
Proceedings of the 18th IFIP TC7Conference on System Modelling and Optimization,Detroit, Michigan, July 1997.CONTROL OF TURBULENT FLOWSR. Temam1;2, T. Bewley3 and P. Moin3July 18, 1997Abstract. It is useful for many industrial applications to be able to control turbulence in
uid 
ows, either to reduce it or, in some cases, to increase it. Active or passive controlprocedures are of interest. The problems that we face here are considerable and encompassthose related to the control of complex nonlinear systems and those related to the directnumerical simulation of turbulent 
ows.Our aim in this lecture is to report on some recent results obtained by the authors in aninteractive collaboration between mathematicians and 
uid dynamicists, and which representa small step in the solution of this problem; this includes the mathematical modelling of suchcontrol problems, theoretical results (existence of optimal control, necessary conditions ofoptimality) and the development of e�ective numerical algorithms.
IntroductionIt is useful for many industrial applications to be able to control turbulence in 
uid
ows either to reduce it or, in some cases, to increase it. At this time the most importantapplications are probably those arising in aeronautics which include the reduction of skinfriction drag and the delay of transition to turbulence or separation of the boundary layer.Other important applications may be found in thermohydraulics, magnetohydrodynamics,climate and pollution forecasting. In combustion the objective is to increase turbulencefor a better mixing of the fuel and its oxidant.As in other control problems, such problems need �rst to be modelled, deciding (choos-ing) what is costly and what are the objectives; passive and active controls are of interest,and more recently robust control: the objective may be e.g. the design of an airfoil includ-ing its surface (shape optimization/passive control) or the active control of small actuatorson the surface of the airfoil to properly respond to the coherent structures of the nearwallturbulence.Key words and phrases. Fluid mechanics, turbulence, optimal control, robust control.1 Laboratoire d'Analyse Num�erique, Universit�e Paris-Sud, Bâtiment 425, 91405 Orsay, France2 The Institute for Scienti�c Computing & Applied Mathematics, Indiana University, Rawles Hall,Bloomington, IN 474053 Center for Turbulence Research, Stanford University, Stanford, CA 94305-3030.Typeset by AMS-TEX1



2 R. TEMAM, T. BEWLEY, P. MOINThe di�culties of the problem are considerable and much remains to be done. Thedescription of the \state" of the system amounts to the resolution of the 3D Navier-Stokes equations in a turbulent context; the capacity of the present computers allows thecalculation of such 
ows in simple cases, but this still demands much from the largestavailable computers in terms of computing power and storage requirements. As solutionsto these nonlinear problems must be sought iteratively, we must numerically solve suchproblems several times, further compounding the computational expense of this procedure.During the past years, a number of articles have appeared in the engineering and math-ematical literatures concerning the control of turbulent 
ows and treating di�erent aspectsof the problem; see e.g. F. Abergel and R. Temam (1990), M. Gunzburger, L. Hou andT.P. Sovobodny (1990), H. Choi, P. Moin and J. Kim (1994), S.S. Sritharan (1991) andthe references therein. The presentation which follows is mainly based on the article ofF. Abergel and R. Temam (1990) hereafter referred to as [AT] which sets the problem ofcontrolling turbulence in the framework of control theory in the spirit of J.L. Lions (1968),and on two articles under completion: T.R. Bewley, P. Moin and R. Temam (1997b), T.R.Bewley, P. Moin, R. Temam and M. Ziane (1997) hereafter called [BMT] and [BMTZ]; seealso T.R. Bewley, P. Moin and R. Temam (1996), (1997a).This article is organized as follows. In Section 1 we describe the modelling of the openloop control problem under consideration and give the main theoretical result. In Section 2we describe the numerical algorithm which has been used without theoretical justi�cationand which has produced a nearly ideal result in some cases in which we obtain an almostcomplete relaminarization of the 
ow. In Section 3 we discuss some other issues, namelysome conjectures on the theoretical justi�cation of the algorithm which we used, the wallinformation problem, and some preliminary remarks on the utilization and implementationof robust control.Although the results obtained in Section 2 are quite signi�cant (nearly optimal), wewould like to emphasize that we are still far from practical (industrial) applications withseveral respects: the geometry is simple, the Reynolds number not too high, full informa-tion (and not just wall information) has been used; the practical implementation of theoptimal control is not available and extensive calculations have been used which might bedi�cult to reproduce in real time. Nevertheless there is hope to obtain in the future, formore involved and more realistic problems, a still very useful if not as signi�cant reductionof the cost function. 1. The Channel Flow ProblemWe consider the 
ow of an incompressible 
uid in a three dimensional channel as asimpli�ed form of the 
ow in a wind tunnel. The channel occupies the region 
 = (0; `1)�(0; `2) � (0; `3): The 
ow is maintained by an unspeci�ed pressure gradient P = P (�); inthe x1 (streamwise) direction. The 
ow will be controlled by the normal velocity of theupper wall �w; fx2 = `2g:Hence, the governing equations are the Navier-Stokes,@u@t � ��u+ (u � r)u+rp = Pe1 in 
� (0; T );r � u = 0 in 
� (0; T ): (1.1)



CONTROL OF TURBULENT FLOWS 3Here u = (u1; u2; u3); function of x and t is the velocity vector; the pressure is p(x; t) �x1P (t); p; P unknown, P accounting for the pressure gradient (e1 = (1; 0; 0)): Periodicityis assumed for u and p in the direction x1 and x3 andu = ' on �w � (0; T ) (1.2)whereas u = ' on �` the rest of the lateral boundary of �: Finally the 
ux is �xed andgiven ZZx1=0 u1 dx2 dx3 = F (1.3)The weak formulation of (1.1)-(1.3), consists in looking for u = u(x; t) which satis�es(1.2), (1.3) and ddt Z
 uv dx+ Z
f�ru � rv + [(u � r)u]gdx = 0; (1.4)for every (smooth) test function v such thatr � v = 0; v = 0 on �w and �` andZZx1=0 v1 dx2 dx3 = 0 (1.5)(see e.g. R. Temam (1984) for many related examples).Now in the language of control theory, ' is the control, u = u' is the state of the system,and the state equation consists of (1.2)-(1.5).For the modelling of the control problem, we need to choose/de�ne the cost function J .It consists of two terms J = J0 + J1: The �rst term, e.g.J0(') = `22 jj'jj2X = `22 Z T0 Z�w j'j2 dx1 dx3 dt;accounts for the cost of the control. The second term, e.g.J1a(u) = 12 TZ0 Z
 j curl uj2 dx dt;J1b(u) = Z T0 Z�w @u1@x2 dx2 dx3;J1c(u) = 12 Z
 ju(x; T )j2 dx;represents the 
ow quantity (related to turbulence) which we want to minimize; J1a wasused in [AT] for the theoretical study and J1b; J1c are used for the computations in [BMT],J1b representing the terminal value of the turbulent kinetic energy (TKE) and J1c thetime-averaged value of the drag.



4 R. TEMAM, T. BEWLEY, P. MOINThe corresponding control problems now read (for i = a; b or c):inf' fJ0(') + J1i(')g (1.6)Omitting here certain theoretical questions addressed in [AT], the following results wereessentially proved in [AT]:The control problem (1.6) has a solution, corresponding to the(optimal) control �' and corresponding state �u = u �': (1.7)The optimal state �' satis�es the necessary condition of optimalityJ 00( �') + J 01a( �') = 0;described as usual by an equation for the adjoint state�w = w �' (see [AT]). (1.8)The gradient algorithm and conjugate gradient algorithmconverge to the optimal control �' if the initialization '0belongs to a small neighborhood of �' in the space X: (1.9)See [AT] for the details in the case of J1a; the proof easily extends to J1c: The proofsfor J1b are not available, but this cost function has been selected for its numerical (com-putational) simplicity, its physical interest and the engineers' conviction that drag cannotbecome negative in physically realistic 
ows.2. Numerical Simulations
Figure 1. Coherent structures of a turbulent 
ow at Re� = 180.As motivation to the present work, we show in Figure 1 the coherent structures whichappear near the wall in a turbulent channel 
ow and which we want to annihilate. The�gure corresponds to a Reynolds number Re� = 180, for which optimally controlled resultsare still under preparation; the results below correspond to Re� = 100.Taking into account present computational capabilities the algorithms provided by (1.9)are not feasible at this time for large T . Indeed, for the 
ow to attain some statisticalequilibrium, T needs to be su�ciently large and (1.9) implies the resolution of the turbulent
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Figure 2. Time Evolution of the drag for di�erent values of � (denoted T in the �gure).
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Figure 3. Time Evolution of the turbulent kinetic energy for di�erent values of �(denoted T in the �gure).



6 R. TEMAM, T. BEWLEY, P. MOINNavier-Stokes equations and its adjoint on (0; T ); a number of times corresponding to thegradient iterations. Hence, our objective now, will be to look for suboptimal procedureswhich reduce the cost function, even if not making it minimal.A very simple feedback law was used as a �rst step, which produced a drag reductionof approximately 17%. Note that the same procedure was used by H. Choi, R. Temam, P.Moin and J. Kim (1993) for the simpler case of the stochastic Burgers equation driven bya white noise; in this case the reduction of the cost function was approximately 75%.We looked then for a multi-time-step procedure more adapted to the problem. Indeedthere are here two di�erent evolution equations which need to be solved, namely the Navier-Stokes equation itself and the abstract evolution equation of which the gradient algorithmscan be seen as a time discretization:'n � 'n�1 + �J 0('n�1) = 0 () @'(s)@s + J 0('(s)) = 0:These two equations produce two di�erent time constants and demand di�erent time stepscorresponding to di�erent CFL (Courant-Friedrichs-Lewy) stability conditions.Brie
y described the algorithm implemented in [BMT] consists in dividing the interval(0; T ) into intervals of length � ; then on each interval (m�; (m+1)�); we solve the controlproblem described in Section 1. At m�; u is continuous (u(m� + 0) = u(m� � 0)); buthowever for the gradient algorithms, it appeared best to start the iterations with 'm;0 = 0instead of 'm;0 = '(m� �0): On each interval (m�; (m+1)�) the Navier-Stokes equationsare discretized with a time step �t << �:The evolution of the drag plotted in Figure 2 for di�erent values of �; at Reynoldsnumber Re� = 100; shows a near relaminarization for both � = 25 and � = 50 (in viscoustime units). For such nearly relaminarized 
ows, the drag equals about 42 percent of itsuncontrolled fully turbulent value (line � ), which is the best we could achieve using thecurrent approach. The evolution of the turbulent kinetic energy plotted in Figure 3 versus� shows even more strikingly the relaminarization process initiated for � = 25 and � = 50(in viscous time units). For both these plots, the cost functional used is the terminal valueof the turbulent kinetic energy (i.e. J = J0 + J1c). The reason for the lobed behavior ofthe curves is that the penalty in the cost functional is only on the terminal value of theTKE (i.e., at the end of each optimization interval)|excursions of greater TKE during themiddle of each optimization interval are allowed if they lead to reduced values of TKE bythe end of the interval. The reader is referred to [BMT] for the details of the calculationand for physical insights which may be drawn from the results.3. Other issues(i) Theoretical justi�cation of the algorithm.Turbulent 
ows are believed to be statistically stationary and therefore the in�nite timehorizon, T ! 1; is of physical relevance. In fact stationarity and ergodicity (if proven)imply that the time averages 1T TZ0 u(x; t)dt



CONTROL OF TURBULENT FLOWS 7converge, as T !1; to a measure � = �' which depends only on '; see C. Foias and R.Temam (1975). Hence we could consider a minimization problem of the form,inf' fZZ�w @u1@x2 dx d�'(u) + `22 [[']]2g(where the norm [[�]] needs to be properly de�ned), and then compare the gradient al-gorithm applied to this optimization problem to the procedure described before. For theBurgers equation theoretical issues are addressed in G. DaPrato, A. Debussche and R.Temam (1994) who study the stochastic Burgers equations and in G. Da Prato and A. De-bussche (1997) who address the control problem and its relation with the Hamilton-Jacobiequation.(ii) Wall information.The previous numerical study was based on the assumption that we have full informationon the 
ow (u known everywhere), which, of course, is not realistic. In practice there willbe wall sensors measuring certain quantities at the wall and the control algorithm shouldbe therefore based on wall information only.Two fundamentally di�erent types of partial-information feedback controllers may beconsidered for such a purpose. In the �rst approach, the available 
ow measurements arefed back through a simple convolution kernel K to compute the control. The problem tobe solved here is simply to �nd the best K which minimizes the 
ow quantity of interest.In the second approach, the available 
ow measurements are fed back through a simpleconvolution kernel L to compute a forcing term to update the state of an estimator, whichis a set of equations which model the evolution of the 
ow itself. For the sake of analysis,the model equations may be taken simply as the Navier Stokes equation acting on somestate estimate û; however, this approach is particularly attractive from the standpoint thatit can maximally utilize simple low-order models, such as POD-based models, for the stateestimation of the near-wall turbulence. As an accurate state estimate is developed, theentire state estimate is fed back through a simple convolution kernel K to compute thecontrol. The problem to be solved here is two-fold: i) to �nd the best L such that thestate estimate is an accurate approximation of the state of the 
ow itself, at least near thewall where the measurements are made and the control is applied, and ii) to �nd the bestK which minimizes the 
ow quantity of interest.As discussed in T. Bewley, P. Moin and R. Temam (1997c), we may exploit the factthat we know the equations governing the 
ow to propose a computationally expensiveadjoint-based technique to optimize the unknown convolution kernels K and L in thesesystems, which can only be performed on a supercomputer. However, once optimized, thefeedback control rules themselves are much simpler than the adjoint-based technique usedto optimize K and L, and thus may be considered for use in the laboratory.(iii) Robust control.Robust control for linear problems is well understood (see, e.g., J.C. Doyle et al., 1989and K. Zhou, J.C. Doyle, and K. Glover, K. 1996)). Thus, when (u � r)u is dropped orlinearized around a stationary laminar 
ow solution, standard robust (i.e., H1) controltechniques may be applied. This problem is addressed in a 
uid-mechanical context in T.



8 R. TEMAM, T. BEWLEY, P. MOINBewley, S. Liu and R. Agrawal (1997), where H1 control is used to stabilize a laminar
ow to inhibit transition to turbulence. As shown in Figure 4, robust control focuses thecontrol e�ort on the most unstable mode of the system, not \wasting" control e�ort oncontrollable but stable modes of the system. By using less control, there are fewer waysthe control can \go wrong", and the system exhibits improved robustness to disturbanceswith less control e�ort than corresponding optimal (i.e., H2) controlled system.
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 forH2 (optimal) and H1 (robust) controllers applied to the Orr-Sommerfeld equation forRe = 10; 000, kx = 1, kz = 0 using blowing/suction as the control variable.The extension of the robust control concept to nonlinear problems such as turbulence isaddressed in T.R. Bewley, P. Moin and R. Temam (1997a) from a computational perspec-tive and in [BMTZ] from a theoretical perspective. In fact, it boils down to the optimalapproach described previously with an additional forcing term � added to the RHS of theNavier-Stokes equation (1.1) governing the system. The cost function considered isJ = J1 + `22 Z T0 Z�w j'j2 dx1 dx3 dt� 
22 Z T0 Z
 j�j2 dx1 dx2 dx3 dt:The cost J isminimized with respect to the control ', while simulataneously it ismaximizedwith respect to the disturbance �, in the spirit of a noncooperative game. Thus, thecontrol ' is designed to handle that disturbance � which is, in some manner, a worst caseaggravation to the closed-loop system. By so doing, the control found is e�ective in thepresence of a broad class of disturbances.ConclusionIn this article, we have presented the modelling of a typical control problem in 
uid
ow, namely, the reduction of the turbulence in a channel. Despite the large size of thesystem (up to 2:4 � 107 state variables in 
 and 6 � 104 control variables on �w), we



CONTROL OF TURBULENT FLOWS 9have successfully implemented a control procedure which reduces the drag nearly to itsabsolute minimum, corresponding to laminar 
ow. Such a relaminarization of this 
ow bywall-normal blowing and suction has not been possible using any other control algorithm.Further work in this direction will include: a) an attempt for theoretical justi�cationof the algorithm, using probably the stationarity of turbulence, b) the optimization ofmore practical feedback control algorithms which are computationally inexpensive anddepend on wall information only, and c) the design of robust controllers which account forworst-case disturbances in their derivation.AcknowledgementsThis work was supported in part by the National Science Foundation under Grants NSF-DMS-9400615 and NSF-DMS-9705229, by the O�ce of Naval Research under grant NAVY-N00014-91-J-1140, by the Air Force O�ce of Scienti�c Research under Grant F49620-93-1-0078, and by the Research Fund of Indiana University. The computer time was providedby NASA-Ames Research Center in support of this project.REFERENCESAbergel, F. and Temam, R. (1990), On some control problems in 
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