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Abstract— Delaunay-based derivative-free optimization (∆-
DOGS) is an efficient and provably-convergent global optimiza-
tion algorithm for problems with computationally-expensive
function evaluations, including cases for which analytical
expressions for the objective function may not be available.
∆-DOGS belongs to the family of response surface methods
(RSMs), and suffers from the typical “curse of dimensionality”,
with the computational cost increasing quickly as the number
of design parameters increases. As a result, the number of
design parameters n in ∆-DOGS is typically limited to n . 10.
To improve performance for higher-dimensional problems, this
paper proposes a combination of derivative-free optimization,
seeking the global minimizer of a successively-refined surrogate
model of the objective function, and an active subspace method,
detecting and exploring preferentially the directions of most
variability of the objective function. The contribution of other
directions to the objective function is bounded by a small
constant. This new algorithm iteratively applies ∆-DOGS to
seek the minimizer on the d-dimensional active subspace that
has most function variation. Inverse mapping is used to project
data from the active subspace back to full-model for evaluating
function values. This task is accomplished by solving a related
inequality constrained problem. Test results indicate that the
resulting strategy is highly effective on a handful of model
optimization problems.

I. INTRODUCTION

In this paper, we consider a nonconvex optimization
problem as follows:

minimize f (x) with x ∈ B = {x|a≤ x≤ b}, (1)

where a and b are two vectors in Rn such that a < b, and
f (x) : Rn → R is an expensive-to-compute function which
varies most along a few (d) directions, while the other (n−
d) directions contribute only weakly (up to a small constant
γ) to the cost function value. We seek a point x ∈ B such
that f (x)≤ f0. Solving an optimization problem of the form
(1) is difficult and, for general functions, convergence can
only be guaranteed if the function evaluation set becomes
dense over the entire search domain, B, in the limit of
an infinite number of function evaluations [1]. The rapid
identification of the d directions of maximum variation of
the objective function is a key question facilitating more
rapid approximate solution of the optimization problem in
practical application, and is discussed in detail in §III-A.

Optimization of nonconvex objective functions is a prob-
lem of intense interest in many practical engineering prob-
lems, such as hydrofoil design optimization [12], which
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represents a typical challenge problem for this effort, as
its objective function f (x), which characterizes the lift/drag
ratio of the foil, may be expresses as a function of 10 or
more variables, though some of these variables are much
more significant in the optimization problem than others
(though this is not known a priori). The ultimate goal in such
practical problems is to approximate the global minimum of
(1) using as few function evaluations as possible.

There are a variety of established techniques for di-
mension reduction in the optimization setting. Sensitivity
analysis [2] is a well-known method by ranking the in-
put parameters due to the measure of their contribution
to the objective function. However, some functions may
have the most variable directions that are not aligned with
the coordinate. Principle component analysis (PCA) [4] is
another popular method for dimension reduction by creat-
ing new artificial coordinates that are linear combination
of the observed variables. PCA could only maintain the
largest variation of data points instead of identifying the
direction that has most variation of the objective function,
which possibly passes the global minimum region. Locally
linear embedding [5] identifies the low-dimensional sub-
space when the high-dimensional data lie on a manifold
that embedded in high dimensional space. However, the
sub-region of original parameter space is explored by the
function values, which indicates that there is a must to
design a strategy to project the data from low-dimensional
embedding back to original parameter space. In Section III-
B we propose a new re-transformation strategy by solving
a constrained minimization problem.

Under appropriate assumptions, it is guaranteed that
derivative-free methods could converge to a global optimum,
but in general they are computationally inefficient since it
is a NP-hard problem and many more function evaluations
are required. Response surface methods (RSMs) are the
most efficient globally-convergent derivative-free optimiza-
tion methods available today, which iteratively minimize
a search function using an interpolant of existing data
points, known as the “surrogate”, and a model of the
“uncertainty” of this surrogate which goes to zero at the
evaluated data points. The modern examples of RSMs in-
clude Efficient global optimization (EGO) [6], optimization
by radial basis function interpolation in trust-regions (OR-
BIT) [7], the Surrogate-Management-Framework (SMF) [8],
and Delaunay-based derivative-free optimization via global
surrogates (∆-DOGS) [9], [10].

The derivative-free scheme upon which the present work
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is based on is ∆-DOGS, which is a broad family of
computationally-efficient RSMs developed to optimize low-
dimensional and black-box functions that are both non-
convex and computationally intractable. There are already
a handful schemes in this family, including schemes de-
signed specifically linear constraints [11], and nonconvex
constraints [10].

This paper combines the dimensionality reduction scheme
together with ∆-DOGS algorithm to minimize the high-
dimensional objective function that has most variation along
at most d-directions. We first apply gradient sampling on
the response surface to obtain the active subspace. Then
∆-DOGS is applied on the active subspace to identify a
low-dimensional minimizer which is potentially close to
the global minimum after projection. Lastly a new inverse
mapping scheme is proposed to transform the minimizer
back into original parameter space by solving an inequality
constrained minimization problem.

The paper is structured as follows: Section II briefly
reviews the essential ideas of [11], [18], which accelerates
a ∆-DOGS search by coordinating it with a Cartesian grid
which is successively refined as convergence is approached.
Section III explains the new optimization scheme, which
combines an active subspace method with our derivative-free
optimization scheme (∆-DOGS). Section IV briefly analyzes
the global convergence property of the new algorithm under
appropriate assumptions. In Section V, the new algorithm
is applied to synthetic optimization problems to illustrate
its competitive performance. Conclusions are presented in
Section VI.

II. A BRIEF REVIEW OF ∆-DOGS

In this section we briefly review the essential ideas of
∆-DOGS [11], [18]. This paper focuses on the variation
of this core algorithms by leveraging the active subspace
method, in order to identify (and, preferentially explore) the
directions in parameter space with the greatest variability
of the objective function. Note that other variants of ∆-
DOGS, such as those implementing Cartesian grids to
accelerate the convergence rate, as discussed in [11], and
those leveraging multivariate adaptive polyharmonic splines
(MAPS), as discussed in [12], may also be considered in
the present dimension-reduced setting.

The ∆-DOGS algorithm successively determines the lo-
cation within B with the highest probability to achieve a
function value less than or equal to the prescribed target f0.
This approach is realized by minimizing a synthetic (and,
cheap-to-evaluate) surrogate model sc(x), constructed via
polyharmonic splines [13] p(x), and the uncertainty function
e(x). The approach is akin to the expected improvement and
Bayesian optimization algorithms [14], [6].

The local uncertainty function, defined at each iteration as
a piecewise quadratic “bump” function within each simplex
of a Delaunay triangulation of the evaluated datapoints,
reaches its maxima at the circumcenter of each simplex.
This uncertainty function has several important founda-

Fig. 1: The essential elements of ∆-DOGS algorithm in
different iterations for 1D Schwefel function(17). The upper
figures contain: The solid black line indicates the truth
function f (x), the blue dotted line indicates interpolant
function p(x); The lower figures contain: The green dotted
line represents the continuous search function sc(x), as
defined in equation (2). The red circles are the minimizer
of sc(x) as known as the next data point to evaluate.

tional properties, such as Lipschitz continuity and twice-
differentiability within each simplex.

Definition 1: Consider a set of N datapoints S = {xi}N
i=1

over the feasible domain B. The continuous search function
sc(x) is defined as follows:

sc(x) =

{
p(x)− f0

e(x) if p(x)≥ f0,

p(x)− f0 otherwise,
(2)

where p(x) is some smooth interpolating function such that
p(xi) = f (xi),∀i ∈ {1, . . . ,N}.

The interpolation p(x), the truth function f (x), and the
continuous search function sc(x) are illustrated in Fig. 1.
There are two possible termination scenarios for ∆-DOGS:
either the target value f0 is achievable and ∆-DOGS identi-
fies a point x with function value f (x) ≤ f0, or ∆-DOGS
conducts infinite number of mesh refinement iterations,
ultimately with data points becoming dense over the entire
feasible domain.

Definition 2: The Cartesian grid of level L for the feasible
domain B = {x|a≤ x≤ b}, denoted BL, is defined as

BL =

{
x|xL = aL +

1
N
(bL−aL) · zL, zL ∈ {0,1, . . . ,2L}

}
The point x ∈ B quantized onto the grid BL, denoted xq, is
the nearest gridpoint to the original point x. The quantizer xq
is not necessarily unique. The maximum quantization error
∀x ∈ B to the mesh grid BL is simply

δL(x) = max
xq∈BL

|x− xq| (3)
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III. DIMENSION REDUCTION BASED ON THE ACTIVE
SUBSPACE METHOD

A. Active Subspace method

We now discuss briefly the theory of active sub-
spaces [15]. The general approach is similar to that of
principle component analysis (PCA), which implements a
proper orthogonal decomposition (POD) on the covariance
matrix of the evaluated data to acquire the components
with the highest variability. The active subspace method,
in contrast, performs this POD on the covariance matrix of
the gradient of the objective function.

Consider the scalar function f of the n-dimensional
column vector x, whose variability is concentrated in d
directions. The gradient ∇ f (x) is also reshaped as a col-
umn vector. Denoting the evaluated data point set as S =
(x1,x2, . . . ,xN), we have

fi = f (xi), ∇ f (xi) ∈ Rn, xi = [0,1]n. (4)

The task is to identify the “active” directions, representing
the highest variability of f . A few comments are in order
before we review the active subspace method. First, the
POD of the gradient outer-product involves an integral with
respect to the original coordinates n, which is difficult
to solve. To address this, one could use a Monte Carlo
simulation to estimate this outer-product. In [15], it is
established that the required number of Monte Carlo samples
is M = α ·d · log(n), where α is an adjustable parameter.

However, the primary challenge is to approximate the
gradient function itself, which is unavailable in derivative-
free approaches. [15] provides an error estimate for this
approximation using the gradient of the RSMs under the
assumption that only a few directions have significant vari-
ability. We randomly sampled the gradient of the RSMs ∇ f̂
built by ∆-DOGS, subject to a uniform probability density
function, to construct an estimate of the covariance matrix in
parameter space using a Monte Carlo method. The estimated
covariance matrix is

C ≈ Ĉ =
1
M

M

∑
i=1

∇ f̂ (xi)∇ f̂ (xi)
T . (5)

The “active” directions of parameter space are then de-
termined by performing a spectral decomposition on this
covariance matrix, which is symmetric positive semidefinite,
and may thus be decomposed as

C =WΛW T , (6)

where W ∈ Rn×n and Λ is a diagonal matrix of descend-
ing eigenvalues. Since we consider an objective function
varying primarily along d directions, the first d orthogonal
eigenvectors from W are selected to define the active sub-
space. Note that the corresponding eigenvalues are relatively
large, which means there is increased variability along the
directions indicated by those eigenvectors. We then identify
a significant “gap” in the eigenvalues in Λ, and partition W
and Λ accordingly [15] (often capturing a certain minimum

”degree of variabiility” with the eigenvalues retained in the
active subspace - e.g., 90% or more) such that

W =

[
W1︸︷︷︸

d columns

W2︸︷︷︸
n−d columns

]
, Λ =

[
Λ1

Λ2

]
(7)

Once the spectral decomposition of matrix C is achieved,
the original parameter x may then be written as x =
W1y+W2z, where y represents the coordinates within the
“active” subspace, and z represents the coordinates within
the “inactive” subspace (with relatively little variation of f ).
We then define the search domain within the active subspace
as follows

Definition 3: Suppose B denotes the domain of original
parameter space. For ∀x ∈ B, x = W1y +W2z. Then the
domain B̄ of the active(reduced) subspace is defined as

B̄ = {y | y =W T
1 x, ∀x ∈ B}. (8)

We may then construct the interpolation g in the reduced
subspace to approximate the function f . This interpolation
is constructed by conditional expectation, as discussed in
§III-B, and results in

f (x)≈ g(W T
1 x). (9)

B. ∆-DOGS with Active Subspace Method

In this section, we consider the problem of identifying a
location in the feasible domain B with function value less
than or equal to f0. The objective function is assumed to
vary primarily within d directions in the feasible domain.

Definition 4: Assume the function f (x) has at most d < n
“active” directions. Suppose xD is the d-dimensional column
vector that represents the value of the input x. For a
sufficiently small γ and ∀x,y ∈ Rn there exists δ such that,
if ‖xD− yD‖< δ , then | f (x)− f (y)| ≤ γ .

∆-DOGS with active subspace method algorithm may
then be presented in three phases as follows.

1. First Phase: Active Subspace Method (ASM). We
apply the active subspace method to determine the
d directions that have the most variability of the
objective function. The original n-dimensional dataset
S is mapped to the d-dimensional active subspace B̄.
Each coordinate of the active subspace B̄ is a linear
combination of original parameters in B.

2. Second Phase: ∆-DOGS. In the second phase, a reg-
ular ∆-DOGS optimization is performed on the active
subspace B̄, to approximate the minimizer yr ∈Rd . This
step aims to establish knowledge about which (lower-
dimensional) subregion within the original parameter
space B is most likely to contain the global minimum.

3. Third Phase: ∆-DOGS with ASM. An inverse map-
ping is then developed to transform the best point from
the d-dimensional optimization in the second phase
back to the full n-dimensional problem. This inverse
mapping requires another response surface constructed
with data points in B.
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For the second phase, we first construct a new interpo-
lation that is needed for the ∆-DOGS optimization in the
active subspace B̄. The approximate value f̂ (xr) at the image
of evaluated points after mapping is calculated based on
conditional expectation of the interpolant value.

Definition 5: The value of the interpolant in the reduced
subspace is defined as

Pr(y) = f̂ (y) =
1
M

M

∑
i=1

f (xei)

subject to W T
1 xei = y, y ∈ B̄, xei ∈ B.

(10)

where M = α d log(n), α ≈ 10 is an oversampling factor,
and the M points xei are sampled in a uniformly random
way over the inactive subspace in order to approximate the
value of f in the original search domain B.

Note that the reduced model B̄ is also a manifold, thus an-
other mesh grid scheme is applied in the reduced subspace.
Each time the mesh grid L in original parameter space B
gets refined, the mesh grid ` in the reduced subspace B̄ is
also refined to accelerate the convergence of ∆-DOGS to the
global minimum in reduced model B̄.

By implementing ∆-DOGS optimization, we approximate
the minimizer yr of the continuous function sc(x) in the
reduced subspace, which functions as an estimate to indicate
which subregion of the full parameter space most likely has
the global minimizer that is sought.

As the function evaluations are performed in the original
parameter space B, it is necessary to approximate yr in the
original parameter space B. We propose an inverse mapping
that transforms yr into the original parameter space B based
on the goal of minimizing the surrogate of objective function
in B [16]. This inverse mapping is constructed by solving
an inequality constrained minimization described below.

In inequality constrained optimization, the objective func-
tion is defined as discrete search function sd(x) with similar
structure to the continuous search function. sd(x) is con-
structed by the interpolant function P(x) in B, and a new
distance-uncertainty function u(x). The uncertainty function
u(x) is the distance of x to its nearest neighbor in the
evaluated points set S defined as follow.

Definition 6: Suppose S = {x1,x2, . . . ,xN} denotes the
evaluated points set in original parameter space. For ∀x ∈ B
the uncertainty function u(x) is defined as

u(x) = dist(x,S) = min
z∈S
‖x− z‖ (11)

Then the search function sd(x) is defined as

sd(x) =
P(x)− f0

dist(x,S)
=

P(x)− f0

minz∈S ‖x− z‖
(12)

It is obvious that the distance-uncertainty function u(x)
is continuous and differentiable inside the Voronoi cell of
every evaluated point x ∈ S [18]. The key properties of u(x)
are: 1) u(x)≥ 0 ∀x∈B, and u(xi)= 0 ∀xi ∈ S, i= {1, . . . ,N};
2) Since the point-wise distance in B is bounded, and

Algorithm 1 Strawman of ∆-DOGS with ASM

0. Initialize k = 0, L, ` and the initial set of datapoints S0,
and calculate f (xi) for all xi ∈ S0.

1. Calculate or update the interpolating function pk(x) for
all the points in Sk.

2. By equation (5), calculate or update the uncentered
covariance-like matrix C and the coordinate transfor-
mation matrix W k

1 .
3. By Definition 5, establish the interpolating function

Pk
r (x) in reduced model, minimize the continuous

search function (2) to obtain yk
r as a minimizer in

reduced model.
4. Solve the inequality constrained minimization (14) to

obtain xk as a minimizer of the response surface.
5. Determine zk as the quantization of xk on BLk . If zk /∈ Sk,

Sk+1 = Sk∪zk; otherwise, refine the mesh by increasing
Lk = Lk +1 and `k = `k +1. Increase k = k+1.

6. Repeat steps 1-5 until a point x is found with f (x)≤ f0.

maxu(x) is achieved on the boundaries of box domain B,
thus u(x) is Lipschitz continuous with Lipschitz constant Lu.

‖u(x)−u(x′)‖ ≤ Lu‖x− x′‖, ∀x,x′ ∈ B (13)

Definition 7: Determine the minimizer of ∆-DOGS yr,
and establish the discrete search function as stated in Def-
inition 6. Given a slack tolerance variable ε , the inequality
constrained minimization is defined as follow

min sd(x) =
P(x)− f0

dist(x,S)
with ‖W T

1 x− xr‖ ≤ ε

(14)

This inequality constrained optimization is solved by
sequential least-square quadratic programming. The initial
guess is defined by x0 = W1yr. The slack variable ε is a
user-defined variable that how much amount of variation
that we could tolerate. The larger ε indicates that we allow
searching more globally in B.

We have now presented all of the essential elements of
the new algorithm. The result is summarized as Algorithm
1.

IV. CONVERGENCE ANALYSIS

All the convergence proofs of Theorems, Lemma related
to Algorithm 1 can be found in http://fccr.ucsd.
edu/pubs/zab18.pdf. In this section, we analyze the
convergence properties of Algorithm 1. Under the appropri-
ate assumptions, we will establish the following property:

Target achievability: If the target is achievable, the algo-
rithm will either: (a) find the feasible point with objective
function equal or less than the target f0 in a finite number
of iterations, or (b) generate an infinite sequence of points
that contain a point with function value equal to f0. We first
establish the following theorem based on Definition 4.

Theorem 1: Suppose the perturbation of the dominant
directions is small, ‖xD− x′D‖ ≤ δ . Let x = W1y+W2z and
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x′ =W1y′+W2z′. Then the interpolant in active subspace is
Lipschitz with constant LPr .

|Pr(y)−Pr(y′)| ≤ LPr‖y− y′‖ (15)

where LPr =
2C1(1+N−

1
2 )ε0+γ

δ0
.

The uncertainty function u(x) also keeps the properties
such as continuous and twice-differentiable as needed to
prove the target achievability in [9]. It is established in [11]
that ∆-DOGS is capable to converge to the point with the
target value f0. The results is shown in the Theorem 2.

Theorem 2: Suppose the Definition 4 holds and the Lip-
schitz continuous reduced interpolant Pr(x) is built up as
stated in Definition 5. Algorithm 1 will converge to the
global minimum in the feasible domain B̄.

In active subspace B̄, ∆-DOGS could approach the target
value f0, i.e. for sufficiently many iterations k, we have

|Pr(xk
r)− f0|< ε2 (16)

We may now prove that Algorithm 1 is also target
achievable in the original parameter space B under Def 4.

Theorem 3: Suppose the objective function has most vari-
ability along d directions. The target value f0 and box
domain B are given. The Algorithm 1 is target achievable if
the reduced interpolant Pr(x) is Lipschitz continuous.

For sufficiently small ε0 and ε2, the Algorithm 1 globally
converges to the target value with finite iterations.

V. RESULTS

In this section, ∆-DOGS with ASM algorithm has been
applied to the following synthetic functions. The initial size
of the Cartesian grid for each coordinate is set to be 8. The
Algorithm 1 will continue the search until 4 times of mesh
refinement have been performed. We initialize ε = 0.2 and
reduce it to zero by decreasing 0.001 for each iteration.

The performance of the ∆-DOGS with ASM algorithm
is measured by the number of function evaluations and the
relative error defined as follows. Suppose the best minimum
point obtained until iteration k is defined as the candidate
point at iteration k. Let fmin denotes the function value of the
candidate point and f0 denotes the global optimum value.
The relative error is defined as the ratio of the subtraction
of best minimum obtained and the global minimum to the
global minimum.

The initial data points in S0 are constructed with 3n+3
points that are uniformly drawn from the parameter space
B. The number of dimension of active subspace is set to
be one. To approximate the first d eigenvectors of C, [15]
recommended to have M samples of gradient sampling on
the response surface subject to uniform distribution. Here
M = αd log(n) and α is an oversampling factor which is
fixed as 10, the other parameters are set as d = 1 and
n = 10. Thus we have As we have mesh grid refined, we
would increase the gradient samples as there are more grid
points in the parameter space. Thus when the finest grid is
achieved, the number of gradient sampling is computed as
M = αd log(n), Lk = 1280.

Fig. 2: f1(x) on Candidate point.

Fig. 3: Distance of candidate points to the global
minimum.

The first test function(17) is constructed mainly by
Schwefel function and the quadratic function which only
makes small contribution to the objective function.

f1(x) =−
x1

2
sin(500|x1|)+

10

∑
i=2

(0.001) · i · x2
i (17)

It has several properties: (a) The coordinate x1 has most
variability; (b) It is continuous, nonconvex and twice-
differentiable in the box domain x ∈ [0,1]10; (c) The mini-
mizer is x∗ = [0.8419,0, . . . ,0] and the target value is f0 =
−1.675936. We applied Algorithm 1 on the first test function
with n = 10. The target value f0 =−1.6759 is achieved by
103 iterations with relative error 0.025%. The distance of
candidate point to the global minimizer also converges to
zero as shown in Fig. 2 and Fig. 3.

The second test function(18) is a combination of exponen-
tial function, Rosenbrock function and quadratic function.

f2(x) = e0.2x1 + e0.2x2 +10(x2− x2
1)

2 +(x1−1)2+

0.001 ·
10

∑
i=3

(xi−0.1 · i)2 (18)

The second test function has several properties:(a) The
most variability direction is along the combination of
two coordinates x1 and x2; (b) It is continuous, con-
vex and differentiable; (c) The minimizer is x∗ =
[0.512,0.723,0.3,0.4, . . . ,1] and the target value f0 =
2.34128. The target value f0 is achieved by 413 iterations
with relative error 0.0532%.

2769

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on December 14,2021 at 23:35:38 UTC from IEEE Xplore.  Restrictions apply. 



Table I shows the results of applying the ∆-DOGS with
ASM to the above two test problems.

Test function No.
param.

stopping
criterion

final
error (ε)

No. Eval.
for 1%
error

(17) 10 146 0.025% 52
(18) 10 465 0.0532% 246

TABLE I: Experiment results of Algorithm 1.

VI. CONCLUSIONS

In this paper we have extended the active subspace
method to the Delaunay-based derivative-free optimization
algorithm scheme, ∆-DOGS, to handle high-dimensional
nonconvex problems. ∆-DOGS has been performed on the
active subspace to enable low-dimensional surrogate search.
Once the minimizer is obtained, we proposed an inverse
mapping scheme by solving an inequality optimization
problem. This approach, Algorithm 1, has two main modi-
fications as compared with the original ∆-DOGS algorithm:
• Previously ∆-DOGS is restricted by the number of

design parameters because of the unaffordable compu-
tational cost to construct the Delaunay triangulation in
high-dimensional parameter space. ∆-DOGS with ASM
avoids the huge cost by transforming all data points Un-
der appropriate assumptions on the objective function,
Algorithm 1 is asymptotically convergence provable to
identify where the objective function achieves the target
value.
• We proposed a new inverse mapping method that
projects the points in active subspace back into the
original parameter space. This process is achieved
by solving an optimization problem constructed on
the global surrogate with inequality constraints. Our
results are compelling compared with the normal linear
mapping routines.
• The objective function could have different variance
along different coordinates. However, ∆-DOGS scales
poorly with the dimension of the objective function
because it treats each coordinate with the same im-
portance in their contribution to the objective function.
∆-DOGS with ASM could mitigate this effect by pro-
jecting the original and leave out the directions that
have small contribution to the function.

In future work, this framework will be applied to
engineering-based problems such as the design of hydrofoil
in high-speed boats and localization of aerial vehicle in
the GPS denied environment. Most of the engineering-
based problems where the objective function with its most
variability along more than one direction. Moreover, the
dimension of the active subspace could be increased such
that more complicated objective functions will be handled
by ∆-DOGS with ASM. The vertices of active subspace
B̄ could be found by algorithm provided in [17] subject
to linear mapping. Also, the presented Delaunay-based
optimization scheme with active subspace method will be

incorporated into ∆-DOGS family of schemes [9], [11] to
enable such optimization method to handle problems with
more variables.
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