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Abstract— This paper presents a (patent-pending) small,
quasi-static, minimal-complexity Stair Climbing Robot (SCR).
The vehicle design is given simply by adding a third motor to a
(Segway-like) Mobile Inverted Pendulum (MIP), enabling it to
maneuver up stairs, leveraging feedback control, by planting
it’s “foot” onto the ground in front of the next step, lifting
the chassis/wheel assembly up it’s own “leg”, leaning over onto
the top of the next step, self uprighting, and repeating for the
following step(s). Fore/aft stabilization during leg balancing is
given by using the MIP drive wheels as reaction wheels, while
left/right stability is given by the width of the foot itself. The
design is small and simple enough to potentially be ruggedized
as a stair-climbing throwbot, akin to the Recon Scout (but able
to climb up stairs) for reconnaissance in military and homeland
security applications.

I. INTRODUCTION

Our Stair Climbing Robot (SCR, see Fig. 1) is a small,
low-cost Mobile Inverted Pendulum (MIP) robot capable of
climbing everyday steps and stairs. Stairs are ubiquitous in
human-built environments, and present a specific mobility
challenge for (otherwise, highly efficient, fast, coordinated,
and robust) wheeled robots. Most robots that climb stairs
rely on their size to climb, either by spanning three or
more steps at a time, or by having wheels much larger than
the step’s rise. This paper proposes a simple stair-climbing
robot design that leverages feedback control to allow a much
smaller/lighter MIP-like vehicle to overcome steps and stairs
in human-built environments.

Stair-climbing wheeled robots fall into three main cate-
gories: multi-wheeled and treaded vehicles, hopping robots,
and dynamic wheeled robots. Multi-wheeled vehicles are
the most common and, if large enough, can fairly easily
traverse steps. There are many examples of multi-wheeled
stair-climbing robots that have passive [3] or active climbing
mechanisms [6][5]. However, these designs must be large
enough to be able to span at least three steps at once in
order to maintain stability.

The second category that has shown some promise is
that of jumping robots, which often store energy either me-
chanically [8][7] or chemically [9][10]. Once this energy is
released, such robots can jump very high indeed, sometimes
over 60 times its body length [10]. Disadvantages with this
approach often include a small number of possible hops
and a lack of precise trajectory control once the vehicle
is (energetically) launched airborne. Such highly energetic
motions are also dangerous to individuals nearby, distinctly
unstealthy/loud, and sometimes damaging to the vehicle
itself.

1emails: {djyang,bewley}@ucsd.edu

Fig. 1: Our patent-pending Stair Climbing Robot prototype.

The third broad category is that of dynamic stair-climbing
robots. These are usually wheeled vehicles with additional
degrees of freedom [4] that leverage feedback to stabilize
quasistatic (usually, slow) stair-climbing maneuvers. We have
identified two existing stair-climbing robot designs of this
type in the literature: the planetary wheel MIP [1] [2],
with a passive differential that shifts the robot’s center of
mass to climb stairs, and Dean Kamen’s patented wheelchair
robot design [11], which employs a similar strategy. Both
of these designs require the wheels to be larger than the
rise of each step (wheel size 508mm, step 120mm), making
their robot heavy (17kg) and tall. In comparison, though
SCR’s leg needs to be larger than that of the rise of the
steps it is to overcome, SCR’s chassis and wheel dimensions
can be selected largely independent of the rise and run of
the stairs, allowing more opportunities for miniaturization
and robustification, thereby lowering costs and improving
safety. In this paper, we describe the several important
design considerations for SCR, model its dynamics, optimize
design parameters for leg balancing, discuss feedback con-
trol methods to stabilize these dynamics, and finally show
experimental results for the three key maneuvers necessary
for stair climbing with SCR: MIP balancing, leg balancing,
and self uprighting.

II. ROBOT DESIGN

SCR consists of three body components (Fig. 2): the
wheels, chassis, and the leg. The wheels are directly mounted
to gear motors (with load bearings on the output shafts),
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Fig. 2: CAD of SCR. The chassis slides up and down the
leg, actuated by a timing belt and gear motor (not shown).

which are mounted on the chassis. The chassis can slide up
and down the leg, and is actuated by a timing belt and motor.
Note that there are only three motors in this design, two for
the wheels and one for driving the leg mechanism.

A. Modes of Operation

SCR has four modes of operation (Fig. 3): (1) driving,
during which the robot is passively stable, with the leg
dragging on the ground (like a Recon Scout), (2) MIP
balancing, during which the robot drives around balancing
on two wheels, with an improved viewpoint for the cameras
mounted within the raised “foot”, (3) leg balancing, during
which the robot balances on its lower “foot”, using its wheels
as reaction wheels to maintain fore/aft balance and its leg
motor to raise the chassis up the leg, and (4) self uprighting,
during which the robot transitions quickly from driving to
MIP balancing by applying a strong torque to the wheel
motors.

B. Mechanical Design

TABLE I: Motor Parameters

Parameter Value
No Load Speed Vnl = 6000rpm

Stall Torque τstall = 59.7mNm
Gear Ratio γ = 21

Voltage Vmax = 12V
Resistance R = 3.69Ω

Torque Const. k = 18.4mNm/A

The SCR prototype presented here is constructed with
mostly 3D-printed plastic. The leg is made of low friction
acetal plastic and is constrained to only move up and down
by 3D printed sliders. The wheels are directly attached to
two brushed Maxon DCX 22mm motors with 21:1 planetary
gearboxes. The drive motors’ parameters can be found in
Table I.

In order to survive repeated falls while leg balancing, the
drive motors were soft mounted so that a large bearing could
directly transfer radial loads from the hub to the chassis (Fig.

Fig. 3: Four operating modes of SCR: driving (1), MIP
balancing (2), leg balancing (3), and self upright (4).

Fig. 4: Cutaway of the soft mounted drivetrain: the gear
motor is soft mounted to the chassis with two o-rings and a
clamp. The ball bearing is press fit into the chassis the hub
is slip fit into the bearing’s .5in inner diameter.

4). The soft mounting also prevents the motor from being
over-constrained by the extra bearing.

The leg is actuated by a high-torque gear motor and a
timing belt. The belt is fed through two idler pulleys, and
wraps around a timing belt pulley attached to the gear motor.
Figure 5 shows details of how the motor actuates the leg. We
selected a 43:1 gear motor with stall torque .56Nm and no
load speed of 36.6rad/s to actuate the leg. We found this
motor to have sufficient torque and speed to lift the chassis
along the leg.

For computing the feedback control, the prototype uses

(a) (b)

Fig. 5: Lift mechanism: a) Isometric view b) Section view.
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Fig. 6: Coordinate systems for MIP balancing (left) and leg
balancing (right).

a BeagleBone Black and the BeagleBoard.org Robotics
Cape, which obtains attitude estimates through an Invensense
MPU-9250 Inertial Measurement Unit (IMU). The robot ob-
tains wheel and chassis height measurements from encoders
mounted on the wheel and lift motors.

TABLE II: Parameters for the SCR prototype in Fig. 1.

Parameter Variable Value
leg mass ml 330g

leg inertia Il 40e−4kgm2

leg center of mass l 17cm
chassis mass mc 930g

chassis inertia Ic 4.2e−4kgm2

chassis height h varies
single wheel mass mw 390g

single wheel inertia Iw 2.4e−3kgm2

effective wheel inertia Îw Îw = Iw + γ2Im
wheel radius r 11cm
body mass mb 1260g

body inertia Ib 44e−4kgm2

body center of mass lb 6cm

III. EQUATIONS OF MOTION: MIP BALANCING

Both leg and MIP balancing share the same nomenclature
and similar assumptions. Both systems consist of three
connected rigid bodies (leg, chassis, and wheels) with masses
and inertias. Referring to Fig. 6, the variables m and I
represent the masses and moment of inertias about their
body’s center of mass. The subscripts l, c, and w represent
the leg, chassis, and wheels. l is the distance from the foot’s
contact point to the leg’s center of mass, and h is the position
of the chassis along the leg. θ and φ represent the body
and wheel rotation relative to the lab inertial frame. τm
represents the motor’s torque. Finally, Ny and fx are the
two contact forces with the ground. We simplify the system
into a planar 2D system and account for the two wheels
and motors by doubling the motor torques and wheel mass
properties. A no slip assumption allows the contact friction
fx to be boundless. To derive the equations of motion, we use
the free body diagram (Fig. 6) and Lagrangian dynamics to
obtain the full planer dynamics as shown in our earlier Ball
balancer MIP work [12] [13]. For MIP balancing, we can

assume the leg and chassis are a single body, denoted by the
subscript b).

[
Îw + (mw +mb)r

2
]
φ̈+mbrlb cos θθ̈ (1)

−mbrlb sin θθ̇2 = −τm
mbrlb cos θφ̈+

[
Ib +mbl

2
b

]
θ̈ −mbglb sin θ = τm (2)

Next, we augment the equations of motions with a sim-
plified motor model:

τm = k1u− k2φ̇ (3)
k1 = kVmax/Rm

k2 = k2/Rm

where k is the motor constant, Vmax is the maximum
battery voltage, Rm is the motor internal resistance and u is
the effective motor duty cycle.

We linearize the dynamics by substituting θ = θ̄ + θ′,
φ = φ̄ + φ′, and τm = τ̄m + τm

′, which are the nominal
state (bar) terms and a small perturbation (prime). We take
the Taylor series expansion of the trig functions and neglect
all the quadratic and higher terms in the perturbations [13].
Setting the nominal conditions θ̄, φ̄, τ̄ equal to zero gives us
the resulting linearized dynamic equations:

[
Îw + (mb +mw)r2

]
φ̈+mbrlθ̈ − k2φ̇ = −k1u (4)

mbrlφ̈+
[
Ib +mbl

2
]
θ̈ −mbglθ + k2φ̇ = k1u (5)

IV. EQUATIONS OF MOTION: LEG BALANCING

The derivation of the leg balancing dynamics are similar,
we combine the chassis and leg bodies by assuming that the
lifting mechanism is quasistatic and h is not time varying.

[
Ic + Il + Îw + h2(mc +mw) + l2ml

]
θ̈ (6)

− [lml + h(mc +mw)] g sin θ = −τm
Îwφ̈ = τm (7)

As with MIP balancing, we linearize by taking the Taylor
series expansion of the sin θ term and augment the model
with the motor model (eq. 3) to obtain:

[
Ic + Il + Îw + h2(mc +mw) + l2ml

]
θ̈ (8)

− [lml + h(mc +mw)] gθ − k2φ̇ = −k1u
Îwφ̈+ k2φ̇ = k1u (9)

V. DESIGN PARAMETER OPTIMIZATION

The most challenging aspect of SCR’s design is deter-
mining the mass distribution of the robot. The leg, wheel,
and chassis inertias are all significant during the various
modes of operation, and impose competing objectives driving
this selection. Leg balancing is the most difficult to achieve
because the dynamics are heavily coupled between motor
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parameters and body and wheel inertias. The bulk of our
optimization effort was focused on leg balancing because it is
the most challenging, delicate, and interesting. Leg balancing
can be readily understood by considering the principle of
conservation of angular momentum: applying a torque to the
wheels causes the body to rotate in the opposite direction.
For the reaction wheels to provide a large torque, they need
a significant moment of inertia. From the leg balancing
equation 6, we see that to increase the control authority on
the body’s angle θ, we need to increase the wheel inertia Iw,
suggesting the need for a large and heavy reaction wheel.
However, the mass of the wheel mw appears in the body
inerta’s h2(mc+mw) term. Not only does this term degrade
balancing performance, but also it quadratically increases
the body’s inertia as the height of the chassis increases.
The competing design decisions motivated the need for an
optimization based approach towards designing the robot.
We focused on three design variables: the motor gear ratio,
wheel mass, and wheel radius. We did not consider the motor
parameters for two reasons: we already had the motors and
that the chassis and structure would need to scale accordingly
for smaller or larger motors. To gauge the effectiveness
of the parameters, we created a open loop computational
model which simulated the maximum lean angle the robot
can recover. This lean angle was selected as our objective
function to be maximized. Table II shows the final mass
and inertia distributions of the SCR prototype. These mass
distributions, as well as our discussion in this section, can
be used as a starting point for future prototype builds.

A. Parameterized Wheel

The robot’s wheels were 3D printed with steel masses
attached to the edge of the wheel to maximize the wheel’s
inertia (Fig. 10). For our optimization simulation, we pa-
rameterize this wheel as a plastic disk with variable radius
and mass added to the edge of the wheel. The larger the
wheel radius, the more plastic must be used to achieve the
size, resulting in lower relative inertia. However, the larger
wheels require the robot to raise higher to overcome the stair
step. The extra height will drastically decrease the wheel’s
inertia relative to the body’s inertia resulting in a decrease
in performance.

B. Effect of Gear Ratio

The gear ratio plays an interesting role in leg balancing.
The leg balancing problem is a function of available motor
torque, which is inversely proportional to wheel speed. If
simply considering maximum motor torque, the reaction
wheels would be unable to produce torque at moderate wheel
speeds. In addition, total effective inertia of the wheel is
given by Îw = Iw+γ2Im, where Im is armature’s inertia and
γ is the gear ratio. The the gear ratio quadratically increases
the motor’s effective inertia and makes a significant contri-
bution to the total effective inertia. In our final configuration,
the motor’s inertia contributes 9.4% of the total wheel inertia.
Most importantly, if the motor armature spins in the opposite
direction of the wheel, as with the case of a odd number

Fig. 7: Given a fixed wheel mass of 390g we can see optimal
configuration is a gear ratio of 18.2 : 1 and radius of 13.5cm.
However the optimization curve is relatively flat in that
region, so there are several configurations that can provide
similar performance.

Fig. 8: Given a fixed gear ratio of 21:1 we see that the optimal
configuration is wheel of radius .15m and mass 680g. The
dark blue region are configurations that are not physically
realizable by our parameterized wheel model (ie, a really
large wheel that has very little mass).

stage gearbox, the reaction torques of the wheels and motor
counter each other, which is undesirable.

C. Leg Balance Optimization

In order to find an optimal configuration for leg balancing,
we simulated the maximum recovery angle with across an
evenly spaced grid (j = 10) of gear ratio, wheel radius,
and wheel mass at the minimum leg height h to overcome a
20cm step. All other parameters were kept constant: chassis
mass, leg mass, (Table II), and motor parameters (Table I).
Since there were only three design parameters (n = 3) and
a coarse grid (resulting in nj simulations), we were able
to use a brute force optimization approach to determine the
maximum recovery angle. Two plots of the objective function
at fixed wheel mass and fixed gear ratio are shown in Fig. 7
and 8.

To experimentally validate our optimization results, we
tested the maximum recovery angle of our robot with varying
wheel mass using a 21:1 gear ratio and .11m radius wheel.
For every experiment, we started the robot at an initial lean
angle, inputted a step input into the motors, and observed
whether or not the robot could recover to a vertical position.
We increased the initial lean angle until the robot could
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Fig. 9: The maximum lean angle was simulated for varying
masses and compared to experimental results. The maximum
recovery angle increases as the mass increases up until a
certain point. In practice, wheels heavier than 400g put too
much physical stress on the robot, causing the leg to bend
and vibrate.

Fig. 10: Wheels tested (from left to right): off-the-shelf
plastic wheel with urethane tread that was unable to achieve
leg balancing. Black 3D printed wheel used for testing with
slots to add mass. A red 330g wheel with rubber tread.
Through optimization, we arrived at a 390g wheel.

not recover, which is recorded as the maximum recovery
angle for that wheel mass. The results of this experiment
are show in Fig. 9. Ultimately, the global maximum was
deemed impractical (r = .18m, γ = 31, m = 980g) since
the large mass would put too much structural stress on the
mechanical elements and the wheel radaii were as large as
a stair step. Regardless, the optimization results guided our
final robot parameter selection. The objective functions (Fig.
7, 8) have gentle gradients near their maximums, suggesting
a range of values can have similar performance. The final
parameters were selected by weighing the simulated results
with practical considerations. In the future, a comprehensive
optimization should be done with additional design variables
such as: motor parameters, structural reinforcement, lift
motor speed, and energy consumption.

VI. CONTROLS

A. MIP Balancing Controls

In order to achieve MIP balancing, we must control the
wheel rotation φ(t) and the body angle θ(t) with only
one input, u(t) making it a SIMO (single-input, multiple-
output) dynamic system. To accomplish this, we lever-
age a linear-quadratic regulator (LQR) to control the sys-
tem. Our system states are given as x = [θ̇, θ, φ̇, φ]T .
We apply Bryson’s rule to obtain Q = diag(.1, 1, .1, 1)
and R = 1 to prioritize the absolution body and wheel
position over their velocities. The final gains used were

Fig. 11: Self upright maneuver and MIP balancing. The robot
begins with the leg dragging on the ground. A bang-bang
controller is used to self uprighted the robot within 7cm.

K = [−0.9891,−.014142,−0.1679,−0.0265]. We found
these gains to give adequately stabilize the MIP about it’s
equilibrium point.

B. Leg Balancing Controls

In order to achieve leg balancing we need to control
the body angle θ to prevent the motors from saturating by
minimize the wheel speed φ̇. This SIMO Leg balancing
system was also stabilized using LQR control (eq. 10). Our
system states are given as x = [θ̇, θ, φ̇]T . We priortized
the body angle more than the wheel speed by choosing
Q = diag(1, 1, .01) and R = 1. Minor hand tuning on the
wheel velocity φ̇ gains were needed to prevent the robot from
responding too aggressively to the encoder’s discretization
noise at low velocities.

u(t) = kθ̇(θ̇ref − θ̇) + kθ(θref − θ) + kφ(φ̇ref − φ̇) (10)

To balance the robot as the chassis rose up the leg, we
linearly interpolated between the maximum and minimum
height controllers. Since the controller gains are generated
LQR, we can easily obtain different gains for the varying
chassis heights. The gain scheduling approach is shown in
equation 11. Two exceptions were made: we kept kφ̇ constant
because the optimal gains varied by less than 5%, and we
caped the kθ gain for chassis heights above .24m because
the controller was too physically aggressive for our system.

kθ̇(h) = −4.499h− 0.1331 (11)
kθ(h) = −21.0226h− 3.5741 (12)

kφ(h) = −0.0217 (13)

VII. EXPERIMENTAL RESULTS

Through design parameter optimization and optimal con-
trol, we were able to determine effective mass distributions
and controllers and to achieve MIP balancing, leg balancing,
and self uprighting.
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Fig. 12: The robot was commanded to leg balance while the
chassis raised to .26m over 5 seconds. Gain scheduling was
used to balance the robot at changing leg heights.

Fig. 13: Screen captures of SCR climbing up two steps. At
t=0 and 12s, the robot is MIP balancing. At t=4, 6, 21s the
robot is Leg Balancing. At t=6.2, 23s SCR is falling onto
the step. Finally at t=9, 10, 11s SCR pulls the leg through
the body and self uprights.

Figure 11 shows the self uprighting maneuver followed by
MIP balancing. Self uprighting was robustly achieved with
a simple bang-bang controller in less than 10cm of travel.

In leg balancing mode, the robot could balance indefinitely
at chassis heights below .26m. Balancing at greater heights
was possible for several seconds due to the quadratically
increasing body inertia. Figure 11 shows the robot transition
between MIP balancing and leg balancing at .26m. Overall
the performance of the three key modes of operation for SCR
to climb stairs were adequate climb up steps with rise .20m
and run .28m via open loop commands (Fig.13). The fastest
the robot could safely climb steps was 10 seconds per step,
but there is certainly room for improvement.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the design and control of a prototype
SCR design. This robot represents a new class of small,

lightweight robots capable of slowly and steadily climbing
stairs. We identify the importance of optimizing the mass and
inertia properties of the vehicle and presented the competing
objectives driving this design through both simulation and
experimentation. Finally, we were able demonstrate our SCR
prototype for the three key maneuvers: MIP balancing, leg
balancing, and self uprighting and showed the ability of the
robot to climb stairs.

Based our initial prototype, we can now refine and further
optimize our design. The choice of the 22mm maxon motor
was simply because this was the motor initially selected
for the project. After the optimization results, we realized
that a smaller, less powerful motor could achieve better leg
balancing performance. Smaller, lighter motors would lead
to a cascade of weight reduction: less structural reinforce-
ment, smaller battery, and smaller lift motor. By decreasing
the chassis mass, the reaction wheels will be much more
effective. In order to develop a truly optimal SCR design,
we suggest considering additional design variables in the
optimization such as motor size and a parameterized chassis
model that scales with the size and forces that the robot
must endure. Finally, in order to achieve quick and robust
stair climbing we plan to employ computer vision to estimate
the rise and run of a staircase, and the robot pose in front of
it, in order to climb stairs autonomously.
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