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CONTROL OF TURBULENT FLOWS
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ABsTRACT. It is useful for many industrial applications to be able to control turbulence in
fluid flows, either to reduce it or, in some cases, to increase it. Active or passive control
procedures are of interest. The problems that we face here are considerable and encompass
those related to the control of complex nonlinear systems and those related to the direct
numerical simulation of turbulent Hows.

Our aim in this lecture is to report on some recent results obtained by the authors in an
interactive collaboration between mathematicians and fluid dynamicists, and which represent
a small step in the solution of this problem; this includes the mathematical modelling of such
control problems, theoretical results (existence of optimal control, necessary conditions of
optimality) and the development of effective numerical algorithms.

INTRODUCTION

It is useful for many industrial applications to be able to control turbulence in fluid
flows either to reduce it or, in some cases, to increase it. At this time the most important
applications are probably those arising in aeronautics which include the reduction of skin
friction drag and the delay of transition to turbulence or separation of the boundary layer.
Other important applications may be found in thermohydraulics, magnetohydrodynamics,
climate and pollution forecasting. In combustion the objective is to increase turbulence
for a better mixing of the fuel and its oxidant.

As in other control problems, such problems need first to be modelled, deciding (choos-
ing) what is costly and what are the objectives; passive and active controls are of interest,
and more recently robust control: the objective may be e.g. the design of an airfoil includ-
ing its surface (shape optimization/passive control) or the active control of small actuators
on the surface of the airfoil to properly respond to the coherent structures of the nearwall
turbulence.
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The difficulties of the problem are considerable and much remains to be done. The
description of the “state” of the system amounts to the resolution of the 3D Navier-
Stokes equations in a turbulent context; the capacity of the present computers allows the
calculation of such flows in simple cases, but this still demands much from the largest
available computers in terms of computing power and storage requirements. As solutions
to these nonlinear problems must be sought iteratively, we must numerically solve such
problems several times, further compounding the computational expense of this procedure.

During the past years, a number of articles have appeared in the engineering and math-
ematical literatures concerning the control of turbulent flows and treating different aspects
of the problem; see e.g. F. Abergel and R. Temam (1990), M. Gunzburger, L. Hou and
T.P. Sovobodny (1990), H. Choi, P. Moin and J. Kim (1994), S.S. Sritharan (1991) and
the references therein. The presentation which follows is mainly based on the article of
F. Abergel and R. Temam (1990) hereafter referred to as [AT] which sets the problem of
controlling turbulence in the framework of control theory in the spirit of J.L. Lions (1968),
and on two articles under completion: T.R. Bewley, P. Moin and R. Temam (1997b), T.R.
Bewley, P. Moin, R. Temam and M. Ziane (1997) hereafter called [BMT] and [BMTZ]; see
also T.R. Bewley, P. Moin and R. Temam (1996), (1997a).

This article is organized as follows. In Section 1 we describe the modelling of the open
loop control problem under consideration and give the main theoretical result. In Section 2
we describe the numerical algorithm which has been used without theoretical justification
and which has produced a nearly ideal result in some cases in which we obtain an almost
complete relaminarization of the flow. In Section 3 we discuss some other issues, namely
some conjectures on the theoretical justification of the algorithm which we used, the wall
information problem, and some preliminary remarks on the utilization and implementation
of robust control.

Although the results obtained in Section 2 are quite significant (nearly optimal), we
would like to emphasize that we are still far from practical (industrial) applications with
several respects: the geometry is simple, the Reynolds number not too high, full informa-
tion (and not just wall information) has been used; the practical implementation of the
optimal control is not available and extensive calculations have been used which might be
difficult to reproduce in real time. Nevertheless there is hope to obtain in the future, for
more involved and more realistic problems, a still very useful if not as significant reduction
of the cost function.

1. THE CHANNEL FLOW PROBLEM

We consider the flow of an incompressible fluid in a three dimensional channel as a
simplified form of the flow in a wind tunnel. The channel occupies the region Q = (0, £;) x
(0,45) x (0,43). The flow is maintained by an unspecified pressure gradient P = P(7), in
the 1 (streamwise) direction. The flow will be controlled by the normal velocity of the
upper wall Ty, {zo = £5}.

Hence, the governing equations are the Navier-Stokes,

% —vAu+ (u-V)u+ Vp=Pe; inx(0,7)

V-u=0 inQx(0,7T).

’ (1.1)
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Here u = (uy,u9,us), function of = and ¢ is the velocity vector; the pressure is p(z,t) —
x1P(t), p, P unknown, P accounting for the pressure gradient (el = (1,0,0)). Periodicity
is assumed for u and p in the direction 1 and z3 and

u=gponly, x(0,T) (1.2)

whereas u = ¢ on I'y the rest of the lateral boundary of I'. Finally the flux is fixed and

given
// uy drgdrg = F (1.3)
CB1:0

The weak formulation of (1.1)-(1.3), consists in looking for v = wu(x,t) which satisfies
(1.2), (1.3) and

% ; uv dx + /Q{VV’LL Vo~ [(u-V)ul}de =0, (1.4)

for every (smooth) test function v such that

V-v=0, v=0 onl, and I'; and

// vy dredrs =0 (1.5)
£E1:0

(see e.g. R. Temam (1984) for many related examples).

Now in the language of control theory, ¢ is the control, u = u, is the state of the system,
and the state equation consists of (1.2)-(1.5).

For the modelling of the control problem, we need to choose/define the cost function .J.
It consists of two terms J = .Jy + Jy. The first term, e.g.

62 . 62 T )
Ine) =S lel =5 [ [ 1o doydoae,
0 r

accounts for the cost of the control. The second term, e.g.

J1a (1) // curl u|? dz dt,
0

Jip(u / / ﬂdﬂ?z dzs,
63:2

Jic(u /|uxT )2 du;

represents the flow quantity (related to turbulence) which we want to minimize; J;, was
used in [AT] for the theoretical study and Jyp, J1. are used for the computations in [BMT],
J1p representing the terminal value of the turbulent kinetic energy (TKE) and Jy. the
time-averaged value of the drag.
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The corresponding control problems now read (for i = a, b or c):
mf{Jo(p) + Jui(¢)} (1.6)

Omitting here certain theoretical questions addressed in [AT], the following results were
essentially proved in [AT]:

The control problem (1.6) has a solution, corresponding to the

. _ . _ 1.7
(optimal) control ¢ and corresponding state © = ug. (1.7)
The optimal state ¢ satisfies the necessary condition of optimality
Jo(@) + J1,(@) =0,
0(#) 1a(9) (1.8)

described as usual by an equation for the adjoint state

w = wg (see [AT]).

The gradient algorithm and conjugate gradient algorithm
converge to the optimal control ¢ if the initialization g (1.9)
belongs to a small neighborhood of ¢ in the space X.

See [AT] for the details in the case of .Jy,; the proof easily extends to .Ji.. The proofs
for Jip are not available, but this cost function has been selected for its numerical (com-
putational) simplicity, its physical interest and the engineers’ conviction that drag cannot
become negative in physically realistic lows.

2. NUMERICAL SIMULATIONS

FiGure 1. Coherent structures of a turbulent flow at Re, = 180.

As motivation to the present work, we show in Figure 1 the coherent structures which
appear near the wall in a turbulent channel flow and which we want to annihilate. The
figure corresponds to a Reynolds number Re, = 180, for which optimally controlled results
are still under preparation; the results below correspond to Re, = 100.

Taking into account present computational capabilities the algorithms provided by (1.9)
are not feasible at this time for large 7. Indeed, for the flow to attain some statistical
equilibrium, T needs to be sufficiently large and (1.9) implies the resolution of the turbulent
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FIGURE 2. Time Evolution of the drag for different values of 7 (denoted T in the figure).
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Ficure 3. Time Evolution of the turbulent kinetic energy for different values of 7
(denoted T in the figure).
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Navier-Stokes equations and its adjoint on (0,7’), a number of times corresponding to the
gradient iterations. Hence, our objective now, will be to look for suboptimal procedures
which reduce the cost function, even if not making it minimal.

A very simple feedback law was used as a first step, which produced a drag reduction
of approximately 17%. Note that the same procedure was used by H. Choi, R. Temam, P.
Moin and J. Kim (1993) for the simpler case of the stochastic Burgers equation driven by
a white noise; in this case the reduction of the cost function was approximately 75%.

We looked then for a multi-time-step procedure more adapted to the problem. Indeed
there are here two different evolution equations which need to be solved, namely the Navier-
Stokes equation itself and the abstract evolution equation of which the gradient algorithms
can be seen as a time discretization:

dp(s)
s

These two equations produce two different time constants and demand different time steps
corresponding to different CFL (Courant-Friedrichs-Lewy) stability conditions.

Briefly described the algorithm implemented in [BMT] consists in dividing the interval
(0,T) into intervals of length 7; then on each interval (mr, (m + 1)7), we solve the control
problem described in Section 1. At m7,u is continuous (u(m7 + 0) = u(m7 — 0)), but
however for the gradient algorithms, it appeared best to start the iterations with ¢™? = 0
instead of ™% = p(m7 —0). On each interval (m7, (m+ 1)7) the Navier-Stokes equations
are discretized with a time step At << 7.

The evolution of the drag plotted in Figure 2 for different values of 7, at Reynolds
number Re, = 100, shows a near relaminarization for both 7 = 25 and 7 = 50 (in viscous
time units). For such nearly relaminarized flows, the drag equals about 42 percent of its
uncontrolled fully turbulent value (line —-—), which is the best we could achieve using the
current approach. The evolution of the turbulent kinetic energy plotted in Figure 3 versus
7 shows even more strikingly the relaminarization process initiated for 7 = 25 and 7 = 50
(in viscous time units). For both these plots, the cost functional used is the terminal value
of the turbulent kinetic energy (i.e. J = .Jy + Ji.). The reason for the lobed behavior of
the curves is that the penalty in the cost functional is only on the terminal value of the
TKE (i.e., at the end of each optimization interval)—excursions of greater TKE during the
middle of each optimization interval are allowed if they lead to reduced values of TKE by
the end of the interval. The reader is referred to [BMT] for the details of the calculation
and for physical insights which may be drawn from the results.

" ="+ pd (9" ) =0 +J'(p(s)) = 0.

3. OTHER ISSUES

(i) Theoretical justification of the algorithm.
Turbulent flows are believed to be statistically stationary and therefore the infinite time
horizon, T' — oo, is of physical relevance. In fact stationarity and ergodicity (if proven)

imply that the time averages
T
! / (2, 1)t
T | ulz,
0
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converge, as 1" — oo, to a measure yu = p, which depends only on ¢; see C. Foias and R.
Temam (1975). Hence we could consider a minimization problem of the form,

mf{// Ly dpg(u) + 622 )]}

(where the norm [[-]] needs to be properly defined), and then compare the gradient al-
gorithm applied to this optimization problem to the procedure described before. For the
Burgers equation theoretical issues are addressed in G. DaPrato, A. Debussche and R.
Temam (1994) who study the stochastic Burgers equations and in G. Da Prato and A. De-
bussche (1997) who address the control problem and its relation with the Hamilton-Jacobi
equation.

(ii) Wall information.

The previous numerical study was based on the assumption that we have full information
on the flow (u known everywhere), which, of course, is not realistic. In practice there will
be wall sensors measuring certain quantities at the wall and the control algorithm should
be therefore based on wall information only.

Two fundamentally different types of partial-information feedback controllers may be
considered for such a purpose. In the first approach, the available flow measurements are
fed back through a simple convolution kernel K to compute the control. The problem to
be solved here is simply to find the best K which minimizes the flow quantity of interest.

In the second approach, the available flow measurements are fed back through a simple
convolution kernel L to compute a forcing term to update the state of an estimator, which
is a set of equations which model the evolution of the flow itself. For the sake of analysis,
the model equations may be taken simply as the Navier Stokes equation acting on some
state estimate u; however, this approach is particularly attractive from the standpoint that
it can maximally utilize simple low-order models, such as POD-based models, for the state
estimation of the near-wall turbulence. As an accurate state estimate is developed, the
entire state estimate is fed back through a simple convolution kernel K to compute the
control. The problem to be solved here is two-fold: i) to find the best L such that the
state estimate is an accurate approximation of the state of the flow itself, at least near the
wall where the measurements are made and the control is applied, and ii) to find the best
K which minimizes the flow quantity of interest.

As discussed in T. Bewley, P. Moin and R. Temam (1997¢), we may exploit the fact
that we know the equations governing the flow to propose a computationally exrpensive
adjoint-based technique to optimize the unknown convolution kernels K and L in these
systems, which can only be performed on a supercomputer. However, once optimized, the
feedback control rules themselves are much simpler than the adjoint-based technique used
to optimize K and L, and thus may be considered for use in the laboratory.

(iii) Robust control.

Robust control for linear problems is well understood (see, e.g., J.C. Doyle et al., 1989
and K. Zhou, J.C. Doyle, and K. Glover, K. 1996)). Thus, when (u - V)u is dropped or
linearized around a stationary laminar flow solution, standard robust (i.e., Hs,) control
techniques may be applied. This problem is addressed in a fluid-mechanical context in T.
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Bewley, S. Liu and R. Agrawal (1997), where H., control is used to stabilize a laminar
flow to inhibit transition to turbulence. As shown in Figure 4, robust control focuses the
control effort on the most unstable mode of the system, not “wasting” control effort on
controllable but stable modes of the system. By using less control, there are fewer ways
the control can “go wrong”, and the system exhibits improved robustness to disturbances

with less control effort than corresponding optimal (i.e., Hz) controlled system.
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FIGURE 4. Movement of closed-loop eigenvalues versus control parameters £ and  for
H, (optimal) and H., (robust) controllers applied to the Orr-Sommerfeld equation for
Re =10,000, k, =1, k, = 0 using blowing/suction as the control variable.

The extension of the robust control concept to nonlinear problems such as turbulence is
addressed in T.R. Bewley, P. Moin and R. Temam (1997a) from a computational perspec-
tive and in [BMTZ] from a theoretical perspective. In fact, it boils down to the optimal
approach described previously with an additional forcing term x added to the RHS of the
Navier-Stokes equation (1.1) governing the system. The cost function considered is

Zz T 72 T
J:J1+—/ /<p|2d:171 dxs dt — —/ /|X|2dm1 dxo dxs dt.
2 Jo 2 Jo
Tw Q

The cost J is minimized with respect to the control ¢, while simulataneously it is mazimized
with respect to the disturbance y, in the spirit of a noncooperative game. Thus, the
control ¢ is designed to handle that disturbance x which is, in some manner, a worst case
aggravation to the closed-loop system. By so doing, the control found is effective in the
presence of a broad class of disturbances.

CONCLUSION

In this article, we have presented the modelling of a typical control problem in fluid
flow, namely, the reduction of the turbulence in a channel. Despite the large size of the
system (up to 2.4 x 107 state variables in Q and 6 x 10* control variables on T',), we
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have successfully implemented a control procedure which reduces the drag nearly to its
absolute minimum, corresponding to laminar flow. Such a relaminarization of this flow by
wall-normal blowing and suction has not been possible using any other control algorithm.

Further work in this direction will include: a) an attempt for theoretical justification
of the algorithm, using probably the stationarity of turbulence, b) the optimization of
more practical feedback control algorithms which are computationally inexpensive and
depend on wall information only, and ¢) the design of robust controllers which account for
worst-case disturbances in their derivation.
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