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Abstract— Ball-balancing robots (BBRs) are endowed with
rich dynamics. When properly designed and stabilized via
feedback to eliminate jitter, and intuitively coordinated with
a well-designed smartphone interface, BBRs exhibit a uniquely
fluid and organic motion. Unlike mobile inverted pendulums
(MIPs, akin to unmanned Segways), BBRs stabilize both fore/aft
and left/right motions with feedback, and bank when turning.
Previous research on BBRs focused on vehicles from 50cm to
2m in height; the present work is the first to build significantly
smaller BBRs, with heights under 25cm. We consider the unique
issues arising when miniaturizing a BBR to such a scale, which
are characterized by faster time scales and reduced weight
(and, thus, reduced normal force and stiction between the
omniwheels and the ball). Two key patent-pending aspects
of our design are (a) moving the omniwheels to contact the
ball down to around 20 to 30 deg N latitude, which increases
the normal force between the omniwheels and the ball, and
(b) orienting the omniwheels into mutually-orthogonal planes,
which improves efficiency. Design iterations were facilitated
by rapid prototyping and leveraged low-cost manufacturing
principles and inexpensive components. Classical successive
loop closure control strategies are implemented, which prove to
be remarkably effective when the BBR isn’t spinning quickly,
and thus the left/right and fore/aft stabilization problems
decompose into two decoupled MIP problems.

I. INTRODUCTION

Ball-balancing robots (BBRs) exhibit rich 3D dynamics
and are capable of fluid and graceful motion. Early research
on BBRs appeared around 2006 (see [1]). To date, most
BBR research has focused on human-scale designs ([1], [2],
[3]), ball-balancing transportation vehicles ([4], [5], [6]), and
knee-high to waist-high designs ([8]). These larger vehicles
weigh between 8.7kg and 45kg, and are characterized by
significantly higher build cost and slower dynamics than the
designs considered here, which weigh 580g, are 22cm tall,
and cost less than $200 to build, with significant cost savings
possible when mass produced. Since a micro ball-balancing
robot (MBBR, pronounced “Ember”) is much cheaper to
manufacture, it is viable for commercial applications in
entertainment, service, education, and research.

There are significant challenges and limitations to contend
with when attempting to miniaturize a BBR. Tolerances
become more stringent and cross-sectional areas decrease,
lowering the yield strength of mechanical components. Scal-
ing down the characteristic length scale, [, of a given design
generally reduces the volume and mass of the design by
13; on a BBR, this significantly reduces the normal force
between the omniwheels and the ball, creating problems with
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Fig. 1: Prototype micro ball-balancing robot (MBBR).

slip. Simultaneously, the time scale of the nonminimum-
phase inverted-pendulum dynamics of a BBR is \/7 , SO
as [ is reduced, the time scale decreases, and the actuators
must respond faster, further exacerbating the slip problem. In
extreme cases, the drive wheels may even lose contact with
the ball completely for short periods of time.

In this paper, we address the design and control of an
MBBR, addressing issues such as manufacturing tolerances,
drivewheel slippage, and fast dynamics. We present several
design iterations, including our patent-pending ideas of (a)
“midlatitude” (close to the equator of the ball when the south
pole is down) placement of omniwheels on the ball and
(b) mutually-orthogonal orientation of the omniwheels. We
begin with an outline of the design procedure and objectives.
Next, we discuss the omniwheel placement and orientation.
We then derive the decoupled equations of motion and
describe the controller used to stabilize the MBBR under
nonspinning conditions (a follow-up paper will focus specifi-
cally on the problem of control of a rapidly spinning MBBR).
Finally, we present the experimental results of several MBBR
prototypes, including our final MBBR designs.

II. PRELIMINARY DESIGNS

To begin the design process, we compiled an ordered list
of design requirements: size, robustness, cost, and energy
efficiency. With such an open design space, we began by
examining existing large-scale designs which seemed fit for
miniaturization. Previous work on BBRs fall into two main
categories: those driven by an inverse mouseball mechanism,
and those driven by three omniwheels. At first, neither
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Fig. 2: Three MBBR mechanisms considered in this paper:
a) belt-driven inverse mouseball mechanism, b) single-row
omniwheel-driven mechanism with conventional omniwheel
placement, and c¢) double-row omniwheel-driven mechanism
with mutually-orthogonal omniwheel placement.

category presented obvious barriers to miniaturization. The
many design choices available, the inaccuracy of analytical
friction models, and various unresolved questions related
to manufacturing led to the conclusion that rapid test and
iteration were essential to converge quickly to the best
practical solution. We thus decided to pursue both the inverse
mouseball mechanism and the omniwheel-driven mechanism
in parallel. Using low-cost additive manufacturing tech-
niques, we iterated quickly on various design changes, and
built more than 10 different working prototypes, three of
which are shown in Fig. 2, in a span of three months.
We successfully balanced both archetypes of the MBBR,
eventually downselecting to the omniwheel-driven design.

The inverse mouseball mechanism (Fig. 2a) relies on two
perpendicular rollers along the equator of the ball. A small,
low-friction bearing is used at the top of the ball to support
the weight of the upper body. Spring-loaded idler wheels at
opposite points along the equator press the rollers against
the ball to create enough friction to eliminate slip between
the rollers and the ball. This allows the rollers to actuate the
ball in the two horizontal directions independently.

There were two key problems with MBBRs driven by
this mechanism. The first was contamination. During testing,
dirt and rubber particles would build up on the support
bearing, idler wheels, and drive rollers. This would increase
friction and degrade performance to the point of failure. For
large BBRs, the torques and forces involved are greater in
magnitude, and tolerances are relaxed, so a thin layer of dirt
has little effect on performance. However, for an MBBR, dirt
buildup on the rotating components proved to be a critical
point of failure.

The second problem encountered was the ball being
pushed out of the socket during maneuvers. The rollers
transmit torque to the ball by applying a friction force along
the ball’s equator. Depending on the direction of rotation, this
force tends either to push the ball farther into the socket,
or to pull the ball away from the socket. The only force

Fig. 3: Common omniwheels: a) single row, b) double row.

preventing the ball from leaving the socket is the weight
of the robot itself. Since MBBRs have reduced mass, their
weight is generally insufficient to keep the ball in the socket.
Even if the ball does not leave the socket, the design suffers
from asymmetric friction. As the roller actuates the ball in
one direction, the ball is forced into the socket, increasing
both the normal force and the friction at the top support
bearing; when actuating the ball in the opposite direction,
the friction at the top support bearing is reduced.
Additionally, the inverse mouseball mechanism does not
control the yaw of the robot about its vertical axis, so addi-
tional actuators would be needed to make the robot face in
a desired direction. Weighing all of these considerations, we
ultimately concluded that the inverse mouseball mechanism,
though feasible, was the lesser of the two available choices.

III. OMNIWHEEL-DRIVEN MBBR DESIGN

We now discuss the design challenges of building an
omniwheel-driven MBBR. We begin by discussing the major
limiting factor of such a design: the omniwheels themselves.

A. Omniwheel Design

An ideal omniwheel (see Fig. 3) has
e zero friction in the direction of its axis, which is
achieved using rollers around its circumference,
e zero friction resisting yaw about the contact patch, and
e zero slip (infinite stiction) in its direction of rotation.
The smallest off-the-shelf omniwheels found were too large,
at 4cm in diameter. We thus custom fabricated smaller
omniwheels. Due to manufacturing tolerances and material
strength limitations, the smallest omniwheels we could reli-
ably manufacture were 2.5cm in diameter. Two omniwheel
designs were selected for testing (see Fig. 3): the single-row
omniwheel (SROW) design found in [9], [10], and the more
conventional double-row omniwheel (DROW) design.

The SROW design considered (Fig. 3a) consists of 12
rollers lying in the same plane. The rollers alternate between
large and small, allowing the smaller rollers to nest within the
larger rollers to form an nearly circular profile. In practice,
SROWs allowed for very smooth actuation of the ball, due
to the absence of gaps between rollers and the single contact
point on the ball. Several drawbacks were also encountered.
First, the design complexity is high, with 37 parts per
wheel, which increases the manufacturing cost significantly.
Additionally, parts of the hub had to be made as thin as 1mm,
which were prone to mechanical failures.

The DROW design considered (Fig. 3b) consists of 12
equally-sized rollers in two parallel planes, which greatly
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(a) Angle from the North Pole

(b) Angle of twist

Fig. 5: Omniwheel placement and orientation

simplifies construction. Although the part count is still rela-
tively high, the individual pieces are larger and more robust.
The drawback of the DROW design lies in the differences
in the engagement of the two different rows on the curved
surface of the ball. On flat surfaces, a DROW behaves
much like a SROW. However, in MBBRs, as the ratio
between the ball diameter and the distance between the two
rows of rollers becomes smaller, the omniwheels induce a
characteristic “wobble” into the dynamics, as derived below,
that is nearly impossible to eliminate.

As illustrated in Fig. 4, as the DROW rotates, the normal
force f, generated by the DROW on the ball creates (via
stiction) a torque on the ball, 7,, in a direction perpendicular
to both f, and the azimuthal direction of the omniwheel. As
the omniwheel continues to rotate, the second roller contacts
the ball, resulting in a normal force f, and concomitant
torque on the ball, 7. It is thus seen that the torque that
the DROW generates on the ball switches back and forth
between between 7, and 7,. This switching induces a peri-
odic disturbance which leads to the undesirable “wobble”.
The angle between these two axes of rotation is given by

sin(y) = w/(2rp). (1)

As the ratio between the radius of the ball and the distance
between the two rows of rollers in the DROW increases, the
wobble diminishes, as verified in §VI. In practice, we found
both the SROW and DROW designs viable for miniaturiza-
tion, though neither was perfect.

B. Midlatitude Omniwheel Placement

Following the work of others (see §I), our early
omniwheel-driven MBBR prototypes, as seen in Fig. 2b,

placed the omniwheels between o = 30° and o = 45°,
and took § = 0° (see Fig. 5). With the omniwheels in such
a position, we found that slippage between DROW and the
ball was significant. To mitigate this problem, the friction
between the wheel and the ball must be increased. There
are two ways to accomplish this: increase the coefficient
of friction between the ball and rollers, or increase the
normal force between the omniwheels and the ball. Since
there are limited options in materials, and it is undesirable
to increase normal force by adding mass to the main body,
we sought other solutions to this problem. We found that
placing omniwheels closer to the equator of the ball (that
is, in the “midlatitudes”), could greatly increase the normal
force between the ball and omniwheels. It is easily seen that
the normal force is equal to:

N = mg/[3 cos(a)] (2)

The normal force monotonically increases as « increases
from near 0° to near 90°. Thus, by moving the omniwheels
from o« = 45° to 70°, we can double the normal force
between the omniwheels and the without adding any mass.
This simple geometric change significantly mitigated the
omniwheel slippage issues. Note that, if o becomes too large,
the amplified normal forces increase friction in the drivetrain,
and degrades performance. We built several prototypes, with
a = {45°,60°,70°,80°}, and found that, for our design,
a = 60° to 70° represented a good compromise.

The lower placement of the omniwheels also effectively
solved the problem of the omniwheels losing contact with
the ball during quick maneuvers. Lowering the omniwheels
result in larger normal forces, which allows the omniwheels
to grip the ball better, and the contact points upon which the
upper body rests are spaced farther apart, requiring a larger
moment to tip the upper body off the ball.

There is a significant drawback to lowering the omniwheel
placement if the orientation of the omniwheels is left in
the conventional orientation with 5 = 0. The magnitude
of the component of the torque which contributes to the
yaw of the ball about the vertical axis scales with sin(«).
Conversely, the magnitude of the components of torque
which contribute to translational movement of the ball scales
with cos(«). Thus, as « approaches 90°, the actuator input
corresponding to balancing the vehicle approaches 0, and
balancing becomes impossible. A natural solution to this
problem is achieved by varying 3, as discussed below.

C. Orthogonal Omniwheel Orientation

We now consider the issue of the omniwheel orientation
(. Our solution of mounting the omniwheels in mutually-
orthogonal planes increases the overall efficiency of the
power transfer and, as discussed above, is desirable when
used in conjunction with midlatitude omniwheel placement.
Traditionally (see, e.g., [7]), omniwheels are spaced evenly
apart, with 120° separation, and oriented in a radially-
symmetric fashion about the z-axis, with 5 = 0°. By aligning
the three omniwheels in mutually-orthogonal planes, we
effectively decouple their effects.
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Fig. 6: Generalized coordinates of MBBR

If the omniwheels are not in mutually orthogonal planes,
actuating one while holding the other two fixed results in
both rolling of the ball about an axis 7 parallel to that of the
actuated omniwheel, and rolling about the other two axes,
which gives no slip in the direction of rotation of the other
two omniwheels. This is achieved by spinning the rollers of
all three omniwheels, including the actuated omniwheel.

If, on the other hand, the omniwheels are in mutually
orthogonal planes, actuating one while holding the other two
fixed results in pure rolling of the ball about an axis 7 parallel
to that of the actuated omniwheel, and zero rolling about the
other two axes. This is more direct and efficient, as it doesn’t
result in the spinning of the roller of the actuated omniwheel.

Our method to enforce orthogonal omniwheel orientation
follows: let the torque produced by each motor on the
omniwheel i € {1,2,3} be represented by T = 7;W',
where the scalar 7; is the magnitude of the torque, and
w! = (@}, w}, )T is the unit vector in the direction of the
vector T°. The actuators 7; contribute to the three components
of torque in the upper body coordinates as follows

T r 3 r T1
b ; b . .
Ty | = — E v ="(w! w3 o, 3
) r Tw

T, Woi=1 T3

wQ

T, = (W |W2|w?), @)

where the r, and r,, are the radius of the ball and omniwheel,
respectively, the matrix T3, is invertible, and the torques 7,
7y and 7, represent the torques in the upper body coordinates.
The ball rotation can also be computed using this transfor-
mation from the omniwheel rotation values measured by the
encoders. Defining T = (74,7, 72)%, Tw = (71,72,73)7,

(b = <¢w7¢y7¢z)T’ and (bw = (¢17¢27¢3)T’ we have

T = (10/Tw)TwTuw, &)
b = (Tw/rb)de)un (6)
where ¢, ¢, and ¢, are the ball rotation in the upper body

coordinates, and ¢1, ¢2, ¢3 are the omniwheels rotational
values as measured by the encoders.

TABLE I: Some orthogonal omniwheel orientations.

o 45° 60° 70° 80°
B | 35.237° | 48.186° | 52.082° | 54.145°

The omniwheels are orthogonal to each other if the vectors
wl, w2, w3 are mutually orthogonal. This may be achieved
by calculating the W’ given the o and 3, then checking if
Wi W/ =0 fori# jandi,j € {1,2,3}. The W’ can be
determined using the following equations:

wi = Rot(i’i, 5)Rot(§f§,7 a)fcé, @)
21 = Rot (¥, @)z, ®)
w' = Rot(e?,2r/3) " 1w!, )

where Rot(X, «) is the Euler rotation matrix about %, and
{x%,y%, 24} are the initial wheel axis coordinates, which are
set up as shown in Fig. 5. In particular, our prototype is set
up such that the initial coordinates for the first wheel are
the same as lab coordinates {&!,é? &3}. Given a particular
value for o, we can determine the S which gives us wi -
wJ = 0 for i # j using an iterative method. Some of the
{«, B} pairs resulting in orthogonal omniwheel orientation
are given in Table I; the o = 70°, § = 52.082° case gives a
transformation matrix 7, of:

0.2102 —0.7883 0.5781
T,=1| 0789 —0.2124 —0.5765 (10)
-0.5775 —0.5775 —0.5775

As discussed previously, there are multiple benefits of such
an orthogonal omniwheel orientation. First, the conventional
omniwheel orientation at large « angles leads to diminished
torque available to translate the ball. Further, the orthogonal
omniwheel orientation leads directly to rotation of the ball
in the actuated direction; actuation of a single omniwheel
doesn’t result in a force applied against the other two
omniwheels in a manner that results in the spinning of
the rollers of the actuated omniwheel, thereby providing a
smoother application of torque.

IV. DYNAMICS

The MBBR dynamics are inherently 3D, complex, and
nonlinear. They can be derived with Lagrangian dynamics
using no slip constraints between the ball and the floor
(x = 19y, y = —1p¢,) and ideal omniwheel assumptions
[5]. In order to apply linear control, we simplify the problem
significantly by assuming that the yaw rate (spin) of the
MBBR (i.e., around the z axis) is negligible (i.e., gi) ~ 0).
Next, we linearized the ¢, and 6, about small angles. This
simplifies the equations of motion into two linear, decou-
pled, nonminimum phase Mobile Inverted Pendulum (MIP)
problems in the z and y directions. Additional simplifying
assumptions include: no slip between the ball and the floor
(x = ry¢y, Yy = —Tp05), and ideal omniwheels. We define
0 as the upper-body tilt angle, and ¢ as the ball rotation
angle in upper-body coordinates. Note that the angles in the
y-direction affect the linear displacement in the x-direction,
and vice-versa.
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Fig. 7: Block diagram of SLC controller design.

Using the free body diagram in Fig. 6, we can write the
planar equation of motion in the x-direction as

I, by =7y = To
Ityﬁy = —7y — P,lsinf, — P,lcosb,,
mpZ = Py — [fa,
™my [r . él] =my {x —lcos 9y9y + [sin 9y9.y2} =—PF,,
my [r . éJ‘] =my {cos 0y — ZGy] ,
= —mygsinby — P, sinf, + P, cos 0,

where m is the mass, I is the moment of inertia about the
center of mass, the subscripts b and t represents the ’ball’
and ’top body’ respectively, r; is the ball radius, [ is the
distance from the top body center of mass to the ball center,
g is the acceleation of gravity,  is the linear displacement of
the ball, P, and P, are the normal forces, f, is the friction
between the ball and the floor, and 7, is the net effective
motor torque. Combining, applying the no slip condition,
and linearizing using the small angle approximation on 6,

leads to the following linear system:

[Iby + (my + mb)rg] ¢y + mtrblé'y =Ty,
mtrblé'y + It', 9

(1)

—myglly = —7y, (12)

where I is the inertia of the top body the ball’s center of
mass. The motor dynamics are augmented to the equations
of motion above, resulting in a model that may be used to
design the controller. The torque produced by the motors in
this direction can be expressed using the linear motor model

7y = (EVinaz / Bm)uy — (b + kQ/Rm)((by - 01/): (13)

where k is the motor constant, V,,,, is the maximum battery
voltage, R, is the motor internal resistance, b is the motor
Coulomb friction, and u, is the effective motor duty cycle.
The x-direction has similar dynamics, with a different inertia,
ball rotation speed, and input directions.

V. CONTROLS

We use Successive Loop Closure (SLC) to separate the
SIMO (single-input, multiple output) dynamics of each MIP
problem into two SISO (single-input, single-output) parts.
The (fast) inner loop stabilizes the upper body angle 6 to
some reference 6,.. The (slow) outer loop adjusts 6, to
stabilize the ball rotation angle ¢ about some reference value,
which can be changed via remote control. This strategy
works due to frequency separation (of at least a factor
of 3) between the crossover frequencies of the inner and

outer loops. A block diagram representation of the controller
formulation is given in Fig. 7. As discussed in, e.g., [11], the
SIMO plant G(s) can be idealized as a cascade of two SISO
transfer functions, G1(s) and Ga(s), as follows:

Oy(s) €18
Gals) = Uy(s) a3s®+azs?+ars+ap’ (14
P b b
Ga(s) = @yg ( 22? o) (15)
c1 = —(kVinae/Rin) Iy, + (m + my)re 4 myryl),

as = I{ [Iby + (my + mb)Tg] — (myrpl)?,

az = (b+k*/Rpn) (I, + (mq +my)ry + 2myryl + 17 ),

ar = —(Ip, + (mg + my)re) (megl),
ap = —(b+ k?/ R, )mqgl,
by = —(myryl + I} )/ (I, + (me +my)riy + myrpl),

bo = mugl/(Ip, + (my + mb)rg + myrpl).

We use a “dirty differentiator” filter F3(s) to estimate the
value of ¢ to be used in the velocity controller as follows:

S

S + Wwe

¢ (s) = D, (s) = Fa(s)®,(s), (16)

where w, is the cutoff frequency of the filter. The inner loop
controller D1 (s) takes the difference between the reference
body angle 6, and the current angle # as an input and
outputs the motor command value u. The outer loop con-
troller D2 (s) takes the difference between the reference ball
angular velocity qﬁﬁ and the current speed ¢ and outputs the
reference body angle 6,.. Each controller D;(s) and Ds(s)
are designed independently, where the prescaler P value is
set to counteract the steady state error of the inner loop.

Using the parameters we measured and w. = 40 rad/s, the
system transfer functions are:

17.9s

e Y S ER P X R
—3.48(s + 8.63) (s — 8.63

Ga(s) = e $2 o )’ (18)

Fd(s) = s+S40. >

The transfer functions are the same for both x and y-
directions as long as their respective inertia are the same.
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We then use the following controller for both directions:

- (s + 13.45)(s + 0.06)
Di(s) =50 s(s +40.34) 0
1
P =1/2.5; (22)

These controllers have a closed loop step response with
inner and outer loop rise time ¢, of 0.11 sec and 0.38 sec
respectively. The inner loop has 5% overshoot while the outer
loop has no overshoot.

We assumed that the heading ¢, is approximately constant,
so we control the headings using the simple PD controller

Uy = Kp((bsz - ¢Z) + Kd(q;)zrcf - (bz)

After determining u, uy, and u,, we convert these values
back into each individual motor PWM commands wu;, i =
{1, 2,3}, using the same transformation for t in (5) because
of the linear relationship between 7 and w. Then we calculate

(23)

Uy r Uy
us | = r—wTUj ! Uy (24)
us b Uz

After the conversion, we also need to take into account
the static friction on the omniwheels. Using midlatitude
omniwheel placement introduces more normal force into the
system, increasing friction. We used the nonlinear input value
given by:

u, = csign(u;) + (1 — c)u; (25)

where ¢ is the static boost constant and u; € [—1,1] is the
final motor command value for the motor :.

A. Mechanical Builds

All of the prototypes consisted of similar mechanical
architectures and hardware. For the sake of discussion we
will look at our most robust configuration: the DROW driven
MBBR with wheels placed at o = 70°.

One of the most difficult components to source was the
main ball, identivied as (4) in Fig. 8. It was found that the
ball must be sufficiently round and have a high coefficient
of friction. Most balls smaller 7cm in diameter had surface
imperfections and lacked the roundness to work properly.
Also, balls that had a high coefficient of friction tended to
be too compliant, causing the ball to deform under large
dynamic loads. We found that a high quality rubber juggling
ball was the best compromise between hardness, roundness,
and surface friction. The omniwheels were placed in contact
with the ball in the orthogonal configuration with alpha =
70° and B8 = 52.082°. The motors (2) and omniwheels (1)
were rigidly mounted to a 3D printed toroidal chassis (5).
The torus was designed to remain rigid under the larger
normal forces associated with large « angles. Low friction
acetal support balls (6) were used to constrain the ball against
the omniwheels under dynamic maneuvers. We designed the
support ball housing to be adjustable, to allow varying of
the preload of the support ball against the ball. Finally, 3D

Fig. 8: MBBR prototype consisting of 1) 2.5cm DROW, 2)
toy-grade plastic gearmotor, 3) optical encoder, 4) 6.4cm
diameter rubber ball, 5) 3D printed chassis, 6) support ball
bearing housing with acetal ball, 7) 3D printed electronics
mount, 8) BeagleBone Black microprocessor, and 9) Pana-
sonic 18650 lithium-ion battery pack.

printed structures (7) were used to mount the battery (9) and
electronics (8).

VI. EXPERIMENTAL RESULTS

After many design iterations, we observed several trends
that were consistent with our analysis. As expected, SROWs
resulted in lower friction and better overall performance due
to their roundness and single contact plane. However, we
encountered issues with SROW durability which we believe
are intrinsic to the SROW design at small scales. Also, by
increasing the « angle, we were able to stabilize designs
that were not viable due to ball contact issues. For example,
our DROW MBBR designs only worked if o was increased
from 45° to 70°. However, increasing « to 80° significantly
increased friction and could jam the ball into the socket
due to the combination of widely spaced contact points and
ball compliance. In addition, we discovered some designs
were more reliant on the support balls to constrain the ball.
For example, with the support balls removed, we found the
SROW «a = 70° design was able to balance but the SROW
o = 45° could not. In practice, all designs benefited from
supporting balls, however, our experiments demonstrated that
larger o angles can constrain the ball better.

We now present data from three successful MBBR designs
(see Fig. 2): conventional SROW «a = 45°, orthogonal
SROW «a = 70°, and orthogonal DROW « = 70°. Data was
logged from these three prototypes during a 3 second velocity
input of 1.2 rad/s which commands the robot forewords and
then to come to a full stop, shown in Fig. 9. We see that all
three prototypes respond and track the velocity step well and
that the actual angle 6 closely matches the controller’s inner
loop reference 6,.. This allows the prototypes to be smoothly
driven using remote control.
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Fig. 9: Plot of the 6, and ¢>;, response of the prototypes.

Looking at the 6 values of the DROW MBBR in Fig. 9,
it is seen to suffer from a ~ 8 Hz wobble caused by the
reasons outlined in § III. In addition, the qS plot shows that
the prototype struggles to follow the velocity step response.
This is because the inner loop, which has priority over the
outer loop, attempts to stabilize the wobble prior to following
the velocity command. Also, the controller gains for the
DROW MBBR needed to be increased relative to the SROW
MBBR in order to achieve similar performance. We believe
this is caused by the switching of actuation planes, which
needs additional control to counteract the perturbations. The
squared sum of the control values at time step k, ug for
t = [3,10] sec can be calculated to compare the control
effort J, of both designs. The J, for SROW and DROW
are 430 and 1050 respectively, which means that the SROW
can be driven much more efficiently than DROW. Comparing
the SROW build with a@ = 45° and S = 0° to the SROW
build with o = 70° and orthogonal omniwheels, we saw a
relatively small difference in performance.

VII. CONCLUSIONS

From our analysis and experimentation, we showed
that the SROW exhibited less slip against the ball and

controllers presented in this paper will fail to stabilize the
system. A future paper will discuss our ongoing investigation
in the development of a new controller, based on a fully 3D
dynamic model, which is effective even when the MBBR is
rotating quickly.
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