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Abstract— A patent-pending new class of reconfigurable
battery-powered hopping rovers for reconnaissance, explo-
ration, defense, homeland security, and entertainment ap-
plications is publicly presented for the first time. A time-
periodic linear quadratic regulator for stabilization of hopping
maneuvers is presented, with simulation results. Additionally, a
novel mechanical design for efficient and multi-modal operation
is discussed, including a lockable hopping mechanism for
the directed release of gradually accumulated elastic energy,
utilizing two coupled four-bar linkages in tandem with a quick-
release spring device.

I. INTRODUCTION

The balancing of an inverted pendulum on a moving
cart has been a (perhaps, the) canonical control problem
in academia for decades. The system sparks broad interest
because, near the upright equilibrium, the system is unsta-
ble, under-actuated, and non-minimum phase; many similar
stabilization problems exist in industry, such as the control
of a rocket via gimbaling of the nozzle. Further, swinging
from the (stable) hanging equilibrium to catch the system
at the (unstable) upright equilibrium is a difficult trajec-
tory optimization problem in which the system experiences
challenging nonlinearities; similar trajectory optimization
problems also exist in industry, such as the efficient and
accurate launching of a satellite into orbit.

Both the stabilization of the pendulum system near the up-
right equilibrium and the swinging up of this system from the
hanging equilibrium have been accomplished with a wide va-
riety of techniques in the controls literature. As a challenging
demonstration problem, our lab has used the adjoint-based
Model Predictive Dynamic OPTimization (MPDopt) toolbox
which we have developed at UCSD, not simply to swing
up a single pendulum, but to simultaneously swing up two
pendula of different lengths hanging from the same cart. A
video of this result, together with an open-source version of
the easily-extensible MPDopt code used to obtain it, is avail-
able at http://renaissance.ucsd.edu/MPDopt.

The next natural step with such systems is to eliminate the
track, rolling the cart on the floor on its own wheels, under its
own power, with all control electronics mounted onboard. In
fact, the Segway Human Transport implements the solution
to just such a problem; the novelty of this solution is that
the control is implemented in such a manner as to move and
balance in response a human standing on the cart.
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Fig. 1. Reconfigurable hopping rover capabilities. Note that the transition
between horizontal and upright roving modes is achieved via a control
sequence solved for using an adjoint-based optimization on the non-smooth
rover dynamics [1]

Inspired by such technologies, our lab set out to explore
what could be accomplished with an autonomous, self-
contained inverted pendulum configuration. In most useful
applications, such a system would need the capability to right
itself from horizontal, and in many applications an efficient
and simple mechanism to get past simple obstacles that could
not be rolled over would be necessary. This realization has
inspired the creation of a reconfigurable wheeled rover with
hopping capabilities (Fig. 2).

Prior work on hopping robots has focused on designs
in which an extendable leg is pivoted about a 2-DOF hip
attached to the main robot body ([3] and [4]). A fusion of
such designs with wheeled locomotion has resulted a patent-
pending new class of battery-powered hopping rovers. These
rovers utilize two main drive wheels with tank-style steering,
in conjunction with a third orthogonal wheel and a spring
loaded hopping mechanism, in order to re-orient the vehicle
during flight using reaction torque. In this regard, the wheels
on our robot act as legs with unlimited rotation. Eliminating
the finite angular displacement of a hip joint allows our
vehicle to make significant attitude corrections during flight,
as well as to balance on its foot in three dimensions, or even
perform running jumps, as illustrated in Fig. 1.

This design is characterized by high maneuverability,
such as that normally associated with a unicycle. It may
also be miniaturized significantly, making mass production
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Fig. 2. Reconfigurable wheeled rover with hopping capabilities.

at reasonable cost viable. Ultimately, numerous potential
markets for this class of robots are envisioned, ranging from
the toy market to defense, homeland security, fire/rescue,
nuclear waste monitoring, and scientific exploration.

II. TIME-PERIODIC CONTROL OF CONTINUOUS
HOPPING

The difficulty in controlling hopping systems lies in the
fact that the governing equations of motion are discontin-
uous and nonlinear. Nevertheless, such a system has been
successfully stabilized via a strategy that combines three
decoupled controllers: (1) an inner loop controller for re-
orienting the body during flight, (2) a tabular leg placement
algorithm based on the takeoff state and desired horizontal
(running) velocity, and (3) a hopping height controller ([3]).
The main drawback of this approach is the memory required
to store tabular data sufficient for all possible operating
conditions. In this section we derive and present simulation
results of Linear Time-Periodic (LTP) Quadratic Regulator
that stabilizes the full discontinuous, nonlinear dynamics
under conditions for which the vehicle is nearly aligned with
its pre-impact velocity during landings.

A. Equations of Motion

The key to developing a successful controller has been
constructing linear equations of motion that recreate the
discontinuous momentum exchange associated with landing
impacts. (Fig. 3).

Specifically, the robot tips sideways after landing, if the
line connecting the center of mass and point of ground

Fig. 3. Four unique phases of hopping motion. Note that the landing and
takoff inmpacts are unique, since the horizontal velocity of the foot is not
necessarily stationary before landing.

contact is not tangent to the pre-impact velocity. This
transverse forcing brings to mind the familiar problem of
an inverted pendulum with externally applied horizontal
disturbances. Therefore, let us model the hopping robot as
an extendable inverted pendulum with periodic transverse
forcing affected by the conversion of linear momentum into
angular momentum as the no-slip condition is enforced upon
landing. Accordingly, consider an idealized planar model of
hopping motion, in which the robot leg and body behave
as a single mass, m, with rotational inertia, J, attached to a
time-varying massless spring/damper that slides horizontally
along a fictitious slot (Fig. 4).

Applying Lagrange’s equations to this system, including
forces applied by motorized reaction wheels and the hopping
propulsion mechanism (omitted in preceding figures for
clarity), yields the following nonlinear equations of motion,



J +mr2
bg 0 −mrbg cosθ 0

0 m −msinθ 0
−mrbg cosθ −msinθ m 0

0 0 0 Jw







θ̈
r̈bg
ẍg
φ̈


 = R,

where

R =


mrbggsinθ −2mrbgṙbgθ̇ +N[bem(φ̇ − θ̇)− su(t)]−bapθ̇
mrbgθ̇ 2−mgcosθ−k(t)(rbg−r0)+P+S(t)uh(t)−Bem(t)ṙbg

2mṙbgθ̇ cosθ −mrbgθ̇ 2 sinθ −bx(t)ẋg
bem(θ̇ − φ̇)+ su(t)−bawφ̇


 .

Note that φ denotes the angular position of the reaction
wheel(s) w.r.t. an inertial reference frame, and u(t), uh(t)
denote the control input into the reaction wheels and hopping
motor, respectively. The system parameters are given in
Tab.I, where bem≡ γkt v

R +b f riction, and Bem(t)≡ (GKt )2

Rh
+bi(t).

This single model encompasses all four phases of hopping
motion, including finite-duration impacts, through the use of
time-varying springs and dampers. During takeoff, landing

Fig. 4. Planar mass-spring-damper model of hopping motion. The time-
varying spring/damper assembly, k(t)/Bem(t), represents the robot leg, and is
set to zero during flight. Time-varying horizontal damping, bx(t), simulates
the no-slip condition during stance.
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Parameter Category Description
g Gravity
m Total robot mass
J Robot Body Moment of inertia
bap Air drag damping
Jw Moment of inertia
baw Reaction Wheels Air drag damping
N Wheels per axis
kt Torque constant
γ Gear reduction
v Reaction Wheel Supply voltage
R Motors Terminal resistance
s≡ γkt v

R Stall Torque
bem Damping coefficient
k(t) Spring constant
r0 Hopping Takeoff/landing height
P Mechanism Spring pre-tension
ρ Pinion gear radius
Kt Torque constant
G Gear Reduction
V Hopping Motor Supply Voltage
Rh Terminal resistance

S≡ GKtV
ρRh

Stall force at supply
voltage

bi(t) Radial Dynamics
Time-varying takeoff
impact dissipation co-
efficient

Bem(t) Damping coefficient
bx(t) No Slip Condition Damping coefficient

TABLE I
PARAMETERS OF IDEALIZED HOPPING MODEL

and stance, the no-slip condition between the foot and ground
is modeled via large horizontal damping at the foot, bx(t),
which may modulated depending on the available traction.
Similarly, the energy loss associated with impacts between
the body and leg on takeoff is modeled by applying large
radial damping on the body during a finite takeoff impact
period, as represented by the time-varying damper, Bem(t).
Lastly, during flight, all spring and damping terms are set
to zero, such that the robot rotates about its center of mass.
It is assumed that both the pitch and roll dynamics of the
actual six degree of freedom system may be modeled using
decoupled planar dynamics of this form, provided that the
angles and angular velocities of the system remain small.

Linearizing these equations about the unstable equilibrium
yields the LTP state space system,

E(t)ẋ = Ā(t)x+ B̄u,

where

E =




J +mrbg(t)2 2mrbg(t)ṙbg(t) −mrbg(t) 0 0
0 1 0 0 0

−mrbg(t) −2mṙbg(t) m 0 0
0 0 0 1 0
0 0 0 0 Jw




,

Ā =




−Nbem−bap mgrbg(t) 0 0 Nbem
1 0 0 0 0
0 mr̈bg(t) −bx(t) 0 0
0 0 1 0 0

bem 0 0 0 −bem−baw




,

B̄ =
[−Ns 0 0 0 s

]T
,

and
x =

[
θ̈ θ̇ ẍg ẋg φ̈

]T
.

Which may be rewritten in the form

ẋ = A(t)x+B(t)u,

where A(t) and B(t) are piecewise continuous matrices

A(t) = E−1(t)Ā(t),

and
B(t) = E−1B̄(t).

Note that the radial trajectory, [r̈bg(t), ˙rbg(t),rbg(t)]T ,
enters the linearized system as time-periodic parameters in
the E and A matrices, due to the assumption that these
dynamics are almost completely decoupled from the rest of
the system. As verified in simulation, this simplification is
valid as long as the center of mass and the point of ground
contact lie nearly along the line tangent to the pre-impact
velocity, which is the type of motion expected of a stably
hopping robot.

B. Differential Riccati Equation

Suppose we wish to minimize the following measure of
system behavior,

J ≡
∫ ∞

0
(x∗Qx+u∗Ru)dt,

which may be interpreted as a summation of the state
variance, and control input energy over an infinite time
horizon. It can be shown that the linear control law that
minimizes J is given by

K(t) =−R−1B(t)∗X(t),

where X(t) > 0 is obtained by marching the Differential
Riccati Equation (DRE) backwards in time

−Ẋ(t) = A(t)∗X(t)+X(t)A(t)−X(t)B(t)R−1B(t)∗X(t)+Q.

As shown in Fig. 5, for our particular system, the control

Fig. 5. Convergence of time-varying control gains to a periodic solution
using Runge-Kutta 4 (RK4). An algorithm leveraging the cyclic QZ decom-
position may also be used to solve the periodic Riccati equation [2].

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA18.5

5152



Fig. 6. Closed-loop simulation of disturbance rejection using time-periodic
gains on the nonlinear plant model.

gains converge to a periodic solution after approximately 2
periods. Note that the control gains peak before each landing.
This is particularly interesting, as these spikes precede, rather
than track, system dynamics discontinuities associated with
landing impact.

Intuitively, the resulting periodic gains reflect the increased
control authority available during flight, due to both the re-
duced rotational inertia, and the absence of a normal ground
force opposing gravity. Therefore, the periodic controller
leverages these time-varying dynamics by manipulating the
takeoff angle and angular orientation during flight, such
that the misalignment between the robot and its ballistic
trajectory upon landing induces a moment that simultane-
ously stabilizes the angular orientation and counteracts the
motor-torque necessary to bleed off reaction wheel speed.
Namely, the controller augments the reaction wheel torque
by appropriately converting radial momentum into angular
momentum on landing.

As shown in Fig. 6, linear time-periodic control attenuates
disturbances using far less control effort than LTI control;
note that, for LTI control

∫ T
0 u2dt = 0.62, compared to∫ T

0 u2dt = 0.037 for LTP control (T is the elapsed simulation
time). Although LTI control produces less angular orientation
variance, this comes at the expense of greatly increased
control effort, which counters the objective of maximum
disturbance rejection. Furthermore, the horizontal trajectory
is uncontrollable via LTI controllers, since the system is
fixed to the ground during stance, and unable to affect its
linear momentum during flight, therefore an LTP controller
is necessary to achieve forward/backward hopping motion.

Future work will investigate the use of gain scheduling

Fig. 7. Breadth of optimal LTP control gains over anticipated hopping
trajectories.

between a pre-computed set of LTP control sequences (Fig.
7) in order to facilitate the control of continuous hopping on
uneven surfaces. Such developments, in addition to refine-
ments in state estimation, are requisite to the implementation
of LTP control on the physical prototype.

III. DESIGN AND OPTIMIZATION OF PHYSICAL
PROTOTYPE

The philosophy throughout the physical design process
has been to minimize weight, cost and complexity (and
hence maximize control authority) by adapting components
to perform multiple functions. To this end, the drive wheels
propel and steer the vehicle as a rover, as well as re-orient
the vehicle between each hop. Additionally, the hopping
propulsion mechanism utilizes two coupled 4-bar linkages
that 1) produce linear motion, 2) behave as a continuously
variable transmission (CVT), and 3) can be locked into
and out of a highly tensioned state, facilitating off-line
accumulation of hopping energy using low-power actuators.

A. Reaction Wheel Design

When out of contact with the ground, the wheels re-orient
the robot by conservation of angular momentum; i.e. the
reaction wheels sacrifice their orientation for the sake of
body and leg. The torque-speed curve of the reaction wheel
motors creates an incentive for heavy reaction wheels, as
this maximizes operation of the wheel-motors in a high-
torque/low-speed state. Even for the largest wheels that fit
within the robot’s packaging constraints, a significant amount
of ballast (approx. 10% of the total robot mass) must be
added to each wheel, in order to create sufficient moment
of inertia for effective disturbance rejection. Yet, this added
mass amplifies destabilizing ground normal forces, which,
in turn, necessitates larger, more powerful reaction wheel
motors. The obvious solution to this ”catch twenty-two” has
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Fig. 8. Integrated reaction wheel design. Two drive motors near the wheel
perimeter engage a concentric spur-gear fixed to the robot body. Battery
cells mounted around the circumference power the motors, and pass current
to the robot body via integrated graphite brushes.

been mounting ”live weight” (i.e. the motors and batteries)
along the circumference of the reaction wheel itself (Fig. 8).

Compared to a conventional motor with a miniature multi-
stage gearbox, this design can transmit significantly more
torque with fewer losses, while reducing radial loading of the
motor output shafts, and providing air-cooling of the motors.

B. Hopping Propulsion Mechanism

The development of a spring-loaded dual four-bar linkage
has facilitated the directed release of gradually accumu-
lated elastic energy using low-power DC gearmotors. This
design was motivated by the desire to continuously vary
the torque/speed relationship between the hopping actuator
and the leg; i.e. high-speed/low-torque operation during
takeoff/landing and low-speed/high-torque operation during
each rebound. Other novel hopping mechanisms have also
served as inspirations for this design [4], [5], and [6].

An intuitive way of implementing such a gear reduction
would be via a conical spool-and-wire drive (Fig. 9). A
similar effect has been achieved through a combination of
two four-bar linkages, with the added benefit of linear motion
and locking capability (Fig. 10). The linkage kinematics

Fig. 9. spool and dual-wire drive concept. Spools would contain helical
grooves to guide the wires.

Fig. 10. Kinematics of four-bar hopping mechanism in terms of an
analogous continuously variable rack & pinion gear-set with radius ρ(h)
(springs and spring forces omitted for clarity).

follow from basic geometry

ρ(h) = 2Lsinθ =

√
L2− (hland +2Lcosθland −h)2

4
,

where hland and θland denote the height of the robot center
of mass, and linkage angle at takeoff/landing, respectively.

Given a four-bar linkage with a maximum stroke length,
hland − d, allowed by packaging constraints on the link-
length, L, and a motor size limited by battery current-draw
constraints, a good approximation of the optimal hopping
motor gear ratio, G, is given by

G =
E

√
2g(hapex−hland)

ωpmax ρ(L,hland ,θland)
,

where hapex is the anticipated fully-developed hopping
height, g is the gravitational constant, E is the coefficient
of restitution associated with takeoff impact, and ωpmax is
the velocity of the hopping motor at peak power output.

Continuous hopping performance is maximized by using
the softest spring capable of preventing the robot from
”bottoming out”, as this maximizes both the duration of
stance-phase energy injection, and the spring energy storage
capacity for a given peak spring tension. Namely, the optimal
spring constant is given by

k =
2mg(hapex−hland)

hland −d
.

Given these parameters, the performance gains of the
dual four-bar mechanism over a fixed ratio rack & pinion
drive is demonstrated in simulation (Fig. 11). Note the
smoothening of the motor shaft speed, ω , near the fully-
tensioned state, and the corresponding increases in linear
force, F , transmitted from the body onto the leg, for the
case of four-bar actuation.

The continuously variable torque-speed characteristics of
the four-bar mechanism are complemented by the ability
of this mechanism to function as a locking quick release,
even under extreme tension. Namely, since the effective gear
ratio between the hopping motor and dual four-bar linkage
is infinite at θ = 0o, the hopping mechanism drive motor is
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Fig. 11. Comparison of purely vertical hopping performance of rack-and-
pinion vs. four-bar drive mechanisms, given L = .17m, G = 30 : 1, θland =
90o, hland = .35m.

capable locking the robot leg into and out of a fully tensioned
state while roving (Fig. 12).

By pre-tensioning the springs during this locked state, the
mechanism may initiate single large hops and even running
jumps from and immediately back into upright roving mode,
as illustrated in Fig. 1. This locking capability facilitates
efficient jumping maneuvers by eliminating the requirement
for real-time injection of hopping energy; i.e. energy may be
gradually accumulated in the springs before release, using a
low-power, high-torque lead-screw spring tensioner.

The single hop capability also has the distinct advantage of
maximizing operation of the robot in the highly controllable,
and efficient upright roving mode. This capability will be

Fig. 12. CAD rendering of hopping mechanism in both locked and
unlocked states.

Fig. 13. CAD rendering of quick-release spring clamping concept.

leveraged in order to efficiently and robustly climb stairs.
Namely, the robot begins on a bottom step in upright roving
mode with the four-bar locked in tension, launches itself
upward by releasing this tension, and immediately reverts
back into upright roving mode upon reaching the next step,
by reversing the hopping mechanism drive motor on landing.
This process will be facilitated by the development of a
spring tensioning mechanism that is able to quick release
(Fig. 13), as the current prototype relies partly on momentum
in order to lock back into a tensioned state.

IV. CONCLUSIONS/FUTURE WORK

The mechanical design and control strategy for a new class
of hopping rovers has been presented. These innovations
have led to a unique fusion of hopping and rolling motions,
coordinated by time-periodic LQR and adjoint-based optimal
trajectory planning. In contrast to the MIT [3] and Carnegie-
Mellon [4] hoppers, optimal control is used to stabilize and
coordinate stationary and running hopping motions, with the
additional capability of righting the robot from rest on the
ground.

Future development of the rover will focus on object
recognition, spatial awareness, stair-climbing, and object ma-
nipulation. On-board vision systems, coupled with extended
kalman filtering of inertial measurements will facilitate the
development of fully-autonomous variants of the current
prototype. Furthermore, the manipulation of objects (for
instance the retrieval and tossing of balls for entertainment
and sport) is another exciting application suited for such
a dynamic platform. These prospects, combined with the
inherently fascinating aspects of hopping robots, promise to
make this an exciting field of research for years to come.
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