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Abstract— Brushed DC motors are usually driven with PWM
forcing in one of two modes: drive/brake or drive/coast. That
is, at the low state of the PWM forcing profile, the motor
driver will either “brake” the motor with its own back EMF,
or allow the motor to “coast” (i.e., spin freely). Drive/brake
motor drivers, which are by far the most common, may
be represented by a Multilevel Four-Quadrant DC Chopper
model, while drive/coast motor drivers may be represented
by two independent Bipolar Two-Quadrant DC Chopper mod-
els. Conveniently, when averaged over the PWM duty cycle,
drive/brake motor drivers are accurately modeled as linear
systems over their entire operational range. On the other
hand, drive/coast motor drivers, when averaged over the PWM
duty cycle, exhibit significant nonlinear behaviors that are
dependent on factors such as inductance, PWM frequency, and
rotor speed. Though there are some existing partial deriva-
tions of drive/coast motor driver models, no comprehensive,
experimentally-validated modeling approaches appropriate for
feedback control applications over the full dynamic range of
the motor could be readily found in the literature. In this paper,
we derive a practical nonlinear model of a drive/coast motor
driver, validate this model using a motor dynamometer, and
demonstrate a real-time implementation of this model on a
Mobile Inverted Pendulum (MIP) robot.

I. INTRODUCTION

Agile dynamic UxVs require accurate physical models to
inform mechanical designs and to develop controllers that
achieve maximum performance. Mass distributions and other
physical parameters can generally be obtained via CAD and
simple experiments, but accurate dynamic motor models are
often much more difficult to develop. Least-square fits to
experiments can be used to identify the parameters of simple
linear dynamic models of motors if they are of the correct
structure, but getting the (nonlinear) structure of these models
correct in the drive/coast case is delicate.

Brushed DC motors are commonly driven by modulating
the input voltage via pulse width modulation (PWM), at
frequencies from 500Hz to 20kHz, together with one or two
logic signals to indicate the forward or reverse direction.
The MOSFETs in an H-Bridge are then opened or closed
in pairs to allow current to pass through the circuit in the
appropriate direction. There are two types of motor driver
modes discussed in this paper, depending on the MOSFET
settings during the low state of the PWM forcing profile:
braking or coasting. Braking occurs when both of the upper
(or, lower) MOSFETs are closed, and the other MOSFETs
are open; in this case, current circulates in the upper (or,
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Fig. 1. Full H-bridge circuit demonstrating the current paths during forward
drive, brake, and coast. To drive the motor forward (green), MOSFETs 1
and 4 are closed. To brake (red), either MOSFETs 3 and 4 are closed (low
side) or 1 and 2 (high side) which shorts the motor and allows the current to
circulate and brake the motor. Finally, to coast (blue), all of the MOSFETs
are left open, allowing the current to flow through the diodes as necessary,
and causing the motor to coast when this current decays to zero.

lower) part of the H-bridge circuit, and the back EMF of
the motor itself drives the current in the opposite direction
of the rotor speed, slowing the motor. Coasting occurs when
all four MOSFETs in the H-bridge are open, and current
flows from ground to Vcc through two of the flyback diodes
when necessary. The coasting steady state current applies a
zero torque on the motor, allowing the motor to spin freely.
Figure 1 shows the driving, braking and coasting states of
an H-bridge.

Drive/brake motor drivers may be represented by a Mul-
tilevel Four-Quadrant DC Chopper, and drive/coast motor
drivers may be represented by two independent Bipolar Two-
Quadrant DC Chopper [1][2]. Drive/coast motor drivers in
constant forward drive use the I-IV quadrants, and in reverse
drive use the II-III quadrants [1]. Averaged over the PWM
duty cycle, such drive/brake motor drivers may be accurately
modeled with a simple linear model [3][4][5][6]. Averaged
over the PWM duty cycle, the drive/coast motor driver, on
the other hand, exhibits a significant nonlinear behavior es-
pecially near zero duty cycle. Partial derivations of electrical
current models for such drivers exist [1]; however, this work
does not extend to a full range of forward and reverse
driving, and no real-time implementation suitable for control
applications is provided.

There are several advantages of using drive/coast motor
drivers. Coasting engages the natural (unforced) dynamic
behavior of the vehicle, which is at times preferred. There
might also be a good incentive to use drive/coast instead
of drive/brake drivers from an energy efficiency standpoint.
There has been much research on regenerative braking
with brushless DC motors in, e.g., hybrid/electical vehicles
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[7][8][9][10]. However, to the best of our knowledge, the
energy efficiency of drive/coast vs. drive/brake systems for
vehicles that often operate near zero speed and/or zero torque
has not been extensively studied. A drive/brake system can
produce regenerative current during the braking sequence,
transforming the kinetic energy into electrical energy [7]. A
drive/coast system, on the other hand, regenerates the battery
during coasting by flowing current back into the Vcc through
the flyback diodes [1][9]. In a motor that operates near
zero torque and/or zero speed, the drive/brake regenerative
method is ineffective due to the lack of kinetic energy.
The drive/coast approach might have better efficiency in
this range, but conclusively establishing this would require
further study. Recent advanced TI motor drivers, such as
the DRV8881 in the so-called “fast decay” mode, detect the
regenerative current during coasting and close the respective
gates such that the current flows through the MOSFETs in-
stead of the flyback diodes, resulting in reduced voltage drop
(and, thus preventing the flyback diodes from overheating).
If this is utilized well, drive/coast systems might show better
energy efficiency than drive/brake systems near zero torque
in speed control applications.

Brushed DC motors are cheap and often used in low cost
robots which generally have a high amount of noise. The
challenge of accurately modeling such motors is exacerbated
in a drive/coast implementation due to the nonlinearities near
zero torque and speed, which is a primary mode of operation
for a balancing robot such as a Mobile Inverted Pendulum
(MIP). Modeling the system dynamics as accurately as possi-
ble can increase the performance of the controller. For these
reasons, it is important to develop an accurate drive/coast
model that can be used in a real-time feedback controller.

In this paper, we present a new dynamic model for a
system with a brushed DC motor using a drive/coast motor
driver, validate the model using a low cost dynamometer, pro-
pose a method of real-time implementation of the drive/coast
model, and demonstrate the performance of our model on a
educational Mobile Inverted Pendulum (eduMIP) robot.

II. DRIVE MODES

An H-bridge circuit allows for directional control of a
brushed DC motor. It typically consists of four MOSFETs
and diodes arranged as letter H with a load at the center
[11]. By switching the diagonally opposite MOSFETs on
and off, the motor driving direction (forward or reverse) can
be controlled. During the off duty of the PWM signal, the
motor will either brake or coast based on the states of the four
MOSFETs, as shown in Fig. 1. The choice of coast or brake
mode has a significant effect on motor’s dynamics, especially
at low duty cycles. A quick survey of common motor
drivers used in robotics shows that the drivers are either
drive/coast only (DRV8881E, MC33926), drive/brake only
(TB6612FNG), or configurable in either mode (DRV8881P,
DRV8871). In practice, there is no “standard” mode of
operation for the motor drivers and it is often left to the user’s
discretion. Table I lists the parameters and the variables used
in the equations and derivations in this paper. The following

TABLE I
LIST OF PARAMETERS AND TIME VARYING VARIABLES

Constant Parameters, all values are > 0.

k torque constant. V supply voltage.
R motor resistance. is stall current at u = 1, ω = 0.
L motor inductance. ωnl maximum rotor no load speed.

Tpwm PWM period. Te electrical time constant.
fpwm PWM frequency. Tr ratio of Tpwm over Te.

Time Varying Variables

i electrical current. u motor command ∈ [−1,1].
τ motor torque. v PWM duty cycle, v = |u|∈ [0,1].
ω rotor velocity. ωr scaled rotor velocity ∈ [−1,1].

subsections derive and discuss the electrical equation model
for the drive/brake and drive/coast motor drivers.

A. Drive/Brake

In drive/brake mode, the current path through the H-
bridge can be seen in Fig. 1. During a high PWM signal,
the appropriate MOSFETs pair is closed to drive the motor
forward or reverse [11]. During low PWM signal, either the
high side or low side MOSFETs are closed, shorting the
motor terminals and allowing the back EMF to circulate and
brake the motor [12]. The drive/brake system is very well
understood and commonly modeled as follows: let u be the
motor command, where v = |u| is the PWM duty cycle and
sign(u) is the motor driving direction where u > 0 and u < 0
are forward and reverse driving respectively. The electrical
circuit equation during the high and low PWM signals can
be seen in (1) and (2).

PWM high: sign(u)V = Ri+L di
dt + k ω (1)

PWM low: 0 = Ri+L di
dt + k ω (2)

uV = Riavg + k ω. (3)

Both models can be combined into the linear system shown
in (3) where iavg is the average current of one PWM pulse
[6]. The inductance can be ignored because the controller and
measurement update period are significantly longer than the
electrical time constant. This linear behavior and simplicity is
a significant advantage for controller design and is the most
common motor model used for PWM based motor controls.

B. Drive/Coast

The drive/coast model is much more complex. The current
path for drive/coast mode can be seen in Fig. 1. During the
low PWM signal, all of the MOSFETs are opened, forcing
the current of the spinning motor to pass through the diodes
into the battery positive terminal. The current quickly decays
to zero but does not change direction, allowing the motor to
spin unimpeded. The electrical circuit equation during the
high and low PWM signals can be seen in (4) and (5).

PWM high: sign(u)V = Ri+L di
dt + k ω (4)

PWM low: −sign(i)(V +2Vd) = Ri+L di
dt + k ω, (5)

where Vd is the voltage drop across the diodes during the low
PWM signal. As the motor coasts, the current drains down
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Fig. 2. Plot of the current and PWM signal (shown at an offset) during
one time-periodic PWM pulse in a drive/coast motor driver. t0, t1, and t2
are the pulse start time, low PWM signal start time and the final pulse time
respectively. The initial current during each time-periodic PWM pulse is
assumed to be constant (i(t0) = i(t2)).

to zero and stays at zero for as long as the MOSFETs are
opened, resulting in nonlinear dynamics. Additionally, di/dt
is nonzero at i = 0, so this system must be described as a
hybrid system, making it difficult to determine an averaged
system model for a single PWM pulse.

III. DRIVE/COAST DYNAMIC MODEL

Although the drive/coast system is a hybrid system, i(t)
can be solved from both ODEs in (4) and (5), as done by
[1] on a First-Quadrant and a Bipolar Two-Quadrant DC
Choppers. The averaged system model such as in (3) can’t be
derived. However, the average current iavg during one PWM
pulse can then be derived from the solution of i(t). Deriving
the iavg is useful for controls application because the applied
motor torque is a linear function of the motor current (τ =
k i). The following assumptions are used in order to simplify
the i(t) derivations:

• Electrical time constant is much smaller than mechani-
cal time constant, controller update and sampling time.

• Time-periodic PWM pulse, as shown in Fig. 2, where
the starting and final current in one PWM pulse are
equal.

• Voltage drop across the diodes is negligible (Vd ≈ 0).
• Instantaneous MOSFETs switching time.
• No external force to the mechanical system that can

push the rotor speed above ωnl .

The first assumption simplifies the ODEs in (4) and (5) by
setting u and ω approximately constant compared to the i
within one PWM pulse. The second assumption simplifies
the problem further by constraining the initial and final
current in one PWM pulse. The equations can be simplified
even further by applying change of variables below:

is =V/R Te = L/R ωnl =V/k

Tr = Tpwm/Te ωr = ω/ωnl , (6)

where ωr is the ratio of between the rotor velocity and
the maximum no load speed while Tr is the ratio between
the PWM period and the electrical time constant. The final
assumption above guarantees that ωr ∈ [−1,1]. Using (6)
and the assumptions above into (4) and (5) results in the

following simplified equations:

PWM high: di
dt (t) = (−i(t)+ is(sign(u)−ωr))/Te (7)

PWM low: di
dt (t) = (−i(t)− is(sign(i(t))+ωr))/Te. (8)

Let t0 be the time at the beginning of the PWM pulse,
t1 = t0 + vTpwm is the starting time of the low PWM signal,
and t2 = t0 +Tpwm is the end time of the pulse, as shown in
Fig. 2. There are several statements that can be made from
using ωr ∈ [−1,1], (7) and (8) that will be useful during the
derivation of i(t).

Lemma 1. The current is always being driven to ihi =
is(sign(u)−ωr) during high PWM signal. Also, ihi ≥ 0 if
u > 0 and ihi ≤ 0 if u < 0.

Proof: From (7), it can be easily shown that di
dt < 0 if

i > ihi and di
dt > 0 if i < ihi. Using ωr ∈ [−1,1], it can also

be shown that if sign(u)> 0, then ihi ≥ 0 and if sign(u)< 0,
then ihi ≤ 0. �
Lemma 2. The current is always being drained to zero
during low PWM signal.

Proof: Use ωr ∈ [−1,1] in the (8), then it can be shown
that di

dt < 0 if i > 0 and di
dt > 0 if i < 0. �

Proposition 1. Assuming time-periodic PWM pulse, if u> 0,
then i(t)≥ 0 within one pulse (t ∈ [t0, t0+Tpwm]). Conversely,
if u < 0, then i(t)≤ 0.

Proof: During high PWM signal, the current is being
driven to ihi ≥ 0 if u > 0 using Lemma 1. Then during low
PWM signal, the current is being driven to zero using Lemma
2. Then that means the current during both high and low
PWM signal, or one PWM pulse, is always ≥ 0 for u > 0.
Case u < 0 can be proven the same way. �

Solve the ODE in (7) and (8) for i(t) using the assumptions
and statements listed above. There are two different cases
that need to be explored: i(t0) �= 0 and i(t0) = 0, which is
also shown in Fig. 2.

A. Case i(t0) �= 0

Solve the ODE in (7) and (8) for u > 0 and i(t0) > 0.
Using Proposition 1 and time-periodic PWM signal, sign(i)
is inferred to be constant in (8). This transforms (7) and (8)
into easier to solve linear equations:

PWM high: di
dt (t) =−(i(t)+ is(−1+ωr))/Te (9)

PWM low: di
dt (t) =−(i(t)+ is(1+ωr))/Te. (10)

Solve the ODE in (9) and (10) for i(t):

iH(tH) = e−tH/Te
(

i(t0)+ is(1− etH/Te)(ωr −1)
)

(11)

iL(tL) = e−tL/Te
(

i(t1)+ is(1− etL/Te)(ωr +1)
)
, (12)

where iH(tH) and iL(tL) are the current equation during high
and low PWM signal respectively. tH = t − t0 and tL = t − t1
are the time shift such that tH and tL are zero at the start of
the high and low PWM signal respectively. Using (11) and
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(12), solve for i(t2) which should be equal to i(t0) by using
the time-periodic PWM pulse assumption as shown below:

i(t1) = iH(vTpwm) = e−vTr
[
i(t0)+ is(1− evTr)(ωr −1)

]
(13)

i(t2) = iL((1− v)Tpwm) = i(t0) (14)

i(t0) = e−Tr
[
i(t0)− is(1−ωr −2evTr + eTr(1+ωr))

]
. (15)

Then solve for i(t0) from (15):

i(t0) =
−is

(
1−ωr −2evTr + eTr(1+ωr)

)
eTr −1

> 0. (16)

Using the knowledge that Tr > 0 and eTr > 1, derive the
domain for i(t0)> 0:

evTr > (eTr(1+ωr)+1−ωr)/2. (17)

By plugging in the initial current i(t0) in (16) into (11), (13)
and (12), the average current during one time-periodic PWM
pulse can be solved for u > 0 and i(t0)> 0 case:

i+avg,i�=0 =

(
vTpwm

∫
0

iH(tH)dtH +
(1−v)Tpwm

∫
0

iL(tL)dtL

)
/Tpwm

= is(2v−1−ωr). (18)

Solving the equation for u < 0 and i(t0) < 0 case using
the same methodology yields the following average current:

i−avg,i�=0 =−is(2v−1+ωr), (19)

with the domain for where i(t0)< 0 being:

evTr > (eTr(1−ωr)+1+ωr)/2. (20)

B. Case i(t0) = 0

In this case, the current is fully drained during the low
PWM signal, and the draining time must be derived in order
to solve for the iL(t). Solve for the u > 0 case first by using
(11), (12) and (13) with i(t0) = 0. Then solve for the time
where the current is fully drained (td):

iL(td) = is e−td/Te
(
2+ e−vTr(ωr −1)

)− is(1+ωr) = 0 (21)

td =−Te log
(

evTr (1+ωr)

2evTr −1+ωr

)
. (22)

This log function must have a real solution for the domain
where i(t0) = 0. Using v ∈ (0,1], ωr ∈ [−1,1] and Tr > 0,
the log function is valid everywhere except for ωr = −1.
However ωr = −1 is always within the domain for i(t0) >
0, so the log function is always valid. The current is fully
drained during the low PWM signal, so td ≤ (1− v)Tpwm is
set as a constraint. This constraint can be solved further into:

evTr ≤ (eTr(1+ωr)+1−ωr)/2, (23)

which is the complete opposite of the domain for i(t0) > 0
in (17). This means that the initial current i(t0) ≥ 0 covers
for all u > 0 and ωr ∈ [−1,1]. Finally, solve for the average

current in one time-periodic PWM pulse for the u > 0 and
i(t0) = 0 case:

i+avg,i0=0 =

(
vTpwm

∫
0

iH(tH)dtH +
td∫
0

iL(tL)dtL

)
/Tpwm

=
is
Tr

(
vTr(1−ωr)+(1+ωr)log

(
evTr(1+ωr)

2evTr −1+ωr

))
.

(24)

Using the same methodology to solve for the u < 0 and
i(t0) = 0 case yields the following average current:

i−avg,i0=0 =− is
Tr
(vTr(1+ωr)

+(1−ωr)log
(

evTr(1−ωr)

2evTr −1−ωr

)
),

(25)

and the following domain where i(t0) = 0:

evTr ≤ (eTr(1−ωr)+1+ωr)/2. (26)

C. Summary

Let v = |u|∈ [0,1], ωs = sign(u)ωr, ωr ∈ [−1,1], and the
the domain for i(t0) �= 0 is:

V =

{
v |v > 1

Tr
log

(
1
2
(eTr(1+ωs)+1−ωs)

)}
. (27)

Then average current iavg of the time-periodic PWM pulse
as a function of motor command u, scaled rotor speed ωr,
and a constant Tr can be calculated with the following
algorithm:

if v = 0 then

iavg,v=0 = 0 (28)

else if v ∈ V then

iavg,i0 �=0 = is (2u− sign(u)−ωr) (29)

else
iavg,i0=0 = is (u(1−ωs)

+

(
sign(u)+ωr

Tr

)
log

(
evTr(1+ωs)

2evTr −1+ωs

)
)

(30)

end if
As shown above, the average current is nonlinear especially
when i(t0) = 0. The average current equations are defined
using the is and unitless parameters ωr, Tr, and u.

IV. IMPLEMENTATION STRATEGY

In order to be used in a controller, the motor command
u must be solved given the target average current it and the
measured rotor speed ω . Solving for u in the i0 �= 0 case from
(29) is easy. However, as shown in the (30), the drive/coast
model is nonlinear in the i0 = 0 case, making it difficult to
solve for u(it ,ωr) directly. Solving for v = |u| in the i(t0) =
0 case can be done by using scalar iterative methods such
as the Newton-Raphson method [14]. Our tests have shown
that this algorithm converges within 3 to 5 iterations which
is quick enough to be used in real-time computations. The
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TABLE II
EXPERIMENT MOTOR AND MOTOR DRIVER LIST

No. Motors Motor Drivers

1 Maxon A-Max 22 110160, 14:1 DRV8871 (3A imax)
2 Maxon 273688, 13mm, 17:1 DRV8881P (2.5A imax)
3 eduMIP motor, 6.6:1 MC33926 (5A imax)

Fig. 3. Experimental setup diagram of the dynamometer for the drive/coast
model validation.

equations to be used in the Newton-Raphson method can be
seen below:

f (v) = iavg,i0=0 − it = 0, (31)

f ′(v) =
2 is (evTr −1)(sign(it)−ωr)

2evTr +ωs −1
(32)

vn+1 = vn − f (vn)/ f ′(vn). (33)

Then the method to solve for v can be outlined below:
1) sign(u) = sign(it). If it = 0, then v = 0.
2) else, assume i(t0) �= 0 and solve for v using (29) then

check if v ∈ V and v ∈ (0,1].
3) If v /∈ V or v /∈ (0,1], then we have the i(t0) = 0 case

and solve for v with Newton-Raphson method using
(30) to (33). Set the initial guess v0 to be the middle
of the range of v for i(t0) = 0:

v0 =
1

2Tr
log

( 1
2 (e

Tr(1+ωs)+1−ωs)
)
. (34)

In addition, there are two edge cases for the model in (27)
to (30): the case of lim Tr → 0 and lim Tr → ∞ which rep-
resent very high and very low PWM frequency respectively.
Solving the model using the limits and L’Hospital Rule yields
the following results:

Case lim Tr → 0: u = (it/is + sign(it)+ωr)/2 (35)
Case lim Tr → ∞: u = (it/is)/(1− sign(it)ωr). (36)

V. DRIVE/COAST MODEL VALIDATION
To validate our drive/coast model, we compared the esti-

mated and actual current measurements of a motor-flywheel
system (Mini-Dyno [13]). First we identify the motor pa-
rameters, shown in Table III, using the procedure outlined in
[13]. Using these parameters and a known input signal we
were able to estimate the drive/coast model and compare it
to the actual output data.

TABLE III
IDENTIFIED MOTOR PARAMETERS

Parameters Motor No.
1 2 3

Resistance, R (Ω) 6.49 15.4 9.06
Inductance, L (mH) 0.362 0.0494 2.36
Motor gain, k (N.m/A) 0.133 0.161 0.127

0 10 20 30 40 50 60 70

Time (s)
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0

1

M
ot
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 C

om
m

an
d Experiment Motor Command

Fig. 4. Plot of the motor command u signal for the experiment in the
following sequence: sine chirp, ramping sine chirp, and random walk.

A. Experimental Setup

The Mini-Dyno [13] is a low cost motor dynamometer that
consists of a weighted flywheel of known inertia attached
to a motor and an optical encoder (US Digital E6-2500-
250). The motor is attached to a motor driver, a current
sensor (INA219), and driven by a single board computer
(Beaglebone Black), as shown in Fig. 3.

We conducted this experiment with three different motors
and motor drivers which are listed in Table II. The motor
drivers were selected because they are commonly used in
small ground robots, have off-the-shelf breakout boards, and
feature drive/coast operating modes. Two different high qual-
ity Maxon motors with datasheets were selected to provide a
benchmark of performance. The last motor is a low-cost toy
motor used in the eduMIP robots with unknown parameters.
We selected this motor to demonstrate that the drive/coast
model is accurate with low quality motors that have higher
inductance and friction. The motors’ resistance and torque
constant were identified using the methodology outlined in
[13] but with one important note: the identification must be
done with a drive/brake motor driver to avoid the nonlinear
drive/coast dynamics. We estimated the motor’s inductance
by measuring the rise time of the voltage across the shunt
resistor on the current sensor with an oscilloscope. The
identified motor parameters are shown in Table III.

To excite the motor across a range of frequencies and
amplitudes, the motor was driven by a sequence of open loop
input signals: sine chirp, ramping sine chirp, and random
walk, as shown in Fig. 4. The sine chirp is a sine signal with
frequency ramping up from 0.5 Hz to 2 Hz and back down to
0.5 Hz. The ramping sine chirp is a sine chirp with varying
amplitude. The random walk is a sum of a uniform random
variable, uk+1 = uk + unif(−0.3,0.3), and the same random
walk signal was used for each experiment. Each motor and
motor driver pairs were tested at PWM frequencies of 500
Hz, 1 kHz, 5 kHz, 10 kHz and 20 kHz. The low range
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Fig. 5. Plot of measured current vs. current estimate from the drive/coast
model and the linear motor model. The data shown is of motor 1 & driver
1 at 20kHz PWM frequency.

was chosen because 500 Hz is the default PWM frequency
of certain microcontrollers (e.g. Arduino) and 20 kHz is
ultrasonic and inaudible. During this experiment, the motor
command u, current i, battery voltage V and the flywheel
angle φ were recorded. From the input and output data, we
estimated the current of the drive/coast system using the
model from (27) to (30). In order to show the inaccuracy
of using the drive/brake model with a coasting motor driver,
we also estimated the current by using the linear model in
(3) for motors with driver 1, such that:

iavg,lin = (uV − k ω)/R. (37)

R2 and RMSE values of the estimated drive/coast current
with respect to the current measurement are used to compare
model accuracy. The RMSE values are represented as a
percentage of the motor stall current is.

B. Model Validation Results

The drive/coast model has high R2 values and low RMSE
values, as shown in and Table IV and V respectively, which
indicates an accurate model. The drive/coast model has an
average RMSE error of 6.5% is while the linear model
has an average RMSE error of 22.5% is. From Fig. 5, we
can see how much more accurate the drive/coast model is
compared to the linear model especially at low duty cycles.
As shown in Table IV and V, the drive/coast model is
accurate and consistent for all PWM frequencies, motor, and
motor driver combinations. However, the low quality eduMIP

TABLE IV
R2 VALUES OF THE CURRENT MEASUREMENT VS. MODEL ESTIMATE

Motor & Mtr. Driver PWM Frequency (Hz)
500 1000 5000 10000 20000

vs. coast model:
Motor 1 & driver 1 0.964 0.969 0.980 0.964 0.962
Motor 1 & driver 2 0.971 0.973 0.973 0.650 0.937
Motor 1 & driver 3 0.987 0.986 0.984 0.972 0.964
Motor 2 & driver 1 0.982 0.985 0.982 0.980 0.973
Motor 2 & driver 2 0.979 0.979 0.973 0.968 0.959
Motor 2 & driver 3 0.986 0.985 0.984 0.982 0.973
Motor 3 & driver 1 0.962 0.967 0.949 0.944 0.929
Motor 3 & driver 2 0.965 0.959 0.929 0.902 0.865
Motor 3 & driver 3 0.982 0.974 0.965 0.954 0.913

vs. linear model:
Motor 1 & driver 1 0.753 0.746 0.642 0.470 0.413
Motor 2 & driver 1 0.841 0.844 0.740 0.628 0.516
Motor 3 & driver 1 0.783 0.713 0.358 0.315 0.244

TABLE V
RMSE VALUES OF THE CURRENT MEASUREMENT VS. MODEL

ESTIMATE AS A PERCENTAGE OF STALL CURRENT is

Motor & Mtr. Drv. PWM Frequency (Hz)
500 1000 5000 10000 20000

vs. coast model:
Motor 1 & driver 1 7.72% 6.70% 5.12% 5.44% 6.48%
Motor 1 & driver 2 6.95% 6.61% 5.76% 6.16% 7.69%
Motor 1 & driver 3 4.58% 4.65% 4.38% 5.47% 5.98%
Motor 2 & driver 1 6.16% 5.56% 5.39% 5.33% 5.93%
Motor 2 & driver 2 6.33% 6.41% 6.46% 6.50% 6.92%
Motor 2 & driver 3 5.16% 5.07% 4.85% 4.75% 5.65%
Motor 3 & driver 1 7.69% 6.73% 7.57% 7.89% 8.78%
Motor 3 & driver 2 5.25% 5.70% 6.27% 7.62% 11.4%
Motor 3 & driver 3 6.88% 6.82% 7.88% 8.89% 10.1%

vs. linear model:
Motor 1 & driver 1 20.3% 20.1% 21.9% 23.9% 25.6%
Motor 2 & driver 1 18.5% 17.9% 20.6% 22.9% 25.2%
Motor 3 & driver 1 18.4% 20.0% 26.7% 27.6% 28.6%

motor (motor 3) has an increased error as PWM frequency
increases. We believe that this might have been caused by
inaccuracies in some parameter values, or nonlinearities such
as static friction and backlash which are commonly seen
problems in low cost motors. However, the drive/coast model
still yielded a significantly more accurate estimates than the
linear model.

VI. REAL-TIME DRIVE/COAST EXPERIMENT

We used an eduMIP to demonstrate the viability of our
drive/coast model on an unstable, real-time system. A MIP
balancing about it’s equilibrium point requires small amount
of torque to stabilize the system. Since a drive/coast system
is highly nonlinear about low duty cycles, a MIP robot is a
perfect test platform.

A. Hardware and Setup

We fitted an eduMIP with two DRV8871 motor drivers
which can toggle between drive/brake and drive/coast mode.
We used a state feedback controller designed for MIP with
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Fig. 6. Plot of the robot attitude angle variance between drive/brake mode,
and drive/coast mode with and without compensation.

drive/brake motor drivers for this experiment. Using the
same balancing controller, we allowed the robot to balance
in place under three modes: drive/brake, and drive/coast
with and without coasting model compensation. The coasting
model compensation adjusts the PWM duty cycle given by
the drive/brake controller to the equivalent duty cycle for
drive/coast systems, as discussed in Section IV. Assuming
that the coasting model is correct, then the control torque
of the drive/coast with compensation should be the same as
the drive/brake, resulting in a similar balancing performance.
The balancing performance under each mode was evaluated
by calculating the variance of the robot’s attitude angle
during the position hold.

B. Coasting Compensation Results

The drive/coast system performance is significantly im-
proved by implementing the coasting compensation as shown
in Fig. 6. With compensation, the drive/coast system has
approximately the same performance as the drive/brake sys-
tem across all tested PWM frequencies, except at PWM
frequency of 1000 Hz. We concluded that the compensated
PWM duty cycle in this particular frequency hit the sweet
spot for small amplitude but high frequency limit cycle for
the robot. Without any compensation, the drive/coast system
is significantly less stable especially as the PWM frequency
increases. This demonstrates that our drive/coast model is
accurate and we can effectively compensate the control signal
of a drive/coast system in real-time.

VII. CONCLUSION AND FUTURE WORK

In this paper we mathematically derived a novel model
for drive/coast systems and demonstrated its accuracy with
real-world experiments. In addition, we proposed a real-
time implementation method of the model by using the
target current and rotor speed to calculate a motor command

which compensates for the nonlinearies of a drive/coast
system. Finally, we demonstrated the performance of the
drive/coast model and coasting compensation in real time
on an eduMIP which showed a significant improvement
in stability. This new model opens up the possibility of
designing more accurate system dynamic models when using
drive/coast motor drivers to offer different system behaviors
and advantages compared to its drive/brake counterpart.

Although we showed the effectiveness of the model on a
MIP robot, we suggest to experiment further with different
types of robots or controls applications that can take advan-
tage of free-spinning motors. In addition, although coasting
motor drivers can recharge the battery, we believe that more
experimentation should be done to compare overall ener-
getic efficiency between drive/brake and drive/coast motor
drivers in low torque and speed applications. Regardless of
efficiency, in practice, some robotic systems are bound to use
drive/coast motor drivers, and our work provides an accurate
method of modeling the dynamics of such drivers.
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