),u(t)) solved in
the Lagrangian Dynamics Section above. Nonzero lax and
lay can cause a bias in the accelerometer measurement due
to the centripetal force. However, we assume that the lax and
lay values are zero in order to keep the equations simple.

F. Simplification

The dynamic equation and sensor dynamics must be
simplified before they can be used in the EKF due to the
sheer size and nonlinearities in the equations. We can use
the linear BBR model’s assumptions without the trivial yaw
rate assumption. Therefore, we assume that θx, θy , θ̇x, and
θ̇y are small. This assumption works under the knowledge
that a stable BBR system has small perturbations on these
variables. Then we can use the small angle approximation for
the sine and cosine functions such that sin(θ) ≈ θ, cos(θ) ≈
1 for both θx and θy . Also, all of the multiplications between
θx, θy , θ̇x, and θ̇y , or with themselves are approximately
equal to zero (e.g. θx θx ≈ 0, θ̇x θy ≈ 0). If φ∗

x and φ∗
y are

used as the states, then there is no sin(θz) and cos(θz) left
in the dynamic equation. The high yaw-rate model can’t be
simplified further, but the linear model can be derived from
here by using θ̇z = 0 and uz = 0.

III. KALMAN FILTERS AND CONTROLLER SETUP

This section describes the linear model KF, high yaw-rate
model EKF and the controller used by the MBBR during
the motion capture experiment. Table II lists the numerical
values of the MBBR parameters used in the dynamic model.
The high yaw-rate model is the linear model with some
additional nonlinear terms, so we derive the linear model
first in the following section.

TABLE II: MBBR Parameter Values.

Parameter Value Parameter Value

mt 500 g It1 4.39 10−3 kg.m2

mb 150 g It2 4.39 10−3 kg.m2

r 32 mm It3 1.44 10−3 kg.m2

rw 12.5 mm Ib 9.13 10−5 kg.m2

l 100 mm Iw 1.83 10−6 kg.m2

lax 0 mm k1 0.176 N.m
lay 0 mm k2(r/rw)2 0.011 N.m.s/rad
laz 130 mm g 9.8 m/s2
dt 0.005 s

A. Linear Model Kalman Filter
The linear BBR model is simply a MIP problem about roll

and pitch. The linear model uses the following states, input
and output vectors respectively:

xL = [θx, θy, φ
∗
x, φ

∗
y, θ̇x, θ̇y, φ̇

∗
x, φ̇

∗
y]

T

uL = [ux, uy]
T

yL = [ΩB
x ,Ω

B
y , ϕ

B
x , ϕ

B
y , y

B
ac1, y

B
ac2]

T .

(26)

Then by using the parameter values listed in Table II, the
continuous time linear dynamic model for the MBBR is:

ẋL = fL(xL,uL)

fL
1 = θ̇x, fL

2 = θ̇y, fL
3 = φ̇∗

x, fL
4 = φ̇∗

y

fL
5 = 80.1 θx − 5.35 θ̇x + 5.35 φ̇∗

x − 87.9ux

fL
6 = 80.1 θy − 5.35 θ̇y + 5.35 φ̇∗

y − 87.9uy

fL
7 = −165 θx + 25.0 θ̇x − 25.0 φ̇∗

x + 410ux

fL
8 = −165 θy + 25.0 θ̇y − 25.0 φ̇∗

y + 410uy,

(27)

where the fL
i is the i-th component of the vector fL. The

sensor dynamic equation for this model is:

yL = hL(xL,uL)

hL
1 = θ̇x, hL

2 = θ̇y

hL
3 = φ∗

x − θx, hL
4 = φ∗

y − θy

hL
5 = 0.69 θy + 0.17 θ̇y − 0.17 φ̇∗

y + 2.70uy

hL
6 = −0.69 θx − 0.17 θ̇x + 0.17 φ̇∗

x − 2.70ux,

(28)

where the hL
i is the i-th component of the vector hL. Then

the discrete time equation for the KF can be calculated using
a simple Explicit Euler scheme below:

xL
k+1 = xL

k + dtfL(xL
k ,u

L
k ) + vL

k

yL
k = hL(xL

k ,u
L
k ) +wL

k ,
(29)

where dt is the measurement period, vL
k and wL

k are the
process and the measurement noise vectors respectively.

B. High Yaw-Rate Model Extended Kalman Filter
The high yaw-rate model uses the following states, input

and output vectors respectively:

xN = [θx, θy, θz, φ
∗
x, φ

∗
y, θ̇x, θ̇y, θ̇z, φ̇

∗
x, φ̇

∗
y, ϕ

B
x , ϕ

B
y , ϕ

B
z ]

T

uN = [ux, uy, uz]
T

yN = [ΩB
x ,Ω

B
y ,Ω

B
z , ϕ

B
x , ϕ

B
y , ϕ

B
z , y

B
ac1, y

B
ac2]

T .
(30)
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The continuous time high yaw-rate dynamic model is:

ẋN = fN (xN ,uN )

fN
1 = θ̇x, fN

2 = θ̇y, fN
3 = θ̇z, fN

4 = φ̇∗
x, fN

5 = φ̇∗
y

fN
6 = fL

5 + θ̇z(−5.58 θy + 1.76 θ̇y + 0.00196 φ̇∗
y)

+ 0.76 θx θ̇
2
z − 179 θy uz

fN
7 = fL

6 + θ̇z(5.58 θx − 1.76 θ̇x − 0.00196 φ̇∗
x)

+ 0.76 θy θ̇
2
z + 179 θx uz

fN
8 = φ̇∗

x (7.15 θy + 0.0082 θ̇y)− φ̇∗
y (1.80 θx + 0.0082 θ̇x)

+ θ̇z (0.0063 θxφ̇
∗
x + 0.0082 θyφ̇

∗
y − 7.36)

− 121uz + 3.38 θy ux − 91.2 θx uy

fN
9 = fL

7 + θ̇z(−3.78 θy + 0.51 θ̇y − 0.0040 φ̇∗
y)

+ 0.51 θx θ̇
2
z + 348 θy uz

fN
10 = fL

8 + θ̇z(3.78 θx − 0.51 θ̇x + 0.0040 φ̇∗
x)

+ 0.51 θy θ̇
2
z − 348 θx uz

fN
11 = φ̇∗

x − θ̇x + θy θ̇z, fN
12 = φ̇∗

y − θ̇y − θx θ̇z

fN
13 = θy φ̇

∗
x − θx φ̇

∗
y − θ̇z.

(31)
The additional states ϕB in (30) are used for the encoder
measurements. The ϕ̇B defined in (8) needs to be integrated
to determine the ϕB which is represented by these additional
states. The sensor dynamic model is:

yN = hN (xN ,uN )

hN
1 = θ̇x − θy θ̇z, hN

2 = θ̇y + θy θ̇z

hN
3 = θ̇z, hN

4 = ϕB
x , hN

5 = ϕB
y , hN

6 = ϕB
z

hN
7 = hL

5 + θ̇z (0.20 θx − 0.027 θ̇x + 0.00022 φ̇∗
x)

+ 0.027θy θ̇
2
z + 0.56 θx uz

hN
8 = hL

6 + θ̇z (0.20 θy − 0.027 θ̇y + 0.00022 φ̇∗
y)

− 0.027θx θ̇
2
z + 0.56 θy uz.

(32)

Similarly to the linear case, the discrete time model for the
EKF can be derived using Explicit Euler method as in (29)
with vN

k and wN
k as the nonlinear model noise vectors. Let

Q = E(vT
k vk) and R = E(wT

k wk) be the process and
measurement noise covariance matrix respectively. We use
the following Q and R matrices for the linear and high yaw-
rate model:

QL = diag(a1, a1, a2, . . . , a2), a1 = 10−6

QN = diag(a1, a1, a2, . . . , a2), a2 = 0.1

RL = diag(b1, b1, b2, b2, b3, b3)

RN = diag(b1, b1, b1, b2, b2, b2, b3, b3)

b1 = 2.08 · 10−6, b2 = 7.62 · 10−5, b3 = 0.70.

(33)

C. Controller Setup

The MBBR was controlled by using a linear state feedback
controller and the estimated states from either the KF or the
EKF. The controller gains were determined from the linear
model’s LQR controller gains which then were tuned by hand
afterwards. The same controller were used to test both the KF
and the EKF in the Section IV. The KF doesn’t estimate θz

and θ̇z , so we used the IMU’s DMP yaw angle estimates
and raw gyro measurements for the controller in the KF
experiment. Let xc be the states for the linear state feedback
controller and xr be the reference states. Then we have the
following linear state feedback controller:

xc = [θx, θy, θz, φ
∗
x, φ

∗
y, θ̇x, θ̇y, θ̇z, φ̇

∗
x, φ̇

∗
y][

ux, uy, uz

]T
= Kc (xc − xr)

Kc =

⎡
⎣c1 0 0 c2 0 c3 0 0 c4 0
0 c1 0 0 c2 0 c3 0 0 c4
0 0 c5 0 0 0 0 c6 0 0

⎤
⎦

c1 = 9, c2 = 0.06, c3 = 0.6

c4 = 0.075, c5 = 0.4, c6 = 1.2.

(34)

We were stabilizing the states φ∗
x and φ∗

y which are not
the inertial frame ball angles φx and φy . Controlling for
φx and φy is possible for the EKF which can achieve a
stable spinning and translating at the same time with respect
to the inertial frame. However, attempting this with the KF
is highly unstable, so we used φ∗

x and φ∗
y as the controller

states for the motion capture experiments. This means that
both controllers used the same states and we might get a
fairer comparison in the motion capture experiment.

IV. MOTION CAPTURE EXPERIMENT

In this experiment, the accuracy of the EKF and the KF
were evaluated by comparing the estimated attitude angles
with the motion captured measurements. In addition, the
stability of the controller using the estimated states was also
evaluated from the fluctuations in body angles and ball speed.

A. Experimental Setup

A motion capture (mocap) system using four Optitrack
Prime 13 cameras was used to verify the accuracy of the
estimated θx and θy angles by the high yaw-rate model
EKF and linear model KF. The MBBR was attached with
8 mocap markers, as shown in Fig. 1, and was balanced
with the controller in (34) using the state estimates from
either the EKF or the KF. The estimated states and the mocap
measurements were recorded under several yaw rates: 0, ±6
and ±9 rad/s. These yaw rates were chosen due to the motor
limitations and we believe that these speeds are high enough
to be nontrivial for the system dynamics. The accuracy of
both estimators were compared by calculating the RMSE
value of the estimated θx and θy with respect to the motion
captured measurements. We only evaluated the accuracy of
these variables because the actual ball rotation is extremely
difficult to measure. The ball is mostly hidden by the robot’s
casing and the on board sensors (encoders) are not accurate
enough due to the following factors: encoder skipping counts,
friction, and the slip between the omniwheels and the ball.
Most of these problems are caused by the small size and low-
cost nature of the components. Therefore, we are unable to
determine the accuracy of the ball speed estimate with our
current setup. Additionally, θx and θy are the most important
states for balancing, so we prioritize on their accuracy more
than the ball position and speed estimates. The controller
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Fig. 4: Plot of RMSE between both estimators vs motion capture measurement, RMS of the robot’s attitude from motion
capture and RMS of the ball speed from the encoder estimates.

stability can be determined from the RMS values of the θx,
the θy , and the ball speed. The θ angles can be measured by
the mocap while the ball speed can be estimated from the
encoder measurements. While inaccurate as we mentioned
above, the RMS of the ball speed estimated by the encoders
can be a good indicator of how well the robot maintains its
position (position hold).

B. Experimental Result

The RMSE values of the θx and θy estimates, RMS values
of the motion captured θ and the ball speed can be seen in
Fig. 4. Fig. 5 shows the motion captured measurements vs the
high yaw-rate EKF estimates during idling and spinning at
9 rad/s. The data showed that the high yaw-rate model EKF
performed better than the linear model KF under high yaw
rates for both estimator accuracy and the upper body stability
of the robot. The KF has better estimation accuracy than EKF
when idling, which is the condition where we expect the
linear model to perform well. The KF has better performance
during -9 rad/s spin than the 9 rad/s spin. We believe that
this is caused by the design limitation of the MBBR’s rotated
wheel axis shown in Fig. 3. This design choice affects the
spinning differently: spinning left and right pushes the ball
away and into the wheels respectively. The spinning right
case (positive yaw rate) significantly increases the system
friction and we observed less stability while spinning in this
direction. However, the controller with the EKF performed
equally well on both directions which is a great result. The
RMS values of the estimated ball speed by the encoders
in Fig. 4c showed that both estimators have approximately
the same difficulty of maintaining position hold under high
yaw rates. This could be an issue caused from using φ∗

x

and φ∗
y as the states instead of the inertial ball angles.

Drifting during position hold has always been an issue for
our MBBR which is also caused by the inaccuracy of the
encoder measurements. However, the increased stability on
θx and θy for the EKF is an improvement over the KF and
the overall performance of the robot while spinning fast is
better with the EKF estimates.

V. CONCLUSION AND FUTURE WORK

In this paper, a BBR model that allows for high yaw rates
is derived and implemented in an EKF. The motion capture
data showed that the estimation accuracy and controller
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Fig. 5: Plot of the motion captured measurement, high yaw-
rate model EKF attitude estimates, and the yaw rate.

stability under high yaw rates using the high yaw-rate model
EKF is better than with the linear model KF. For future
work, we can improve the accuracy of our model parameters
by using system identification techniques or implement a
proper friction model into the EKF. We believe that the
friction present in our MBBR is very significant and a proper
friction compensation or model may improve the position
tracking performance that the current build lacks. Improving
the performance of the ball position tracking under high yaw
rates can also improve the robustness of the controller. The
performance of the EKF has been shown, so we can change
the controller states in (34) to use inertial ball positions φx

and φy , instead of φ∗
x and φ∗

x, for future MBBR controllers.
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